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Abstract

This paper proposes using active learning combined with rare class
discovery and uncertainty identification to statistically train a network
traffic classifier. For ingress traffic, a classifier can be trained for a
network intrusion detection or prevention system (IDS/IPS) while a
classifier trained on egress traffic can detect malware on a corporate
network. Active learning selects “interesting traffic” to be shown to
a security expert for labeling. Unlike previous statistical misuse or
anomaly-detection-based approaches to training an IDS, active learn-
ing substantially reduces the number of labels required from an expert
to reach an acceptable level of accuracy and coverage.

Our system defines “interesting traffic” in two ways, based on two
goals for the system. The system is designed to discover new cate-
gories of traffic by showing examples of traffic for the analyst to label
that do not fit a pre-existing model of a known category of traffic.
The system is also designed to accurately classify known categories of
traffic by requesting labels for examples which it cannot classify with
high certainty. Combining these two goals overcomes many problems
associated with earlier anomaly-detection based IDSs.

Once trained, the system can be run as a fixed classifier with no
further learning. Alternatively, it can continue to learn by labeling
data on a particular network. In either case, the classifier is efficient
enough to run in real-time for an IPS.

We tested the system on the KDD-Cup-99 Network Intrusion De-
tection dataset, where the algorithm identifies more rare classes with
approximately half the number of labels required by previous active
learning based systems. We have also used the algorithm to find pre-
viously unknown malware on a large corporate network from a set of
firewall logs.

1 Introduction

With the proliferation of on-line networks attacks and new forms of malware,
computer security is an increasingly important area of research. Network
intrusion detection involves identifying malicious activity by analyzing the
transfer of packets across a computer network, while system and security
events generated by a computer’s operating system can be used to detect
malware or unauthorized logons on individual computers (i.e. host intrusion
detection). In the past, two styles of intrusion detection and prevention
systems (IDS/IPS) have been proposed in the literature: misuse systems and
anomaly detection. Misuse IDSs can either be rule-based where an expert
analyst designs rules to match known traffic patterns [1] or statistically
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based where rules (i.e. classifier weights) are learned from the data itself [2].
Anomaly detection systems typically learn a statistical model of normal
traffic and anomalies are identified as traffic patterns which do not fit the
normal model [3, 4]. Hybrid models attempt to merge both styles of intrusion
detection.

In the past, anomaly detection systems have performed poorly for a
number of reasons. However, given the increasing complexity of the net-
work traffic in an adversarial world, we believe that, in conjunction with a
misuse system, anomaly detection must be employed in order to discover
new network attacks masquerading as legitimate network transfers. One
main problem of previously proposed anomaly detection algorithms is that
given the huge number of different types of traffic on the network or in a
computer, it is extremely difficult to design a single model to represent all
normal traffic. Therefore, anomalies must be identified within each sepa-
rate class of traffic [5]. Furthermore, we believe that misuse detection can
also benefit from classifying known classes of normal traffic in addition to
malicious traffic.

Another problem with standard anomaly detection systems is that rare
events are often uninteresting. Typically, an IDS based on anomaly detec-
tion presents analysts with rare events, assuming that rare events are the
result of intrusions. However, “rare” is not necessarily synonymous with “in-
teresting.” In our experience with the network packet logs, we have found
many examples of normal traffic that have features that are unusual. We
need a system to filter out these rare, but uninteresting items, in order to
find the very rare, but interesting samples such as a zero-day worm.

Expert analysts have an amazing ability to identify strange traffic pat-
terns within a cluster of traffic with similar characteristics. Training both
rule-based or statistically-based systems requires a huge amount of time
from expert analysts either designing rules for the former or labeling traffic
for the latter. Employing security experts is difficult and expensive; thus
in addition to achieving the highest possible detection rate, minimizing the
amount of time required by the analysts is a primary objective in training
an IDS/IPS. Active learning is a methodology for statistically based systems
where the algorithm identifies the best samples to label thereby producing
the highest classification accuracy with the least amount of human effort [6].
Active learning provides a tool to attempt to deal with the huge amounts of
computer or network traffic in corporate computer networks. For example
in October 2006, corporate proxy firewalls from Microsoft Corp. running
Internet Security and Acceleration (ISA) Server logged up to 25 million en-
tries of outbound network packets on a single day to a SQL database where
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an entry corresponds to a corporate computer sending data to another com-
puter located outside of the corporate intranet. The ISA logs contained
only 10% of the total amount of outbound, firewall traffic for any given day:
analysts could be responsible for examining billions of events per month.

