MODULAR DIFFERENCE LOGIC IS HARD

NIKOLAJ BJORNER, ANDREAS BLASS, YURI GUREVICH,
AND MADAN MUSUVATHI

ABSTRACT. In connection with machine arithmetic, we are interested
in systems of constraints of the form = + k < y + k’. Over integers, the
satisfiability problem for such systems is polynomial time. The problem
becomes NP complete if we restrict attention to the residues for a fixed
modulus N.

1. INTRODUCTION

The goal of this paper is to attract attention to the following problem:
Given a system X of inequalities, find out whether ¥ is satisfiable in a given
machine arithmetic. We formalize a special case of the problem, in Section [3],
as the satisfiability problem for modular difference logic (MDL). MDL is a
variant of integer difference logic (IDL) described in Section The IDL
satisfiability problem admits a simple and efficient decision procedure. It
turns out that the MDL satisfiability problem is infeasible (unless P=NP).

The MDL satisfiability problem is of particular relevance in the context
of program verification and analysis. Established program verification en-
vironments [2] and abstract interpretation methods [6] have long relied on
arithmetic over integers or over real numbers for reasoning about programs,
and for a good reason. There are well known efficient methods for solv-
ing the satisfiability of linear arithmetic constraints over the reals, such as
dual simplex or interior point methods. And integer constraints can be ap-
proached by extending simplex with Gomory cuts and branching methods;
besides, important special cases, such as integer difference logic, admit effi-
cient procedures. So the use of integer or even real semantics is well justified
from the perspective of state of the art algorithms.

The obvious problem of course is that neither reals nor integers capture
the proper semantics of machine arithmetic. Modular arithmetic, on the
other hand, does capture machine arithmetic. Further, a system of difference
constraints can be satisfiable over any fixed modulus N > 1 but unsatisfiable
over integers or reals, e.g. 0 <z and x + 1 < 0. And a system of difference
constraints can be satisfiable over integers and over reals, but unsatisfiable
over a given modulus NV, e.g. 29 <21 < -+ < IN.

It follows that the common program analysis tools tend to rely on methods
that are both unsound and incomplete with respect to the accurate program

Partially supported by NSF grant DMS-0653696.
1

2 BJORNER, BLASS, GUREVICH, AND MUSUVATHI

semantics. We prove here that the MDL satisfiability problem is NP hard
and thus the development of efficient tools for the MDL satisfiability problem
is likely to be elusive. We also show that the problem is NP. The search for
efficient methods for the MDL satisfiability problem is on.

2. INTEGER DIFFERENCE LOGIC

Integer difference logic (IDL) is a fragment of linear arithmetic. IDL
constraints have the form
r—y < k
where x,y are integer variables and k is an integer constant. A system of
IDL constraints may or may not have a solution. For example, the constraint

System
1 —x2< =3, x9—x3<1, x3—24<-2, x14—21<3

is unsatisfiable, which can be established by adding the left and right-hand
sides separately:

0 = (71 —22)+ (z2 — 23) + (73 — 74) + (74 — 71)
< =34+1-243
~ 1

The IDL constraint satisfiability problem (IDL-SAT) admits an efficient de-
cision procedure.

Proposition 1 ([, [I]). IDL-SAT is solvable in polynomial time.

Some efficient procedures for IDL-SAT are based on the Floyd-Warshall
or Ford-Fulkerson style algorithms [4, [8 5]. IDL-SAT can be generalized
to octagon constraints +x + y < k while still retaining polynomial time
solvability [6].

For the reader’s convenience, we prove here the proposition. Our proof is
based on the Floyd-Warshall algorithm.

Proof. Let X be a system of IDL constraints. Without loss of generality, we
presume that, for every pair (z,y) of variables there is at most one constraint
of the form z — y < k. Extend X with an additional variable Sink adding
constraints 2 < Sink (that is x—Sink < 0) for every original variable z; given
any solution for X, set Sink to the maximal value of the original variables
to get a solution of the extended system X T.

We construct a weighted directed graph G on the variables of X71: every
constraint — y < k gives rise to an edge from x to y of weight k. In
particular we have a weight-zero edge from any original variable x to Sink.
If G has a cycle of negative weight —n that starts and ends at vertex x then
an unsolvable constraint x — x < —n is obtained by adding the inequalities
from X7 that gave rise to the edges in the cycle.

The polynomial-time Floyd-Warshall algorithm [4], [§] finds out whether
G has negative cycles. Furthermore, suppose that G has no negative cycles.

