
Towards Unified Management of Networked Services in
Wired and Wireless Enterprise Networks

Paramir Bahl, Ranveer Chandra, David A. Maltz, Parveen Patel,
Jitendra Padhye, Lenin Ravindranath

Microsoft Research

Abstract
Organizations world-wide are adopting wireless networks at
an impressive rate, and a new industry has sprung up to pro-
vide tools to manage these networks. Unfortunately, these
tools do not integrate cleanly with traditional wired network
management tools, leading to unsolved problems and frus-
tration among the IT staff.

We explore the problem of unifying wireless and wired
network management and show that simple merging of tools
and strategies, and/or their trivial extension from one domain
to another does not work. Building on previous research on
network service dependency extraction, fault diagnosis, and
wireless network management, we introduceMnM, an end-
to-end network management system that unifies wired and
wireless network management. MnM treats physical loca-
tion of end devices as a core component of its management
strategy. It also dynamically adapts to the frequent topology
changes brought about by end-node mobility. We have a pro-
totype deployment in a large organization that shows that
MnM’s root-cause analysis engine easily out-performs sys-
tems that do not take user mobility into account in terms of
correctly localizing faults and blame attribution.

1. INTRODUCTION
Data from IT departments of large corporations and dom-

inant PC manufacturers shows that employees prefer to use
just one device, e.g. a laptop computer, for all their com-
puting needs [16]. Consequently, many large IT departments
are moving towards a future that includes a significantly re-
duced role of the traditional wired desktop computer [11].
They envision a future where enterprises deploy wireless
networks in all corporate campus buildings, and swarms of
nomadic users access corporate resources through wireless
Access Point (APs).

Additionally, they see more and more employees con-
necting to the corporate network from remote locations, other
than campus buildings, via Virtual Private Networks (VPN)
terminating at one of several Remote Access Servers (RAS)
available to them. These users connect over a variety of wide-
area networks including cellular, Wi-Fi hotspots, WiMax,
cable modem, and fiber networks. Also, they expect users
to frequently change their point of attachment to the corpo-

rate network. In this new world, IT departments must worry
about managing the thousands of employee devices and the
networked applications that run on them.

Current enterprise network management systems use
separate tools to manage their wired and wireless networks.
In an environment where a large number of users are no-
madic and connect to the corporate network using a variety
of different networks, debugging application performance
problems using separate tools is both difficult and frustrat-
ing [12].

Background

wireless

variability

Spikes of

variability in

server

Large wireless

varations

Large server

variations

Figure 1: Time to fetch a URL as measured simultane-
ously from a wired desktop host and a wireless laptop.
The laptop was moved between rooms every 5 minutes.

For example, consider Figure 1 that shows the time re-
quired to fetch a URL, measured simultaneously from a wired
desktop host and a wireless laptop as the laptop was moved
between rooms every 5 minutes. Unsurprisingly, both the
wired and wireless host see significant variation in the re-
sponse time. Interestingly, however, the variation is some-
times seen by the wireless host only, potentially indicating
problems in the wireless connectivity, and sometimes the
variation is seen only in the wired host, potentially indicating
congestion in the wired network. Sometimes the variation is
seen in both, potentially indicating congestion in a server in-
volved in providing the requested URL.

A natural question to ask is: why not diagnose perfor-

1

mance problems by using the existing wireless and wired
network management system separately?

The answer is that a management system that looks at
only the wired network or the wireless network is likely to
misinterpret some of the spikes in the response time and
blame the wrong network component. A single system that
jointly manages and diagnoses both aspects simultaneously
has much better odds of correctly finding the cause of ob-
served problems, as discussed in Section 3.3. Furthermore,
recently proposed wireless network monitoring and manage-
ment systems [10, 17, 7] do not integrate well with exist-
ing tools for wired networks [12] that manage application-
level performance [21, 4]. Also, not only are wireless net-
work management systems difficult and expensive to deploy,
they only report low-level performance characteristics such
as signal strength, link layer loss rates etc. Translating these
low-level measurements to application-level performance is
an open research problem [9], especially in presence of en-
cryption.

We believe and show that application-level performance
problems can be diagnosed over both wired and wireless net-
works without deploying a separate, expensive, Wi-Fi moni-
toring infrastructure.

Three main features distinguish our work from the re-
cent research on enterprise network management systems:

Incessant dynamics:Many recently proposed network
fault diagnosis systems such as Sherlock [4] and SMARTS [21]
implicitly assume that the fundamental structure of the net-
work is either static or changes slowly. This assumption al-
lows these systems to build Inference Graphs [4] and code-
books [21] to pinpoint the cause of performance problems
seen by the users. However, these approaches cannot be used
without substantial modifications in an environment where
clients frequently change their point of attachment to the cor-
porate network.

Joint Consideration of Wired and Wireless Networks:
To manage end-to-end performance of networked applica-
tions across wired and wireless networks requires re-thinking
some core aspects of fault diagnosis. For example, geographic
location must become first class object in the analysis for de-
termining if a problem is in the backhaul network, the wire-
less link, or the servers in the data center.

Absence of Fixed Observers:Since many problems in
wireless networks are location specific, existing wireless net-
work monitoring systems rely on fixed desktops [7] or spe-
cialized monitoring hardware [3, 10]. However, in a net-
work consisting primarily of nomadic users, systems like
DAIR [7] are impractical, while systems like Jigsaw [10] and
Wit [17] are expensive to deploy.

We have developed an end-to-end network management
system, called MnM, that successfully manages the perfor-
mance of networked services and applications running on
nomadic hosts. MnM builds on recent research on network
service dependency extraction, fault diagnosis, and wireless
network monitoring. It treats physical location of end de-
vices as a core component of its management strategy. It

also dynamically adapts to the frequent topology changes
brought about by end-node movement. Our system is imple-
mented entirely in user-level software, and it does not require
any specialized monitoring hardware. We have deployed the
MnM system on a segment of our organization’s network.
Over a period of two weeks, we monitored 27 users and
10 servers. We detected and correctly diagnosed a variety
of performance issues, including poor Wi-Fi coverage, con-
gestion in wired networks, and misconfigured DNS entries.
As we shall show later in the paper, at least 140 performance
problems would have been mis-diagnosed had we not taken
an integrated, holistic view of wired and wireless networks.
MnM’s root-cause analysis engine easily out-performs state-
of-art systems that do not take user mobility into account.

MnM extends the state-of-art in enterprise network man-
agement by making two important contributions:

1. We identify issues that a enterprise network management
system must consider when the end-hosts are nomadic. We
show that recently developed systems are not able to cope
with these issues. We quantify mistaken diagnoses that oc-
cur in systems that do not compensate for user nomadicity,
and we argue that location must be treated as a core com-
ponent in future enterprise network management systems.

2. We present an enterprise network management system that
unifies wired and wireless network management, and han-
dles nomadic users. It is easy to deploy, as it requires no
special fixed infrastructure for wireless monitoring and
automatically initializes its location system. We evaluate
its accuracy through both controlled experiments and a 2-
week field study.

To the best of our knowledge, we are the first to identify
these problems and present a unified network management
system.