Recently, active learning has been used to minimize the number of sam-
ples (i.e. human effort) required for anomaly detection [7]. As the number of
distinct classes of network traffic continues to increase, identifying anomalies
within each class of traffic requires more and more labeled data. Again, ac-
tive anomaly detection significantly reduces the effort required by analysts
in order to discover the “rare” and interesting traffic which is most likely to
be new instances of network attacks.

This paper proposes ALADIN: a synthesis of the active learning approach
for classification and active anomaly detection. ALADIN stands for “Active
Learning of Anomalies to Detect INtrusions” and is applicable to both host-
based and network intrusion detection. Instead of presenting a firehose
of anomalies to a security analyst, we first present a small number. The
analyst then labels these into categories. We use these labels to update
both a classifier and an anomaly detector. We repeat alternating labeling
and learning: once an item gets labeled, items similar to it are no longer
anomalies, and hence get classified correctly. This allows analysts to quickly
filter out common categories of traffic and identify rare anomalies that are
new security risks. The main contribution of this paper is a new framework
that both quickly finds new classes of traffic using anomaly detection and
also creates classifiers with high prediction accuracy.

Network intrusion detection systems try to detect inbound attacks from
ingress network traffic. A related problem is searching for computers infected
with malware which are transmitting data outside of a company by analyzing
egress traffic. The ALADIN algorithm can also be used to design classifiers
based on egress network traffic features. In this paper, we describe the design
and implementation of a malware classification system based on ALADIN.

To be clear, the combination of classification and anomaly detection is
only used during the training phase. For real-time (IPS) or off-line (IDS)
detection, the classifier’s weights are used as a statistical misuse system.
Weights for a general purpose IDS/IPS can be generated by a relatively
small number of expert security analysts working for the IDS manufacturer
who label data for a large number of customers as shown in figure 1. As new
samples are labeled, updated classification weights can be downloaded much
like signatures for anti-virus engines are continuously updated today. Most
small to medium size businesses should be able to use the general purpose
weights with excellent performance. However the framework is extensible;
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Figure 1: General Classifier Training with Optional End-User Adaptive
Training.

for those companies which use the IDS/IPS and employ a small number of
analysts who understand the specific nature of their corporate computing
environment, the general purpose weights can further be adaptively trained
based on any labeled samples provided by the end-user analysts. When new
general purpose weights are available, samples previously labeled by the
end-user can be used again to re-adapt the new general purpose weights.

We first review details of related work in active anomaly detection (sec-
tion 2.1), in using active learning for an IDS (section 2.2), and in multi-mode
and hybrid intrusion detection (section 2.3). We then present our proposed
system for combining active learning, anomaly detection, and high classifi-
cation accuracy in section 3. We describe our experiences with the use of
the ALADIN algorithm for detecting malware on a corporate network from
firewall logs for outbound network packets in section 4 and show experimen-
tal results for network intrusion detection in section 5 for the KDD-Cup 99
data set. We present conclusions and propose future research topics in 6.

2 Related Work

2.1 Active Anomaly Detection

Recent work in the machine learning community has investigated algorithms
that combine active learning and anomaly detection. The machine learning
algorithms discussed in this paper act on generic items, that can be in an
event log. Each item is represented as a vector of features, ~x, that describe
a set of traffic (see section 4 for our definition of features). Features can be
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either continuous variables or a discretization of a categorical variable.
Pelleg and Moore [7] proposed a system for active anomaly detection.

They view the goal of anomaly detection as the detection, with as few sam-
ples as possible, of all of the categories of data in an unlabeled data set.
Thus, they share one of the goals of ALADIN: the equivalent task of discov-
ering new types of network attacks or malware.

The key insight in Pelleg and Moore is that anomalies can be disregarded
once they are labeled by an expert and accounted for by a model. There-
fore, they maintain a model of input vectors ~x: P (~x|i), one model for each
class label i. They measure anomalousness by how unlikely a data point is
according to its class’ model. In Pelleg and Moore, an unlabeled data point
undergoes four steps:

1. The class label is estimated by finding the most likely class via

c = arg max
i

P (i|~x) = arg max
i

P (~x|i)P (i)∑
j P (~x|j)P (j)

(1)

where P (i|~x) is the probability of a set of traffic described by feature
~x being in class i, P (~x|i) is a model of traffic in class i where it is the
probability of observing ~x given that we are certain that the traffic is
in class i, and P (i) is the prior probability of observing traffic in class
i (without observing any features).

