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Abstract
Data races are one of the most common and subtle causes
of pernicious concurrency bugs. Static techniques for pre-
venting data races are overly conservative and do not scale
well to large programs. Past research has produced several
dynamic data race detectors that can be applied to large pro-
grams and are precise in the sense that they only report actual
data races. However, these dynamic data race detectors incur
a high performance overhead, slowing down a program’s ex-
ecution by an order of magnitude.

In this paper we present FeatherLite, a very lightweight
data race detector that samples and analyzes only selected
portions of a program’s execution. We show that it is possi-
ble to sample a multi-threaded program at a low frequency
and yet find infrequently occurring data races. We imple-
mented FeatherLite using Microsoft’s Phoenix compiler.
Our experiments with several Microsoft programs show that
FeatherLite is able to find more than 75% of data races by
sampling less than 5% of memory accesses in a given pro-
gram execution.

1. Introduction
Multi-threaded programs are notoriously difficult to under-
stand and debug, largely due to the non-deterministic way
in which instructions from the various threads of execution
may be interleaved. As a result, even well-tested concurrent
programs contain subtle bugs that may not be discovered un-
til long after deployment. Data races [28] are one of the most
common sources of bugs in shared-memory, multi-threaded
programs. A data race happens when multiple threads per-
form conflicting data accesses without proper synchroniza-
tion. The effects of a data race range from subtle memory
corruption issues to exposure to unexpected memory model
effects of the underlying compiler [23, 4] and hardware [1].

Over the last couple of decades, several static and dy-
namic techniques have been developed to automatically find
data races in a multi-threaded program. Static techniques [5,
15, 33, 37, 17, 34, 14, 40, 27] are complete, but are not scal-
able. Also, they tend to make conservative assumptions that
lead to a large number of false data races. On the other hand,
dynamic techniques [38, 30, 42, 13] are scalable and more
precise than static tools. Though they are not complete, cov-
erage can be increased through more tests. A severe limita-
tion of dynamic data races detectors, however, is their run-
time overhead. Data race detectors like RaceTrack [42] that
are implemented as part of managed runtime system, incur

about 2x to 3x slowdown. Data race detectors for unman-
aged programs like Intel’s Thread Checker [36], incur per-
formance overhead in the order of 200x. Such a high over-
head prevents the use of dynamic data-race detectors in prac-
tice. For instance, programmers do not enable heavy-weight
analysis like data-race detection during beta-testing of in-
dustrial applications. The reason is that these tools not only
hog the resources, but also do not allow the programmers to
test realistic program executions.

The main reason for such a high performance overhead
for these tools is that data-race detection requires analyzing
every memory operation executed by the program. In this pa-
per, we propose to use sampling. By processing only a small
percentage of memory accesses, a sampling-based approach
can significantly reduce the runtime overhead of data-race
detection.

At the outset, however, a sampling-based data-race de-
tector seems like a non-starter. Most memory accesses do
not participate in data races. Sampling approaches, in gen-
eral, have difficulty capturing such rare events. To make mat-
ters worse, a data race results from two conflicting accesses.
Thus, the sampler has to capture both of the accesses in or-
der to detect the data race. Due to the multiplicative effect of
sampling probabilities, a naive sampling algorithm will fail
detect most of the data races.

We present a sampling algorithm for effective data-race
detection. The sampling algorithm is based on the cold-
region hypothesis that data races occur when a thread is ex-
ecuting a “cold” (infrequently accessed) region in the pro-
gram. Data races that occur in hot regions of well-tested
programs are either already been found and fixed, or such
races are likely to be benign. Our adaptive sampler starts
off by sampling all the code regions at 100% sampling rate.
But every time a code region is sampled, its sampling rate is
progressively reduced until it reaches a lower bound. Thus,
cold regions are sampled at a very high sampling rate, while
adaptively reducing the rate for hot regions to a very small
value. Since a program spends most of its time executing hot
regions, the adaptive sampler automatically avoids slowing
down performance-critical hot regions of the program.

This paper describes an implementation of the sampling
algorithm in a tool called FeatherLite, and demonstrates its
effectiveness on a wide range of programs. FeatherLite is
implemented using the Phoenix compiler [24] for statically
rewriting (x86) program binaries. For every function, Feath-
erLite produces an instrumented copy of the function that



logs all memory accesses and synchronization operations in
the function. At runtime, FeatherLite switches the execu-
tion between the uninstrumented and instrumented functions
based on the sampling information maintained per thread.
Our implementation is an extension of the adaptive profiling
technique in SWAT [16]. The key difference is that our sam-
pler needs to be “thread-aware”. Otherwise, a code region
might become hot when a thread executes it many times,
and then when the same code region is executed for the first
time in a new concurrent thread, it might not get sampled as
it would be incorrectly treated as a hot region. Thus, Feath-
erLite maintains profiling information per thread. To our
knowledge, FeatherLite is the first data-race detection tool
that uses sampling to reduce the runtime performance cost.

