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1 Introduction

In his 1972 Turing Lecture titled “The Humble Programmer” Edsger W. Dijk-
stra said, “Program testing is a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence” [9]. While Dijkstra’s
statement holds if we consider program testing as a black-box activity, tests
can indeed be used to progressively guide the construction of proofs if we are
allowed to instrument the program and inspect the states that a program goes
through during testing.

Over the past few years, there has been dramatic progress in using light-
weight symbolic execution [13, 24] to do automatic test generation. In this
paper, we present a new algorithm to show that similar light-weight symbolic
execution can also be used to prove that programs satisfy safety properties.

We build on the Synergy algorithm [14], which simultaneously performs
program testing and program abstraction. The tests are an “underapproxima-
tion” of the program behavior, and the abstraction is an “overapproximation”
of the program. The goal is to either find a test that reaches an error state
(in which case we have discovered a true violation of the property), or find an
abstraction that is precise enough to show that no path in the state space of
the program can reach any error state (in which case we have proved that the
program satisfies the desired safety property). The Synergy algorithm works
by iteratively refining the tests and the abstraction, using the abstraction to
guide generation of new tests and using the tests to guide where to refine the
abstraction.

Our new algorithm, Dash, makes three significant advances over Synergy.
First, Dash uses test generation not only to guide where to perform the re-
finement of the abstraction, but also to decide how the abstraction should be
refined. Unlike the Synergy algorithm, there are no extra theorem prover calls
in the Dash algorithm to maintain the abstraction. The theorem prover is used
only to do test generation, and refinement is done as a byproduct of a failed
test generation attempt. Second, the Dash algorithm handles programs with
pointers without using any whole-program may-alias analysis (the Synergy al-
gorithm does not handle programs with pointers). Dash refines the abstraction
in a sound manner using only aliasing relationships that actually arise in some
test. Finally, the Dash algorithm is an interprocedural algorithm, and it uses
recursive invocations of itself to handle procedure calls (the Synergy algorithm
does not handle procedure calls).

Current approaches to prove properties of programs with pointers use a
whole program “may-alias” to conservatively reason about the abstraction due
to pointer aliases (see Section 4.2 in [3], and Section 6 in [17]). The alias analysis
needs to be flow sensitive, field sensitive, and even path sensitive, to be strong
enough to prove certain properties (see examples in Section 2), and scalable
pointer analyses with these precision requirements do not exist. In addition,
there are situations, such as analyzing x86 binaries directly, where global alias
information is difficult to obtain. The Dash algorithm uses a different technique
to perform refinement without using may-alias information. We define a new
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operator WPα that combines the usual weakest precondition operator [10] with
an alias set α. The alias set α is obtained during execution of the specific test
that the algorithm is attempting to extend. The predicate obtained from the
WPα operator is weaker than applying the strongest postcondition on the test,
and it is stronger than the predicate obtained by applying the usual weakest
precondition operator. If the test generation fails, we show that the predicate
WPα can be used to refine the abstraction in a sound manner, without using any
extra theorem prover calls (see Section 4.2.1). This has the effect of analyzing
only the alias possibilities that actually occur during concrete executions with-
out resorting to a global (and necessarily imprecise) alias analysis that reasons
about all executions. Consequently, in many cases, we can show that Dash
produces abstractions that are exponentially smaller than those considered by
Slam [4] and Blast [17].

2 Overview

Over the past few years, several tools based on predicate abstraction and counter-
example-guided abstraction refinement, such as Slam [4] and Blast [17], have
been built in order to compute proofs of programs for various properties. The
algorithms implemented in these tools have two main bottlenecks. First, they
entail several expensive calls to a theorem prover, which adversely impacts scal-
ability. Second, they use global may-alias information, which is typically im-
precise and impacts the ability of these tools to prove properties that involve
complex aliasing. There has also been dramatic progress in testing techniques
like Dart and Cute using light-weight symbolic execution [13, 24]. These test-
ing tools focus on finding errors in programs by way of explicit path model
checking and are unable to compute proofs. Our work can be viewed as com-
bining the successful ideas from proof-based tools like Slam and Blast with
testing-based tools like Dart and Cute with the goal of improving scalability.

The input to the Dash algorithm consists of a program P with an infinite
state space Σ and a set of error states ϕ. Dash maintains two data structures.
First, it maintains the collection of tests as a forest F . Each path in the forest
F corresponds to a concrete execution of the program. The algorithm grows F
by adding new tests, and as soon as an error state is added to F , a real error has
been found. Second, it maintains a finite relational abstraction Σ' of the infinite
state space Σ. The states of the abstraction, called regions, are equivalence
classes of concrete program states from Σ. There is an abstract transition from
region S to region S′ if there are two concrete states s∈S and s′∈S′ such that
there is a concrete transition from s to s′. Thus, the abstraction maintains an
overapproximation of all concrete executions. In particular, if there is no path
of abstract transitions from the initial region to the error region ϕ, we can be
sure that there is no path of concrete transitions that lead from some concrete
initial state to some concrete error state s ∈ ϕ, and a proof of correctness has
been found.

Each iteration of Dash attempts to make progress by either growing the
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struct DE {
int lock;
int y;

};

void prove-me1(DE *p, DE *p1, DE *p2)
{
0: p1 = malloc(sizeof(DE)); p1->lock = 0;
1: p2 = malloc(sizeof(DE)); p2->lock = 0;
2: p->lock = 1;
3: if (p1->lock == 1 || p2->lock == 1)
4: error();
5: p = p1;
6: p = p2;
}

Figure 1: Example where Slam has difficulty without a flow-sensitive alias
analysis.

forest F to make it closer to reaching a concrete error state or refining the ab-
straction Σ' (by splitting the regions) to make it closer to a proof of correctness.
Each iteration starts with an (abstract) error path τe from the initial region to
the error region with a prefix τ such that (1) τ corresponds to a concrete path
in F and (2) no region in τe after the prefix τ is visited in F . If some abstract
error path exists, such an “ordered” path τe can be always shown to exist. Dash
now tries to find a new test which follows the ordered path τe for at least one
transition past the prefix τ . It uses directed testing [13, 24] to generate such
a test. These techniques perform a light-weight symbolic execution along the
path τe, and collect constraints at every state as functions of the inputs to the
program. In programs with pointers, the symbolic execution along τe is done
in a “pointer-aware” manner keeping track of the aliases between variables in
the program. If the generated constraints are unsatisfiable, the test generation
fails. A key insight in the Dash algorithm is that if the test generation attempt
to extend the forest F beyond the prefix τ fails, then the alias conditions α,
obtained by the symbolic execution up to the prefix τ , can be used to refine the
abstraction Σ'. This refinement does not make any theorem prover calls, and
does not use a global alias analysis. We define a new operator WPα to perform
such a refinement. The WPα operator specializes the weakest precondition op-
erator using only the alias conditions α that occur along the test up to the prefix
τ . Using the predicate generated by the WPα operator, we can refine the region
at the end of the prefix τ and remove the abstract transition from the prefix τ
along the ordered trace τe. This technique, which we call template-based refine-
ment, is described in Figure 11. The Dash algorithm continues by choosing a
new ordered error path until either F finds a concrete execution that reaches
the error ϕ or the refined abstraction Σ' provides a proof of correctness that ϕ
can never be reached. Since the problem is undecidable in general, it is possible
that Dash does not terminate.
Example 1. Consider the program in Figure 1. This program has three inputs
p, p1 and p2, all of which are pointers to structs of type DE (with two fields
DE->lock and DE->y). At lines 1 and 2, pointers p1 and p2 are pointed to
newly allocated memory, and p1->lock and p2->lock are both set to 0. Thus,
the assignment to p->lock at line 3 cannot affect the values of p1->lock or
p2->lock, and the error statement at line 4 can never be reached. The interest-
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Figure 2: Abstraction computed by Dash on the example program from Fig-
ure 1.

ing feature of this example is that p may alias with p1 or p2 due to assignments
at lines 5 and 6. Thus, a flow-insensitive may-alias analysis will have to conser-
vatively assume that at the assignment at line 2, the variable p may alias with
p1 or p2, and consider all possible alias combinations. However, as we describe
below, Dash is able to prove this program correct while only ever considering
the alias combination (p 6=p1 ∧ p 6=p2) that occurs along concrete executions.