MODULAR DIFFERENCE LOGIC IS HARD 3

Then the Floyd-Warshall algorithm computes the minimal weight W (z,y)
of any path from z to y; if there is no path from x to y then W(z,y) = co.
This allows us to construct a solution S for 3.

Set S(Sink) = 0 and S(x) = W (x, Sink) for every variable in 3. Every
constraint x—y < k of 3 is satisfied. Indeed, by the minimality of W, we have
W (z,Sink) < W (z,y)+W (y, Sink) and W (z,y) < k. Hence S(x) < k+S(y)
and S(x) — S(y) < k. (Note that W (x, Sink) is the minimal weight of any
path from z on the original variables, so Sink is not really needed.) O

But integer difference logic cannot be directly used when reasoning about
constraints coming from machine arithmetic because machine arithmetic
uses modular addition. The question thus arises what is the complexity of
the constraint satisfiability problem in the case of modular arithmetic? We
establish here that the problem is NP complete.

3. MODULAR DIFFERENCE LOGIC

Modular difference logic (MDL) is similar to integer difference logic except
that integers are replaced with residues 0, 1, ..., N—1 modulo a fixed positive
integer V. The residues are ordered in the obvious way; the maximal residue
is N —1.

Instead of restricting attention to the residues, it may be beneficial to
work, modulo NV, with arbitrary integers, and we will often do that. But
one should be careful not to confuse (a) the standard integer order < and
(b) another relation on integers, which we call <y and will define shortly,
that reflects the order of the residues. Each integer ¢ is equal modulo N to
a unique residue iy. Define 1 <y j if iy < jn. Relations =n, >y, <y, >N
are defined accordingly. These definitions precisely match the semantics
of comparison operations supported by current hardware architectures for
machine arithmetic.

In the case of integers, a constraint — y < k is equivalent to constraint
x <y + k. This is not necessarily true in modular arithmetic. For example
9—5 <19 5 but 9 £19 5+5. Similarly x+1 <p ¥ is not necessarily equivalent
tox <y y— 1. For example, 5 <100 —1=199 but 54+ 1 >19 0.

We define MDL constraints to have the form

(1) r+k <y y+¢

where x, y are variables and k, £ are constants. The MDL Satisfiability Prob-
lem (MDL-SAT) is the satisfiability problem for systems of MDL constraints.

Remark 1. From the point of view of logic, modular difference logic is a
fragment of the first-order theory T of discrete linear order with both ends
(and two constants for the two ends) and with the cyclic successor and
predecessor function. The two constants could be called Min and Max. The
successor of Max is Min, and the predecessor of Min is Max. The question
arises what’s x + k7 This depends on the sign of k. If £ > 0 then x + k is the
result of k-fold application of the successor function to x; otherwise = + k

4 BJORNER, BLASS, GUREVICH, AND MUSUVATHI

is the result of |k|-fold application of the predecessor function. The residues
modulo N form a model of T" where Min = 0 and Max = N — 1. There are
also infinite models of T'. One of them can be obtained by reordering the
integers as follows:

0<1l<2<3<--- <3< -2<~1

This order is reminiscent of the order <, where —1 is also the maximal
element.

It is known (and not hard to check, by means of an Ehrenfeucht-Fraissé
game [3]) that, for every first-order sentence ¢ in the language of T', there is a
natural number n, such that ¢ does not distinguish between any two models
of T of size > n. It follows that all infinite models of T" are elementarily
equivalent. In that sense, one may speak about the infinite model of 7.

We are interested primarily in the case of a modulus N that is large.
From the point of view of logic, we can as well work with the infinite model
of T'. Every constraint-satisfaction problem for MDL can be formulated as
an existential sentence in the language of T'. O

4. MDL-SAT 1S NP HARD
We now establish that a very modest fragment of MDL-SAT is NP hard.
Theorem 2. Suppose that N > 4. Then the fragment of MDL-SAT with

constraints of the form
(2) r+1 <y y or z <y y—1
1s NP hard.

Proof. Given a graph G, we construct a system of MDL constraints that
is satisfiable if and only if the graph is 3-colorable. It will be convenient
to assume that the vertices of G are linearly ordered. This allows us to
represent edges as ordered pairs (v, w) where v < w.
With every vertex v of G we associate three variables vg, v, and vo and

three constraints

v+1 <y n
(3) vi+1 <y v

vo+1 <y vg.

One consequence of constraints (3] is that at least one of the three vari-
ables takes the maximal value N —1. With each edge e = (v, w) we associate
six variables ey, es, es, f1, fo, f3 and nine constraints: three constraints

Ve <N ec—1,
(4) We SN fc - 17
fc +1 <y e

for each ¢ = 0,1,2. One consequence of the three constraints () is that
residues v. and w,. cannot simultaneously have the maximal value N — 1.