2. The anomaly score for an item is: − log P (~x|c).
3. Items with high anomaly scores are shown to an expert for labeling.

4. The models P (~x|i) are updated with new labeled data. Repeat.

Pelleg and Moore propose several different ways of selecting items in step
3. The method they favor (called interleave) is to select a fixed number
of outliers per class (where the outliers per class are selected to have the
highest anomaly scores).

Note that Pelleg and Moore’s work is optimized for finding anomalies as
quickly as possible. The classifier used in step 1 of their algorithm, trained on
the data labeled in step 3 may not provide the highest accuracy classification
results.

Another active-learning-like algorithm for anomaly detection was pre-
sented in [21]. That algorithm used active learning as a method for creating
diverse anomaly detectors: the number of labeled samples presented to an
expert may become quite large.
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2.2 Active Learning for Intrusion Detection

Another related work is that of Almgren and Jonsson [6], which uses active
learning to make an accurate, statistical misuse intrusion detector. Alm-
gren and Jonsson use a form of active learning [22], where an expert labels
unlabeled items that lie near decision boundaries of a classifier. The items
near the decision boundary are those that the classifier is most uncertain
about: therefore, labeling them has the most value. In addition, the highly
accurate Support Vector Machine (SVM) classifier only pays attention to
items near the decision boundary: points far away are ignored. In [6], Alm-
gren and Jonsson show that active learning provides much better results for
classification accuracy in an IDS when compared to random sampling.

The Almgren algorithm operates in the following way:

1. A two-class radial basis function (RBF) SVM is evaluated on each
data point ~x:

z =
∑

j

αjyjK(~xj , ~x) + b (2)

where z is the score for the item belonging to the positive class, yj is
the label for a set of traffic j, +1 if positive, -1 if negative, (~xj , yj) are
the labeled items, and αj is the result of the SVM algorithm. K(~xj , ~x)
is a measure of the similarity between a new input vector ~x and a
stored memory vector ~xj : typically K is large when the two vectors
are similar, and close to 0 if not.

2. The certainty score for an item is |z|.
3. Items with low certainty scores are shown to an expert for labeling.

4. The SVM is re-run with the new labeled data. Repeat.

Since Almgren’s algorithm is optimized to accurately predict the label for
the unlabeled samples, it will not typically find anomalies as quickly as Pel-
leg’s anomaly detection algorithm. The paper also only presented a 2-class
algorithm; we show that the performance is worse in multi-class problems
in section 5.

2.3 Multi-Mode and Hybrid Intrusion Detection

Typical anomaly detection algorithms consider two modes: normal and
anomalous. By modeling normal behavior correctly, the goal is to iden-
tify anomalous behavior which hopefully corresponds to detecting malicious
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activity. However, learning a single model representing all normal behavior
is problematic and leads to high false positive rates where anomalous, nor-
mal behavior is incorrectly predicted to be malicious. As in the algorithm
proposed in this paper, Valdes [5] also approaches anomaly detection for in-
trusion detection using multiple classes, or modes. Valdes analyzes multiple
modes for sequences corresponding to the categorical destination TCP port.

Recently, Lane [23] proposed a hybrid IDS based on combining a statis-
tical misuse IDS with an IDS based on anomaly detection. This algorithm
uses semi-supervised learning with a partially observable Markov decision
process (POMDP). Lane’s algorithm is applied to host based time series of
UNIX commands.

3 Proposed Active Learning Algorithm for High
Classifier Accuracy and Rare-Class Discovery

It is possible to simply run both Pelleg’s algorithm and Almgren’s algorithm
to create an intrusion detection system which both finds new intrusions and
refines the rules for existing known categories. However, a security analyst
would then be bombarded with labels: neither algorithm would cooperate
or share labels.