Dash first creates the initial abstraction Σ' for the program prove-me1 and
this is isomorphic to its control flow graph (shown in Figure 2(a)). We show
regions of the abstraction Σ' as “clouds,” and states from the forest F using
“×”s in the figure. Next, the initial forest is created by running prove-me1
with a random test that assigns values to its inputs p, p1 and p2, thus creating
a forest Fprove−me1 of concrete states. Since running this test did not result in
the error location being reached (there is no × representing a concrete state in
the error region 4), Dash examines an (abstract) error path τe = 〈0, 1, 2, 3, 4〉
that leads to the error region. It also considers the prefix τ = 〈0, 1, 2, 3〉 of
τe that has concrete states visited in the region from the forest F , as shown
in Figure 2(a). Dash now tries to add a test to Fprove−me1 that follows τe
for at least one transition beyond the prefix τ by using directed testing [13,
24], that is, a test that covers the transition (3, 4). However, the constraints
obtained by symbolic execution of the prefix τ together with the transition
(3, 4) are unsatisfiable, so such a test does not exist. Dash now refines the
region 3 using the operator WPα (defined in Section 4.2.1). In this case, the
WPα operator returns the predicate ρ= (p1->lock=1)∨ (p2->lock=1). Dash
splits the region 3 into two regions, 3:ρ and 3:¬ρ. Due to the properties of
the WPα operator, we can now refine the current abstraction at the frontier
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void foo(DE *p, DE *p1, DE *p2, ... , DE *pn)
{
1: p1 = malloc(sizeof(DE)); p1->lock = 0;

p2 = malloc(sizeof(DE)); p2->lock = 0;
...
pn = malloc(sizeof(DE)); pn->lock = 0;

3: p->lock = 1;
6: if (p1->lock==1 || ... || pn->lock==1)
7: error();
8: p = p1;

p = p2;
...
p = pn;

}

Figure 3: Example for which Slam suffers from an exponential blow-up in
predicate size.

(which is the region 3) according to the template described in Figure 11. This
refinement can be done without any theorem prover calls. It involves deleting
the edges (2, 3), (3, 4) and adding the edges (2, 3 :¬ρ), (2, 3 :ρ) and (3 :ρ, 4),
resulting in the refined abstraction shown in Figure 2(b). Next, Dash chooses
a new abstract error path τe = 〈0, 1, 2, 3:ρ, 4〉 with prefix τ = 〈0, 1, 2〉 and tries
to drive a test along the transition (2, 3:ρ). Since the generated constraints are
unsatisfiable, this is also not possible. Dash uses the WPα operator to obtain the
predicate η = ¬((p6=p1∧p 6=p2)∧¬(p1->lock=1∨p2->lock=1)). Intuitively,
the subexpression α = (p 6=p1∧p6=p2) corresponds to the alias relations that
hold between the variables p, p1, and p2 after the program executes the path τ .
The subexpression p1->lock=1∨p2->lock=1 is the weakest precondition along
the transition (2, 3:ρ) assuming the aliasing constraints imposed by α. Again,
the region 2 can be refined by applying the template from Figure 11 without
using any additional theorem prover calls, resulting in the refined abstraction
shown in Figure 2(c). Dash continues by choosing a new abstract error path,
and eventually produces the abstraction shown in Figure 2(d). Since there is no
path in this abstraction from region 0 to region 4, this is a proof that the error
at line 4 cannot be reached in this program for any input.

Tools like Slam [4] and Blast [17], which use Morris’ general axiom of
assignment [20] to handle pointer aliases soundly, have to consider 4 possible
aliasing conditions: p = p1 or p 6= p1, and p = p2 or p 6= p2. Instead, Dash
considers only the alias possibility (p 6= p1 ∧ p 6= p2) that occurs along the
concrete execution of the test, resulting in exponential savings in the size of the
proof of correctness.

More formally, it can be easily shown that there is an exponential blow-up
in the predicates computed by Slam for the class of programs defined by the
program shown in Figure 3 parameterized by n (we have verified this by running
Slam and measuring run times as a function of n, as seen in Figure 18), whereas
Dash does not encounter this blowup since it uses alias information from tests
to reason only about the alias combinations that actually happen.
Example 2. Consider the example shown in Figure 4. This program has a
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struct DE {
int lock;
int y;

};

void Inc(DE *de}
{

de->y++;
}

void prove-me2(DE *de, int x)
{
0: de->lock = 0;
1: do {
2: assert(de->lock == 0);
3: de->lock = 1;
4: x = de->y;
5: if (*) {
6: de->lock = 0;
7: Inc(de);

}
8: } while (x != de->y);
}

Figure 4: An example illustrating the effect of weak pointer analysis on Slam.

void prove-me2(bool b1, bool b2)

0: b1 = true; //de->lock = 0
1: do {
2: assert(b1); // assert(de->lock==0)
3: b1 = false; // de->lock = 1
4: b2 = true; // x = de->y
5: if (*) {
6: b1 = true; // de->lock = 0
7: b2 = b2?false:*; // effect of Inc on b2

b1 = *; // effect of Inc on b1
}

8: } while (!b2)
}

Figure 5: Boolean program abstraction for the example in Figure 4. The boolean
variable b1 represents the predicate (de->lock==0) and b2 represents the pred-
icate (x==de->y).

struct of type DE with two fields DE->lock and DE->y, an input pointer de
to a struct of type DE, and an integer local variable x. The loop invariant at
line 8 of the program is given by (de->lock==0 ∧ x!=de->y) ∨ (de->lock!=0
∧ x==de->y). We need to prove that the assertion assert(de->lock==0) at
line 2 always holds. If we run Slam [4] on this example, we get the boolean
program shown in Figure 5 with two boolean variables —b1 representing the
predicate (de->lock==0) and b2 representing the predicate (x==de->y). Each
line in the boolean program conservatively abstracts how the statements of the
original C program can affect the predicates. For instance, line 3 sets de->lock
to 1, so line 3 in the boolean program sets b1 to false. Note how the boolean
program models the effect of function call Inc(de) in line 7. The effect on b2
represented by the assignment b2 = b2?false:* models the fact that de->y
is incremented. Thus, if b2 is true before the call, then it is false after the
call, otherwise, its value is nondeterministic (denoted by *). Since alias (and
consequently mod-ref) analysis used by Slam is field-insensitive, even though
the procedure Inc modifies only de->y the field-insensitive mod-ref analysis
needs to conservatively assume that de->lock could be updated as well. As a
result, Slam sets b1 = * at line 7 of the boolean program. As a consequence,
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void prove-me3(int lock, bool b1, bool b2,...,bool bn)
int x;
int *p;
0: *p = malloc(int);x=0;*p=0;
1: lock = 1;
2: if(b1)
3: x = x + 1; //does not affect lock

else
4: *p = *p + 1; //does not affect lock
5:...
6:...
7: if(bn)
8: x = x + 1; //does not affect lock

else
9: *p = *p + 1; //does not affect lock
10:assert(lock == 1);
}

Figure 6: Example to illustrate Dash avoiding an exploration of an exponential
number of paths.

the false error path 0,1,2,3,4,5,6,7,8,1,2 leading to the assertion violation
still exists in the abstract state space, and Slam is unable to prove the example
correct.