2. RELATED WORK
There is a significant amount of prior work in enter-

prise network management. However, it has either focused
on managing wired networks or wireless networks, not both
simultaneously. The closest thing to unified management tools
are systems that let network managers view the wired and
wireless networks simultaneously[12]. In this paper we fo-
cus primarily on nomadic users who change location but
conduct most of their work when stationary. Some other pa-
pers refer to these as mobile users, and we use the terms
interchangeably. We believe MnM is applicable to users in
constant motion, but it is out of scope for this paper.

Wireless Network Management:Adya et, al. [1] built one
of the first enterprise wireless network management systems.
Their system is similar to ours in that they focus on per-
formance problems faced by Wi-Fi enabled mobile clients.
They detect problems by analyzing link data collected by
monitoring agents residing on clients and wireless APs. Un-
like our system, their techniques miss out on problems that

2

a mobile client may have because of a performance issue in
the wired part of the network.

The DAIR system [7] also detects performance prob-
lems faced by users of Wi-Fi networks. DAIR uses corporate
desktop computers to monitor the airwaves and like MnM,
location-awareness is a core component of its management
strategy. Fundamentally, DAIR relies on the existence of fixed
desktop devices to monitor performance of wireless link. In
contrast, MnM assumes a world where every client is mo-
bile. Furthermore, DAIR requires the monitoring devices to
sniff packets in promiscuous mode, which may not always
be possible on battery constrained mobile clients.

Jigsaw [10] and WIT [17] are Wi-Fi monitoring sys-
tems that combine the data from multiple monitors to gen-
erate a comprehensive view of network events. Jigsaw uses
dedicated, custom-built, multi-radio monitoring nodes and
provides a detailed view of low-level network effects such as
interference. WIT is able to analyze and detect MAC-level
mis-behavior. While useful in investigating why individual
locations have poor performance, these tools operate at the
wrong granularity for managing end-to-end networked ser-
vices in a corporate environment.

Commercial systems from [2] and [3] are available for
managing wireless networks, but they do not detect perfor-
mance issues due to problems in the wired part of the net-
work. Furthermore, systems like DAIR, Jigsaw, WIT, Air-
tight, etc. do not have visibility into application-level perfor-
mance problems, whereas, as we will show, MnM does.

Wired Network Management: The Sherlock system [4]
manages networked services in enterprise networks by ex-
tracting inference graphs and then using these to diagnose
performance problems. Software agents running on desktop
machines determine the set of services the host depends on
and a centralized inference engine captures the dependencies
between the components of the IT infrastructure by merg-
ing the views of each client. Sherlock then diagnoses faults
by running an inference algorithm on the inference graphs.
Sherlock makes a fundamental assumption that dependen-
cies are static or, at most, change slowly. This is not true for
applications running on devices used by nomadic users. As
we show in Section 3, systems like Sherlock perform poorly
when dependencies are dynamic and fast changing. Further-
more, such systems cannot be trivially extended to handle
nomadic clients.

Other network management systems like Shrink [13]
and SCORE [14] have made seminal contributions in diag-
nosing faults in wide-area networks, but unfortunately, they
cannot be used easily for managing nomadic users. Simi-
larly, sophisticated commercial products such as SMARTS
[21], OpenView [18], and Tivoli [22] provide powerful tools
for managing enterprise wired networks, but fall short when
extended to manage mobile clients and Wi-Fi users.

User Mobility and Location: Many studies note that users
are nomadic and propose systems that can determine their
locations. [6] is one of the first studies to characterize wire-

less network traffic and user mobility in a large corporate
environment using SNMP traces; [15] studies the traffic and
usage pattern of wireless network users in a university set-
ting. The common thread among these studies is the signif-
icant trend towards user nomadicity, with users connecting
to the host organization’s network from different locations
within a span of few hours.

There is extensive prior work on estimating a client’s
location using Wi-Fi signals — we mention only a few rep-
resentative studies. RADAR [5] works in two phases. The
first phase is a profiling phase, where the Wi-Fi fingerprint
of each location in an area is recorded in a database. In
the second phase, a user’s location is determined based on
the fingerprint. Youssef et. al. [24] propose a location deter-
mination scheme that uses clustering and a Bayesian infer-
ence technique. They also require construction of the pro-
file. DAIR [7] uses a dense deployment of Wi-Fi monitors
at known locations to determine the location of a nomadic
client, without the need for manual profiling. We have bor-
rowed heavily from this work in location determination. MnM
is a self-configuring system that, depending on its network
connectivity, uses a combination of signal strength measure-
ments and user presence context to determine the location of
the nomadic user.

3. BACKGROUND AND MOTIVATION
Figure 2 illustrates an enterprise network of the future.

Users located on the corporate campus access the enterprise
data center servers via APs deployed in campus buildings,
and these users move around frequently. A significant num-
ber of users work remotely, and they access the servers via
a VPN connection over the Internet infrastructure. The VPN
connection terminates on a RAS server that handles authen-
tication and traffic encryption. Typically, there is more than
one RAS server per geographic region.

Figure 2: Example of the typical enterprise network of the fu-
ture. Most users access corporate resources from laptop com-
puters connected to wireless networks or from remote locations
via VPNs over the Internet.

3.1 Fault Diagnosis: The Inference Graph Ap-
proach

Prior work in fields as diverse as network management [14,
4, 23] and medical diagnosis has shown the advantages of us-

3

Figure 3: Example Inference Graph. The response time
measured for fetching http://foo (dashed outline) is af-
fected by the root causes (shown with dotted outlines).

ing anInference Graphto diagnose faults in the presence of
noisy observations. However, we have found that nomadic
users violate some of the important assumptions on which
these systems are based, and, consequently, these systems
perform poorly when used to diagnose the problems experi-
enced by nomadic devices.

We base our inference work on the Sherlock system [4]
because it appears to be the best performing of the meth-
ods based on inference graphs. We decide against codebook-
based approaches [23] as our IT staff reports their commer-
cial network management uses a codebook approach and
takes hours to recompute the codebook after a change — this
makes it unsuitable for nomadic environments with their the
frequent dependency changes.

This section provides a brief summary of the Sherlock
approach. The next section then describes the problems caused
by nomadicity. Section 4 describes our techniques for apply-
ing Inference Graphs to nomadic hosts.

The Inference Graph: An Inference Graph consists of di-
rected edges and three types of nodes:root causes, meta-
nodes, andobservations. The graph encodes how root causes,
which represent components or services that can be faulty,
affect the observation nodes, which represent aspects of the
system that can be measured. Meta-nodes serve as the glue
that ties together the root causes involved in particular ser-
vices or network paths.

Figure 3 illustrates an example Inference Graph for a
single clientC using a single service (a web server in this
case). In this figure, the response time the clientC observes
when fetching a web page will be affected by the health of
the DNS service, the Kerberos service, and the web server
itself, since to successfully fetch the web page,C must first
use DNS to convert the name of the website to an IP address,
then fetch certificates to access the website, and finally re-
trieve the content from the website. The health of these ser-
vices, in turn, is affected by the health of the servers that
implement the service and the ability of the clientC to suc-

cessfully reach the servers over the network. The health of
each network path is affected by the routers on the path.