This paper describes many of the challenges and trade-
offs involved in building a tool like FeatherLite. One of our
key requirements of FeatherLite is that it never reports a false
data race. Data races, like many concurrency bugs, are very
hard to debug. We deemed it unacceptable for the users of
the tool to spend lots of time triaging false error reports.
Thus, FeatherLite, while sampling memory accesses, still
captures all the synchronizations in the program, which is
necessary to ensure that there no false positives.

Even if only a portion of a program’s execution is ana-
lyzed, an online dynamic data race detector would still have
to keep track of meta-data for each memory location. Track-
ing meta-data could easily become a source of performance
bottleneck. To avoid this cost, and reduce the cost of the
data race check itself, the proposed solution executes instru-
mented code only for the sampled memory operations and
records them in a log. In addition, all the synchronization
operations are also logged. The log could be consumed ei-
ther by an online data race detector executing concurrently
on a spare processor-core in a many-core processor, or by an
offline data race detector. In this paper, we focus on the lat-
ter. The offline data race detector could be either a happens-
before based [19] or a lockset based detector [38]. But, we
chose the former as it does not report false races.

We present following contributions in this paper:

• We demonstrate that the technique of sampling can be
used to significantly reduce the runtime overhead of a
data race detector without introducing any false posi-
tives. FeatherLite is the first data-race detection tool that
uses sampling to reduce the runtime performance cost.
As FeatherLite permits users to specify a bound on the
performance overhead, we expect that such a sampling-
based approach will encourage users to enable data race
detection even during beta-testing of industrial applica-
tions.

• We discuss several sampling strategies, and show that
choosing an appropriate strategy is essential to maintain-
ing a high detection rate while keeping sampling rate low.
In particular, we show that an adaptive sampler that heav-
ily samples the first few executions of a function in each
thread is effective.

• We implemented FeatherLite using the Phoenix com-
piler, and used it to analyze several Microsoft programs
such as ConcRT, Dryad and several micro-benchmarks.

The results show that by logging less than 5% of memory
operations, we can detect more than 75% of data races in
a particular execution.

The rest of this paper is organized as follows. In Section 2
we review happens-before data race detector and the reasons
for its high runtime overhead. Section 3 presents an overview
of our sampling based approach to reduce the runtime cost
of a data race detector. Section 4 details the implementation
of our race detector. We present our experimental results in
Section 5. In Section 6 we describe related work and position
our contributions, and conclude in Section 7.

2. Background
Dynamic data race detectors [38, 42] are precise and scal-
able to large applications. However, they incur high runtime
overhead unmanaged programs (Intel’s ThreadChecker [36],
for instance, incurs nearly 200x slowdown), which we seek
to address in this paper. Dynamic data race detectors can be
classified into two major categories: happens-before based
and lockset based. Happens-before data race detectors [19,
9] find only the data races that manifest in a given program
execution. Lockset based techniques [38] can predict data
races that have not manifested in a given program execu-
tion, but can report false positives. In this work, we focus on
happens-before based data race detectors as they do not re-
port any false positives. However, our approach to sampling
could equally well be applied to a lockset algorithm.

In this section we review how happens-before race de-
tection works and the reasons for the runtime overhead of a
happens-before data race detector.

2.1 Happens-Before Race Detection
Here we provide a brief review of detecting data races by
using the happens-before relation on program events. The
happens-before relation, −→, is a partial order on the events
of a particular execution of a (multi-threaded) program. It
can be defined by the following rules:

(HB1) a−→b if a and b are events from the same sequential
thread of execution and a executed before b.

(HB2) a−→b if a and b are synchronization operations from
different threads such that the semantics of the syn-
chronization dictates that a precedes b.

(HB3) The relation is transitive, so if a−→b and b−→c, then
a−→c.

We can then define a data race as a pair of accesses to the
same memory location, where at least one of the accesses
is a write, and neither one happens-before the other. One
advantage that happens-before race detection has over the
lockset-based approach is that, it supports a wide range of
synchronization paradigms, and not just mutual exclusion
locks. For instance, our formulation of the second rule for
defining happens-before allows us to introduce a happens-
before ordering between a call to fork in a parent thread
and the first event in the forked child thread.