Automatic testing tools like Dart or Cute can show that specific paths in
Figure 4 do not violate the assertion in line 2, since they can precisely track
aliases along these paths. However, since the program has a loop (and conse-
quently, an infinite number of paths) these tools will not be able to explore all
the paths.

Since Dash uses abstractions as well as aliasing information from concrete
tests, it is able to prove this program correct. Dash models the loop in the
program as a cycle in the abstraction. During refinements of the abstraction,
Dash uses only the aliasing information that occurs on concrete paths executed
by the tests. Since the concrete executions of Inc(de) do not change de->lock,
the refinements result in an abstraction that has two properties. First, the
abstraction has a cycle to model an unbounded number of executions of the
loop. Second, there is no path from the initial region to the error region in the
abstraction, and hence the abstraction is a proof that the error region can never
be reached.
Example 3. Figure 6 shows an example with 2n paths due to n conditionals.
We wish to check if the program passes the assertion in line 10 along all these
paths. Even though Dash uses test case generation to do refinement, because
it maintains an abstraction, it avoids exploring all the 2n different paths. This
is because, in each iteration, the Dash algorithm splits some region using the
predicate ρ =(lock!=1). After O(n) splits, the algorithm generates the re-
finement shown in the Figure 7. Tools like Slam and Blast can prove the
above program correct in O(1) iterations, since they first discover the predicate
(lock!=1) and then use a pointer analysis to first establish that none of the
code in the conditionals affects this predicate. As a result, the generated boolean
program abstracts all the code in the conditionals using skip statements. While
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Figure 7: Initial abstraction and proof computed by Dash on the example
program from Figure 6.

such an optimization can be implemented to reduce the number of iterations
taken by Dash from O(n) iterations to O(1) iterations, we have not yet imple-
mented any such optimizations. Our empirical results show that even without
such optimizations, Dash performs very well, since the cost of each iteration
is very low. In contrast to Dash or Slam, testing tools like Dart and Cute
need to explore 2n paths since they do not have the benefit of an abstraction to
guide them.
Interprocedural Property Checking. For programs with several proce-
dures, we describe a modular approach to generalize Dash. First, the notion
of forests and abstractions can be easily extended to programs with multiple
procedures by maintaining a separate forest FP and a separate abstraction Σ'P

for every procedure P . The only case in the Dash algorithm that needs to
be generalized is when the frontier we are trying to extend happens to be a
procedure call-return edge (S, S′). In such a case, Dash simply invokes itself
recursively on the called procedure by appropriately translating the constraint
induced by the path τ (the prefix of the abstract error path τe) into appropriate
initial states of the called procedure and translating the predicate on the target
region S′ into appropriate error states of the called procedure.

We explain this through the example in Figure 8, where procedure top makes
two calls to an increment procedure inc. We show how Dash proves that the
call to error() (statement 4 in top) is unreachable.

Dash first creates the initial abstractions Σ'top
and Σ'inc

for the procedures
top and inc respectively (shown in Figure 9(a)). Note that these initial abstrac-
tions are isomorphic to the control flow graphs of their respective procedures.
Next, the initial forests are created by running a random test (with test input
x=2) for top, thus creating a forest of concrete states (assume that every con-
crete state × is connected to its parent within a procedure) for each procedure
(Figure 9(a)). Since running the test did not result in the error location being
reached (there is no concrete state × in the the error state 3), Dash examines

8



void top(int x)
{

int a, b;
0: a = inc(x);
1: b = inc(a);
2: if (b != x+2)
3: error();
4: return;
}

int inc(int y)
{
0: int r;
1: r = y+1;
2: return r;
}

Figure 8: A simple example for interprocedural property checking.

an (abstract) error path τe= 〈0, 1, 2, 3〉 with prefix τ = 〈0, 1, 2〉 in Σ'top
(shown

in Figure 9(a)). Dash now tries to add a test to Ftop that follows τe for at least
one transition beyond the prefix τ by using directed testing [13, 24], that is, a
test that covers the transition (2, 3). It turns out that such a test is not possible
and therefore Dash refines the abstraction Σ'top

by removing the abstract tran-
sition (2, 3). This is done using the WPα operator that returns the predicate
ρ= (b 6=x + 2). Then, applying the template from Figure 11, Dash refines the
region 2 to two regions – 2:ρ and 2:¬ρ, and we obtain the abstraction shown in
Figure 9(b).

Next, Dash continues by choosing a new abstract error path τe=〈0, 1, 2:ρ, 3〉
in the procedure top, with prefix τ=〈0, 1〉. Since the abstract transition (1, 2:ρ)
that is to be tested now corresponds to a call to the procedure inc, we make a
recursive call to Dash on the procedure inc. This call to Dash checks whether
a test can be run on inc with a precondition induced by τ and postcondition
induced by the region 2:ρ in top. It turns out that this recursive call to Dash
returns a “fail” indicating that such a test is not feasible, and this results in a
refinement of the abstract region 2 with respect to the predicate η (shown in
Figure 9(c)). We discuss how η can be computed in Section 4.4. After some
more iterations, Dash computes the abstraction Σ'top

(shown in Figure 9(d))
that proves that the error location is unreachable in the procedure top.

3 Related work

Several papers have predicted that testing and verification can be combined
in deep ways [12, 15]. Yorsh, Ball and Sagiv have proposed an approach that
involves both abstraction and testing [25]. Their approach examines abstract
counterexamples and fabricates new concrete states along them as a heuristic to
increase the coverage of testing. They can also detect when the current program
abstraction is a proof. Unlike Dash, they do not have a refinement algorithm.
Kroening, Groce and Clarke describe a technique to perform abstraction re-
finement using concrete program execution [18]. Their refinement algorithm is
based on partial program simulation using SAT solvers. In contrast, Dash uses
tests to choose the frontiers of abstract counterexamples, and tries to either ex-
tend or refine each frontier with exactly one theorem prover call. The Synergy
algorithm [14] also combines testing and abstraction refinement based verifica-
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Figure 9: Abstractions computed by Dash on the example program from Fig-
ure 8.

tion algorithms in a novel way. Synergy uses tests to decide where to refine
the abstraction and makes theorem prover calls to maintain the abstraction.
We have compared Dash with Synergy in Section 1.