Nodes in the Inference Graph are conceptually in one of
two states:up or down. Root causes that are operating nor-
mally and observations indicating normal performance are
up. Nodes causing or indicating poor performance aredown,
even if they have not failed completely but are merely slow
returning answers.

While our example Inference Graph has only a single
client and a single observation of a single application, a system-
wide Inference Graph is built by combining the graphs for
each client application and service. These graphs share the
same root cause nodes, but have different observation and
service nodes for the combination of each client and appli-
cation.

The Inference Algorithm: The value of an Inference Graph
is that, given the graph and state of the observation nodes,
an inference algorithm can infer the most likely state of the
root causes. That is, which root causes have failed. Once the
cause of an observed problem is diagnosed, actions can be
taken to fix it. Inference is needed as the health of many root
causes cannot be measured directly and many observations
are noisy, having significant false-positive or false-negative
rates [4, 14].

Many inference algorithms have been developed, but
the goal of each is the same: given a set of observations of
system performance, good and bad, determine a set of root
causes whose failure would best explain that pattern of ob-
servations. To cope with the uncertainty in the real world,
MnM, like Sherlock, uses probabilistic inference. Specifi-
cally, every root cause has aprior probability — that is, the
fraction of time the root cause is typicallydown. The infer-
ence algorithm takes these priors into account when comput-
ing which root causes are most likely to be down.

3.2 Impact of Nomadic Users
One could ask the question, would a trivial combina-

tion of wireless monitoring methods [7, 10, 17] and wired
monitoring methods [4] be able to diagnose the problems
experience by nomadic users? We answer this question by
making the following three observations:

3.2.1 Dynamics of Inference Graph

As discussed in Section 2, a defining characteristic of
nomadic users is that they move, changing their location and
their point- and method-of-attachment to the network up to
several times during a day. As a result, Inference Graphs for
nomadic users change frequently and significantly. For ex-
ample, when a nomadic user connects to the enterprise net-
work via a wireless network, the AP changes as she moves
from one location to another. Worse yet, the servers in other
parts of the Inference Graph change as well, as the DNS
and Kerberos servers that a host uses may change whenever
the subnet changes and a new IP address is issued from the
DHCP server. Figure 4 illustrates how the Inference Graph

4

Figure 4: Example Inference Graph when a nomadic
user connects to the the corporate network using a 802.11
wireless network. Compare this graph to Figure 3 and
note that user mobility caused the Inference Graph to
change (nodes with gray background appeared inside the
Graph

for a particular application changed compared to the infer-
ence graph of Figure 3 as clientC’s point of attachment
changed from a wired network to a wireless network at a
different location.

Such dynamism inside the network is a problem for cur-
rent inference systems. Prior work has proposed techniques
for learning the Inference Graph via monitoring the packets
that hosts send and receive [19, 4]. However, these learn-
ing algorithms assume that the Inference Graph remains un-
changed long enough to be learned. For example, Sherlock
reports that it takes several hours for the learned Inference
Graph to stabilize. Other researchers have shown that users
change location frequently [6, 15], so for most cases the
Sherlock algorithm would not be able to learn the Inference
Graph before it changed.

MnM’s approach is to separate the Inference Graph into
the portions which are relatively static and can be learned
(e.g., dependencies among servers in the wired data center)
and the portions that change frequently. We use theDomain
Expertsdescribed in Section 4.1.4 to compute these portions
as needed.

3.2.2 Dynamics of Location

Researchers have previously shown that the physical lo-
cation of the mobile device has a direct impact on the perfor-
mance of the applications it is running [7]. For example, two
users running the same application, connected to the network
via the same AP, may experience different performance —
one might see short response times from a web server while
the other sees long response times, all due to variations in
the RF environment around their physical location.

If location is not incorporated into the Inference Graph,
then the inference algorithm will blame the wrong root cause
as it tries to explain the performance problems seen by the
host experiencing longer delays.

Interestingly, location is not just relevant to connectiv-

ity via wireless networks, but also for the case when users
connect to the enterprise network from places other than the
corporate campus. For example, the performance of an appli-
cation when connected via VPN from a new remote location
may be very different from its performance when the user is
connected directly via the campus’s wired network. Figure 5
illustrates this point with a CDF of response times when the
clientC connects to the corporate network from different lo-
cations and accesses the same web server. From the figure
it is clear that it is difficult to determine what is normal per-
formance for a given application without also knowing the
location of the client machine.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ms)

C
D

F

Wi−Fi
VPN

Figure 5: The CDF of the time it takes to access a corporate
web site when the client is connected to the corporate Wi-Fi
networks from various locations, and when it is connected via
VPN from various VPN servers.

Consequently, MnM treats physical location as a core
component of its end-to-end network management system,
something that previous systems have failed to do.

3.2.3 Dynamics of Monitoring and its Limitations

State of the art Wi-Fi network management systems
such as Jigsaw [10], WIT [17], and DAIR [7] rely on the
existence of fixed infrastructure, either in the form of spe-
cialized hardware or always-available desktop computers, to
monitor the RF environment. However, the general trend in
large IT departments is to reduce infrastructure cost and re-
place desktop computers with laptops. Without the support
of ‘static’ infrastructure, determining the physical location
of a client becomes difficult. Further, the laptops of ordinary
users cannot be used to take detailed measurements of their
wireless environment because that would require running
their Wi-Fi interface cards in promiscuous mode. Promiscu-
ous mode prevents the cards from entering their power save
states and thus places an unacceptable strain on the laptops’
batteries and increases the barrier to deployment.

Consequently, end-to-end network management systems
must use a light-weight self-configuring location determina-
tion techniques that do not depend on support from exiting

5

infrastructure.

3.3 Difficulties Identifying Root Causes
Some problems in wireless connectivity are easy to di-

agnose, such as when a Wi-Fi device does not see an AP
with which it can associate. Other problems, such as con-
figuration errors, that cause the wireless node to be com-
pletely disconnected have been addressed by systems like
WiFiProfiler [8]. However, diagnosing the cause of perfor-
mance problems seen by an application is difficult because
of the complex set of dependencies that it may have on net-
work services and components.

One might argue that running existing wireless and wired
diagnostic tools separately can diagnose application-level per-
formance problems for nomadic users. However, low level
wireless performance metrics such as signal strength and
packet loss rates have a complex relationship to the per-
formance of higher layers [9]. One can not simply assign
thresholds to translate link-layer measurements into application-
level throughputs. For example, using the data collected from
our 2-week study presented in Section 6.2, we see that there
is no significant correlation between the AP signal strength
seen by a client and the end-to-end performance it achieves.
Further, there are some dependencies in the wired network
that are specific to wireless machines, e.g. APs, the wireless
gateway and the wireless authentication servers. It is hard
to measure their impact on application performance without
unifying wired and wireless performance management. In
the following section, we present MnM, that does this.

4. ARCHITECTURE
A system that jointly manages wired and wireless net-

works needs three unique capabilities: an ability to deter-
mine the locations of mobile clients without relying on fixed
monitoring resources, an ability to frequently update the in-
ference graph and an ability to determine the performance of
different components of the network. In addition to end-to-
end observations, MnM also measures the performance of
some individual network components, such as the capacity
of the wireless link, and includes it into its inference algo-
rithm when diagnosing application-level performance prob-
lems. In this section we describe the architecture of MnM
and show how these capabilities are incorporated within it.