Therefore, we propose the ALADIN algorithm: a single intrusion detec-
tion framework for both anomaly detection and classification. In ALADIN,
the labels provided by the experts update both the classifier and the anomaly
detector. The classifier finds uncertain items, which get labeled by an ana-
lyst. The anomaly detector consists of one model per class, where items that
do not fit the corresponding model are considered anomalous. Anomalous
items are also labeled by the analyst. The overall architecture of ALADIN
is shown in figure 2.

3.1 Learning the Classifier

The first stage of the proposed algorithm is illustrated in the left hand side
of figure 3. After the analyst is finished labeling one or more of the samples
proposed by the active learning algorithm, illustrated by the larger dots in
the figure, a multi-class, discriminative classifier is trained. In our work, we
choose to use logistic regression [24] which learns models of the form

P (class i|~x) = 1/(1 + exp(−
∑

j

wijxj + bi)) (3)
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Figure 2: ALADIN algorithm for detecting malware from intrusion detection
logs.

where xj is the value of the jth feature in an item. Logistic regression chooses
the parameters wij and bi to minimize the cross-entropy loss function E [24]

E = −
∑
n

I∑

i=1

tin log P (i|~xn) + (1− tin) log(1− P (i|~xn)) (4)

where tin is 1 if the nth input vector (~xn) is in class i and 0 otherwise, and
I is the total number of classes.

Logistic regression is chosen so that the classifier can be quickly retrained
for each labeling iteration, without forcing the analyst to wait for a lengthy
training algorithm. Other classifiers, such as a linear SVM or RBF SVM [24]
can also be used.

Note that for features xj that are categorical (i.e., their domain is a
discrete set), ALADIN uses the standard encoding [6], where each categorical
feature is represented by N binary inputs to the logistic regression. Only
one of these inputs has a value of one, corresponding to the feature category:
the rest are zero. Continuous features are scaled so that the mean of the
entire (label+unlabeled) data set is zero, and the variance is one.

In order to increase the accuracy of the logistic regression, ALADIN se-
lects items for analyst labeling that have high uncertainty. That is, ALADIN
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chooses items with a low certainty score:

min
i,j 6=i

|P (i|~xn)− P (j|~xn)| (5)

where i = arg maxk(P (k|~xn)). Traffic with a low certainty score has the
property that ALADIN has difficulty assigning the traffic to one class, be-
cause two classes are almost equally likely.

MSN Messenger
Outlook

Skype

Analyst-labeled 
items

Learned decision 
boundaries

Map of feature 
values

Unlabeled 

items

Anomalies (potential malware): 

ask analyst for labels

Samples closest to 

the hyperplanes

Figure 3: The left figure shows the result of training a classifier: decision
boundaries in input space are hyperplanes. The right figure shows the se-
lection of the anomalies by the per-class models.

3.2 Anomaly Detection

The anomaly detection of ALADIN is similar to that used in [7]. A model
of all (labeled + unlabeled) data is built for each class. For each unlabeled
item, the classifier is applied and the unlabeled item is temporarily assigned
to its most likely class.

A model is then trained using all of the items assigned to a class. AL-
ADIN uses naive Bayes for the model which assumes that all of the input
features are statistically independent (given an item in a class). Thus, the
probability of an item is the product of the probabilities of each feature.
Equivalently, an anomaly score can be computed by taking the negative of
the sum of the log of the probabilities (i.e. loglikelihood) for each feature:

− log P (~x|class c) = −
∑

j

log P (xj |class c) (6)
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where a large anomaly score indicates a low probability (anomalous) item.
We build a model of each feature independently. Traffic tends to be anoma-
lous if at least one feature is out of the ordinary; the more features that
are strange, the higher the anomaly score. In addition, the more unusual a
feature is, the higher the anomaly score. For anomaly detection, ALADIN
presents unlabeled items to the analyst with large anomaly scores for each
class.

The form of the feature probability P (xj |c) depends on the type of fea-
ture. If the feature is continuous, the probability is a Gaussian distribution,
whose mean and variance is measured over all items assigned to class c. For a
categorical feature, the probability is a histogram (a multinomial) estimated
over all items assigned to class c.

In order to search for new malware or styles of intrusion, ALADIN selects
a number of anomalies per class to show to a security analyst for labeling.
These are the items that are far away from the centers of the clusters in the
right side of figure 3: these items do not fit into the current model of a class,
hence are potential new styles of intrusion or malware.