MODULAR DIFFERENCE LOGIC IS HARD 5

Indeed, if v. = w., = N — 1 then, by the first and second constraints,
€. = f. = 0 which contradicts the third constraint. If all the constraints are
satisfied then we have a 3-coloring for GG: the color of a vertex v is the first
number ¢ such that v, = N — 1. By (@), every vertex has a unique color. By
M), no two adjacent vertices have the same color.

Now we suppose that G is 3-colorable (with colors 0, 1,2) and prove that
the constraint system is satisfiable. For every color ¢ and every vertex v of
color ¢, set

Ve=N—1, ve41 =0, veyo=1.
where addition in the subscripts is modulo 3. Clearly all inequalities (3] are
satisfied. Now consider an edge e = (v, w) and a color ¢. We show how to
satisfy the three constraints ().

Case 1: c is the color of v, so that v. = N — 1. Since w does not have
color ¢, we have w, € {0,1}. To satisfy the first of the three constraints,
set e. = 0. To satisfy the third constraint, set f. = N — 1. The second
constraint is satisfied as well: w, <1< N — 2.

Case 2: ¢ is the color of w, so that w. = N — 1 and v, € {0,1}. To satisfy
the second constraint, set f. = 0. To satisfy the first and third constraints,
set e, = 2.

Case 3: neither v nor w is of color ¢, so that both v, and w. are < 1. Set
fe=2and e. = 3. O

Remark 2. One may be interested in the variant of MDL-SAT where the
modulus NV is not fixed but is a part of the input. Theorem [2 and its proof
remain valid.

5. STRICT INEQUALITIES

Over integers, a non-strict inequality z — y < k is equivalent to a strict
inequality © —y < k + 1. The relation between non-strict and strict in-
equalities is much more subtle in modular arithmetic. With this in mind,
we prove a version of Theorem Pl with strict inequalities.

Theorem 3. Suppose that N > 9. Then the fragment of the modified MDL-
SAT with constraints of the form

r+k<yy+/t
is NP hard.

In fact, we will use only values 0, 1,2 for k and only values 0,1, —1 for /.

Proof. The proof is again by reduction from the 3-colorability problem, and
it is similar to the proof of Theorem 2l Constraints [B]) replaced with con-
straints

vo+2 <y V1,
(5) v +2 <y v,
v2 +2 <y v,

6 BJORNER, BLASS, GUREVICH, AND MUSUVATHI

and constraints () are replaced with constraints
ve <N e —1,
(6) we <y fe—1,
fet+t1l <y e.+1

For each vertex v, constraints (Bl force at least one of the three residues
v. to be > N — 2. The idea is that when v, has value > N — 2, then ¢ is an
acceptable color for v. Constraints (@) imply that residues v, and w. cannot
be simultaneously > N — 2. Indeed, by the first of the three constraints,
v. cannot have the maximal value N — 1, and if v, = N — 2 then e, = 0.
Similarly, w. # N — 1, and if w, = N — 2 then f.=0. If v. = w. = N — 2
then e, = f. = 0 and then the third inequality fails. Thus, any solution of
the new system of constraints yields a 3-coloring of G.

In the other direction, we need to convert a given 3-coloring of GG into a
solution for the constraint system. For every color ¢ and every vertex v of
color ¢, we set

Ve =N —2,vc41 = 1,040 = 4.

Clearly (B]) is satisfied. Now consider an edge e = (v, w) and a color ¢. We
show how to satisfy the three constraints (@l). As in the proof of Theorem [2]
we consider three cases.

Case 1: c¢ is the color of v, so that v, = N — 2 and w. € {1,4}. To
satisfy the first constraint, set e, = 0. To satisfy the third constraint, set
fe =N — 1. The second constraint is satisfied as w. <4 < N —2 = f. — 1.

Case 2: ¢ is the color of w so that w. = N —2 and v, € {1,4}. Set e, =6
and f. = 0. Clearly (@) is satisfied.

Case 3: Neither v nor w is of color ¢ so that both v, and w, are in {1,4}.
Set e. =7 and f. = 6. O

6. MDL-SAT 1s NP

In this section, we modify the satisfiability problem MDL-SAT for modu-
lar difference logic in two ways. First, the modulus N is a part of the input.
Second, we liberalize the notion of MDL constraints by allowing constraints
in the form of non-strict inequalities of the form

r+k <y y+4l, or x <y k, or x >n k,
strict inequalities of the form
r+k <y y+4¥¢ or x <y k, or x >y k,
as well as equalities of the form
x+k =xy y+4, or z =y k.