Figures 1 and 2 show how the happens-before relation-
ship is used to find data races. The edges between instruc-
tions indicate a happens-before relationship derived using



Figure 1. Example of properly synchronized accesses to
a memory location X. Edges between nodes represent a
happens-before relationship. There is no data race in this
case because there is a path from write into X to the other.

Figure 2. Example of an improperly synchronized access
to a shared memory location X. There is no happens-before
path from either write to the other, thus we have a data race.

rule HB1 or HB2. Transitively, by HB3, any two nodes with
a path between them are also in a happens-before relation-
ship. Figure 1 shows an example of two properly synchro-
nized accesses to a shared memory location. Since the two
writes have a path between them, they do not race with each
other. In Figure 2, thread 2 accesses the shared memory lo-
cation without proper synchronization. Because there is no
path between the two writes, we have a data race in this case.

2.2 Source of Runtime Overhead
There are two primary sources of overhead for a happens-
before dynamic data race detector. One, it needs to instru-

ment all the memory operations and all the synchronizations
operations executed by the application. This results in a high
performance cost due to the increase in the number of in-
structions executed at runtime. Two, it needs to maintain
meta-data for each memory location accessed by the appli-
cation. Most of the happens-before based algorithms [19, 28,
2, 7, 8, 10, 9, 39, 31, 35, 26] use vector clocks to keep track
of the times of all the memory operations along with the ad-
dress locations they accessed. Maintaining such meta-data
increases memory overhead.

3. FeatherLite Overview
This section presents a high-level overview of FeatherLite.
The implementation details together with various design
trade-offs are discussed in Section 4.

FeatherLite has two key goals. First, FeatherLite should
not add too much runtime overhead during dynamic data-
race detection. Our eventual goal is to run FeatherLite during
beta-testing of industrial applications. Prohibitive slowdown
of existing detectors limits the amount of testing that can be
done for a given amount of resources. Also, users shy away
from intrusive tools that do not allow them to test realistic
program executions. Second, FeatherLite should never re-
port a false data race. Data races are very difficult to debug
and false positives severely limit the usability of a tool from
the users’ perspective. This goal, surprisingly, has decided
many of our design decisions in FeatherLite.

3.1 Case for sampling
The key premise behind FeatherLite is that sampling tech-
niques can be effective for data-race detection. While reduc-
ing the runtime overhead, the main trade-off of a sampling
approach is that it can miss data races. We argue that this
trade-off is acceptable for the following reasons. First, dy-
namic techniques cannot find all the data races in the pro-
gram, anyway. They can only find data races based on the
interleavings explored by the program in one particular ex-
ecution. Furthermore, a low-overhead sampling based data
race detector would encourage users to use it on lot more ex-
ecutions of the program, possibly achieving better coverage.
For instance, programmers can enable data race detectors
during beta-tests at the customer site, or even the produc-
tion software can be shipped to users with sampling turned
on [21], thereby enabling data-race detection in the wild, an
advantage existing detectors cannot possibly achieve.

Another key advantage of sampling techniques is that
they provide a useful knob that users can use to trade runtime
overhead for coverage. Such control is currently not possible
for existing data race detectors. For instance, while testing
interactive applications that spend most of their time waiting
for the user input, a programmer can increase the sampling
rate, because the latency of race detection is likely to be
masked by the I/O latency of the tested application.

3.2 Logging Events
Data-race detection requires logging the following events at
runtime.

• reads and writes to memory, logged in the program order,



Figure 3. Failing to log a synchronization operation results
in loss of happens-before edges. There is no data race in this
execution, but a false data race on X would be reported.

• synchronization operations along with a time-stamp that
allows us to construct the happens-before ordering be-
tween synchronization operations executed in different
threads.

These logs can then be analyzed offline or during pro-
gram execution (§4.4). A data race is detected, if there is
no synchronization ordering between two pair of accesses to
the same memory location, and at least one of them being a
write.

3.3 Using Sampling
Clearly adding code to log every memory access imposes
a significant overhead. By sampling only a fraction of these
events we can reduce the overhead in two ways. First, the ex-
ecution of the program is much faster because of the reduced
instrumentation. Second, the offline data-race detection al-
gorithm needs to process less number of events making it
faster as well.