Verification tools such as Slam employ an interprocedural dataflow engine
to analyze programs with multiple procedures [5]. This involves computing
abstract summaries for every procedure in the program. Recently, interpro-
cedural extensions to testing tools like Dart [11] and Cute [19] have been
proposed, and these compute concrete summaries (tests) for every procedure in
the program. Dash is a modular interprocedural analysis algorithm that com-
bines testing and abstraction. Intuitively, Dash analyzes called functions using
path-sensitive information from the caller, and the result of this analysis is fed
back to the caller in the form of both concrete as well as abstract summaries
(though we do not describe them as summaries in the description of the algo-
rithm). Dash currently does not reuse summaries computed in one context in
a different context. We plan to address this in future work.

Several methods for doing refinement have been proposed, including back-
ward propagation from error states [6], forward propagation from initial states [4],
and using interpolants [16]. In all these cases, a theorem prover call is required
at every step of the trace to refine the abstraction, and a global may-alias anal-
ysis is needed to maintain the refined abstraction. In addition, several theorem
prover calls are used to maintain the abstraction after doing the refinement. In
contrast, Dash is built primarily around test generation. In the event of a failed

10



test generation, Dash has enough information to know that the frontier between
the regions covered by tests and the regions not covered by tests is a suitable
refinement point without having to do any further theorem prover calls. As we
show in Theorem 3, Section 4.2.1, we can use the operator WPα to compute a
refinement at the frontier that is guaranteed to make progress without making
any extra theorem prover calls and without using any global may-alias informa-
tion. Thus, every iteration of Dash is considerably more efficient; its efficiency
is comparable to that of test generation tools such as Cute and Dart. The
price we pay is that Dash may have to perform more iterations, since the dis-
covered predicate is lazily propagated backward one step at a time through only
those regions which are discovered to be relevant; therefore, several iterations
of Dash are comparable to a single iteration of a tool like Slam. However, as
our empirical results show, this tradeoff works very well in practice.

Namjoshi and Kurshan [21] have proposed doing refinements without us-
ing theorem provers, using the weakest precondition operator. However, their
scheme does not use tests to identify the point where refinement needs to be
done. Unlike Dash, their work does not handle pointers or aliasing.

4 Algorithm

We will consider C programs and assume that they have been transformed to a
simple intermediate form where:

(a) All statements are labeled with a program location.

(b) All expressions are side-effect free and do not contain multiple dereferences
of pointers (e.g., (∗)k>1p).

(c) Intraprocedural control flow is modeled with if (e) goto l statements,
where e is an expression and l is a program location.

(d) All assignments are of the form *m = e, where m is a memory location and
e is an expression.

(e) All function calls (call-by-value function calls) are of the form
*m = f(x1,x2,...,xn), where m is a memory location.

Though our presentation considers only pointer dereferences of the form *p, our
implementation also supports structs with fields, and pointers to structs with
dereferences of the form p->f.
Syntax. Let Stmts be the set of valid statements in the simple intermediate
form. Formally, a program P is given by a recursive state machine (RSM) [2]
〈P0, P1, . . . , Pn〉, where each component procedure Pi = 〈Ni, Li, Ei, n0

i , λi, Vi〉 is
defined by the following.

• A finite set Ni of nodes, each uniquely identified by a program location
from the finite set Li of program locations.
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• A set of control flow edges Ei ⊆ Ni ×Ni.

• A special start node n0
i ∈Ni which represents the procedure’s entry loca-

tion.

• A labeling λi : Ei → Stmts, that labels each edge with a statement in the
program. If λi(e) is a function call, then we will refer to the edge e as a
call-return edge. We will denote the set of all call-return edges in Ei by
CallRet(Ei).

• A set Vi of variables (consisting of parameters, local variables and global
variables) that are visible to the procedure Pi. We will assume that all
lvalues and expressions are of type either pointer or integer. Additionally,
Vi will contain a special variable pci which takes values from Li.

We will refer to the procedure P0 as the main procedure, and this is where the
execution of the program P begins.

Semantics. It suffices to consider only the data state of a procedure P =
〈N,L,E, n0, λ, V 〉 for our purpose. Let Σ be the (possibly infinite) state space
of P , defined as the set of all valuations to the variables in V . Every statement
op∈Stmts defines a state transition relation

op→: Σ × Σ, and this naturally in-
duces a transition relation → : Σ × Σ for the procedure P . Let σI ⊆ Σ denote
the set of initial states of P . We use ∗→ to denote the reflexive and transitive
closure of the transition relation →. A property ϕ ⊆ Σ is a set of bad states
that we do not want the program to reach. An instance of the property checking
problem is a pair (P,ϕ). The answer to (P,ϕ) is “fail” if there is some initial
state s ∈ σI and some error state s′ ∈ ϕ such that s ∗→ s′, and “pass” otherwise.

Our objective is to produce certificates for both “fail” and “pass” answers.
A certificate for “fail” is an error trace, that is, a finite sequence s0, s1, . . . , sn
of states such that: (1) s0∈σI , (2) si→si+1 for 0≤ i<n, and (3) sn ∈ ϕ.

A certificate for “pass” is a finite-indexed partition Σ' of the state space Σ
which proves the absence of error traces. We refer to the equivalence classes of
the partition Σ' as regions. The partition Σ' induces an abstract procedure
P' = 〈Σ', σI',→'〉, where σI' = {S ∈ Σ' | S ∩ σI 6= ∅} is the set of regions
that contain initial states, and S→'S′ for S, S′ ∈ Σ' if there exist two states
s ∈ S and s′ ∈ S′ such that s→ s′. We allow for the possibility that S→'S′
when there do not exist states s ∈ S and s′ ∈ S′ such that s→ s′.

Let ϕ' = {S ∈ Σ' | S∩ϕ 6= ∅} denote the regions in Σ' that intersect with
ϕ. An abstract error trace is a sequence S0, S1, . . . , Sn of regions such that: (1)
S0 ∈ σI', (2) Si→'Si+1 for all 0≤ i<n, and (3) Sn ∈ ϕ'.

The finite-indexed partition Σ' is a proof that the procedure P cannot reach
the error ϕ if there is no abstract error trace in P'.

4.1 The Dash Algorithm

We will first assume that the program P=〈P 〉 has one procedure P , and discuss
how we handle programs with multiple procedures in Section 4.4. The algorithm
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Dash(P = 〈Σ, σI ,→〉, ϕ)
Returns:
(“fail”, t), where t is an error trace of P reaching ϕ; or
(“pass”, Σ'), where Σ' is a proof that P cannot reach ϕ.