Figure 6 illustrates MnM’s architecture. The figure shows
the internals of the two main components of MnM: theMnM
Agentthat runs on each mobile device in the network, and
theMnM Inference Enginethat accepts data from these agents.
The Inference Engine analyzes data from agents to deter-
mine the root cause of performance problems, and raises
alerts to the network operator. Below we provide greater de-
tails for each of these components.
Comment about Privacy: This paper focuses on enterprise
networks. In such networks the IT department has the au-
thority to require every user to run monitoring software. There-
fore, the issues of user consent and privacy are out of scope.

4.1 The MnM Agent
The MnM agent is a light-weight application that runs

on users’ laptops. It includesMonitors that gather informa-
tion about the system, user activity and network connectiv-
ity. This data is processed byDomain Expertsthat encapsu-
late the special logic required to deal with different problem
domains. TheDomain Expertsgenerate data for the infer-
ence graph and performance observations. The agent sends
all this data to the MnM Inference Engine over a transport
called theTrickle Integratorthat is designed to cope with in-
termittent and variable connectivity. The MnM Agent does
not require any driver modifications in the clients and hence
is easy to deploy.

4.1.1 (Agent) Controller

The Controller is the agent’s lightweight workflow en-
gine. It provides a publisher-subscriber service to moderate
the interactions betweenMonitors, Domain Experts, and the
Trickle Integrator. All messages between the components
in MnM take the form of tuples: a list of fields and their
values. The experts and monitors registertriggers with the
Controller. Whenever the Controller processes a message
matching a trigger, it invokes the associated callback with
the message as an argument. The Controller itself generates
messages to mark important events, such as agent startup and
expiration of a periodic timer. Monitors and Domain Experts
are the ”pluggable” components. They can be developed in-
dependently of one another — only the format of fields and
values must be agreed on to ensure proper intra-agent com-
munication.

The agent generates a START message on startup. Then
it generates a PERIODIC TIMER message every polling in-
terval, which triggers the monitors to generate messages en-
capsulating their measurements. In addition to the messages
generated by the agent, the monitors also register for system-
wide events such as network address change and wireless
hand-off event.

4.1.2 Trickle Integrator

We designed MnM to handle the case when mobile hosts
are unable to reach the Inference Engine. Specifically, MnM
includes a module inspired by Coda [20] for dealing with
measured data during weakly connected and disconnected
operation. Each host has a local store and every tuple of data
created by a Domain Expert or a Monitor is passed to the
Controller, and from there placed in the local store. Data
from the local store is pushed to the Inference Engine when-
ever the client has connectivity. The Trickle Integrator also
rate-limits the messages sent by the client to the server, and,
if a backlog develops, new messages are given priority over
old ones.

4.1.3 Monitors

As mentioned in Section 4.1.1 monitors can be developed
independently and dynamically added to the MnM Agent on
an as needed basis. In our current implementation the MnM

6

Inference EngineAgent

Controller
Trickle

Integrator
Trickle

Integrator

ControllerLocation
Inference

Fault

Suspects

Local

Store

...

Monitors

System

Calendar

Network

Trace Route

Historical

Data

Domain Experts

Wifi RAS HTTP ...

Domain Experts

Wifi RAS HTTP ...

Fault
Inference

Inference

Graph
Measure-

ments

Figure 6: Architecture

Agent contains four monitors.

System Monitor: This monitor reports various system prop-
erties from the current polling interval. It reports information
such as, whether the system’s battery is being charged and
whether the system is connected to a wired network (e.g.
Ethernet). It also reports whether a user is currently active
on the system (the system is considered idle if there is no
user input forn minutes, wheren is currently set to 2).

Calendar Monitor: The Calendar Monitor tracks the time
and location of accepted meetings from the users enterprise
calendar (e.g., Exchange or Lotus server). This information
is used to bootstrap the location engine, as we shall describe
in Section 4.2.1.

Network Monitor: The Network Monitor reports informa-
tion about network connectivity. The monitor is triggered by
the network change related events from the system, such as
network address change. It reports information about active
network interfaces including: IP and MAC addresses, gate-
ways, DNS and default gateway servers, and ping times to
the first hop router. If the Network Monitor detects that the
user is connected to the network via a wireless interface, it
periodically collects additional information such as the AP
the interface is associated with, other APs it can detect and
the signal strengths of their beacons. The monitor also gener-
ates messages that are specific to the wireless interface. For
example, if the wireless client is handed off form one AP to
another, it generates a HANDOFF message.

Trace Route Monitor: This monitor usestracerouteto dis-
cover the network path between the client and the other ma-
chines to which it is sending packets.

The total amount of data pushed to the Inference En-
gine for each observation is less than 1K bytes and hence
pushing data to server takes very negligible amount of the
users network bandwidth. This issue is examined in detail in
Section 5.

4.1.4 Domain Experts

Note: Although we present Domain Experts here, they are
part of both MnM Agent and MnM Inference Engine, so we
describe their functionality comprehensively.

In Sherlock, the authors assume that the Inference Graph
is stable, and hence it is learnable via black-box techniques.
However, mobility causes changes to the Inference Graph,
and even though the changes may be regular and sometimes
predictable, they are generally too rapid for black-box tech-
niques to learn the graph. To handle this, we define the con-
cept of aDomain Expert- a module that is responsible for
making the appropriate changes to the Inference Graph when
triggered by a host changing its connection point or other de-
pendencies.

A typical Domain Expert has code both on the host, as
part of the Agent, and on the Inference Engine. Domain Ex-
perts respond to triggers such as change in IP address, or
AP handoff event. Upon such changes, the Domain Expert
on the client notifies the Domain Expert on the Inference
Engine of the triggering event. The Domain Expert on the
Inference Engine then updates the Inference Graph appro-
priately. For example, when an AP Handoff event occurs,
the WiFi Domain Expert on the agent notifies its counterpart
on the Inference Engine. The Inference Engine then updates
the Inference Graph to account for the change in topology.

WiFi Expert: The WiFi Expert is responsible for managing
the details of how wireless connectivity affects the perfor-
mance of applications running on a mobile node. It does this
by adding new root cause and observation nodes to the In-
ference Graph in a particular pattern, which we call agraph
gadget. Based on reports from the monitors on the client, the
expert fills in the correct AP and location information. Fig-
ure 7 illustrates the new Inference Graph generated with the
help of a WiFi Expert.

Most importantly, for every client whose location can
be determined, the WiFi Expert adds a new root cause node
that represents the location. There is one location root cause
node for each location known to MnM — all the clients pre-
dicted to be in that location share that node. Associated with
location is the a priori probability that the location causes

7

Figure 7: “Gadget” added to the Inference Graph of mo-
bile hosts by the WiFi Expert. New elements shown in
grey or with darker lines.