While we seek to reduce the runtime overhead using sam-
pling, we must be careful in choosing which events to log
and which events not to log. In particular, we have to log all
synchronization events in order to avoid reporting false data
races. Figure 3 shows why this is the case. Synchronization
operations induce happens-before orderings between pro-
gram events. Any missed operation can result in missing
edges in the happens-before graph. The data-race detection
algorithm will therefore incorrectly report races on accesses
that are otherwise ordered by the unlogged synchronization
operations. To avoid such false positives, it is necessary to
log all synchronization operations. However, for most appli-
cations, proportion of the number of synchronization opera-
tions when compared to the number of instructions executed
in a program is small, and therefore does not cause signifi-
cant performance overhead.

We can, however, selectively sample the memory ac-
cesses. If we choose not to log a particular memory access,
we risk missing a data race involving that access (a false neg-
ative). As we discussed in Section 3.1, this is an acceptable
trade-off. But for this to be a reasonable trade-off, choosing
a good strategy for selecting memory accesses to log is es-

sential. Data race involves two accesses and a sampler needs
to successfully log both of them for detecting a race. We
describe such a sampler below.

3.4 Sampler Implementation
In this paper, we treat every function as a code region.
Our static instrumentation tool creates two copies for each
function as shown in Figure 4. The instrumented function
logs all the memory operations (their addresses and program
counter values) and synchronization operations (memory ad-
dresses of the synchronization variables along with their
timestamps) executed in the function. The un-instrumented
copy of the function logs only the synchronization opera-
tions. Before entering a function, the sampler (represented
as dispatch check in Figure 4) is executed. Based on the de-
cision of the sampler, either the instrumented copy or the
un-instrumented copy of the function is executed. As the dis-
patch check happens once per every function call, we have
to make the dispatch code as efficient as possible.

3.5 Thread Local Adaptive Bursty Sampler
There are two requirements for a sampling strategy. Ideally,
a sampling strategy should maintain a high data-race detec-
tion rate even with a low sampling rate. Also, it should en-
able an efficient implementation of the dispatch check that
determines if a function should be sampled or not.

Our sampler is an extension of the adaptive bursty sam-
pler [16], previously shown to be successful for detecting
memory leaks. An adaptive bursty sampler starts off by an-
alyzing a code region at 100% sampling rate, which means
that the sampler would always invoke the instrumented copy
of the function. But every time when a code region is exe-
cuted, its sampling rate is reduced by a factor Decr, until
the sampling rate reaches a lower bound L. The sampler is
also bursty, which means, for each sample, a code region is
profiled for numProfiles consecutive instances of its ex-
ecution. This ensures that, frequently executed “hot” code
regions are sampled at much lower frequency than infre-
quently executed “cold” regions in a program. This sampling
algorithm is based on the hypothesis that data races, at least
in reasonably well-tested programs, occur when a thread ex-
ecutes a cold region. Data-races between two hot paths are
unlikely — either such a data race is already found during
testing and fixed, or such a data race is likely to be a benign
or intentional data race.

To make adaptive bursty sampler effective for data-race
detection, we extend the above algorithm by making it
“thread aware”. One problem with the “global” adaptive
bursty sampler [16] is that a particular function can be con-
sidered “hot” even when a thread executes the function for
the first time. This is because other threads might have exe-
cuted the same function many times. The sampler in Feather-
Lite is a “thread local” adaptive bursty sampler. It maintains
separate sampling information in each thread. Our experi-
ments (§5) show that this extension significantly improves
the effectiveness of FeatherLite.



Figure 4. FeatherLite Instrumentation.

4. FeatherLite Implementation
This section describes the implementation details of Feather-
Lite. It is made up of two components: a profiler built using
a binary instrumentation tool that inserts code into the target
application to log events of interest during a program’s ex-
ecution, and a happens-before based data race detector that
processes the logged events from an execution of the instru-
mented application as input, and produces a report of the
data races found.

4.1 Instrumenting the Code
FeatherLite is based on static instrumentation of x86 bina-
ries. To ensure the practical usability of our tool, it is im-
portant that FeatherLite works on binaries without requiring
the source code. We use the Phoenix [24] compiler and anal-
ysis framework to parse the x86 executables to perform the
transformation depicted in Figure 4. FeatherLite instruments
a program to create two versions for each function: one that
logs all the memory operations and another that does not log
any memory operation. As explained in Section 3, avoiding
false positives requires logging synchronization operations
in both versions of the function. A dispatch check at func-
tion entry decides which version of the function should be
used during a particular dynamic call of a function.