1: Σ' :=
⋃
l∈L{{(pc, v) ∈ Σ | pc = l}}

2: σI' := {S ∈ Σ' | pc(S) is the initial pc}
3: →' := {(S, S′) ∈ Σ'×Σ' | Edge(S, S′) ∈ E}
4: P' := 〈Σ', σI',→'〉
5: F := Test(P )
6: loop
7: if ϕ ∩ F 6= ∅ then
8: choose s ∈ ϕ ∩ F
9: t := TestForWitness(s)

10: return (“fail”, t)
11: end if
12: τ := GetAbstractTrace(P', ϕ)
13: if τ = ε then
14: return (“pass”, Σ')
15: else
16: τo := GetOrderedAbstractTrace(τ, F )
17: 〈t, ρ〉 := ExtendFrontier(τo, F, P )
18: if ρ = true then
19: F := AddTestToForest(t, F )
20: else
21: let S0, S1, . . . , Sn = τo and
22: (k−1, k) = Frontier(τo) in
23: Σ' := (Σ' \ {Sk−1}) ∪
24: {Sk−1 ∧ ρ, Sk−1 ∧ ¬ρ}
25: →' := (→' \ {(S, Sk−1) | S ∈ Parents(Sk−1)})
26: \{(Sk−1, S) | S∈(Children(Sk−1))}
27: →' := →' ∪ {(S, Sk−1 ∧ ρ) | S ∈ Parents(Sk−1)}∪
28: {(S, Sk−1 ∧ ¬ρ) | S ∈ Parents(Sk−1)}∪
29: {(Sk−1 ∧ ρ, S) | S∈(Children(Sk−1))}∪
30: {(Sk−1 ∧ ¬ρ, S) |S∈(Children(Sk−1) \ {Sk})}
31: end if
32: end if
33: end loop

Figure 10: The Dash algorithm.

Dash shown in Figure 10 takes the property checking instance (P,ϕ) as input
and can have three possible outcomes:

(1) It may output “fail” together with a test t that certifies that P can reach
ϕ.

(2) It may output “pass” together with a proof Σ' that certifies that P cannot
reach ϕ.

(3) It may not terminate.

Dash maintains two data structures:

(1) A finite forest F of states where for every state s ∈ F , either s 6∈ σI and
parent(s) ∈ F is a concrete predecessor of s (that is, parent(s)→s), or
s∈σI and parent(s)=ε.

(2) A finite-indexed partition Σ' of the state space Σ of P .
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The regions of Σ' are defined by pc values and predicates over program vari-
ables. Let pc(S) denote the program location associated with region S, and let
Edge(S, S′) be a function that returns the control flow edge e∈E that connects
regions S and S′. Initially (lines 1–4), there is exactly one region for every pc
in the procedure P ; therefore, the abstract procedure P' is initially isomorphic
to the control flow graph of the procedure P . The function Test (line 5) tests
the procedure P using test inputs for P , and returns the reachable concrete
states of P in the form of a forest F (which is empty if no test inputs for P are
available). The test inputs for P may come from previous runs of the algorithm,
from external test suites, or from automatic test generation tools.

In each iteration of the main loop, the algorithm either expands the forest
F to include more reachable states (with the hope that this expansion will help
produce a “fail” answer), or refines the partition Σ' (with the hope that this
refinement will help produce a “pass” answer). The algorithm locates a path
from an initial region to the error region through the abstract procedure, and
then discovers the boundary (the frontier) along this path between regions which
are known to be reachable and a region which is not known to be reachable.
Directed test generation, similar in spirit to Cute [24], is then used to expand
the forest F with a test that crosses this frontier. If such a test cannot be
created, we refine the partition Σ' at this “explored” side of the frontier. Thus,
abstract error traces are used to direct test generation, and the non-existence
of certain kinds of tests is used to guide the refinement of P'.

Every iteration of Dash first checks for the existence of a test reaching the
error (line 7). If there is such a test, then ϕ∩F 6=∅, so the algorithm chooses a
state s∈ϕ∩F and calls the auxiliary function TestForWitness to compute a con-
crete test that reaches the error. TestForWitness (line 9) uses the parent relation
to generate an error trace – it starts with a concrete state s and successively
looks up the parent until it finds a concrete state s0 (a root of F ) that belongs
to an initial region. TestForWitness(s) returns the state sequence s0, s1, . . . , sn
such that sn=s and si→si+1 for all 0 ≤ i < n.

If no test to the error exists in the forest F , the algorithm calls GetAbstractTrace
(line 12) to find an abstract error trace τ through the abstract graph. If no such
trace exists, then the current partition Σ' is a proof that P cannot reach any
state in ϕ, and GetAbstractTrace returns τ = ε. Otherwise, GetAbstractTrace
returns the abstract trace τ = S0, S1, . . . , Sn such that Sn = ϕ. The next
step is to convert this trace into an ordered abstract trace. An abstract trace
S0, S1, . . . , Sn is ordered if the following two conditions hold:

(1) There exists a frontier (k−1, k) def= Frontier(S0, S1, . . . , Sn) such that (a) 0 ≤
k ≤ n, and (b) Si ∩ F = ∅ for all k ≤ i ≤ n, and (c) Sj ∩ F 6= ∅ for all
0 ≤ j < k.

(2) There exists a state s ∈ Sk−1 ∩ F such that
Si = Region(parentk−1−i(s)) for all 0 ≤ i < k, where the abstraction
function Region maps each state s ∈ Σ to the region S ∈ Σ' with s ∈ S.
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Figure 11: Refinement split performed by Dash at the frontier.

ExtendFrontier(τ , F , P )
Returns:
〈t, true〉, if the frontier can be extended; or
〈ε, ρ〉, if the frontier cannot be extended.

1: (k−1, k) := Frontier(τ)
2: 〈φ1,S, φ2〉 := ExecuteSymbolic(τ, F, P )
3: t := IsSAT(φ1,S, φ2, P )
4: if t = ε then
5: ρ := RefinePred(S, τ)
6: else
7: ρ := true
8: end if
9: return 〈t, ρ〉

Figure 12: The auxiliary function ExtendFrontier.

We note that whenever there is an abstract error trace, then there must exist
an ordered abstract error trace. The auxiliary function GetOrderedAbstractTrace
(line 16) converts an arbitrary abstract trace τ into an ordered abstract trace τo.
This works by finding the last region in the abstract trace that intersects with
the forest F , which we call Sf . The algorithm picks a state in this intersection
and follows the parent relation back to an initial state. This leads to a concrete
trace s0, s1, . . . , sk−1 that corresponds to an abstract trace S0, S1, . . . Sk−1 where
Sk−1 = Sf . By splicing together this abstract trace and the portion of the
abstract error trace from Sf to Sn, we obtain an ordered abstract error trace.
It is crucial that the ordered abstract error trace follows a concrete trace up to
the frontier, as this ensures that it is a feasible trace up to that point.

The algorithm now calls the function ExtendFrontier (line 17). The function
ExtendFrontier, shown in Figure 12, is the only function in the Dash algorithm
that uses a theorem prover. It takes an ordered trace τo, forest F , and procedure
P as inputs and returns a pair 〈t, ρ〉, where t is a test and ρ is a predicate. They
can take the following values:

• 〈t, true〉, when t is a test that extends the frontier. The test t is then added
to the forest F by AddTestToForest (line 19), which runs an instrumented
version of the program to obtain the trace of concrete states that are added
to F .