Figure 8: Graph gadget for modeling remote VPN con-
nections via a Remote Access Server (RAS). New ele-
ments shown in grey or with darker lines.

performance problems. MnM determines locations and com-
putes priors as described in the subsections that follow. The
expert connects the location root cause to an observation
node whose value is tied to measurements of the RTT of
pings between the client and the current AP. The RTT pro-
vides a degree of direct estimation of current wireless chan-
nel quality, while location priors provide historical informa-
tion about the wireless channel quality at this location.

RAS Expert: The Remote Access Server (RAS) Expert is
responsible for modeling the factors that affect VPN connec-
tions from remote users. When it detects that a user is con-
necting to the enterprise network via a VPN connection, it
adds to the Inference Graph the nodes shown in grey in Fig-
ure 8. This includes adding to all network paths a root cause
node that represents the health of the RAS server in use and
a root cause node that represents the quality of the Inter-
net path between the client and the RAS server. The RAS
server node is shared by all clients connecting via the same

RAS server. There may be several RAS nodes in the graph
as many enterprises have multiple RAS servers — typically
one per geographic region. The root cause representing the
Internet path isnot shared among any other nodes. Instead,
MnM uses the observation ofping generated RTT measure-
ment between the client and the RAS server to guide the in-
ference when deciding whether the problem is in the Internet
path.

We designed the framework for Domain Experts so that
the Graph Gadgets added by the each expert are compos-
able. For example, a client connecting via RAS from a Wi-Fi
hotspot in a coffee shop will have both location and AP root
cause nodes added by the WiFi Expert and Internet path and
RAS nodes added by the RAS Expert.

HTTP Expert: The HTTP Expert monitors the response
time of webservers when URLs are fetched, and reports these
to the Inference Engine. The Inference Graph uses these as
observations about the application’s health. For testing pur-
poses, our HTTP Expert also includes a URL polling robot
that can be ordered to fetch particular URLs during experi-
ments.

Network Expert: The Network Expert computes the net-
work topology-related dynamic part of the inference graph
whenever a network change event occurs on the client. It is
responsible for filling in two types of information. First, it
computes network path to network services by using topol-
ogy discovery techniques, such astraceroute. Second, it de-
tects changes in location-dependent network services, such
as the DNS and Kerberos servers. The Network Expert coun-
terpart on the Inference Engine updates this information in
the inference graph.

Service Expert: The Service Expert is a special expert that
runs only on the Inference Engine, and has no client counter-
part. The Service Expert is responsible for building a static,
service-level dependency graph for all networked applica-
tions. A service is identified by the service name and the
server that is providing that service. For example, a website
is identified by its URL and the web server hosting it. The
Service Expert gets the data needed to construct the depen-
dency graph from a variety of sources. For example, sys-
tems like [10, 4] use temporal correlation in packet traces
to infer dependencies. Some information, such as topology
of the data center, can be extracted from network configu-
ration files. The static dependency graph is combined with
dynamic information from other domain experts, such as the
Network Expert and the WiFi Expert, to build an inference
graph.
Comment:The Domain Expert architecture is a general tech-
nique that will be useful for handling other types of do-
mains where the Inference Graph changes faster than it can
be learned. An example of this is peer-to-peer systems where
the servers being invoked change depending on the query be-
ing made.

8

4.2 The MnM Inference Engine
The MnM Inference Engine is responsible for moni-

toring the health of the mobile device and the applications
running on it. The engine stores and analyzes the data sent
to it from each of the MnM Agents. Using this informa-
tion and the service-level dependency graph, it generates and
updates an Inference Graph that reflects where the mobile
clients are located and how they are connected to the net-
work. It uses the Inference Graph to generate a list of proba-
ble causes whenever it identifies performance problems, and
subsequently raises alerts.

4.2.1 Location Inference

The physical location of a wireless client may have a
strong impact on its network performance [7]. Thus, man-
agement tools designed for wireless networks must include
an integrated location estimation system.

A number of techniques [5, 7, 24] have been proposed
for estimating the location of clients in a Wi-Fi network.
These techniques offer a wide range of trade off between ac-
curacy, measurement overhead, required infrastructure sup-
port and the need for detailed profiling of the physical en-
vironment. Researchers have shown that for the purpose of
network management, it is sufficient to determine the client
location at the granularity of one office. However, unlike the
scenario described previously [7], we can not rely the pres-
ence of densely deployed, fixed desktop to serve as monitors.
Hence, we have built a location system using the technique
described in [24].

Location Profiles: Our system stores aprofile for each lo-
cation of interest. To allow for easy interpretation, we define
location in terms of office numbers, rather than(x,y,z)coor-
dinates. The profile for each office consists of a list of APs
(i.e. their BSSIDs) that are visible from that location along
with the distribution of observed signal strength of each AP.
We assume a Gaussian distribution and characterize it with
its mean and variance.

Determining Client Location: We determine the location
of the client as we insert the client’s observations (e.g., URL
response times) into the historical database. As part of the
observations, the Wi-Fi Monitor running on each client sub-
mits the list of APs seen by the client, along with their sig-
nal strengths. Using the stored profiles, and the Bayesian in-
ference technique described in [24], the location inference
module determines the most likely location of the client. The
median error for computed location is about 5 meters (one or
two offices). We will present a detailed evaluation of the ac-
curacy of our location system in Section 6.1.

Automatic Generation of Profiles: To reduce the effort re-
quired to roll out MnM, we automatically generate location
profiles by leveraging external sources of location informa-
tion using a number of heuristics.

Most corporate environments provide a calendar ser-
vice that employees use to schedule meetings with each other.

For each meeting, the calendar records the identities of in-
vited attendees and the location of the meeting (e.g., a con-
ference room or another employee’s office). MnM generates
profiles for rooms that appear as meeting locations using the
Wi-Fi observations reported by the employees’ laptops dur-
ing the meeting time. To reduce the amount of erroneous in-
formation included in the location profile, MnM verifies both
that there is activity on the user’s laptop during the meeting
(i.e., the user has the laptop with them at the meeting) and
that Wi-Fi observations are roughly consistent with those of
other attendees (i.e., the user has actually gone to the meet-
ing, rather than remaining in their office).

To generate a profile for a user’s office, MnM looks
for Wi-Fi observations made during times when the user has
no meeting scheduled. Many people plug their laptops into
wired Ethernet and/or wall power when they are in their of-
fices, and MnM looks for these clues when selecting obser-
vations to use in constructing the office profile.

We also note that in an environment where APs are de-
ployed densely, it may be sufficient to characterize the loca-
tion of the client simply by the AP that the client is associ-
ated with. This method requires no profiling, but is subject
to inaccuracies, since clients sometimes associate with APs
that are far away. We evaluate the usage of APs as a stand-in
for location in Section 6.2.

4.2.2 Fault Inference

The fault inference module of MnM is responsible for
taking the data produced by the agents in the system and
determining which root causes are responsible for any prob-
lems. The resulting list offault suspectsis given to the net-
work managers for reporting and resolution.

The module consists of two components: the compu-
tation of location priors, which is invoked once a day, and
the inference module, which is invoked every 3 minutes or
whenever there is a significant change in the observations
being reported by clients.

Once invoked, the inference module updates the Infer-
ence Graph, computes the state of the observation nodes, and
then runs the inference algorithm to determine a list of fault
suspects.

