PRS: A Reusable Abstraction for Scaling Out
Middle Tiers in the Datacenter

Atul Adya*

Abstract: Scale-out datacenter applications are of enor-
mous commercial interest, yet they are frustratingly hard
to build. A common design pattern is to locate most of the
application logic in a middle tier of soft-state servers and
to provide storage using a separate backend system. The
Fartitioning and Recovery Service (PRS) is an infrastruc-
ture service that makes it easier to build these middle tier
applications: it provides strong consistency on the soft
state, supports arbitrary operations, and helps in recovery
if state is ever lost. The PRS manages scaling out the mid-
dle tier across many machines, and hides the complexities
of scale-out through a simple and powerful abstraction.
We have built and evaluated the PRS, and other develop-
ers have built and deployed four scale-out soft-state dat-
acenter applications using the PRS. Our experience with
these applications confirms that the PRS significantly sim-
plifies the construction of scale-out soft-state datacenter
applications.

1 Introduction

In recent years there has been a massive push in the
computer industry to build enormous datacenters. These
datacenters are used to deliver a class of compelling
and commercially important applications, such as instant
messaging, social networking and web search. Building
these large distributed applications is an extremely chal-
lenging task. Fortunately, both the academic commu-
nity and industry have proposed software infrastructure
that encapsulates common functionality, making it eas-
ier to build and deploy new applications: Dynamo [18],
Dryad [36], MapReduce [12], BigTable [15], DDS [48],
and Chubby [10] are some notable examples.

A common pattern in building datacenter applications
is to split functionality into stateless frontend servers,
soft-state middle-tier servers containing complex appli-
cation logic, and a backend storage system. Much prior
work has focused on scalable backend storage systems.
In contrast, the Partitioning and Recovery Service (PRS)
makes it easier to build soft-state middle tiers by provid-
ing strong consistency on the soft state, help recovering

{Microsoft Corporation*, Microsoft Research’ }, Redmond, WA.
{adya, jdunagan, alecw } @microsoft.com

John Dunagan'

Alec Wolman'®

if state is lost, and still allowing the application to per-
form arbitrary operations. Applications make use of the
PRS by linking in libraries at the frontends and middle
tier servers; the libraries talk to a replicated manager. To
provide consistency, the manager runs a lease protocol;
to allow scaling out the middle tier, the manager dynami-
cally partitions a key space across the middle tier servers
and communicates this key placement to the frontends;
and to provide recovery, the manager must correlate lost
leases with its key placement decisions. Finally, the man-
ager and libraries support arbitrary operations by staying
out of the path of all frontend and middle-tier commu-
nication. To the best of our knowledge, ours is the first
attempt to abstract out strongly consistent soft-state parti-
tioning into a reusable component.

Soft state has been previously defined in multiple ways
in the literature. For this paper, we define soft state as state
that can be automatically recreated, typically with some
modest cost. Many datacenter applications use soft state,
including web site middle tiers [43], various distributed
caches [40, 37], Instant Messaging (IM) [31, 56, 20], VoIP
chat [41], and video conferencing [29]. Middle tiers and
distributed caches typically rely on a backend storage sys-
tem to enable recreating lost state, whereas IM, VoIP chat
and video conferencing systems rely on clients. In this lat-
ter class of applications, if state is lost, clients republish
their presence data or reattempt rendezvous. Our defini-
tion of soft state does not include data that requires signif-
icant human effort to recreate, e.g., shopping carts [53, 8].
If an application wants to operate on such data in the mid-
dle tier, it should commit changes to a backend storage
system. With this model, the shopping cart is hard state,
but the copy of the shopping cart maintained by the mid-
dle tier is soft state.

We explain how developers use the PRS by walk-
ing through the example of an IM application shown in
Figure 1. Requests enter the datacenter through a load
balancer, and arrive at an arbitrary frontend. The fron-
tend extracts the username from the request and asks the
PRS which middle-tier node it should contact to find that
user’s IM presence data; the frontend then routes the re-
quest. When the request arrives at the middle-tier node,
the middle-tier node checks with the PRS that this des-

“Update A’s presence"¢ ¢ “Read A’s presence”

[Network Load Balancer]

N

N

Frontend Frontend Frontend

Middle-tier Middle-tier

\

Figure 1. A datacenter IM application. Requests enter
through a network load balancer, arrive at some arbitrary
frontend, and are forwarded to the appropriate middle tier
node.

Middle-tier

Server responsible for A’s presence

tination is still correct, and then it processes the request.
Independently, the PRS notifies the appropriate frontend
if any middle-tier state is lost so that the frontend can take
appropriate recovery actions, e.g., asking an IM client to
republish its presence.

The PRS has been used to build four applications that
are currently deployed and serving live customer requests
as part of the Live Mesh product [30]. Live Mesh is a
new developer platform and an end-user application for
sharing and synchronization; it relies on the PRS for all
its soft-state scale-out needs. Other developers wrote all
four applications, and in Section 3 we report on how the
PRS simplified the development of these applications.

We now describe each of the three key properties the
PRS provides to middle-tier developers: strong consis-
tency on soft state, help recovering and support for ar-
bitrary operations. Strong consistency in the PRS con-
text means that applications can treat their data as having
at most one copy, and thus all operations on a key can
be serialized. Strong consistency is sometimes criticized
for hurting availability, but recent industry experience in
datacenters has shown that the availability penalty can be
made tolerably small (e.g., BigTable [15] describes the
perceived downtime of Chubby [10] as 0.0047%). Fur-
thermore, weak consistency has two significant down-
sides: it is more difficult to program against [1], and
it can lead to a poor user experience. For example, in
an IM system, if user A updates her presence status at
one server, and then user B attempts to read A’s pres-
ence from a different server, B will receive stale data,
and be unable to communicate with A. In contrast, with
the PRS there may be a short period of unavailability if
user A’s presence is lost, but this is quickly fixed by re-
publishing, and inconsistent state is never exposed to end
users. Though the PRS enables strong consistency, the
PRS does not mandate it — applications are free to devi-

ate from single-copy semantics. Indeed, of the four ap-
plications using the PRS, three need strong consistency,
while the fourth needs only weak consistency, allowing
for improved availability while still leveraging the PRS’s
other benefits. Finally, like many other datacenter abstrac-
tions [48, 15], the consistency guarantee only applies to
operations on the data associated with a given key, not
operations that span multiple keys.

The PRS provides help recovering soft state by
delivering notifications at frontends when recovery is
needed; applications can then perform this recovery in an
application-specific manner. Recovery notifications are a
natural responsibility for the PRS because it directs the
assignment of keys to servers: when a server crashes, the
PRS can signal the ranges of keys it is assigning to new
nodes, and hence what keys need to be republished. In-
tegrating recovery notifications with partitioning leads to
a simpler overall system than providing recovery notifica-
tions through a separate service or requiring each applica-
tion to detect the need for recovery on its own.

Supporting arbitrary operations means that when a re-
quest arrives at the node responsible for a given key, the
node can execute arbitrary application code to process the
request, and it can leverage the PRS to get strong consis-
tency on its soft state. This is a departure from prior data-
center infrastructure services that support arbitrary opera-
tions but only on weakly-consistent soft state (e.g., BASE
semantics [4]), or that support strong consistency but only
within a storage service (e.g., BigTable [15]).