At every labeling iteration, ALADIN presents the same number of items
to an analyst for labeling, evenly distributed between all known categories:
half of the items are uncertain, the other half are anomalous. Thus if all
samples were to be labeled in the order suggested by the algorithm, the an-
alyst spends half of the time improving the classification performance, the
other half finding potential new problems. It should be noted that anoma-
lous items which lie near the decision boundaries may also be considered to
be uncertain items. These items may belong to a different class and hence
are labeled incorrectly, or may belong to a new, previously unlabeled class.
However the opposite may not be true: anomalous items which are located
far from the decision boundaries may turn out to be new categories which
require a new class label but most likely do not belong to an existing class.

Instead of ranking based on (6) for anomaly detection, another potential
algorithm could be to rank the anomalousness based on the output (poste-
rior) probability, P (c|~x), resulting from the classification stage. This method
does not tend to perform well since the output probability is a function of the
classification boundaries and tends to be dominated by the distance to the
nearest boundary. As a result, this type of algorithm may fail to accurately
detect anomalies located far away from the boundaries.

Sometimes, the logistic regression identifies very few unlabeled data as
belonging to a particular class (due to a severe lack of labeled data). In
this case, there are fewer uncertain or anomalous items in the rare category
compared to other categories. When this happens, ALADIN simply ranks all
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unlabeled data in order of the logistic regression output P (c|~x), and provides
the most likely items for analyst labeling. This balances the number of
labels per category and ensures that very rare categories do not get starved
for labels during active learning.

The summary of one iteration of ALADIN’s training phase is shown in
figure 4.

1. Learn a classifier by minimizing the loss (4) on the labeled samples

2. Evaluate the classifier (3) and the certainty score (5) for the unlabeled
samples

3. Assign all unlabeled samples to the most likely category

4. Compute the model parameters (mean, variance, or histogram) for
every P (~xj |c)

5. Compute the anomaly score (6) for all unlabeled samples

6. Select the next group of samples to be labeled choosing as follows,
sweeping through the categories:

(a) select the next, most anomalous unlabeled sample with the high-
est anomaly score (6) in each class

(b) OR, select the sample with the smallest certainty score (5) for
each class

(c) if not enough samples for a class are found from 6a) or 6b) select
the unlabeled sample with the second highest output probability
P (c|~xj) corresponding to the desired class c

7. Repeat step 6 until the desired number of samples have been labeled
for the iteration

Figure 4: One iteration of ALADIN training, as pseudo-code

3.3 Adaptive Training for the End-User Analyst

The framework can evaluate new samples in two modes as shown in figure 1:
standalone where the generic classifier weights are provided by the third
party which developed the system or in an adaptive mode where an end-
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user analyst provides additional labeled samples (uncertain or anomalies)
using the active learning algorithm proposed above. To be clear, additional
training by the end-user analyst is optional, and very good results can be
obtained without further adaptive training.

3.4 Evaluating New Samples

After the weights for the linear classifier have been trained using logistic
regression, new samples can be evaluated in an IDS or IPS. In both stan-
dalone and adaptive modes, all samples are evaluated using (3). Although
the length of the vector can be over 100,000 dimensions, the input data is
sparse and (3) can be evaluated very efficiently. As a result, evaluation can
be real-time for an IPS or off-line as an IDS which analyzes large log files.

3.5 Relationship to the Interleave and Mix-Ambig-Lowlik Meth-
ods

In [7], Pelleg and Moore propose four algorithms: lowlik, ambig, mix-ambig-
lowlik, and interleave. The first three algorithms find anomalies considering
all of the data at once. Lowlik identifies anomalies as being the samples
with the lowest likelihood among all of the samples, while ambig proposes
anomalies which are most ambiguous (i.e. samples closest to the decision
boundaries) again on a global scale. Mix-ambig-lowlik is a hybrid method
which combines both of these strategies for all data samples. By contrast,
the interleave method proposes samples with low likelihood for each indi-
vidual class. Thus interleave is similar to step 6a) in ALADIN. Iterating
between samples with low likelihood and high uncertainty in 6a) and 6b)
is similar in nature to Pelleg’s mix-ambig-lowlik, but differs in the following
way; ALADIN combines selecting the two types of samples (i.e. anomalous,
uncertain) on a per class basis, while mix-ambig-lowlik mixes the two types
of samples across the entire data set. Just as Pelleg and Moore show that
the interleave method outperforms the other methods by searching for rare-
classes on a per class basis, ALADIN extends the notion to combine both
strategies in the active learning scenario on a per class basis.