• 〈ε, ρ〉, when no test that extends the frontier is possible. In this case, ρ is
a suitable refinement predicate that is used to used to refine the partition
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ExecuteSymbolic(τ , F , P )
Returns: 〈φ1,S, φ2〉.
1: (k−1, k) := Frontier(τ = 〈S0, S1, . . . , Sn〉)
2: S := [v 7→ v0 | ∗v ∈ inputs(P )]
3: φ1 := SymbolicEval(S0,S)
4: φ2 := true
5: i := 0
6: while i 6= k−1 do
7: op := λ(Edge(Si, Si+1))
8: match(op)
9: case(∗m = e):

10: S := S+[SymbolicEval(m,S) 7→SymbolicEval(e,S)]
11: case(if e goto l):
12: φ1 := φ1 ∧ SymbolicEval(e,S)
13: i := i+ 1
14: φ1 := φ1 ∧ SymbolicEval(Si,S)
15: end while
16: op := λ(Edge(Sk−1, Sk))
17: match(op)
18: case(∗m = e):
19: φ2 := φ2∧
20: ∗(SymbolicEval(m,S)) = SymbolicEval(e,S)
21: S′ := S + [SymbolicEval(m,S) 7→ SymbolicEval(e,S)]
22: case(if e goto l):
23: φ2 := φ2 ∧ SymbolicEval(e,S)
24: S′ := S
25: φ2 := φ2 ∧ SymbolicEval(Sk,S′)
26: return 〈φ1,S, φ2〉

Figure 13: The auxiliary function ExecuteSymbolic.

Σ' at the frontier (lines 21–30), resulting in a split of region Sk−1 (as
shown in Figure 11) that eliminates the spurious abstract error trace τo.

The function ExecuteSymbolic, which is called at line 2 of ExtendFrontier,
performs symbolic execution on τ using techniques inspired by Cute [24]. Let
τ = 〈S0, S1, . . . , Sn〉, and let (k−1, k) = Frontier(τ). ExecuteSymbolic returns
〈φ1,S, φ2〉, where φ1 and S are respectively the path constraint and symbolic
memory map obtained by performing symbolic execution on the abstract trace
〈S0, S1, . . . , Sk−1〉, and φ2 is the result of performing symbolic execution on
the abstract trace 〈Sk−1, Sk〉 (not including the region Sk−1) starting with the
symbolic memory map S . ExecuteSymbolic is described in Figure 13. It first
initializes the symbolic memory map S with v 7→ v0 for every input variable ∗v
in the program, where v0 is the initial symbolic value for ∗v (line 2 in Figure 13)
and performs symbolic execution in order to compute φ1 and φ2. The function
SymbolicEval(e,S) evaluates the expression e with respect to values from the
symbolic memory S.

ExtendFrontier calls the function IsSAT (line 3 in Figure 12) that checks
whether µ=φ1∧S∧φ2 is satisfiable1 by making a call to a theorem prover. If
µ is satisfiable, IsSAT uses the satisfying assignment/model to generate a test
t for P that extends the frontier, otherwise it sets t= ε. If it is not possible to
extend the frontier (that is, t= ε as shown in line 4), then ExtendFrontier calls
RefinePred (line 5) which returns a predicate ρ that is a suitable candidate for

1Every entry in S is looked upon as an equality predicate here.
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refining Σ' at Sk−1 according to the template in Figure 11. It is useful to note
that RefinePred makes no theorem prover calls in order to compute ρ.

4.2 Suitable Predicates

If we cannot drive a test-case past the frontier, then RefinePred should return
a predicate that is in some sense “good.” If we examine Figure 11, there are
definitely two ways in which a refinement predicate can be bad. If ρ is too weak,
then it will be possible to derive a test along the same ordered abstract trace,
in which case RefinePred will be called with the exact same arguments and will
return ρ again. Alternatively, if ρ is too strong, then there may be a transition
from some region in Sk−1∧¬p to some region in Sk, and we will not be justified
in removing the edge between these two regions. By formalizing the notion of
a suitable predicate, we can show that any suitable predicate will allow Dash
to make progress in a sound manner and also that the predicate returned by
RefinePred is a suitable predicate.

Definition 1 (Suitable predicate) Let τ be an abstract error trace and let (S, T )
be its frontier. A predicate ρ is said to be suitable with respect to τ only if all
possible concrete states obtained by executing τ up to the frontier belong to the
region S ∧ ¬ρ, and if there is no transition from any state in S ∧ ¬ρ to a state
in T .

Given two abstract error traces τ=〈S0, S1, . . . , Sn〉 and τ ′=〈T0, T1, . . . , Tn〉
of the same length, we say that τ @ τ ′ if either of the following conditions is
true.

(a) ∀0≤i≤nTi ⊆ Si, and ∃k ∈ [0, n] such that Tk ⊂ Sk.

(b) Let (x, x+1)= Frontier(τ) and (y, y+1)= Frontier(τ ′), then ∀0≤i≤nTi = Si,
and y > x.

Essentially, this means that τ @ τ ′ if τ ′ is a strictly “better” trace, either
because the frontier in τ ′ has been pushed forward or because at least one region
in τ ′ holds strictly fewer states. This is formalized by Definition 2:

Definition 2 (Progress) Let Γ = 〈τ0, τ1, . . .〉 be a sequence of abstract error
traces examined by Dash. Then we say that Dash makes progress if there do
not exist i and j such that i < j and τj @ τi.

Theorem 1 If a suitable predicate for an abstract error trace τ is used to per-
form refinement, then the Dash algorithm makes progress.

Proof: Let τ = 〈S0, S1, . . . , Sn〉. By definition (see Figure 11), it follows that
a suitable predicate ρ with respect to τ would eliminate the edge (Sk−1, Sk) in
a sound manner by splitting Sk−1 into two regions, Sk−1 ∧ ρ and Sk ∧ ρ. Since
all concrete states in Sk−1 that can be obtained by traversing the abstract error
trace belong to the region Sk−1∧¬ρ, and the edge (Sk−1∧ρ, Sk) does not exist,
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RefinePred(S, φ2, τ)
Returns: a suitable predicate ρ.

1: (k−1, k) := Frontier(τ = 〈S0, S1, . . . , Sm〉)
2: op := λ(Edge(Sk−1, Sk))
3: α := Aliases(S, op, Sk)
4: return WPα(op, Sk)

Figure 14: Computing suitable predicates.

it follows that Definition 2 is satisfied if a refinement is performed on any of
the states. Alternatively, if a test is generated, then the second condition in
Definition 2 will be satisfied, thus proving the theorem.

Corollary 2 A suitable predicate ensures that the refinement is sound.

Theorem 1 allows us to perform template-based refinement (as shown in
Figure 11) without any calls to a theorem prover after computing a suitable
predicate. We will next describe how the auxiliary function RefinePred computes
a suitable predicate.

4.2.1 Computing Suitable Predicates

For a statement op∈Stmts and a predicate φ, let WP(op, φ) denote the weakest
precondition [10] of φ with respect to statement op. WP(op, φ) is defined as the
weakest predicate whose truth before op implies the truth of φ after op executes.
The weakest precondition WP(x = e, φ) is the predicate obtained by replacing
all occurrences of x in φ (denoted φ[e/x]). For example, WP(x = x+1, x<1) =
(x+1)<1 = (x<0). However, in the case of pointers, WP(op, φ) is not necessarily
φ[e/x]. For example, WP(x = x + 1, ∗p + ∗q < 1) is not ∗p + ∗q < 1, if either
*p or *q or both alias x. In order to handle this, if the predicate φ mentions k
locations2 (say y1, y2, . . . , yk), then WP(x = e, φ) would have 2k disjuncts, with
each disjunct corresponding to one possible alias condition of the k locations
with x [3]. Therefore, WP(x = x + 1, ∗p+ ∗q < 1) has 4 disjuncts as follows:

(&x=p ∧&x=q ∧ 2x<−1) ∨
(&x 6=p ∧&x=q ∧ ∗p+ x< 0) ∨
(&x=p ∧&x 6=q ∧ x+ ∗q< 0) ∨
(&x 6=p ∧&x 6=q ∧ ∗p+ ∗q< 1)

Typically, a whole-program may-alias analysis is used to improve the preci-
sion (that is, prune the number of disjuncts) of the weakest precondition and the
outcome of this analysis largely influences the performance of tools like Slam.
However, as motivated by the example in Figure 5, imprecisions in a whole-
program may-alias analysis are ineffective in pruning the disjuncts. Dash takes
an alternate approach. It considers only the aliasing α that can happen along

2A location is either a variable, a structure field access from a location, or a dereference of
a location.
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the current abstract trace, and computes the weakest precondition specialized
to that aliasing condition, as shown by the function RefinePred in Figure 14.