Computing Priors for Locations: Instead of detailed cur-
rent measurements, MnM relies on analysis of past experi-
ence to compute aprior probability of failure for each lo-
cation known to the system. These priors are then used by
the inference algorithm when determining the root causes
responsible for bad observations. Priors can be cheaply com-
puted from information already available in the historical
database present on the Inference Engine, and, as shown in
our evaluation, they largely eliminate the need for detailed
current measurements when diagnosing faults.

The inference module computes a client’s location when-
ever the response time observations from that client are be-
ing entered into the historical database (this is described in
detail in Section 4.2.1). Once a day, the Inference Engine

9

computes priors for each locationl by retrieving from the
database all response time observations from locations within
6.7 meters ofl — 6.7 meters is the median error of our loca-
tion inference system, so observations labeled as being from
those locations could have come froml. MnM then com-
putes the fraction of those response times that aredownand
uses this fraction as the prior probability thatl is faulty.

This simplistic approach implicitly assumes that alldown
observations are due solely to the location alone — discount-
ing the effect of the servers and other components that might
affect the observations. However, since our approach aver-
ages over the response times of many servers contacted from
location l over long periods of time, any systematic bias is
most likely due to the location. More complicated Bayesian
estimation techniques could be used, but our evaluation shows
they are unnecessary in our environment.

Computing the Inference Graph: The Inference Engine
controller orchestrates the construction of the Inference Graph
by the various Domain Experts through a publish-subscribe
system. The basic inference graph is generated by the ser-
vice expert. Each Domain Expert subscribes to be notified
whenever nodes or edges with specified properties are added
or deleted from the graph. Upon receiving such notifica-
tion, the Domain Expert makes its own alterations to graph.
This process repeats until no further changes are made to the
graph, at which point the graph is ready to use for inference.

The process of altering the Inference Graph is triggered
whenever a monitor or expert on a client detects a change.
For example, when the HTTP Expert on clientC observes
the client accessing a web page http://foo.com with response
timert, the HTTP Expert on the Inference Engine will create
a new observation node forC accessing foo.com if it does
not already exist in the Inference Graph. The addition of this
observation node causes the Service Dependency Expert to
add nodes and edges reflecting the servers involved in ac-
cessing foo.com (e.g., DNS, Kerberos, and foo.com itself).
The addition of these nodes causes the Network Expert to
fill in additional root causes and edges for the network paths
from C to those servers, the DNS servers currently being
used byC, etc.

Computing Observations: Before invoking the inference
algorithm, the inference module scans all observation nodes
in the Inference Graph and invokes the Domain Expert that
created the node. The Domain Expert is expected to deter-
mine whether the observation node isup or down, and typ-
ically does so by retrieving recent measurements for that
node and determining if they are normal or abnormal.

For example, the observation node for a HTTP response
time returnsdownif the response time is greater than a thresh-
old based on the normal distribution of response times for
that webserver, andupotherwise.

Diagnosing Faults:Given an Inference Graph, prior proba-
bilities for locations, and theupanddownstatus of the obser-
vations, MnM uses the Ferret inference algorithm described

in [4] to compute the root causes that are most likely re-
sponsible for thedownobservations. These root causes are
returned as the fault suspect list.

5. IMPLEMENTATION
We have implemented the MnM system shown in Fig-

ure 6. The Agent Controller is implemented as a daemon (ser-
vice) process. The Domain Experts and Monitors are imple-
mented as loadable modules that are loaded and invoked by
the Controller. The Inference Engine is implemented as a
centralized service. The Inference Engine uses a database to
store historical data but keeps the Inference Graph and the
current observations in memory for fast access. The Infer-
ence Engine can run inferences on live incoming data or on
the historical data. Our Inference Engine integrates with the
enterprise network management system deployed in our or-
ganization and generates alerts through its console whenever
it diagnoses a performance problem.

Scalability is a frequent concern with centralized sys-
tems. We evaluated two aspects of scalability of our design
– the CPU and network overhead on the client machines and
the performance of the Inference Engine as the number of
nodes increases.

The CPU overhead of running the MnM agent on client
machines is negligible. Each client machine, on average, gen-
erates less than 1000 bytes per minute (0.13 Kbps), which is
also negligible.

The traffic from all clients aggregates at the central In-
ference Engine. Even with 10,000 active clients, the Infer-
ence Engine receives less than 1.5 Mbps of traffic. The CPU
overhead of our Inference Engine is also small. The authors
of Sherlock [4] show that the overhead of inference scales
linearly as the number of nodes increases. We observed sim-
ilar behavior with our system. On a machine with 3GB of
RAM and four 3.2 GHz CPUs, our inference algorithm processes
an Inference Graph containing more than 100,000 nodes in
less than 5 seconds.

6. EVALUATION
We evaluated MnM in a large enterprise network, per-

forming two types of experiments. First, we ran the system
for two weeks on the machines of 27 volunteers, creating a
dataset that we use to analyze the sensitivity of the system
and the types of problems found in the network. parame-
ters of the system. Second, we ran controlled experiments
to measure precisely the accuracy of our system when diag-
nosing the faults that might occur in an enterprise network
with all nomadic users. All the experiments presented in this
section were conducted on a live production enterprise net-
work with thousands of computers, so the background traffic
is entirely realistic.

We installed MnM on 42 computers: 27 user laptops,
5 test laptops, and 10 servers. These computers were used
normally by their owners in their daily activities. The users
represent a variety of corporate users, including program-

10

mers, managers and researchers. Because we are not part of
the corporate IT department and had to recruit volunteers,
we did not monitor the actual web sites that users visited
out of privacy concerns. Instead, we added an agent to their
machines that fetched content from a set of five internal pro-
duction web sites every three minutes.

6.1 Location Inference Evaluation

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance error (m)

C
D

F

Calendar−based profile
Survey−based profile

Figure 9: CDF of error in predicted location, measured
in meters, over 22,000 observations among 96 locations
over a period of two weeks.

As described in Section 4.2.1, the location estimation
module infers a location for every record submitted to the
Inference Engine, as long as the submitted record contains
a wireless fingerprint. Most offices on our floor are approxi-
mately 9 square meters (3x3) in size. The conference rooms
are much larger. The size of the floor is 101 meters by 86
meters and it has approximately 200 offices.

During the two week study, the location estimation mod-
ule inferred locations for over 77,000 records. Of these 77,000
records, 22,000 were manually labeled by the volunteers with
their true location (i.e. the office or the conference room the
machine was actually in at that time).

Figure 9 shows the CDF of the distance error between
the geometric center of each record’s true location and its in-
ferred location, using two different sets of profiles. When us-
ing profiles generated automatically by our calendar heuris-
tics, as described in Section 4.2.1, the inferred location loca-
tion matches the true location exactly 37% of the time. The
median difference is 6.7 meters, which translates to an error
of about two offices. We believe that this accuracy is suffi-
cient for our purposes.

The calendar-based profiles will contain some errors as
machines are not always located where the calendar heuris-
tics guess they will be. To estimate the loss in accuracy caused
by these mistakes, we conducted a survey of our building by
manually by placing a laptop in roughly every other office
for a fixed period of time and gathering the signal strengths
of beacons broadcast by the various APs. We computed pro-

files from these observations, and then computed the dis-
tance error of the records when locations were inferred using
these survey-based profiles.