1.1 Our Contributions

The primary contribution of this paper is a novel ab-
straction that is powerful and flexible, yet simple to use.
The PRS abstraction is powerful because it encapsulates
significant pieces of complex functionality: scaling out
to a varying number of machines, providing strong con-
sistency, and signaling when state may need to be repub-
lished. This allows developers to build sophisticated ap-
plications without having to implement such functional-
ity themselves. The PRS abstraction is flexible because
it supports arbitrary operations, it allows these operations
to tradeoff availability and consistency at their discretion,
and it does not constrain the protocols between the fron-
tends and middle-tier. The PRS simplifies the frontend
by telling the application where to route requests to in
the middle tier. The PRS simplifies recovery by telling
the application when to recover and which items need re-
covering. The PRS simplifies the middle tier by telling
the application whether or not to process a request. Fur-
ther evidence for the PRS’s simplicity comes from the fact
that other developers used the PRS to successfully build
and deploy four applications. They did not have to worry
about many of the complexities of scaling out and operat-
ing in a distributed environment, allowing them to focus

primarily on the semantics of their applications.
Other important contributions of this paper are:

e a detailed description of the PRS API and guarantees;

e how other developers used the PRS to build four differ-
ent soft-state scale-out datacenter applications; and

o the design, implementation and experimental evalua-
tion of the PRS.

2 Overview and API

To provide more context for the discussion of the PRS
API and semantic guarantees, we begin this section by
giving a brief overview of the PRS architecture. We will
give a more detailed description of the PRS design and
implementation in Section 4.

Frontends that want to route requests link in the
Lookup library. Middle-tier servers that want to serve
requests link in the Owner library. We describe these
servers as being located in a frontend or middle-tier to best
associate them with current practices. However, nothing
in the PRS design prevents other usage models (one exam-
ple is described in Section 3), and there is no requirement
that a backend exist behind the middle-tier. The Lookup
and Owner libraries provide their guarantees to applica-
tions by coordinating through a logically centralized Man-
ager. The Manager is replicated across multiple machines
for fast failover. Figure 2 shows this architecture.

The Manager partitions the entirety of the key space
to the various Owners through a lease protocol. In con-
trast to many previous lease managers (e.g., Chubby [10]),
Owner libraries do not ask for a lease on a particular key,
or even a particular range of keys. Instead, Owners sim-
ply notify the Manager of their liveness, and the Manager
assigns ranges in the key space to Owners. To keep the
load distribution even, when a new Owner is added, the
Manager recalls leases from other Owners as necessary
and grants them to the new Owner.

The Manager uses consistent hashing to determine the
ranges to assign to each server. Each Owner is given a
fixed number of virtual nodes (64 in the current imple-
mentation), with more virtual nodes leading to a more
even distribution of load across the servers. Lookup li-
braries periodically synchronize to the Manager’s map of
lease assignments.

The PRS provides two safety properties:

e Recovery Notification Guarantee: Any soft-state loss
at a middle-tier server is signaled to all frontends within
a bounded period of time.

e Single-copy Guarantee: Because there is at most one
valid copy of the state, operations on the state can be
serialized at the node holding this copy.

We explain how applications make use of the recovery
notification guarantee in Section 2.1, and how they make
use of the single-copy guarantee in Section 2.2.

Frontend Frontend Frontend
Cen)) |)] -
sEEEEEEEEEEEEE® - “Here is the map of
. Manager % lease assighments”
: Q :
®essssssssnnnmnn I8/ “«
You have these
leases”
[Owner] [Owner]
LN N
Middle-tier Middle-tier Middle-tier

Figure 2. Overview of the PRS Architecture: Frontends
link in the Lookup library, Middle-tier servers link in the
Owner library, and both libraries talk to a replicated log-
ically centralized Manager.

2.1 Lookup API

The PRS API is shown in Figure 3. A frontend that
wishes to route a request for some key calls Lookup().
The key supplied to Lookup() is typically derived by hash-
ing some input string, such as the user’s instant messaging
address. In this setting, hash collisions are only a minor
inconvenience — two items that hash to the same key can-
not be split apart for the purpose of load-balancing.

The PRS design does not force the use of hashing. By
simply supplying the input string as the key, applications
can also partition on ranges of the input space, e.g., range
[a-j] to nodel, range [k-z] to node2 (as in BigTable [15]).
However, all applications currently using the PRS prefer
hashing, and so the current implementation only supports
64-bit keys, not arbitrary length keys.

The URL returned by Lookup() is whatever the
middle-tier server specifies when it instantiates its Owner
library. This allows the application to use any proto-
col it desires between the frontends and middle-tier. For
some callers, this URL is simply an IP address and a TCP
port number. The semantics of Lookup() are that it is
allowed to return a stale address. The staleness can be
checked (and the request rejected) at the middle-tier us-
ing the Owner API. Because the Manager rapidly propa-
gates updated versions of the lease map to frontends, fron-
tends should retry after a short backoff on such rejected
requests.

The semantics of RecoveryNotificationUpcall() are
that the frontend is guaranteed to receive an upcall within
a bounded period of time whenever any Owner loses its
lease. The upcall indicates the ranges within the key space
that need to be recovered. In the IM example, the fron-
tend should pass this notification along to any connected
clients that had stored state within the affected key range,
so that they can republish.

The recovery notification guarantee is conservative; re-
covery notifications may also be delivered even though an

// Lookup API
URL Lookup (Key key)
void RecoveryNotificationUpcall (KeyRange[] toRecover)
// Owner API
bool GetOwnershipHandle (Key key,
out OwnershipHandle handle)
bool CheckContinuousOwnership (OwnershipHandle handle)
void OwnershipUpcall (KeyRange[] grant,
KeyRange[] revoke)

Figure 3. The PRS API. Asynchronous versions of the
calls are omitted. Upcalls are given as arguments to the
relevant constructors.

Owner still holds its leases. For example, if the frontend’s
Lookup library loses contact with the Manager, recovery
notifications will be delivered on all ranges. In this case,
the frontend is no longer receiving updates to its map of
lease assignments, and hence may no longer be able to
route requests. Clients should be robust to this frontend
failure mode, and they should reconnect to other fron-
tends. Upon reconnection, they must also republish their
state.

2.2 Owner API

The Owner API provides two calls to ensure consis-
tency: GetOwnershipHandle() checks that a lease is cur-
rently held and creates a handle, while CheckContinu-
ousOwnership() checks that the lease has been continu-
ously held since the handle was created. A middle-tier
server can use these calls to guarantee strong consistency:
operations on the state associated a key can be serialized.
We explain how to do this in general by walking through
the example shown in Figure 4: a distributed soft-state
in-memory hashtable with strong consistency and recov-
ery notifications (though no code is needed in Figure 4 to
enable recovery notifications).

The general pattern to using the Owner API is shown at
the top of Figure 4. When a request arrives at a middle-tier
server, step (1) is to call GetOwnershipHandle() to check
whether it should serve the request. If this call succeeds,
step (2) is to validate any previously stored state. In the
example, Put() can skip this because any previously stored
state will be replaced regardless.

Step (3) is to perform an arbitrary local operation, and
then to store any created state along with the owner han-
dle. Developers can treat Figure 4 as defining a template:
an application’s arbitrary local operation should be cut-
and-paste into step (3), and then the result stored along
with the handle, as in Put(). Get() skips the step of storing
state because it makes no modifications.

Internally, an ownership handle consists of a key, a
lease generation number, and the Manager’s nonce. If a
later operation arrives for this key, step (2) of the later op-
eration will use the stored handle’s lease generation num-
ber to check that the lease has been continuously held, and
thus that the stored state is still valid.