We first define the projection of the weakest precondition with respect to
alias condtion α as follows:

WP↓α(op, φ)) = α ∧WP(op, φ)

For efficiency, WP↓α (op, φ)) can be computed by only considering the alias
possibility α. For example, if α = (&x 6=p ∧&x=q) we have that

WP↓α (x = x + 1, ∗p+ ∗q < 1) = (&x 6=p ∧&x=q ∧ x< 0)

The refinement predicate computed by RefinePred is

WPα(op, φ2) def= ¬(α ∧ ¬WP↓α(op, φ2))

Next, we show that such a predicate satisfies the conditions for a suitable pred-
icate.

Theorem 3 The predicate WPα(op, φ2) computed by the auxiliary function Re-
finePred is a suitable predicate.

Proof: There are two parts of this proof for the two requirements of Definition 1.
Let C be the set of concrete states obtained by executing the ordered trace up
to the frontier. Any concrete state c∈C must satisfy the existing predicate on
the region Sk−1 as well as the alias relations defined by α. It is also not possible
to generate a test that extends the frontier (otherwise, the theorem prover call
in Line 3 of Figure 16 would succeed, and RefinePred would not be called).
Thus, it must be the case that ∀c ∈ C, c 6∈ WP↓α (op, φ2). This implies that
∀c∈ C, c∈ (α ∧ ¬WP↓α(op, φ2)) and hence the predicate WPα(op, φ2) satisfies
the first requirement of Definition 1.

The second part of Definition 1 requires that no state in Sk−1∧¬WPα(op, φ2)
have a transition to a state in Sk. Every state that can make this transition
satisfies WP(op, φ2) by the definition of weakest precondition. Because every
state in Sk−1 ∧ ¬WPα(op, φ2) must also satisfy the alias relations defined by
α, any state in Sk−1 ∧ ¬WPα(op, φ2) that can transition to Sk must satisfy
WP↓α (op, φ2) specifically. Because every state satisfying ¬WPα(op, φ2) also
must not satisfy WP↓α(op, φ2), no states with a transition to Sk can exist, and
therefore WPα(op, φ2) is a suitable predicate.

We note that while WP is another possible choice for a suitable predicate for
the refinement shown in Figure 11, the predicate computed by WP contains
an exponential number of disjuncts in the presence of aliasing. Thus, the use
of WPα avoids an exponential number of disjuncts when compared to other
approaches that use WP such as [14] and [21].
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Dash-Main(P, ϕ)
Returns:
(“fail”, t), where t is an error trace of P reaching ϕ; or
(“pass”, Σ'), where Σ' is a proof that P cannot reach ϕ.

1: let 〈P0, P1, . . . , Pn〉 = P in

2: Dash(P0 = 〈Σ0, σ
I
0 ,→0〉, ϕ)

Figure 15: The Dash algorithm for programs with multiple procedures.

4.3 Soundness and Complexity

Dash is sound in the sense that if Dash terminates on (P,ϕ), then either of the
following is true: (1) if Dash returns (“pass”, Σ'), then Σ' is a proof that P
cannot reach ϕ, and (2) if Dash returns (“fail”, t), then t is a test for P that
violates ϕ. However, there is no guarantee that Dash will terminate (this is
a shortcoming of all tools that use counterexample driven refinement, such as
Slam and Blast).

Though we cannot bound the number of iterations of Dash we can bound
the number of theorem prover calls made in each iteration. During a Dash
iteration, a test generation entails one theorem prover call (call to IsSat in line
3 of the auxiliary function ExtendFrontier). If a test that extends the frontier is
not possible, then generating a suitable predicate for refinement does not involve
a theorem prover call.

4.4 Handling Programs with Procedures

We will assume without loss of generality that the property ϕ that we wish
to check is only associated with the main procedure P0 in the program P.
Therefore, Dash-Main(P= 〈P0, P1, . . . , Pn〉, ϕ) (shown in Figure 15) calls the
function Dash from Figure 10 on the property checking instance (P0, ϕ). As
in the single procedure case, we maintain a forest F and an abstraction P'
for every procedure P in the program. The interprocedural analysis differs
from the intraprocedural algorithm described earlier only in the definition of
the auxiliary function ExtendFrontier. The modified version of ExtendFrontier is
shown in Figure 16. Informally, the interprocedural algorithm makes a recursive
call to Dash at every frontier that corresponds to a function call in order to
figure out whether there exist tests that extend this frontier. If this is not
possible, then the proof returned by the recursive Dash call is used to compute
a suitable predicate.

Specifically, the auxiliary function ExtendFrontier makes a call to Dash at
frontiers that correspond to call-return edges. ExtendFrontier first calls the aux-
iliary function GetWholeAbstractTrace (line 1). GetWholeAbstractTrace takes an
ordered abstract error trace τ = 〈S0, S1, . . . , Sn〉 and forest F as input, and
returns an “expanded” whole abstract error trace τw. Essentially, τw is the
abstract trace τ with all call-return edges up to its frontier replaced with the
abstract trace traversed in the called function (and this works in a recursive
manner). If Edge(Si, Si+1) is a call-return edge that occurs before the fron-
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ExtendFrontier(τ , F , P )
Returns:
(t, true), if the frontier can be extended; or
(ε, ρ), if the frontier cannot be extended.

1: τw=〈S0, S1, . . . , Sn〉 := GetWholeAbstractTrace(τ, F )
2: (k−1, k) := Frontier(τw)
3: 〈φ1,S, φ2〉 := ExecuteSymbolic(τw, F, P )
4: if Edge(Sk−1, Sk) ∈ CallReturn(E) then

5: let 〈Σ, σI ,→〉 = GetProc(Edge(Sk−1, Sk)) in
6: φ := InputConstraints(S)
7: φ′ := Sk[e/x]

8: 〈r,m〉 := Dash(〈Σ, σI∧φ,→〉,¬φ′)
9: if r = “fail” then

10: t := m
11: ρ := true
12: else
13: ρ := GetInitPred(m)
14: t := ε
15: end if
16: else
17: t := IsSAT(φ1,S, φ2, P )
18: if t = ε then
19: ρ := RefinePred(S, τw)
20: else
21: ρ := true
22: end if
23: end if
24: return 〈t, ρ〉

Figure 16: The auxiliary function ExtendFrontier for interprocedural analysis.

tier, GetWholeAbstractTrace runs a test t (obtained from the concrete witness
in Si) on the called procedure GetProc(e) and replaces Edge(Si, Si+1) with the
sequence of regions corresponding to the test t.