4 Malware Detection from Firewall Logs of Out-
bound Network Traffic

A prototype, large-scale malware detection system has been implemented
based on ALADIN. Security analysts have used this system to analyze daily

12



corporate network transmission logs from Microsoft Corp. generated by the
proxy firewalls using Microsoft’s ISA Server. ISA allows network packet
metadata to be collected and stored in SQL databases. The metadata cor-
responding to the packets are the basis of the features used in the system
and are a subset of those captured by the standard ISA logs [25].

The data from each of the separate SQL databases collected by the ap-
proximately twenty corporate network ISA servers is aggregated on a daily
basis based on the Greenwich Mean Time (GMT). The resulting combined
daily log file for the corporation is then preprocessed using the current avail-
able models created from any previously labeled data to predict a label for
each of the unlabeled samples for a particular day.

4.1 Reviewing the Current Results

Scalability is an issue when dealing with extremely large data sets such as
those produced by the corporate ISA logs. To combat this problem, the
analyst first selects the top N (e.g. 1000) samples to label, where N is
a user defined input, which have been ranked according to the proposed
algorithm. As explained previously, approximately N/2 samples are used
for anomaly detection and N/2 samples are used for improving classification
accuracy. Analyzing the top N samples addresses two issues. First, once
the samples have been selected initially, any subsequent labeling of data,
updating of the models, and re-ranking of the results is only performed on
this initial group of samples. This architecture allows a fast, interactive
experience when the analyst labels new samples. Second, the analyst would
be overwhelmed by being presented with the all of the samples to be labeled
at once. By providing only the top N samples for labeling, the analyst can
select a comfortable number of samples to analyze.

Another issue to explore is whether or not an automatic stopping crite-
rion should be provided in the algorithm for presenting items from a par-
ticular class to the analyst for labeling. We believe that with the analyst
in the loop, any labeled data can always be used to improve the algorithm.
The algorithm will always offer new samples to label if the analyst is so
inclined. If the algorithm automatically decides to hide a class for further
review, it is possible that new malware whose features lie in the same space
as a previously labeled class may be hidden with no chance for discovery.
Furthermore using the current UI, the analyst can choose to label any item
they desire in the top N list: they can choose to avoid labeling new items if
a class seems to be well formed. Therefore, we do not suggest providing an
automatic stopping criterion.
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For a large number of classes, the analyst may be presented with only a
single item from some classes and no items from other classes. Consider the
case with N = 1000 but there are currently 2000 labeled classes, the question
becomes which items should be presented to the analyst to label. In this
case, we suggest providing the analyst with the N samples corresponding
to the largest negative anomaly score for one iteration and the N samples
with the smallest uncertainty score for the next iteration.

4.2 Reprocessing the Data

During a labeling session, any updated models are only applied to the unla-
beled samples from the original top N samples. The analysts also have the
option of reprocessing all of the unlabeled samples from the daily log files.
In the current implementation, this requires an hour or so depending on the
size of the file although much of this time is used to update the predicted
label and anomaly score that are also stored in the daily ISA SQL table. If
the analyst exits the tool, they return to analyzing the same top N sam-
ples ranked initially by the algorithm or during the most recent reprocessing
step.

4.3 Implementation Details

The application is written in C# including all of the underlying machine
learning algorithms. The UI consists of DataGridView on a WindowsForm
which is used to display the rank, user label, predicted label, and the fea-
tures. The DataGridView allows the analyst to pivot on any column (rank,
label, feature) providing additional insight into the ranking process. The
application is multi-threaded: labeling one or more samples causes the ap-
plication to create an additional thread which is used to update the models
based on the new class labels.

4.4 Malware Detection

We have applied ALADIN to several daily logs averaging 13 million captured
events for each day. During testing of the tool, a new trojan (“5.exe”) was
discovered on the network which had not been previously identified by the
corporate, rule-based misuse NIDS. In addition, other worms and trojans
were also identified as anomalies during various iterations: these additional
malware samples were also identified by the Network Security team’s rule-
based misuse NIDS but were waiting to be classified by analysts.