// General pattern to guarantee serializability:

// (1) Check that request has arrived at correct node
// (2) Validate that existing state is not stale

// (3) Perform arbitrary local operation;

// store handle with any created local state

// (4) Check that lease has covered entire operation
// (5) Expose state externally (e.g., return)

bool Put (key, value) {
// (1) check that this is the correct node
ok = GetOwnershipHandle (key, out handle);
if (l!ok) return false; // avoid wasted work
// (2) validate previously stored state
// in this case, skip because about to overwrite it
// (3) perform arbitrary local operation;
// store handle with any created local state
// in this case, simply store value and handle
this.statelkey] = value;
this.handles[key] = handle;
// (4) check that lease covered operation
ok = CheckContinuousOwnership (handle);
if (!ok) return false; // lease was lost
return true; // (5)
}

// If this node is the owner, yet the item does not
// exist, return true with value=null
bool Get (key, out result) {
// (1) check that this is the correct node
ok = GetOwnershipHandle (key, out handle);
if (l!ok) return false; // avoid wasted work
// (2) validate previously stored state
storedHandle = this.handles[key];
if (!CheckContinuousOwnership (storedHandle))
this.statel[key] = null;
// (3) perform arbitrary local operation;
// store handle with any created local state
// in this case, simply set ‘‘out value’’
value = this.statelkey];
// (4) check that lease covered operation
ok = CheckContinuousOwnership (handle);
if (!ok) return false; // lease was lost
return true; // (5)

Figure 4. Using the Owner API to build a distributed
soft-state in-memory hashtable with strong consistency
and recovery notifications.

In step (4), the node checks that this entire operation
has been covered by the lease without interruption. If the
check succeeds, the lease guarantees that no other opera-
tion on this state occurred in parallel on another node. If
the check fails, the operation also fails and the node re-
turns failure to the frontend, who can then retry. In the
hashtable example, a lost lease does not require rolling
back the operation — when a future call attempts to access
this state, it will check the corresponding stored lease han-
dle (step (2)) and know that the stored state is invalid.

Step (5) is to return to the caller, or more generally, to
expose state from this operation to another node. Put()
does not expose state; Get() exposes state back to the
caller. In general, the middle-tier server might want to
expose state to other servers before returning, e.g., com-
municating with a backend storage system. The simplest
way to handle multiple such external state exposures is
to treat each exposure as marking the end of one opera-
tion and the beginning of the next; each individual opera-
tion should simply perform steps (1)-(5). Though it may

sometimes be possible to elide some of the Owner API
calls, there is little benefit to reasoning about such sub-
tleties because all Owner API calls are purely local.

Applications are free to skip using the Owner API to
guarantee serializability; they can answer requests using
arbitrary local (and potentially stale) data. However, we
believe many application developers prefer strong consis-
tency because of the simpler semantics: updates and reads
never go to separate copies of the data, and there is no
need to reconcile data with distinct histories, either defin-
ing a merge operation or having to think about lost up-
dates in the case of last-writer-wins reconciliation. These
are the standard reasons for valuing strong consistency,
and they are valuable even without data durability.

The final part of the Owner API is the OwnershipUp-
call(). The upcall may be used to initialize data structures
when some new range of the key space has been granted,
or to garbage collect state associated with a range of the
key space that has been revoked. However, it is worth
noting that the upcall by itself does not guarantee strong
consistency. There is no local scheduling guarantee ensur-
ing an upcall conveying lost ownership will occur before
a new operation on the lost key is received. Consistency
requires using GetOwnershipHandle() and CheckContin-
uousOwnership() as described previously.

2.3 Beyond Serializability

Although operations on a key are serialized at the
middle-tier, a client receiving a response cannot know
that the data it contains is still current; the data may have
changed after the response was sent. This is identical to
the model clients have even with a traditional database:
strong semantics while the request is within the database,
but no guarantee that the state is still valid by the time
the response is received. Happily, there are standard tech-
niques to address this problem. For example, one can as-
sociate a version number with the state and do optimistic
concurrency control [9, 55]. This is often encapsulated in
a library where operations abort if the version read by the
client is no longer the version at the server.

Interestingly, most of the operations exposed by the
four PRS applications discussed in Section 3 did not need
version numbers. To understand why, we consider the
Queue application, which stores a message queue under
each key. When an enqueue operation arrives, the appli-
cation applies it (enqueueing the message) regardless of
whether the queue state has changed since the caller last
read it. Thus, there is no need for version numbers. Many
of the operations in other applications had similar seman-
tics. Prior work on concurrency control suggests this is a
common pattern [54].

It is also possible to use the lease generation numbers
for optimistic concurrency control across servers. This
model was also mentioned in Chubby [10]: like PRS own-

ership handles, Chubby sequencers encapsulate a lease
generation number. By passing lease generation numbers
along with messages, remote nodes can discard a mes-
sage if it does not contain the most recent lease generation
number observed by that node.

2.4 Discussion

Ownership change upcalls and recovery notifications
cover two distinct state recovery scenarios. Ownership
change upcalls occur at the middle-tier; they are needed
by applications like a distributed cache where newly
granted leases can trigger pre-fetching of state from a
backend storage system and lease invalidations can trig-
ger garbage collection. In contrast, recovery notifications
occur at frontends; they are needed for applications like
IM where clients are connected to the frontends, and the
frontends need to ask the clients to republish their state.

To demonstrate the flexibility of the PRS, we describe
how it could be used to build a replicated in-memory
store. To replicate data k times in the distributed hashtable
of Figure 4, the frontend can simply call Lookup() with k
different keys derived from the original key in a consistent
way (e.g., key; = hash(name, 1)), do a Put() or Get() on
each one, and return success only if a quorum respond.
However, this does not change the soft-state guarantees of
the system, it just reduces the failure probability. Because
applications using the PRS already have to deal with state
recreation, we believe few will go to the trouble of repli-
cating within the middle tier.

To the best of our knowledge, providing strong con-
sistency on soft state has not previously been defined in
the literature. One definition is simply “ACID without the
Durability.” Another way of thinking about it is to imag-
ine a set of clients operating on traditional hard state, and
to throw in an additional “demonic” client that occasion-
ally issues delete operations.

3 Experience, Lessons and Surprises

Other developers on the Live Mesh [30] product team
have used the PRS to build four soft-state scale-out data-
center applications. These applications are deployed and
serving live customer requests. The applications provide
significant functionality yet they are much simpler than if
they had to implement partitioning, recovery and consis-
tency on their own. These four “applications” are services
rather than end-user applications. They are designed to be
used both by the Live Mesh product and by other datacen-
ter products.

These four applications demonstrate the ability of the
PRS to support a variety of uses. Some of the ways that
the developers used the PRS surprised us; we describe
these surprises along with the lessons we learned.

e Sectioned-Document: The Sectioned-Document ap-
plication is a kind of distributed hashtable. A key
is mapped to a document. The document contains a
version number, and updates can be made conditional
on the document’s current version for the reasons de-
scribed in Section 2.3. Each document is sub-divided
into a number of named sections, so that reads and up-
dates can be done at a finer granularity than the whole
document. Different instances of this application play
different roles: for example, the activity service (AS)
is used to store recent activity for each user, while the
device connectivity service (DCS) is used to store in-
formation about how to contact devices. Documents
are expired using a TTL value unless client requests
explicitly refresh them; this provides robust resource
reclamation if clients silently fail.

e Publish-Subscribe: The Publish-Subscribe applica-
tion exports Subscribe() and PublishEvent() operations.
This supports rendezvous between datacenter applica-
tions, and it can be used as a building block to enable
client rendezvous. Subscriptions are similarly main-
tained using TTLs and explicit client refreshes.

e Queue: The Queue application is used to deliver mes-
sages to clients that may be offline. A client connects
to its queue and drains any buffered messages. Queues
are also maintained using TTLs and explicit client re-
freshes.

e RSS-Processor: The RSS-Processor application per-
forms coalescing and transformation of incoming
RSS [46] feeds using semantics specific to the types of
RSS feeds it is processing. For example, it may take
two RSS items that describe different activities by a
single user (e.g., “Alice updated her profile” and “Alice
added Bob as a friend”’) and produce a single item com-
bining the descriptions (“Alice updated her profile and
added Bob as a friend.”). The processor also generates
completely new RSS entries in response to other exter-
nal events (e.g., Alice’s IM presence being updated in
the IM application may trigger producing “Alice is now
online” in the RSS feed). Unlike the other three ap-
plications, the RSS-Processor is designed assuming its
output will be directed to users rather than other appli-
cations, enabling it to select weak consistency. Cached
RSS feed state is expired using TTLs.