The function ExecuteSymbolic (line 3) performs symbolic execution on the
whole abstract error trace τw as described in Figure 13. If the frontier corre-
sponds to a call-return edge (line 5) with a call to procedure Q = 〈Σ, σI ,→〉,
ExtendFrontier calls Dash on the property checking instance (〈Σ, σ∧φ,→〉,¬φ′).
The predicate φ corresponds to the constraints on Q’s input variables which
are computed directly from the symbolic memory S (by the auxiliary function
InputConstraints at line 7), and φ′=Sk[e/x], where e is the returned expression
in Q and x is the variable in the caller P that stores the return value. Note
that because both φ and φ′ may mention local variables with the same names as
variables in the called function, either the identifiers in these predicates or the
identifiers in the called function need to be varied appropriately at the point
where Dash is called recursively. While this must be done carefully so that
AddTestToForest can correctly match up concrete states with abstract states,
these details are omitted here.

If Dash(〈Σ, σ∧φ,→〉,¬φ′) returns (“fail”, t), then we know that the frontier
can be extended by the test t; otherwise m corresponds to a proof that the
frontier cannot be extended across the frontier. Computing a WPα in this
event would be expensive if the called function had several paths, but we can
glean information from the way Dash splits the initial region to get a suitable
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Program Lines Property Slam Dash

Iters TP-calls Time(secs) Iters TP-calls Time(secs)

bluetooth-correct 700 SpinLock - - - 553 553 27.90
floppy-correct 6500 InterlockedQueuedIrps * * * 726 726 14.56
floppy-correct 6500 SpinLock * * * 826 826 14.17
floppy-buggy 6500 SpinLock * * * 493 493 8.90
serial-buggy 10380 SpinLock * * * 982 982 16.95
serial-correct 10380 SpinLock * * * 2297 2297 48.66
bluetooth-correct 700 CancelSpinLock 5 1183 4.26 275 275 2.15
bluetooth-buggy 700 CancelSpinLock 5 1413 5.69 171 171 1.59
bluetooth-buggy 700 SpinLock 6 2453 8.1 171 171 1.69
diskperf-correct 2365 CancelSpinLock 2 15 1.76 123 123 1.95
diskperf-buggy 2365 CancelSpinLock 3 92 2.55 3 3 1.21
diskperf-correct 2365 MarkIrpPending 5 278 2.35 318 318 3.15
diskperf-buggy 2365 MarkIrpPendnig 5 440 2.35 2 2 1.22
floppy-correct 6500 CancelSpinLock 3 2851 7.81 538 538 5.41
floppy-buggy 6500 CancelSpinLock 3 2490 7.19 91 91 1.61
floppy-buggy 6500 InterlockedQueuedIrps 7 6688 24.84 1147 1147 17.21
floppy-correct 6500 MarkIrpPending 4 2513 11.84 568 568 5.68
floppy-buggy 6500 MarkIrpPending 3 2506 10.95 110 110 1.98

Table 1: Comparison of Slam with Dash. “*” indicates timeout after 30 min-
utes, and “-” indicates that the tool gave up due aliasing issues.

predicate that is more general than the path predicate φ. This predicate is
computed by the auxiliary function GetInitPred in line 12 which takes the proof
m returned by Dash and returns a suitable predicate φ2. The rest of the
interprocedural algorithm is identical to Dash.

5 Evaluation

We have implemented Dash using the CIL infrastructure [22], and the F# pro-
gramming language [1]. We use the Z3 theorem prover [8] that can also do
model generation.

The implementation of Dash is very close to the description in Section 4.
The only notable exception is that, when faced with an if-branch in a program,
Dash will perform an inexpensive test to see whether the WPα of a weaker
predicate, one that ignores the branch condition, still satisfies the template
described in Figure 11. This can be done by evaluation, and does not require
a theorem prover call. The effect of this optimization is that we avoid getting
“stuck” in irrelevant loops. We have left the consideration of more thorough
generalization techniques for future work.

Implementing the interprocedural Dash algorithm in the presence of pointers
was non-trivial. Each invocation of the Dash algorithm carries its own abstract
graph, as well as a logical memory map representing the state of memory when
the function was called. The top-level invocation of Dash assumes that there is
no aliasing in this map, but recursive calls may begin with aliasing constraints
introduced during the execution of the program. When a recursive call begins,
a fresh abstraction is generated from the control flow graph of that function and
is augmented with initial and error regions as described in Section 4.4.

We did three sets of evaluations to compare Dash and Slam3.
3In order to make a fair comparison with Slam, we modified Slam so that it also calls the

theorem prover Z3.
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Figure 17: Scatter plot of the relative runtimes of Slam and Dash on 95 C
programs in Slam’s regression suite.

Figure 18: Plot illustrating the exponential time taken by Slam on the program
(parameterized by n) in Figure 3. Dash, on the other hand, takes almost
constant time on this class of programs.

Device driver benchmarks. Table 1 compares Slam and Dash on device
driver code. In the first 6 cases where Slam either times out or gives up due to
pointer aliasing, Dash is able to prove that the program satisfies the property
or find a test that witnesses the violation very efficiently. This is due to the
fact that the refinement done by Dash using WPα considers only the aliasing
possibilites that occur along test executions. For the floppy-correct program
and SpinLock property, the situation is similar to the simplified code snippet in
Figure 4 in Section 2 (the example code in Figure 4 was motivated by looking
at the floppy driver code relating to this property and simplifying it for presen-
tation). As seen in the table, even though Dash takes several more iterations
when compared to Slam, each iteration is very efficient, and the overall run-
time of Dash is smaller than Slam. This is because in each iteration, Slam
makes a large number of theorem prover calls to compute the boolean program
abstraction, whereas Dash makes exactly one theorem prover call per iteration.
SLAM regression suite. We ran Dash on 95 C programs in Slam’s regression
suite. A scatter plot of the relative runtimes of Slam and Dash can be seen
in Figure 17. Slam and Dash gave identical outputs (that is, pass/fail) on
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each of the 95 programs. Note that the plot has Slam runtime in a log scale,
and the curve y = x is shown. Every point to the right of the curve is a case
where Dash is faster than Slam. The total time taken by Slam for all the 95
programs (put together) is 20 minutes. Dash finishes all the 95 programs in 17
seconds, a speedup of 70X. With test caching enabled (where tests are reused
across runs of Dash), Dash finishes all the 95 programs in 4 seconds, a speedup
of 300X!
Microbenchmark for alias issues. Finally, we varied the parameter n in
the template program in Figure 3 and compared the runtimes of Slam and
Dash. The results are shown in Figure 18. As explained in Section 2, Slam’s
runtime varies exponentially with n due to the fact that it considers and rules
out an exponential number of aliasing possibilities, whereas Dash takes almost
constant time.

6 Conclusion

We believe that light-weight approaches like Dash enable application of proof
techniques to a larger class of programs. Our eventual goal is the following:
whenever we can run a program, instrument a program to observe states, and
do light-weight symbolic execution, we want to be able to do proofs! We believe
that Dash has all the concepts needed to achieve this goal.

Dash handles only sequential programs, and checks only safety properties.
However, recent work has built on checkers like Slam to do concurrency analysis
with bounded number of context switches [23], and check termination proper-
ties [7]. By improving the scalability of the core proof engines (like Slam), we
believe that Dash can also improve the scalability of these tools for concurrency
and termination analysis.
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