The error is less when using survey-based profiles as
all observations used to generate the profile are labeled with
the correct location. The difference between the two curves
measures the loss of accuracy due to mistakes made guess-
ing the machine’s location from the users’ calendar. Inter-
estingly, the median error with our automatically generated
calendar-based profiles is roughly the same as the median er-
ror with survey-based profiles. This suggests that calendar-
based profiling works well for a large number of locations
and records, although more observations labeled with calen-
dar data would be needed to match the accuracy of survey-
based profiles across all locations.

6.2 Field Study
In this section we describe the results of our 2-week

study of real users using MnM.

Location Priors: As described in Section 4.2.1, we boot-
strapped the location inference system by placing a laptop
in roughly half the offices in our building. We combined the
data collected during this profiling with the data from our 26
volunteer users and computed location priors as described in
Section 4.2.2 for each office with any data.

Figure 10 shows the prior probability that fetching a
URL will take unacceptably long from an office, where the
darker the circle the greater the probability of that location
being a problem. There is clear variation in the priors over
the building, indicating that location does have a strong ef-
fect on the ability of nomadic users to access the company’s
servers. The middle south of the building is particularly bad,
the south west offices are slightly better, and the conference
rooms in the middle and the offices to the north are, for the
most part, the best. Priors vary from 0.01 in the best areas to
almost 0.7 in the worst.

Fault Diagnosis: The Inference Engine was run every 10
minutes during the 2-week study: a total of 1530 times. It
diagnosed a fault during 434 of these runs. Unsurprisingly,
most faults were concentrated during the day time when more
laptops are present and network and server usage is highest.
We have confidence in the accuracy of the faults diagnosed
by the system based on its performance in the controlled ex-
periments described in Section 6.3.

Figure 11 shows the number of faults of each type that
were diagnosed during the study. The bar for “With location
priors” represents the results of MnM as we intend it to be
used, with location priors taken into account by the inference
algorithm. As there can be more than one fault diagnosed
during a single run of the inference algorithm, the number
of faults discovered totals to more than 434. The most com-
mon source of problems was the laptops themselves (“ma-
chines”), followed by a server in the data center. Of the 310
faults attributed to a server in the data center, 114 were to a
server well-known to have problems with intermittent over-

11

Key
= 0.1

= 0.2

= 0.3

= 0.7

= 0.5

Figure 10: Location priors in our building.

0 50 100 150 200 250 300 350 400 450

Server

Machine

WirelessAccessPoint

Location

AccessPointHandOff

NetworkPath

InternetPath

NetworkElement

of occurrences

With location priors
Location = AP
No location priors

Figure 11: Number of faults diagnosed during 2-week study,
broken out by type of fault and type of location information
used.

loads. MnM also correctly identified DNS misconfiguration
on one of the servers. The server’s primary DNS was con-
figured to 127.0.0.1 while it was not running a DNS server.
This was causing delay in DNS lookup, which ultimately
impacted total URL fetch times.

Importance of location: Location was to blame for 144
problems – 10% of the total – indicating that it is a sig-
nificant source of errors. During 31 10-minute intervals, all
problems seen by users were due solely to the users’ loca-
tion. Based on this data, we expect that MnM would be at
least 10% more accurate in its fault diagnoses than a system
that does not consider location.

To predict the performance of a system that does not in-

clude location but does model wireless components like ac-
cess points, we configured MnM to use the AP with which
each laptop was associated as the “location” of that laptop.
As expected, the number of problems attributed to the ac-
cess points increases. Interestingly, the number of problems
attributed to the servers goes down — without the ability to
blame specific locations, the system blames too many prob-
lems on wireless issues.

Importance of location priors: To evaluate the effect of lo-
cation priors on fault diagnosis we ran MnM with locations,
but assigning all locations the same prior (labeled “no loca-
tion priors” in the figure). The system correctly diagnoses lo-
cation faults as often as MnM does when using accurate pri-
ors, but it also blames the machines and servers more than it
should. Many locations have only a single machine reporting
observations, as they are private offices, and without the his-
torical perspective provided by the prior the system does not
have enough independent observations to confidently distin-
guish between a problem with the location, the user’s laptop,
or even the remote server.

6.3 Controlled Experiments
To evaluate the accuracy of our system in diagnosing

problems that arise in client mobility scenarios, we conducted
controlled experiments where we deliberately impaired parts
of the network to create faults. These experiments were con-
ducted on our production corporate network, so there was
normal corporate background traffic and some naturally oc-
curring failures during the experiments. However, the results
here give a lower bound on the accuracy of MnM.

Methodology: For the following experiments, all 42 ma-
chines polled four enterprise websites once every 60 sec-
onds. The MnM Agents ran the application experts and mon-
itors described in Section 4.1.4.

Each experiment ran for at least 60 minutes, with the
specified fault injected at the beginning of the experiment.
The Inference Engine ran once every minute, producing at
least 60 set of fault suspects for each experiment. For these
experiments, we required that the Inference Engine return
the root cause representing the injected fault with rank one
or two before counting it as a successful diagnosis. This is
because network managers are unwilling to look beyond the
top few root causes.

Table 1 presents a summary of the results.

Problems Due to Bad Location: To measure the accuracy
of our Inference Engine in identifying bad locations, we cre-
ated the following experimental setup. We place two laptops
in a location with poor performance characteristics due to
its long distance from an AP, and force the laptops to asso-
ciate with that AP. Three other laptops, placed closer to the
AP, were also associated with the AP. The experiments tests
whether MnM can correctly determine that multiple perfor-
mance faults observed for clients associated with the same
AP do not necessarily imply that the AP is at fault. Instead,

12

Target Root % the target Root Cause Other Root Causes Reasons for other
Cause is first in top two root causes

Location 55 Machine, Server, AP Location error
Real congestion at the server

AP 100 First-hop router Few positive observations
through the first-hop router

AP Handoff 86 Location, Machine, AP Location error, AP failures
Server 100 Last-hop router Few positive observations

for the last-hop router
VPN Path 96 RAS server, Router, Few positive observations from the RAS server

Home AP, Web Server, Real congestion at the server
Machine

Simultaneous 100 AP Few positive observations
Faults First-hop router for the first-hop router

Table 1: Root cause analysis

MnM must determine the impact of a client’s location on its
performance. The first row of Table 1 presents a summary
of the results. We made two observations during this experi-
ment:

First, when the location module accurately infers the lo-
cations of the two laptops seeing poor performance, the In-
ference Engine correctly identified the location as the high-
est ranked root cause.

Second, when the location module does not report the
two poorly-performing laptops being at the same location,
the Inference Engine reports the location as the second-highest
ranked root cause. The wireless access point was reported as
the highest ranked root cause, as it was a shared dependency
between the two laptops in the Inference Graph, whereas
each laptop was (incorrectly) connected to a different loca-
tion root cause.