As the dispatch check in Figure 4 is executed every time
the function is executed, it is important to keep this overhead
low. In contrast to prior adaptive sampling techniques [16],
FeatherLite maintains profiling information per thread. For
each thread, FeatherLite maintains a buffer in the thread lo-
cal storage. These buffers contain two counters for each in-
strumented function. One keeps track of the number of times
a function that the thread executed, and another called sam-
pling counter that is used to determine when to sample next.
On function entry, the dispatch check decrements the sam-
pling counter corresponding to that function maintained in
the thread local buffer. If the sampling counter’s value is
non-zero, the light-weight copy of the function is invoked.
When the sampling counter reaches zero, the dispatch check
invokes the fully instrumented version of the function (one
that logs memory operations), and sets the sampling counter
to a new value based on the current sampling rate for the
function. The current sampling rate for the function is deter-
mined based on the number of times it got executed by the
thread (kept track of by the frequency counter).

For efficient access to these buffers, FeatherLite avoids
function calls into standard APIs for accessing thread-
local storage. Instead, we implemented our own version
for the thread-local resolution using the Thread Execution

Table 1. Logging synchronization operations.
Synchronization
Op

SyncVar Add’l Sync
Required?

Lock / Unlock Mutex No
Signal / Wait Event No
Fork / Join Child Thread Id Yes
Atomic Machine
Ops

Memory Location Yes

Block [25] structure maintained by the Windows OS for
each thread. Also, the dispatch check uses a single register
edx for its computation. The instrumentation tool analyzes
the original binary for the function to check if this register
and the eflags register are live at function entry, and injects
code to save these registers only when necessary. In the com-
mon case, our dispatch check involves 8 instructions with 3
memory references and 1 branch (that is mostly not taken).
We measure the runtime overhead of the dispatch check in
Section 5.

4.2 Tracking Happens-before
As mentioned earlier, avoiding false positives requires accu-
rate happens-before data. Ensuring that we correctly record
the happens-before relation for events of the same thread is
trivial since the logging code executes on the same thread as
the events being recorded. Correctly capturing the happens-
before data induced by the synchronization operations be-
tween threads in a particular program execution requires
more work.

We associate with each synchronization operation a sync-
Var. As an example, for a lock operation, the syncVar is
the address of the mutex being locked. Table 1 shows the
syncVar used for some of the synchronization operations
that FeatherLite supports. For each synchronization opera-
tion executed in the target program, we log the associated
syncVar along with a logical timestamp which we increment.
We can then say that if a and b are two operations on the
same syncVar and a has a smaller logical timestamp than b,
then a−→b.

In order for the timestamps to be valid, we must ensure
that for all operations on a particular syncVar, the logical
timestamp reflects the actual (real time) order in which the
operations occurred. For some kinds of synchronization, we
are able to leverage the semantics of the operation to guaran-
tee that the logged timestamps are consistent with the actual
order. For instance, by logging and incrementing the times-
tamp after a lock instruction and before an unlock instruc-
tion, we guarantee that an unlock operation on a particu-
lar mutex will have a smaller timestamp than a subsequent
lock operation on that same mutex in another thread. Note
that if we incremented the timestamp after an unlock op-
eration, it would be possible for another thread to execute a
lock on the same mutex and receive a lower logical times-
tamp than the one eventually given to the preceding unlock.
It would then appear as if accesses within these two critical
section could have been executed concurrently causing false
data races to be reported.



Whenever possible, we avoid introducing synchroniza-
tion not present in the original program in order to achieve
our goal of extremely low overhead. But sometimes we
must add our own synchronization to correctly record the
happens-before ordering and avoid false positives. For ex-
ample, consider a target program that uses atomic compare
and exchange instructions to implement its own locking.
Since we don’t know if a particular compare and exchange
is acting as a “lock” or as an “unlock”, we must introduce
a critical section to avoid interleavings that would allow
two exchanges to the same memory location to be logged
with timestamps inconsistent with the actual ordering of the
events.

4.3 Handling Dynamic Allocation
Another subtle issue is that a dynamic data-race detector
should account for the reallocation of the same memory to
a different thread. A naive detector might report a data-race
between accesses to the reallocated memory with accesses
perform during a prior allocation. To avoid such false posi-
tives, FeatherLite additionally monitors all memory alloca-
tion routines and treats them as additional synchronization
performed on the memory page containing the allocated or
deleted memory.

4.4 Analyzing the Logs
The FeatherLite profiler generates a stream of logged events
during program execution. In our current implementation,
we write these events to the disk and process them offline for
data races. Our main motivation for this design decision was
to minimize perturbation the runtime execution of the pro-
gram. We are also currently investigating an online detector
that can avoid runtime slowdown by using an idle core in a
many-core processor.

The log events are processed using a standard implemen-
tation [36] of the happens-before based data-race detector,
described in Section 2.1. We avoided the use of lock-set
based data-race detection algorithms to ensure no false pos-
itives.