To see how these applications work together, we con-
sider what happens when a device comes online. First, it
connects to the datacenter and updates the document that
holds its connectivity information (using the Sectioned-
Document store). The user’s other devices have set up
subscriptions using the Publish-Subscribe application so
that changes in device connectivity are sent to their mes-
sage queues. These other devices retrieve this message
from the Queue application, and thus learn how to make a
direct connection to the device that just came online.

The other developers did not always use the PRS in the
ways we anticipated. We now describe in detail some of
the PRS usage that was most surprising to us.

3.1 Varying the Consistency Model

Two applications chose to deviate from the standard
usage of the Owner API. We describe their behavior here
to better understand how applications can exploit the flex-
ibility of the PRS API with regards to checking for con-
sistency.

The Publish-Subscribe application achieved better
availability while still maintaining strong consistency by
exploiting its particular semantics: although calls to Sub-
scribe must use the standard consistency check, the sub-
scriptions they create are effectively immutable, and so
calls to Publish do not need to do standard consistency
checks about the validity of stored subscriptions. This is
analogous to a cache of immutable data that can avoid
many of the consistency checks associated with read/write
data. We were surprised by the decision to work through
this more subtle consistency guarantee, but it indicates the
importance developers place on availability.

The RSS-Processor was the only application that chose
weak consistency — if an operation arrives at any middle-
tier node, that node processes it without checking whether
it is the owner. Because of this, RSS operations may be
omitted or performed multiple times, and the human read-
ing the RSS feed has to cope. For the RSS-Processor ap-
plication, stronger semantics (such as exactly-once pro-
cessing) would have had two costs. First, stronger se-
mantics would have decreased availability, requiring calls
to be failed if they arrived at the wrong node. Second,
stronger semantics would have required frequent calls to
a storage system to persist processing results, a signifi-
cant multiplier on the application’s overhead. To avoid
these costs, the RSS-Processor application chose weak
consistency. Because the PRS separates liveness and item
placement from consistency, the RSS-Processor applica-
tion could use the PRS to handle its scale-out require-
ments, and it was still allowed to trade off consistency
in favor of availability.

3.2 Centralized Recovery Notification Delivery

The Queue application allows clients to avoid main-
taining persistent connections to a variety of application
frontends. Instead, all messages from the various appli-
cations are funneled to a client’s queue, where the client
can later retrieve them. This set of messages must in-
clude PRS recovery notifications, as the client uses these
to determine that it needs to republish some state. To en-
sure the Queue application can deliver recovery notifica-
tions for each application, it simply links in the Lookup
library for each application, e.g., to deliver recovery noti-
fications for Sectioned-Document applications, it links in

the Sectioned-Document Lookup library. This will notify
the Queue middle tier whenever a Sectioned-Document
middle-tier crashes. Though this design is obviously sen-
sible, we had not anticipated that any middle-tier servers
would themselves link in the Lookup library and never
call Lookup().

3.3 Admission Control

In contrast to the other applications using the PRS, the
RSS-processor application also implements application-
level backoff: the number of outstanding requests at a
frontend destined for any particular middle tier server is
not allowed to exceed a fixed cap. Because the PRS is
not in the communication path between the frontends and
the middle tier nodes, it is easy to implement application-
specific request throttling — the PRS does not force all ap-
plications to agree on a single throttling policy.

34 TTLs

All of the applications built using the PRS use TTLs.
TTLs are used to garbage collect state when clients leave
the system. In the absence of recovery notifications, TTLs
could also be used to restore availability after a crash:
the client could periodically republish state independent
of whether there has been a failure. However, this would
require very short TTL values (i.e., frequent polling). The
need for rapid republishing is most acute when the state
is shared, e.g., refreshed by one client, but operated on by
many other clients. Because the PRS provides recovery
notifications, all four applications can choose TTLs based
solely on the need to garbage collect state for clients that
have left the system. Because garbage collection can be
done infrequently, the TTLs can be made quite long, lead-
ing to significant performance savings.

Surprisingly to us, none of the applications make use of
the PRS’s upcalls from the Owner library when ranges are
revoked. The upcalls allow for rapid reclamation of state
when responsibility for part of the key space is transferred
to another Owner, but the applications chose to instead
lazily rely on TTLs expiring. Given their existing need
to use TTLs, this simple strategy reduced the number of
moving parts at some resource cost.

We continue to believe that owner node upcalls will be
useful to future applications using the PRS. To give one
example, a colleague suggested building an application to
perform some periodic task, and partitioning responsibil-
ity for that periodic task among a pool of servers using
the PRS. In this hypothetical usage, the servers doing the
periodic task link in the Owner library, and the Lookup
library is not needed. The owner node upcalls provide a
simple way for each server to learn the subset of the key
space it should work on.

’ Application \ Lines of Code | Consistency
Sectioned-Document
(used by AS and DCS) | >3 Strong
Publish-Subscribe 4,164 Strong
Queue 5,695 Strong
RSS-Processor 5,019 Weak

Table 1. Lines of code and consistency model for each of
the four applications built on the PRS.

3.5 Summary

Overall, we feel these four soft-state applications sub-
stantially support the value of the PRS abstraction. These
applications are non-trivial, collectively consisting of over
20,000 lines of C# code; the exact numbers, excluding
test code and common utility libraries, are given in Ta-
ble 1 along with the application’s consistency model. By
way of comparison, the PRS is about 20,000 lines of code
itself; providing the PRS as a reusable component was
an enormous savings compared to having each applica-
tion implement their own distributed protocols providing
PRS-like functionality. For all four applications, the PRS
solved the scale-out problems for the developers of the
application: monitoring middle-tier liveness, determining
item placement on the middle-tier servers and conveying
the item placement map to the frontends. The PRS en-
abled different applications to make different consistency
choices simply by varying their usage of the PRS APIL
However, all three applications that have other applica-
tions as their clients chose strong consistency: these appli-
cations need to expose simple semantics to ease the task
of writing client applications. Finally, the applications did
find it beneficial to use the PRS abstraction of rapid recov-
ery notifications to trigger recreation of soft state when
needed, avoiding the need to build an additional member-
ship and item tracking infrastructure service.

4 Design and Implementation

In this section we provide a detailed description of the
PRS design, and how it provides both the single-copy
guarantee and the recovery notification guarantee. We
start by examining the operations and state at the Man-
ager, and then move to the interactions of the Lookup
and Owner libraries with the Manager. We next describe
the details of the Manager’s internal architecture and the
Manager’s scalability. We conclude by describing the
overall complexity of the PRS.

4.1 Manager

The Manager maintains a table of all the ranges cur-
rently leased to Owner libraries, and every leased range
is associated with a lease generation number. When a
new Owner contacts the Manager, the Manager computes

the new desired assignment of ranges to Owners, recalls
leases on the ranges that are now destined for the new
Owner, and grants new (60 second) leases on these ranges
to the new Owner as they become available. The removal
of an Owner is similar. The use of leasing ensures the
single-copy guarantee. Changes to the lease table are kept
in a change log used to efficiently synchronize Lookup li-
braries (see Section 4.2), and the change log is periodi-
cally truncated.

Every new lease assignment is done with a new lease
generation number. If an Owner restarts, it is granted new
leases, not simply extended the leases that it previously
owned. If an Owner crashes and does not come back, new
leases on its ranges are issued to other nodes. This guar-
antees that the Manager knows about every loss of soft
state at an Owner, and this knowledge is always reflected
in a change to the lease generation numbers for the lost
ranges. In Section 4.2, we describe how every Lookup li-
brary is guaranteed to learn of every changed lease gener-
ation number, and how they use this to meet the recovery
notification guarantee.