14



5 Network Intrusion Detection Experiments and
Results

In this section, we analyze the components of ALADIN in the network in-
trusion detection setting to show that the combination of classification and
anomaly detection are required to attain high accuracy quickly. We evaluate
ALADIN’s performance by comparing it to two different versions of Alm-
gren’s active learning intrusion detection system [6]. The first version simply
drops the anomaly detection from ALADIN, while the second version uses
RBF SVMs, to be more similar to [6]. Following [6], the SVM uses C = 1
and a Gaussian kernel with σ2 = 0.5.

To compare the algorithms, we use the data from the 1999 KDD-Cup
contest for network intrusion detection systems [26]. Although the data
set is somewhat dated, we use the packet labels to conduct oracular ex-
periments which are required to simulate how the algorithm performs with
perfect knowledge of the class labels. These labels allow the comparison of
the proposed active learning algorithm and the active learning algorithm
presented in [6]. To be consistent with [6], all features from the 1999 KDD-
Cup are used: no feature selection was performed which may give an unfair
advantage to the proposed method.

Specifically, the first 100,000 samples from the file kddcup.data 10 percent
are used, and the distribution of the data is shown in table 1. As the table
shows, the data contains three common classes of traffic (normal, smurf,
neptune) and seventeen rare classes. From a small number of labeled sam-
ples, ALADIN attempts to identify labels for all of the unlabeled samples.
As a result, the algorithm may quickly identify all packets belonging to a
single attack. For example, for the single Neptune SYN flood attack, the al-
gorithm attempts to label all packets in the attack with the same label. If a
variant of a particular attack occurs, a new label can be created representing
the new attack example.

Class Count Class Count Class Count Class Count
normal 56237 satan 539 pod 40 multihop 6
neptune 20482 portsweep 278 warezmaster 20 buffer overflow 5
smurf 19104 nmap 231 land 17 phf 3
back 2002 teardrop 199 imap 12 loadmodule 2
ipsweep 760 guess passwd 53 ftp write 8 perl 2

Table 1: Distribution of process classes in the first 100,000 samples of kdd-
cup.data 10 percent
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To begin, 10 randomly chosen samples are labeled before running the
first iteration of the algorithm for all experiments in this section. For all
experiments, 100 samples are labeled for each iteration so that after 10
iterations, approximately 1% of the samples have been labeled. Choosing
100 samples to label per iteration corresponds to approximately 5-10 samples
labeled per class depending on the number of previously labeled classes.

5.1 Anomaly Detection

In this first experiment, we seek to compare how quickly the algorithms
discover classes in the data set. The results are illustrated in figure 5 for
ALADIN and the two supervised algorithms using the KDD-Cup 99 data
set. Three classes were sampled in the original 10 labeled samples. AL-
ADIN quickly identifies six new classes in the first iteration and eighteen of
the twenty classes after the fourth iteration of the algorithm. The other two
algorithms labeled “Logistic Regression” and “SVM” are standard active
learning algorithms without the additional anomaly detection stage; drop-
ping anomaly detection from ALADIN degrades the detection performance
of the system (as expected). Using an RBF SVM only identifies three classes
in addition to the three in the original labeled data, while using the Logis-
tic Regression identifies sixteen classes. The results clearly show that AL-
ADIN’s use of active anomaly detection significantly outperforms standard
active learning. Typically, adding the second stage of anomaly detection
requires only half the number of samples to be investigated and labeled by
an analyst compared to the next best alternative.

5.2 Error Rates for Classification of Unlabeled Data

Next, we analyze the error rates of the three algorithms in figure 6 gen-
erated by comparing the predicted labels of the unlabeled data using the
supervised classifier with the oracle labels from the data set. ALADIN per-
forms extremely well with an error rate ranging from 5.9% at iteration two
to 3.1% on iteration 10. The other two algorithms also converge to low er-
ror rates of 3-4% due to reliance on discriminative classifiers for prediction
but exhibit high error probabilities in the initial iterations during which a
sufficient number of samples have not been labeled to train accurate class
estimators. These large spikes in error rate correspond to a single classifier
mispredicting one of the common attacks (e.g. smurf,neptune) as normal.