5. Results
In this section we present our experimental results. In Sec-
tion 5.1 we show that our thread-local adaptive sampler
achieves a high race detection rate while maintaining a low
sampling rate. We compare it with several other samplers.
Section 5.2 discusses the performance of our implementa-
tion on a several benchmarks. All experiments were run on
an Intel Core 2 Duo 3.0 GHz processor and 4 GB of RAM
running Windows Vista.

5.1 Sampling Strategy Comparison
In this section, we compare different samplers and show that
the thread-local adaptive sampler outperforms other sam-
plers. For our benchmarks, our sampler is able to find, on
average, more than 75% of data races while sampling less
than 5% of memory accesses in a given execution.

To have a fair comparison, different samplers need to be
evaluated on the same thread interleaving of the program.
However, two different executions of a multi-threaded pro-

gram is not guaranteed to yield the same interleaving even if
the input is the same. To compare the effectiveness of vari-
ous samplers in detecting data races accurately, we created a
modified version of FeatherLite that performs full profiling,
where all synchronization and all memory operations are
logged. In addition to the complete logging, on each func-
tion entry, we execute the “dispatch check” logic from each
of the samplers we wish to compare. We then mark in the
log whether or not each of the samplers would have logged
a particular memory operation.

By performing race detection on the complete log, we
find all the data races that happened during the program’s
execution. We can then perform race detection on the subset
of the log corresponding to the operations a particular sam-
pler would have recorded. Then, by comparing the results
with those from the complete log, we are able to calculate
the proportion of data races detected (called detected rate)
by each of the samplers.

The samplers that we evaluate are listed in Table 2. The
“Short Name” column shows the abbreviation we will use
for the sampler in the figures. Two averages for effective
sampling rate are shown. These are measures of the actual
percentage of memory operations that are logged by each
of the samplers, averaged over the five benchmarks. The
weighted average weighs the benchmarks based on the num-
ber of memory operations performed.

FeatherLite’s thread-local adaptive sampler is the first one
listed in the table. For each thread and for each function, the
sampler starts with a 100% sampling rate progressively re-
ducing the rate till it reaches a base sampling rate of 0.1%.
To determine the effect of this adaptive backoff, our sec-
ond sampler uses a fixed 5% sampling rate per thread per
function. The next two samplers are “global” versions of the
two samplers above and backoff based on the executions of a
function irrespective of the calling thread. The global adap-
tive sampler is similar to the one used in SWAT [16], except
with an increased sampling rate. Even with this increased
rate, our experiments show that the global samplers are not
as effective as the thread-local samplers at finding data races.
The random samplers log each function call at random. The
final sampler evaluates the cold-region hypothesis by log-
ging only the “uncold” regions — it logs all but the first 10
calls of a function per thread.

For our benchmarks, we selected two industrial-scale
concurrent programs. Dryad is a distributed execution en-
gine for coarse-grained data-parallel applications [18]. The
test harness for Dryad for our experiments was provided
by its lead developer. The test exercises the shared-memory
channel library used for communication between the nodes
in Dryad. We tried two versions of Dryad, one with the
standard C library statically linked in and the other with-
out. For the former, FeatherLite instruments all the standard
library functions called by Dryad. ConcRT is a concurrent
runtime library that provides lightweight tasks and synchro-
nization primitives for data-parallel applications. It is part
of the parallel extensions to the .NET framework [12]. We
used three different tests, namely Messaging, Agents, and
Explicit scheduling, all part of the ConcRT concurrency test
suite.



Table 2. Samplers that are compared along with the short name used in figures, a description, and the effective sampling rate
for the benchmarks. The weighted average is weighted by the number of memory accesses in the benchmark application.

Weighted Average
Sampling Strategy Short Name Description Average ESR ESR
Thread-local Adaptive TL-Ad Adaptive backoff per function / per thread

(100%,10%,1%,0.1%)
2.3% 13.7%

Thread-local Fixed 5% TL-Fx Fixed 5% per function / per thread 6.6% 17.3%
Global Adaptive G-Ad Adaptive backoff per function globally (100%,

50%, 25%, ... , 0.1%)
0.9% 3.8%

Global Fixed G-Fx Fixed 10% per function globally 10.0% 10.6%
Random 10% Rnd10 Random 10% of dynamic calls chosen for sam-

pling.
9.9% 9.3%

Random 25% Rnd25 Random 25% of dynamic calls chosen for sam-
pling

24.6% 23.3%

Un-Cold Path UCP First 10 calls per function / per thread are NOT
sampled, all remaining calls are sampled

98.0% 86.7%

Benchmarks # data races found
Dryad Channel + stdlib 8
Dryad Channel 7
ConcRT Messaging 21
ConcRT Agents 21
ConcRT Explicit Scheduling 50

Table 3. Total number of data races found by FeatherLite.