The particular algorithm that the Manager runs to as-
sign leases is consistent hashing. Each Owner is assigned
64 virtual nodes. The choice of algorithm used to assign
ranges to nodes is encapsulated in a single pluggable mod-
ule within the Manager code. We found that this encapsu-
lation was helpful for software engineering, and we used
it to such ends as implementing tests that use fixed hash-
ing over a set of Owners.

4.2 Lookup

Each Lookup library maintains a complete (though po-
tentially stale) copy of the lease table: for every range,
it knows both its lease generation number and the node
holding the lease. This allows implementing Lookup() as
a purely local operation. Due to the use of ranges, this
only requires about 200KB of state per 100 Owners, a
small amount for a frontend server.

The Lookup-Manager protocol synchronizes the
Lookup library to the Manager’s lease table every 30 sec-
onds. Whenever the Manager receives a LookupRequest
from a Lookup library, it either sends a snapshot of the
lease table, or it sends the changes since the last time
it communicated with the Lookup library. The Manager
chooses to send a complete snapshot if either the change
log has been truncated, or if the snapshot is more com-
pact than the change log. The Manager also creates a
nonce when it is initialized and includes this nonce in all
its messages. The nonce allows the Lookup library to rec-
ognize Manager crashes and discard stale messages from
previous Manager incarnations.

On receiving a LookupResponse from the Manager,
the Lookup library must update its state. If the LookupRe-
sponse contains a series of changes, the Lookup library

applies them in order to its copy of the lease table. If the
LookupResponse contains a snapshot of the lease table,
the Lookup library switches to using the new snapshot.

To meet the guarantee that every soft state loss at an
Owner library is signaled as a recovery notification, the
Lookup library must trigger a recovery notification for ev-
ery range where the lease generation number has changed.
If the LookupResponse contains a series of changes, the
Lookup library knows that every change has a new lease
generation number, and it can trigger recovery notifica-
tions appropriately. If the LookupResponse contains a
new snapshot of the lease table, the Lookup library has
to diff the snapshot in the message with the existing copy
in the Lookup library, and it must then trigger a recov-
ery notification on every range where the lease generation
number has changed.

4.3 Owner

Each Owner library maintains all the ranges that are
currently leased to it, including the lease generation num-
ber. This allows GetOwnershipHandle() and Check-
ContinuousOwnership() to be implemented as purely
local calls (testing whether a range is currently held
and whether the lease generation number in an own-
ership handle matches the current generation number,
and hence has been held continuously). Owners send a
LeaseRequest message every 15 seconds to the Manager.
This LeaseRequest signals their liveness and specifies the
leases where they want renewals. The Manager sends
back a LeaseResponse containing all the ranges it is re-
newing and all the new ranges it has decided to grant to
the Owner. Grants are distinguished from renewals so that
if an Owner restarts, it will not accept an extension on a
lease it previously owned. This refusal forces the Man-
ager to issue a new grant on the range, thus triggering
a change in the lease generation number. As mentioned
in Section 4.1, this change in lease generation number is
used to ensure the recovery notification guarantee.

We found that sending the complete lease table for an
Owner in the LeaseRequest and LeaseResponse messages
significantly simplified development and debugging of the
lease protocol. We rarely had to reconstruct a long series
of message exchanges from the Manager log file to piece
together how the Owner or Manager had gotten into a bad
state. Instead, we could look only at the previous message
and the current message to see how they were incompat-
ible. Also, sending the complete lease table has reason-
able overhead — each Owner holds 64 ranges, each range
is 32B, and this adds up to only 2KB per Owner.

Lease recall in this design has one subtle issue, de-
picted in Figure 5. When an Owner wishes to drop a
lease (acknowledging a lease recall request), it sends a
LeaseRequest that contains only the ranges it wants to re-
new. This improves liveness, as the Manager will quickly

“ldon’thave “Hereis the
the lease.” lease.”
» “Since you returned
I'have the the lease, I'll give it
lease again!” to someone else.”

Figure 5. Without care, message crisscross can lead to
violating the single-copy guarantee.

find out that the range is safe to lease to someone else.
However, the Manager needs to be sure that there is no
earlier message en route to the Owner that the Owner will
interpret as regranting this range.

We solved this problem by adding two <sequence
number, nonce> pairs in all lease messages. The sender
of a message includes both its own <sequence num-
ber, nonce> pair and the most recent <sequence num-
ber, nonce> pair it heard from the remote node. The se-
quence numbers allowed us to drop one of the messages
whenever a crisscross occurred. The nonces allow rec-
ognizing crashes and discarding stale messages, as in the
Section 4.2.

4.4 Manager Failover

Figure 6 shows the internal architecture of the PRS
Manager. The PRS Manager is composed of several Man-
ager servers and a Paxos group. The bulk of the code
runs in the Manager server, while the Paxos group pro-
vides a single limited but important function: allowing
the Manager servers to compete to acquire a leader lease,
and hence quickly failover to a new server if one crashes.
This leader lease conveys responsibility for interacting
with Lookup and Owner libraries.

If the current leader fails, one of the other Manager
servers is able to acquire the lease after a short period of
time. On failover, all previously granted leases are al-
lowed to expire before any new leases are granted. This
is a semantically correct yet expensive operation — all soft
state being managed by this particular PRS Manager is
discarded and must be recreated. Although Paxos is not
being used here to provide state reliability, it is still pro-
viding a highly available mechanism for coordinating the
choice of a new Manager server. This allows the PRS to
quickly recover without operator intervention. Although
we have designed the protocol for the Manager to store its
state in Paxos and thereby eliminate the performance cost
of individual Manager failures, this is not something we
have finished implementing.

The Lookup and Owner libraries maintain a list of all
Manager servers. In the common case, the Lookup and
Owner libraries only send messages to the Manager server
holding the leader lease. If they ever find the leader to
be unresponsive, they start sending their messages to all
the Manager servers until they find a responsive leader, at

(" o—>
0—>
Messages from ™=
Lookupand Owner ___ D'_>
Manager Paxos
\ Servers Group

Figure 6. Internal Architecture of the PRS Manager:
Messages from Lookup and Owner libraries arrive at a
Manager server holding a leader lease; a Paxos group
runs the lease protocol and elects a leader from among
the Manager servers.

which point they switch back.

4.5 Manager Scalability

The PRS is designed to work within a datacenter man-
agement paradigm where the incremental unit of capacity
is a cluster of approximately 400 machines. Products like
Live Mesh are deployed into some number of clusters,
and each individual cluster is presumed to have good in-
ternal network connectivity (e.g., no intra-cluster commu-
nication crosses a WAN connection). The use of clusters
determines our scalability goals for the PRS — it must be
able to support all the machines within a single cluster.

Partitioning across clusters is also needed, but inter-
cluster partitioning requires tackling a different set of hard
problems related to geographic distribution: greater scale
and a less reliable network. When there are multiple clus-
ters, the current PRS design can be used within each clus-
ter, but a separate mechanism is needed to partition re-
sources across clusters. We are currently in the process of
designing and implementing such a mechanism.

Some approaches to geographic distribution may be
incompatible with hashing; Chord [21] represents an ap-
proach that fundamentally relies on hashing, while DNS
uses an administratively defined hierarchy. Because the
PRS allows hashing but does not require it (Section 2.1),
we are optimistic that it is compatible with a variety of
mechanisms for partitioning across clusters.