In tables 2 and 3, we investigate the false positive (FP) and false negative
(FN) rates for the seven most prevalent classes. In this multiclass setting,
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Figure 5: Number of identified classes using the proposed ALADIN algo-
rithm and two versions of supervised active learning algorithm.

the FP and FN rates are calculated for each class relative to all of the other
classes. Tables 2 and 3 provide the results after labeling 10 iterations, 1000
total samples, and 20 iterations, 2000 total samples, respectively. These
tables show that the asymptotic error rate for ALADIN in figure 6 is mostly
due to false negatives whereby the anomalous attack classes are incorrectly
labeled as normal. After labeling 1000 samples, ALADIN misclassifies most
or all of the samples in the back and ipsweep classes. The classifier learns
the ipsweep class but still misclassifies most of the back class after labeling
2000 samples.

After analyzing the KDD-Cup 99 data set, we believe that the normal
class is overly broad and that the anomaly detection is often identifying
subclasses within the normal class for more granular labeling. Thus, normal
may not be easily classified with a single logistic regression classifier. AL-
ADIN may work even better in practice where analysts are able to further
label normal traffic as belonging to a known class (e.g. MSN Messenger,
Skype, etc.).
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Figure 6: Error rates for the three anomaly detection algorithms using active
learning.

6 Conclusions and Future Research

This paper presents ALADIN: an active learning framework for creating an
intrusion detection or prevention system. The ALADIN framework can also
be used to detect malware from outbound network traffic. In prior work,
active learning was used to either improve the accuracy rate of a misuse
classifier, or was used to detect new rare categories of traffic. ALADIN
combines both of these styles of active learning into one hybrid framework:
items provided to an analyst are used for both goals.

Experiments on the 1999 KDD-Cup data set show that ALADIN achieves
both goals of high accuracy on known classes, and good detection of un-
known rare categories. Because ALADIN is based on logistic regression and
naive Bayes, it can scale to process very large log files. We have tested
ALADIN on real corporate network firewall logs that contain 13 million
events.

Although the current UI provides an effective method for examining
anomalies, we are exploring new visualization techniques for efficiently ana-
lyzing the logs. In this paper, we have not done feature selection to under-
stand which features improve ALADIN’s ability to quickly identify anoma-
lies and improve classification accuracy. In the future, we plan to investigate
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True Num Labeled TP FP Incorrectly FN FP FN
Label Samples Count Count Predicted Label Count Rate (%) Rate (%)
normal 477 55745 3060 portsweep 9 6.59 0.0269

guess passwd 3
ipsweep 3

neptune 47 20435 0 0 0.00 0.00
smurf 81 19018 0 normal 5 0.00 0.026
back 29 0 0 normal 1973 0.00 100
ipsweep 47 56 3 normal 657 0.003 92.14
satan 39 455 1 normal 45 0.001 9.000
portsweep 54 223 9 satan 1 0.009 0.446

Table 2: False Positive and False Negative Rates after 10 Iterations.

True Num Labeled TP FP Incorrectly FN FP FN
Label Samples Count Count Predicted Label Count Rate (%) Rate (%)
normal 923 55275 2306 back 39 5.11 0.071
neptune 137 20435 0 0 0.00 0.00
smurf 162 18942 0 0 0.00 0.00
back 111 7 39 normal 1884 0.00 99.6
ipsweep 157 593 0 normal 10 0.003 1.66
satan 111 389 0 normal 39 0.001 9.11
portsweep 98 180 0 0 0.00 0.00

Table 3: False Positive and False Negative Rates after 20 Iterations.

feature selection on the ISA data once we have a large number of labeled
samples.

As with all algorithms which process extremely large databases, scal-
ability is an issue that requires additional investigation. A tradeoff exists
between fast response required for an interactive algorithm such as AL-
ADIN, and processing more data in order to detect additional anomalies. In
the current design, we focus on the most recent data in order to catch new
malware outbreaks. However if older data is stored, the architecture can be
extended so that a separate thread processes the previous data in a reverse
time order (i.e. processing the most recent data first and processing the
data backwards towards the original data). Several open questions include
the following. Does predicting the labels of the older, unlabeled samples
affect the performance of the models on the most recent unlabeled data due
to the often dynamic nature of malware? How well does the effectiveness
of the algorithm scale with large numbers of classes? After long periods
of labeling data, a system may have thousands of classes depending on the
level of analysis desired by the analysts. Processing scalability should not be
an issue since the algorithm can easily be implemented to run in parallel on
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multiple processors. More investigation is needed to ensure the predictive
accuracy and ability to discover anomalies does not degrade as the number
of categories increases over time.
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