For each of the benchmarks, we ran the application three
times using our version of FeatherLite modified for sampler
evaluation. The detection rate we report for each benchmark
is an average rate of the three runs. The results for overall de-
tection rate are shown in Figure 5, grouped by sampler with a
bar for each benchmark within each group. The weighted av-
erage effective sampling rate for each of the samplers is also
shown. Ideally, we would like a very low effective sampling
rate and a very high detection rate. Notice that the Feather-
Lite sampler (TL-Ad) achieves this. The fixed rate thread-
local sampler also performs well, but its effective sampling
rate is higher than for FeatherLite’s adaptive sampler. An-
other notable result from the figure is the fact that the “Un-
Cold Path” sampler detects far fewer races than our sampler
despite having an effective sampling rate approaching 100%.

During this experiment, Table 3 shows the total number
of data races found for each benchmark. Details of the effec-
tive sampling rate for each of the samplers on each bench-
mark are given in Figure 6. The sampling rate of Feath-
erLite’s sampler remains below 7% except for one bench-
mark, ConcRT Agents. This benchmark has many short-
lived threads that don’t repeatedly call the same functions.
Thus, the thread-local samplers, which always sample the
first few executions of each function in each thread, have a
high sampling rate. This also explains why this is the only
benchmark where the sampling rate for the un-cold path
sampler drops below 90%.

5.1.1 Rare Data Race Detection
If the same data race occurs frequently, then it is likely
that many sampling strategies would find them. However,

Figure 5. Data race detection rate for various samplers.
The line shows average effective sampling rate for memory
accesses.

Figure 6. The effective memory access sampling rate for
samplers across benchmarks.



it is more challenging to find data races that occur rarely at
runtime. To quantify this, we classified all of the data races
that were detected (using the full, unsampled log) based
on the number of times that a race between the same 2
machine instructions was seen. We classify instruction pairs
that raced three or fewer times as rare data races. The rest are
considered frequent. Detection rates for these two categories
are shown in Figure 7.

Most of the samplers perform well for the frequent data
races. But, for infrequently occurring data races, the thread-
local samplers are the clear winners. Note that the random
sampler finds very few rare data races.

5.2 Analysis of Overhead
In Section 5.1 we presented results showing that the thread-
local, adaptive sampler performs well. Here we present per-
formance results from our implementation of FeatherLite,
which uses this sampling strategy.

Apart from the benchmarks used in 5.1, we used addi-
tional compute and synchronization intensive benchmarks
for our performance study. LKRHash is an efficient hash
table implementation that uses a combination of lock-free
techniques and high-level synchronizations. LKRHash is
synchronization intensive. LFList is an implementation of
a lock-free linked list available from [20]. LFList Out is a
modified version of LFList that performed additional com-
putations apart from making linked list operations.

For each of the benchmarks, we ran FeatherLite 10 times
in different configurations and took the average runtime.
These configurations include, enabling just the dispatch
check, then including the logging of synchronization oper-
ations, and finally including the sampled memory accesses.
This allowed us to measure the overhead of the different
components in FeatherLite.

Figure 8 shows the cost of using FeatherLite on the vari-
ous benchmarks. Results for both real (clock) time and CPU
time are given for each of the benchmarks. The real clock
time is a better metric to evaluate the overhead of Feather-
Lite as it accounts for the overall system performance (by
accounting for the time spent in accessing disk and other I/O
operations). But we also show CPU time to illustrate the rel-
ative overhead of several components in FeatherLite.

The bottom portion of each vertical bar in Figure 8 rep-
resents the time it takes to run the uninstrumented applica-
tion. The overhead incurred by the various components of
FeatherLite are stacked on top of that. Except for LFList Out
and Dryad, other programs we analyzed are synchroniza-
tion intensive. Therefore, the overhead is dominated by log-
ging synchronization operations. As described in Section 3,
avoiding false positives requires that we log all synchroniza-
tion operations. The dispatch check results in a large pro-
portion of the CPU overhead for Dryad. This suggests many
calls to functions with few instructions.