To further improve the scalability of the PRS, we have
implemented adaptive load management and state migra-
tion (i.e., when key ranges are transferred between own-
ers, the data is also transferred, instead of relying on it
being republished). The PRS running in production does
not include these features; they are part of the augmented
version of the PRS that we evaluate in Section 7. Owners
report their incoming request rate as their load. The adap-
tive load management algorithm uses these load measure-
ments to subtract a virtual node from any Owner that is
10% above the mean load, and to add a virtual node to
any Owner that is 10% below the mean load (currently it
is integrated with consistent hashing). The basic design
for state migration is for the PRS to transfer the lease, for

Component Lines of Code
Manager Only 7,432
Owner library Only | 1,629
Lookup library Only | 1,242
Shared 9,888

Table 2. Lines of code in each component of the PRS.

the application to transfer the data, and for them to coor-
dinate via upcalls.

4.6 Code Complexity

To give an idea of the overall complexity of each of
these components, we report in Table 2 the amount of
code unique to each one, as well as the additional PRS
code they all share. This count excludes both test code
and common utility libraries (such as logging support).
All code is written in C#. The “Shared” category includes
a simple messaging layer over TCP. The Paxos group is
implemented by adding a leader election operation to a
pre-existing generic Paxos layer; this code is not included
in the totals in the above Table.

5 Scale-Out Design Alternatives

In this section, we compare the PRS approach to sev-
eral alternative approaches for building scale-out soft-
state datacenter applications.

5.1 Weak Consistency

Many datacenter infrastructure services provide only
weak consistency: they do not guarantee that requests
on the same item will be routed to the same node. For
example, Dynamo [18] provides weakly consistent scale-
out storage, Tempest [53] provides weakly consistent in-
memory replicated state, and network load balancers [14]
perform weakly consistent request routing.

Weak consistency forces developers to confront a
well-known set of hard problems, such as implement-
ing application-specific reconciliation for divergent repli-
cas [11], or using a last-writer-wins policy that simply
drops previously successful operations. Previous work
has argued that these problems are manageable for par-
ticular applications: shopping carts in Dynamo [18], dy-
namic personalized content in the Ninja [49] project, and
academic citation search in OverCite [24] are notable ex-
amples. However, strong consistency provides a much
simpler programming model for developers, and it is a
better match for the desired behavior of many applications
(e.g., three of the four applications built using the PRS).

Weakly consistent systems do not preclude a strongly
consistent programming model, but to get this simpler
programming model, one has to add some additional
mechanism. For example, Amazon Web Services [7]

10

and Google App Engine [19] provide only weakly con-
sistent request routing to frontends, but they can sup-
port a strongly consistent programming model using their
strongly consistent storage. In later sections, we compare
the PRS to leveraging such storage systems.

5.2 Stored Procedures and Queries

Turning now to approaches that provide strong con-
sistency, we consider integrating all the application logic
into a scale-out storage system. This requires treating the
application’s state as hard state, regardless of the applica-
tion’s desired semantics. Typically, application logic exe-
cuted within a storage system is either a stored procedure
or a dynamically interpreted query. This approach allows
leveraging the storage system’s consistency, rather than
requiring an additional mechanism like the PRS. There
are many candidate scale-out storage systems for such
an approach: DDS [48], BigTable [15], S3 [51], Sim-
pleDB [52], the storage system described in Niobe [23]),
GFS [47], Lustre [32], Farsite [2, 13]), etc.

Keeping application logic separate from the storage
system has significant benefits. The first is performance:
the storage system’s use of replication and/or durabil-
ity incurs overheads that are not needed for soft state.
Debuggability and operability of the storage system are
also improved by keeping application logic separated: if
they are integrated, it becomes harder to assign respon-
sibility for any performance and reliability problems that
may arise. Restricting the storage system’s programming
model (e.g., by only allowing SQL) can mitigate this,
but such restrictions make the application developer’s job
harder. The PRS avoids these difficult tradeoffs by pro-
viding a programming model for arbitrary operations on
soft state with strong consistency.

5.3 Remixing Existing Infrastructure Services

Another approach to supporting soft-state scale-out
datacenter applications is to extract functional subsystems
from existing datacenter infrastructure services, modify-
ing them as necessary to compose a new system that better
targets soft-state applications. We will use Chubby [10],
GFS and BigTable as examples of such existing services.
To better compare these approaches to the PRS, we briefly
review their relevant aspects.

In GFS, a centralized manager (the GFS master) parti-
tions file chunks among GFS chunkservers. In BigTable, a
centralized manager (the BigTable master) partitions the
key space among tablet servers. In both cases, Chubby
is used to elect the centralized manager from a pool of
candidates. For BigTable, Chubby also provides liveness
monitoring of tablet servers, helping the BigTable master
to reassign key ranges from failed tablet servers. Chubby
does not provide partitioning directly, as witnessed by the
need to build both the GFS master and Bigtable master;

the closer analogues to the PRS are the BigTable or GFS
masters combined with Chubby.

These existing technologies do not provide two critical
aspects of the PRS: recovery notifications and reusable
partitioning. One can imagine designing a new system
supporting recovery notifications by extending the GFS or
BigTable master and using it with Chubby. One can also
imagine extending either the GFS or BigTable master to
provide partitioning as a reusable abstraction that supports
arbitrary operations and flexible consistency. However, it
is the PRS’s contribution to define these abstractions, to
show their usefulness, and to demonstrate one possible
implementation.

5.4 The Load/Operate/Store Pattern

Another approach to strong-consistency at the middle-
tier is to keep all the state in the scale-out storage sys-
tem between requests. The middle tier then loads the
relevant state at the beginning of every request, operates
on it, and stores it before returning. Optimistic concur-
rency control may be used to prevent simultaneous oper-
ations on the same state. By making the middle tier ef-
fectively stateless, consistency becomes trivial. This ap-
proach is described by Ling and Fox in their work on ses-
sion state [28].

Involving the storage system on every operation sac-
rifices the performance benefits of soft state. For exam-
ple, pure read operations at the middle tier must read from
the storage system on every operation to guarantee consis-
tency. For services where latency is critical to the user ex-
perience, this is highly undesirable. Avoiding these over-
heads requires caching data at the middle-tier with con-
sistency guarantees, and the PRS enables this.

5.5 Static Partitioning

Static partitioning refers to keeping a static mapping
of keys to middle-tier nodes at all frontends, e.g., by load-
ing the mapping from a configuration file at startup. This
provides strong consistency without the complexities of a
lease manager, but it incurs a large operational overhead.
For example, adding middle-tier nodes to accommodate
load requires manual intervention to stop all frontends
from sending requests on some of the keys while the map-
ping of keys to middle-tier nodes is updated. Maintenance
windows allow this kind of upgrade, but they are highly
undesirable in modern datacenter applications. The PRS
avoids such drawbacks by providing dynamic member-
ship and reconfiguration without sacrificing strong con-
sistency.

5.6 Session State

The session state abstraction for middle-tier state pro-
vides strong consistency but restricts the sharing seman-
tics: only the client that created some data can operate on

11

the data. If a user logs in using a different client, their
session state is unavailable. This restriction eliminates
the need for maintaining the location of the state within
the datacenter — it can instead be passed back to the caller
in a cookie. BEA WebLogic [26] and the Session State
Store [8] exploit these semantics to either simplify their
implementation or provide new functionality. Trickles [6]
exploits these semantics to push all state back to the client
on every message.

The session state sharing semantics fundamentally re-
strict the middle tier developer. Instant messaging, other
real-time communication applications, consistent caches,
and three of the four deployed applications we presented
in Section 3 all require a user experience that allows the
use of multiple clients and enables sharing between dif-
ferent users. The PRS meets the need for simultaneous
strong consistency and unrestricted sharing semantics in
the middle tier.