Problems Due To Bad Access Point:To determine the ac-
curacy of MnM in identifying a poorly performing AP (e.g.
one suffering from interference near it), we created the fol-
lowing experimental setup. We connect four laptops from
different locations to the a specific AP. We reduced the ca-
pacity of the AP by introducing a 500 ms delay on all packets
traversing through it. The experiments tests whether MnM
can correctly determine that multiple performance faults ob-
served for clients associated with the same AP do, in some
cases, imply that the AP is at fault. As shown in the second
row of Table 1, MnM correctly identified the AP as the root
cause for all of our observations.

Problems Due to Handoff:Wireless laptops sometimes ex-
perience bad performance because their device driver is too
aggressive at changing APs in an attempt to achieve better
performance.

We setup the following experiment to evaluate MnM’s
ability to correctly detect problems due to AP handoffs. We
forced one laptop to switch between two APs every 30 sec-
onds, causing the performance of the client to suffer. Other
clients associated with the two APs from different locations,
and they continued to perform normally. As shown in the
third row of Table 1, MnM identified the handoff as the cor-
rect root cause for 86% of the observations.

For the remaining 14% of the observations, the AP was
identified as the topmost root cause and the handoff was
ranked second. This is actually the correct result, as further
investigation showed one of the two APs began experienc-
ing outside interference during the experiment, and hence
all clients associated with that AP saw poor performance.
This experiment highlights how the Inference Engine is able
to quickly identify the right root cause even under rapidly
changing conditions.

VPN Diagnosis: To measure the effectiveness of our sys-
tem in correctly diagnosing delays due to the Internet in a
VPN scenario, we chose three VPN servers in different lo-
cations. One server was located close to the laptops, the sec-
ond server was about 30ms away, while the third server was
about 175ms away.

We then had five users connect through the VPN servers
and access the same four intranet websites for a period of
three hours. The clients that connected through the third VPN
server had a total round trip time of 350ms to the intranet
site. This high round trip time was detected, and flagged as
a performance problem. The root cause analysis is shown in
the fourth row of Table 1.

MnM correctly identified the VPN path as the root cause
in 96% of the observations. For the remaining 4% of the ob-
servations, the intranet server was actually slow to respond.
In addition to blaming the Internet path between the client
and the far-away VPN, MnM did occasionally report faults
with network elements, such as the access point and the VPN
server. These erroneous diagnoses occurred because there
were not enough laptops using these elements in our sys-
tem and having a positive experience to rule them out as a
cause.

Simultaneous Diagnosis:To measure how well MnM deals
with multiple simultaneous failures, we performed two ex-
periments where we injected multiple faults at the same time.

For the first experiment, we deliberately delayed the
packets entering and leaving the server by 500 ms, and we
simultaneously placed two clients at a location with known
poor performance. The expected outcome for this experi-
ment is for the server to be the highest-ranked root cause and

13

the location to be the second highest. MnM correctly ranked
these two root causes for all the observations.

In the second experiment, we placed two clients in a
bad location, and we again delayed packets traversing the
AP so that performance of all clients associated with it suf-
fered (not just the two at the bad location). The inference
algorithm performed as expected and correctly ranked the
AP as the highest-ranked root cause and the bad location as
the second-highest-ranked root cause for all observations.

7. CONCLUSION
This paper highlights the issues that an enterprise net-

work management system must handle when all its users are
nomadic. These issues include rapidly changing dependen-
cies, root cause analysis in unified wired and wireless net-
works and the impact of physical location on application
performance.

We presented MnM, an end-host based, integrated net-
work monitoring and fault diagnosis system. Our system is
entirely software based, and does not require any special
hardware support. It is cost effective, and easy to deploy.
Using our system, we monitored a segment of our corpo-
rate network. Our results show that by taking an integrated
approach to wired and wireless network monitoring, MnM
improves the accuracy of fault diagnosis.

As part of MnM, we described a self-configuring loca-
tion system that leverages additional information available
in corporate environments to determine approximate loca-
tion of a mobile client.

We plan to continue using MnM to monitor our network
and analyzing the resulting performance data. We also plan
to extend this work to include performance issues faced by
mobileusers, such as users of WiFi VoIP phones, and PDAs.

8. REFERENCES

[1] A. Adya, P. Bahl, R. Chandra, and L. Qiu.
Architecture and Techniques for Diagnosing Faults in
IEEE 802.11 Infrastructure Networks. InMOBICOM,
2004.

[2] AirDefense: Wireless LAN Security.
http://airdefense.net.

[3] AirTight Netwoks. http://airtightnetworks.net.
[4] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A.

Maltz, and M. Zhang. Towards highly reliable
enterprise network services via inference of
multi-level dependencies. InSIGCOMM, 2007.

[5] P. Bahl and V. N. Padmanabhan. RADAR: An
in-building rf-based user location and tracking system.
In INFOCOM, 2000.

[6] M. Balazinska and P. Castro. Characterizing mobility
and network usage in a corporate wireless local-area
network. InMOBISYS, 2003.

[7] R. Chandra, J. Padhye, A. Wolman, and B. Zill. A
Location-based Management System for Enterprise
Wireless LANs. InNSDI, 2007.

[8] R. Chandra, V. N. Padmanabhan, and M. Zhang.
Wifiprofiler: Cooperative diagnosis in wireless lans. In
MOBISYS, 2006.

[9] Y.-C. Cheng, M. Afanasyev, P. Verkaik, P. Benko,
J. Chiang, A. Snoeren, G. Voelker, and S. Savage.
Automated cross-layer diagnosis of enterprise wireless
networks. InSIGCOMM, 2007.

[10] Y.-C. Cheng, J. Bellardo, P. Benko, A. Snoeren,
G. Voelker, and S. Savage. Jigsaw: Solving the puzzle
of enterprise 802.11 analysis. InSIGCOMM, 2006.

[11] Private conversation with Dell lab members.
[12] S. Gittlen. ”want to manage your wired/wireless lans

together? too bad”.Computer World, March 2007.
[13] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A

Tool for Failure Diagnosis in IP Networks. InProc.
MineNet Workshop at SIGCOMM, 2005.

[14] R. R. Kompella, J. Yates, A. Greenberg, and
A. Snoeren. IP Fault Localization Via Risk Modeling.
In Proc. of NSDI, May 2005.

[15] D. Kotz and K. Essien. Analysis of a campus-wide
wireless network. InMOBICOM, 2002.

[16] M. Lopez. Forrester Research: The State of North
American Enterprise Mobility in 2006. December
2006.

[17] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan.
Analyzing MAC-level behavior of wireless networks
in the wild. InSIGCOMM, 2006.

[18] HP Openview. http://www.openview.hp.com/.
[19] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K.

Aguilera, and A. Vahdat. WAP5: Black-box
Performance Debugging for Wide-area Systems. In
WWW, May 2006.

[20] M. Satyanarayanan. Mobile information access.IEEE
Personal Communications, Feb. 1996.

[21] EMC Smarts Family.
http://www.emc.com/products/software/smarts/smartsfamily/.

[22] IBM Tivoli. http://www.ibm.com/software/tivoli/.
[23] S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and

D. Ohsie. High Speed and Robust Event Correlation.
In IEEE Communications Magazine, 1996.

[24] M. A. Youssef, A. Agrawala, and A. U. Shankar.
WLAN location determination via clustering and
probability distributions. InIEEE Percom, 2003.

14