Both modifications make the problem harder and thus make the next theo-
rem stronger.

MODULAR DIFFERENCE LOGIC IS HARD 7

Theorem 4. The constraint satisfiability problem MDL-SAT for modular
difference logic is NP.

Proof. Let X be a system of MDL constraints with p variables. Let m be the
maximum of the absolute values of the constants in the > constraints. We
prove that, if 3 has any solution, then it has a solution where the absolute
values of all variables are < (2m + 1)p. It follows that MDL-SAT is NP.

Suppose that X has a solution S that maps the variables into the residues
modulo N. To simplify the exposition, we extend > with two additional
variables Umin, Umax and with two equations vy, = 0, vmax = —1. The
solution S extends appropriately.

We create an auxiliary graph Gg. The vertices are the variables of X,
and the edges are pairs {v,w} such that |S(v) — S(w)| < 2m. Connected
components of Gg will be called clusters. The domain of a cluster C is a
closed interval [a,b]. If v is a leftmost variable of C' (so that S(v) < S(w)
for any other variable w € C) then a = max{0, S(v) —m}. And if v is the
rightmost variable of C' then b = min{N — 1, S(v) + m}. The domains of
different clusters are disjoint.

The clusters different from those of vy, and vax Will be called inner. The
crucial observation is that inner clusters could be shifted around. Indeed,
consider an inner cluster C' with domain [a,b], and let r be the right end
of the domain of the left neighbor of C, so that a > r. If r < d < a,
shift C' leftward for distance d = a — @/, that is, modify assignment S to an
assignment S’ that is like S except that S’(v) = S(v) — d on the variables v
of C. Tt is easy to see that S’ is a solution for X. In a similar way clusters
could be shifted to the right.

Now we are ready to produce the desired small-value solution. If there
are inner clusters, shift the leftmost inner cluster C to the left as far as
possible (so that ' = r + 1 in the notation of the previous paragraph). If
there are inner clusters to the right of C4, shift the right neighbor Cs of C4
to the left as far as possible. And so on until all inner clusters are packed
as close as possible on the left side. Let S* be the resulting solution. In the
rest of the proof, variables represent their S* values.

In addition to vy, = 0, there are ¢ < p original variables in the cluster
of vmin and the inner clusters: vy = vpin < v1 < -+ < vp. Every vy 1 —
v; < 2m + 1. Tt follows that every v; < vy < £(2m 4+ 1) < p(2m + 1).
A similar argument applies to the cluster of vy except that there the
distance between neighboring variables is < 2m. Every variable v there is
within distance 2pm from the end, so that |v| < 2pm + 1. That completes
the proof. O

Remark 3. We have not used the fact that modulus N is a part of the input.
The theorem and the proof remain valid if the modulus is fixed or even if it
is infinite as in Remark [II

8 BJORNER, BLASS, GUREVICH, AND MUSUVATHI

REFERENCES

[1] Scott Cotton and Oded Maler. Fast and flexible difference constraint propagation
for DPLL(T). In 9th Int. Conf. on Theory and Applications of Satisfiability Testing
(SAT’06). Springer Lecture Notes in Computer Science 4121:170-183, 2006.

[2] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. Research Report 159, Compaq Systems Research Center, December
1998.

[3] Heinz-Dieter Ebbinghaus and Jorg Flum. Finite Model Theory. Springer, 1995.

[4] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, 1962.

[5] L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399-404, 1956.

[6] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Computation,
19(1):31-100, 2006.

[7] V.R. Pratt. Two easy theories whose combination is hard. Technical report, Mas-
sachusetts Institute of Technology. Cambridge, 1977.

[8] Stephen Warshall. A theorem on Boolean matrices. J. ACM, 9(1):11-12, 1962.

MICROSOFT RESEARCH, ONE MICROSOFT WAY, REDMOND, WA 98052, USA
E-mail address: nbjorner@microsoft.com

MATH DEPT., UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109, USA
E-mail address: ablass@umich.edu

MICROSOFT RESEARCH, ONE MICROSOFT WAY, REDMOND, WA 98052, USA
E-mail address: gurevich@microsoft.com

MICROSOFT RESEARCH, ONE MICROSOFT WAY, REDMOND, WA 98052, USA
E-mail address: madanm@microsoft.com

	1. Introduction
	2. Integer difference logic
	3. Modular difference logic
	4. MDL-SAT is NP hard
	5. Strict Inequalities
	6. MDL-SAT is NP
	References