5.7 Summary

None of these six approaches to scaling out datacenter
applications simultaneously provides the programming
model benefits of strong consistency, arbitrary operations
and guaranteed recovery notifications, the manageabil-
ity benefits of dynamic partitioning, and the performance
benefits of operating on soft state. The PRS provides all
these desirable properties simultaneously.

6 Related Work

In the previous section we analyzed a number of design
alternatives to the PRS, and this led to comparing the PRS
to systems such as BigTable, S3, DDS, GFS, Chubby and
others. In this section we compare the PRS to systems that
are less applicable to scaling out soft-state datacenter ap-
plications, but which have some other aspect in common
with the PRS.

Systems designed for the wide-area have made very
different tradeoffs from the PRS. Peer-to-peer over-
lays (e.g., Chord [21]), wide-area anycast systems (e.g.,
GIA [27] and Castro et al [35]), and DHTs (e.g.,
DHash [16]) provide routing and storage primitives, but
none provide support for strong consistency. Various sys-
tems have explored moving computation to cache nodes
in the context of the web. These systems have either pro-
vided no consistency beyond the standard web TTL-based
mechanisms (e.g., Active Cache [42]) or they have only
provided consistency on hard state (e.g., Na Kika [44]).
Some wide area file-systems support strong consistency
(e.g., OceanStore [50] and WheelFS [25]); the PRS dif-
fers in its support for soft state, arbitrary operations and
recovery notifications.

Many distributed systems programming models have
been proposed in the past; we only touch here on those

that resemble some aspect of the PRS. TACT [57], Lazy
Replication [45], PRACTI [38] and others have explored
letting clients make different availability-consistency
tradeoffs within a single system, but they do not ex-
plore soft state or dynamically partitioning data across
a set of servers. Sinfonia [34] proposes a programming
model that encapsulates scale-out for building hard-state
datacenter services, while the PRS is designed for soft
state. Hilda [17, 39] proposes to improve middle-tier
programming using a declarative query language anal-
ogous to SQL, and it uses a centralized database for
concurrency control and persistence; the PRS does not
have this scaling bottleneck. Membership services (e.g.,
SWIM [3]) and failure detection services (e.g., Heart-
beat [33]) provide failure notifications about individual
nodes; FUSE [22] provides failure notifications about
FUSE groups, which typically correspond to data stored
on multiple machines. By integrating partitioning with
recovery notifications, the PRS can provide notifications
that ranges of the key space may have failed, a better fit
for the PRS’s target class of applications.

7 Evaluation

The PRS is deployed in production, and as of April
2008, it supports live user traffic on over 250 frontend
nodes and over 50 middle-tier nodes. In this deployment,
failures have been quite rare. For example, over a one
week period, only one middle-tier node lost its lease, and
this was due to a permanent hardware failure. However,
the PRS Manager was intentionally crashed once in the
production environment to measure the impact on the sys-
tem; Manager failover worked as designed, and the appli-
cations rapidly recreated their soft state.

The rest of this section evaluates a version of the PRS
that extends the production version with two additional
features: it performs adaptive load management and it
moves ranges of items without requiring state recreation.
For our experiments, it is configured to run with a single
Manager, omitting the occasional call to a Paxos group for
leader election. Our evaluation focuses on the scalability,
availability, and adaptability of the PRS.

Our experimental cluster consists of 11 2.4 GHz Xeon
dual-processor servers with hyper-threading enabled, 1
Gbps NICs, and 2-4 GB of RAM each. We dedicate
one server to run the Manager, five servers to run a large
number of frontends, and five servers to run a large num-
ber of middle-tier nodes. This small number of servers
does not prevent evaluating the PRS at scale. First, the
Manager is isolated on a single machine, just as it is in
the production environment. The Manager’s interactions
with the frontends and middle-tier nodes are the same as
if the frontends and middle-tier nodes had been spread out
one node per machine. Because the Manager determines

12

20%
X churn X
16%
g ’ Ostable
8 12% -
Z o
3 8%
a.
(&}
4% X
0% 2 8 .
200,50 400,100 1000, 250 2000, 500
frontends, # middle-tier servers

Figure 7. The CPU load on the manager as we increase
the number of frontends and middle-tier servers.

how far the PRS can scale, the experimental configura-
tion allows realistically evaluating this aspect of the PRS.
Second, all frontends and middle-tier nodes have to com-
municate across a machine boundary; co-locating many
frontends on one machine and many middle-tier nodes on
another machine does not eliminate any communication
overhead. On each physical server, all frontend or middle-
tier nodes run within a single process to reduce memory
overhead, but they all create their own threads and their
own instances of the Lookup or Owner objects.

The test application we run on the frontends and
middle-tier nodes is a simplified version of Instant Mes-
saging. In the test application, frontends can issue inserts,
updates and reads, while the middle-tier servers perform
these operations and store the user presence (IM address,
presence status and last known IP address). We have
found that the deployed applications using the PRS typ-
ically have about four to five times as many frontends as
middle-tier nodes, and so we chose a similar ratio in our
evaluation.

7.1 Scalability

We begin by evaluating the scalability of the PRS both
with and without failures. Figures 7 and 8 show the CPU
and network load at the Manager as the number of fron-
tends and middle-tier nodes is increased. In the absence of
frontend/middle-tier failures, the CPU and network load
on the Manager are quite small, and the Manager easily
scales to 2000 frontends and 500 middle-tier nodes. The
Manager’s current bottleneck to scaling further is mem-
ory consumption during churn, when nodes are rapidly
added and/or removed — this is not a case that the current
implementation is extensively optimized for. In the pro-
duction environment, the Manager maintains less than 1
MB of state when there is no change in the system. In our
experiments, we similarly find that memory consumption
is quite small except when the set of nodes in the system
is changing. However, as described in Section 4.5, scal-

1400
X ch
1200 churn X
Ostable
1000
o 800 -
a
= 600
x
400 X
200 o)
0 ® L] -
200, 50 400,100 1000, 250 2000, 500
frontends, # middle-tier servers

Figure 8. The network load on the manager as we in-
crease the number of frontends and middle-tier servers.

ing to 2500 nodes meets our current needs. Also, because
the Manager scales to these 2500 nodes on a 32-bit OS
running on a server purchased in 2003, we are optimistic
that further scaling is possible; the production version is
64-bit.

To measure the effect of failures, we cause each node
to randomly restart with a mean node lifetime of 8 hours.
At the largest scale in our evaluation, 2500 machines, a
mean node lifetime of 8 hours corresponds to about one
machine failure every 12 seconds. This is significantly
more often than is typical in a managed datacenter envi-
ronment — we have observed over the past few months
in our production environment that datacenter machines
typically run for weeks between restarts. We choose this
adversarial restart rate simply to show that the Manager
can tolerate far more than a realistic server restart rate;
even here, the PRS can scale up to 2500 nodes.

7.2 Availability

The primary impact of failure is lack of availability.
Because the test application frontends republish data and
retry failed requests, this availability penalty translates to
additional latency. For example, if some data is unavail-
able for 30 seconds, an operation that normally would
complete in 0.1 seconds may instead require 30.1 seconds.
The particular strategy implemented by the test applica-
tion frontends is to retry once every 30 seconds for up to
5 minutes.

We choose a scenario where an entire rack of servers
(specifically, 50 servers) is accidentally powered down
and then powered back up several minutes later. We
start measurement at the moment the rack is brought back
online, by which point the old leases have already ex-
pired. In this experiment, the entire middle tier is only
250 servers, and there are 1000 frontends. The keys as-
signed to the 50 new middle-tier servers are unavailable
for a short period of time as new leases are granted. We
see in Figure 9 that about 1 out of 5 of the keys has a

13

0.4 —#—Rack Reset
=&—Normal
0.2
0
0 10 20 30 40 50
Seconds

Figure 9. CDF of the latency for frontends to complete
operations: normal operation compared to immediately
after a rack of servers resets.