On measuring the real time, we found a surprising but re-
peatable speed up of the Dryad application with FeatherLite.
We believe this is due to the heavy interaction of the disk
accesses in Dryad. In summary, FeatherLite adds negligible
real time overhead in Dryad and LFList Out. For synchro-
nization intensive micro-benchmarks, the real time overhead

Figure 8. FeatherLite slowdown over the uninstrumented
application.

is on the order of 2x to 2.5x, primarily dominated by the cost
of logging synchronization operations.

6. Prior Work
In this section we discuss prior work in two areas related to
this paper: data race detectors and samplers.

6.1 Data Race Detection
The two general approaches for data race detection can be
classified into static and dynamic techniques. Static tech-
niques use type-based analysis [5, 15, 33, 37] or model
checkers [17, 34] or implement the lockset algorithm [14,
40]. There are techniques that statically implement a lock-
set [38] based algorithm [40, 14, 33]. Naik et al. [27] re-
cently proposed an analysis method that consists of a set
of techniques that are applied in series like reachability and
alias analysis to reduce the number of false data races. Static
techniques can be complete in that they can find all the po-
tential data races in a program. But static techniques are not
scalable to large code bases as they have exponential algo-
rithmic complexity. Also, they tend to make conservative as-
sumptions that lead them to report a large number of false
data races. For example, in one of the very recent propos-
als [27], for one program jdbm, the static analysis returned
91 data races, but only 2 of them were found to sources of
real bugs. This places a tremendous burden on the developer
or tester to track down the true data races, and this wastes a
lot of time, or the tool is not used, or bugs go unchecked. We
focus on a dynamic analysis technique, since it can signifi-
cantly reduce the number of candidate data races that need
to be examined by the programmers.

Dynamic analysis techniques are either lockset based [38,
41, 29] or happens-before based [19, 28, 2, 7, 8, 10, 9, 39, 31,
35, 26] or a hybrid of the two [11, 42, 30, 32, 13]. Dynamic
techniques are scalable to applications with large code bases
and are also more precise than static tools as they analyze
an actual execution of a program. The downside is that they
have much less coverage of data races (false negatives), as
they only examine the dynamic path of one execution the
program. However, the number of false negatives can be
reduced by increasing the number of tests.



Figure 7. Samplers’ data race detection rate for rare versus frequent races.

One of the main limitations of a dynamic data race de-
tection tool has been its high run-time overhead, which per-
turbs the execution behavior of the application. Apart from
consuming users time, a heavy-weight data race detector is
not useful for finding bugs that would manifest in a realis-
tic execution of an application. There has been attempts to
ameliorate the performance cost of dynamic analysis using
static optimizations for programs written in strongly typed
languages [6]. Dynamic data race detectors for managed
code [42] also has the advantage that the runtime system al-
ready incurs the cost of maintaining meta-data for the ob-
jects, which they make use of. For unmanaged code like
C and C++, however, the runtime performance overhead
of data race detection remains to be high. Intel’s Thread-
Checker [36], for example, incurs about 200x overhead to
find data races. In this paper, we propose an efficient sam-
pling mechanism that pays the cost for logging only a small
fraction of the program execution, but is effective in detect-
ing a majority of the data races. Unlike existing data race
detectors, it also gives the user an ability to tradeoff perfor-
mance cost with coverage (number of false negatives).

6.2 Sampling Techniques
Arnold et al. [3] proposed sampling techniques to reduce
the overhead of instrumentation code in collecting profiles
for feedback directed optimizations. Chilimbi and Hauswirth
proposed an adaptive sampler for finding memory leaks [16].
We extend their solution for sampling multi-threaded pro-
grams, and show that samplers can be effectively used to
find data races as well. Liblit et al. used statistical methods
to collect samples from multiple production runs to isolate
assertion and memory corruption errors [21, 22], but they
did not study concurrency bugs.

7. Conclusion
Multi-threaded programs are hard to understand and debug.
Dynamic data race detectors can automatically find concur-
rency bugs with a very high accuracy, which would be of
immense help to the programmers. However, a significant
impediment to their adoption is their runtime overhead. Pro-
grammers shy away from using heavy-weight dynamic tools
as they cannot analyze a realistic execution of their applica-
tion.

This paper argues for using sampling to ameliorate the
runtime performance overhead of dynamic data race detec-
tors. Our best sampler, thread local adaptive sampler, logs
less than 5% of memory accesses but can detect more than
75% of data races.

While sampling might reduce coverage of these tools, it
provides a knob, which the programmer can use to trade-off
performance with coverage. Many tools never find accep-
tance in some of the product groups because of their high
runtime overhead. With such a knob, programmers would be
able to specify the performance penalty that they are willing
to pay, and they would get a coverage that is commensurate
with the performance penalty they paid.
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