100

90

80

70

Load

60

+

7S

50

+
% * +
:ﬂo‘o * *
P

+ +
¢ *
40 T T

5:03:50 AM 5:18:14 AM 5:32:38AM 5:47:02AM 6:01:26 AM

Figure 10. Servers that were above the threshold for
adaptive load management over the course of an hour.

latency of access that stretches out over tens of seconds.
This 1-in-5 ratio is what we expect from the fact that the
50 middle-tier nodes we restarted are 1/5" of the total
number of middle-tier nodes.

Complete reset of an entire rack of servers is a ma-
jor operational event. Restoring availability in less than
a minute on the subset of the key space that was lost
is fast compared to even just the time until the middle-
tier servers leases expire (one minute). This experiment
demonstrate the PRS’s effectiveness at restoring availabil-
ity quickly after a major failure.

7.3 Adaptive Load Management

To evaluate the PRS’s ability to do adaptive load man-
agement, we generate a Zipf distribution of skewed key
popularity, and all the frontends direct their operations
to keys chosen according to this distribution. We set
the Zipf parameter as o = 0.8. Figure 10 begins when
the workload starts. The average load during the exper-
iment is 20%, but several servers are significantly more
than 40% loaded. Figure 10 shows these heavily loaded

servers. Over the course of the hour, the adaptive load
management algorithm reacts to the skew in the workload
and re-distributes responsibility away from highly loaded
servers, resulting in significantly fewer by the end of the
hour.

8 Conclusion

Datacenter applications are of enormous commercial
importance. Prior work has made great strides in pro-
viding better scale-out software infrastructure, but this
infrastructure has not targeted the middle tier: soft-state
datacenter applications. Previous work on DHTs demon-
strated the value of providing request routing without stor-
age [5, 35]. The PRS takes a similar philosophical ap-
proach, but we have found that soft-state datacenter ap-
plications additionally require strong consistency and re-
covery notifications. By providing these, the PRS makes
it easier to build and deploy compelling soft-state datacen-
ter applications. The PRS has been validated on a number
of levels: other developers have built four applications us-
ing the PRS; these applications have been deployed and
are serving real customer requests; and we have evaluated
an experimental version of the PRS. In future work, we
plan to explore whether some of the PRS ideas can also
be applied in a hard-state context.

References
[11 A. Adya. Weak Consistency: A Generalized Theory and Opti-

mistic Implementations for Distributed Transactions. PhD thesis,

Massachusetts Institute of Technology, 1999.

A. Adya et al. Farsite: federated, available, and reliable storage

for an incompletely trusted environment. OSDI, 2002.

A. Das et al. SWIM: Scalable Weakly consistent Infection-style

process group Membership protocol. DSN, 2002.

A. Fox et al. Cluster-Based Scalable Network Services. SOSP,

1997.

A. Rowstron et al. Scribe: The design of a large-scale event noti-

fication infrastructure. NGC, 2001.

A. Shieh et al. Trickles: A Stateless Network Stack for Improved

Scalability, Resilience, and Flexibility. NSDI, 2005.

Amazon Web Services. http://aws.amazon.com.

B. Ling et al. Session state: beyond soft state. NSDI, 2004.

Bugzilla. http://wiki.mozilla.org.

M. Burrows. The Chubby lock service for loosely-coupled dis-

tributed systems. OSDI, 2006.

D. Terry et al. Managing update conflicts in Bayou, a weakly con-

nected replicated storage system. SOSP, 1995.

J. Dean and S. Ghemawat. MapReduce: simplified data processing

on large clusters. OSDI, 2004.

J. Douceur and J. Howell. Distributed directory service in the Far-

site file system. OSDI, 2006.

J. Elson and J. Howell. Handling Flash Crowds from Your Garage.

USENIX ATC, 2008.

F. Chang et al. Bigtable: A Distributed Storage System for Struc-

tured Data. OSDI, 2006.

F. Dabek et al. Wide-area cooperative storage with CFS. SOSP,

2001.

F. Yang et al. Hilda: A High-Level Language for Data-DrivenWeb

Applications. ICDE, 2006.

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(1]
(12]
[13]
[14]
[15]
[16]

[17]

14

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]

[56]
[57]

G. DeCandia et al. Dynamo: amazon’s highly available key-value
store. SOSP, 2007.

Google App Engine. http://appengine.google.com.

Google Talk. http://www.google.com/talk.

I. Stoica et al. Chord: A scalable peer-to-peer lookup service for
internet applications. SIGCOMM, 2001.

J. Dunagan et al. FUSE: lightweight guaranteed distributed failure
notification. OSDI, 2004.

J. MacCormick et al. Niobe: A Practical Replication Protocol.
ACM Transactions on Storage, 3(4):1-43, 2008.

J. Stribling et al. Overcite: A cooperative digital research library.
NSDI, 2006.

J. Stribling et al.
IPTPS, 2007.

D. Jacobs. Distributed computing with BEA WebLogic server.
CIDR, 2003.

D. Katabi and J. Wroclawski. A framework for scalable global
IP-anycast (GIA). SIGCOMM, 2001.

B. Ling and A. Fox. The case for a session state storage layer.
HOTOS, 2003.

Live Meeting. http://office.microsoft.com/livemeeting.

Live Mesh. http://www.mesh.com.

Live Messenger. http://messenger.live.com.

Lustre. http://www.lustre.com.

M. Aguilera et al. Heartbeat: A Timeout-Free Failure Detector
for Quiescent Reliable Communication. Workshop on Distributed
Algorithms, 1997.

M. Aguilera et al. Sinfonia: a new paradigm for building scalable
distributed systems. SOSP, 2007.

M. Castro et al. Scalable application-level anycast for highly dy-
namic groups. NGC, 2003.

M. Isard et al. Dryad: distributed data-parallel programs from
sequential building blocks. EuroSys, 2007.

Memcached. http://www.danga.com/memcached.

N. Belaramani et al. PRACTI replication. NSDI, 2006.

N. Gerner et al. Automatic client-server partitioning of data-driven
web applications. SIGMOD, 2006.

NCache. http://www.alachisoft.com.

Office Communicator. http://office.microsoft.com/communicator.
P. Cao et al. Active Cache: caching dynamic contents on the Web.
Distributed Systems Engineering, 6(1):43-50, 1999.

Q. Luo et al. Middle-tier database caching for e-business. SIG-
MOD, 2002.

R. Grimm. Na Kika: Secure service execution and composition in
an open edge-side computing network. NSDI, 2006.

R. Ladin et al. Providing high availability using lazy replication.
ACM Transactions on Computer Systems, 10(4):360-391, 1992.
RSS. http://www.rssboard.org.

S. Ghemawat et al. The Google file system. SOSP, 2003.

S. Gribble et al. Scalable, distributed data structures for internet
service construction. OSDI, 2000.

S. Gribble et al. The Ninja architecture for robust Internet-scale
systems and services. Computer Networks, 35(4):473-497, 2001.
S. Rhea et al. Pond: the OceanStore prototype. FAST, 2003.

S3. http://aws.amazon.com/s3.

SimpleDb. http://aws.amazon.com/simpledb.

T. Marian et al. Tempest: Soft State Replication in the Service
Tier. DSN-DCCS, 2008.

W. Weihl. Local Atomicity Properties: Modular Concurrency
Control for Abstract Data Types. ACM Transactions on Program-
ming Languages and Systems, 11(2):249-282, 1989.

Wikipedia. http://www.wikipedia.org.

Yahoo Messenger. http://messenger.yahoo.com.

H. Yu and A. Vahdat. The costs and limits of availability for repli-
cated services. SOSP, 2001.

Don’t Give Up on Distributed File Systems.

