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Abstract

We present a new ranking algorithm that combines the strengths of two
previous methods: boosted tree classification, and LambdaRank, which has
been shown to be empirically optimal for a widely used information retrieval
measure. The algorithm is based on boosted regression trees, although the
ideas apply to any weak learners, and it is significantly faster in both train
and test phases than the state of the art, for comparable accuracy. We also
show how to find the optimal linear combination for any two rankers, and
we use this method to solve the line search problem exactly during boost-
ing. In addition, we show that starting with a previously trained model, and
boosting using its residuals, furnishes an effective technique for model adap-
tation, and we give results for a particularly pressing problem in Web Search
- training rankers for markets for which only small amounts of labeled data
are available, given a ranker trained on much more data from alarger market.

1 Introduction

We consider the ranking problem for Information Retrieval (IR), wherethe task is
to order a set of results (documents, images or other data) by relevance toa query
issued by a user. Ranking is a core technology that is fundamental to widespread
applications such as internet search and advertising, recommender systems, and
social networking systems. In this paper, we propose a new ranking algorithm
that combines the strengths of two previous approaches: LambdaRank [2], and
boosting. LambdaRank has been shown to be a very effective ranking algorithm
for optimizing IR measures. It leverages the fact that neural net trainingneeds only
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the gradients of the cost function, not the function values themselves, andit models
those gradients using the sorted positions of the documents for a given query. This
bypasses two significant problems, namely that typical IR measures [10],viewed
as functions of the model scores, are either flat or discontinuous everywhere [1],
and that those measures require sorting by score, which itself is a non-differentiable
operation. On the other hand, it was recently shown that treating the ranking prob-
lem as a simple classification problem, followed by mapping the outputs to a single
score by computing the expected relevance, and using boosted trees as the classi-
fiers (“McRank”), can work remarkably well [9]. However, McRankis inefficient
in test phase (each round of boosting requires as many trees as there are classes).
Yet, its success suggests that using boosted trees in an algorithm that directly opti-
mizes the IR cost function, rather than simply treating the problem as a classifica-
tion problem, may give further improvement to the accuracy / speed tradeoff. This
paper presents such an algorithm.

We consider retrieval problems with five levels of relevance and we use the
Normalized Discounted Cumulative Gain (NDCG) relevance measure [7], which is
suitable for non-binary relevance measures and which emphasizes the topreturned
results. For a given queryQi, i = 1, ..., m the NDCG is defined as:

Ni ≡ ni

T
∑

j=1

(2r(j) − 1)/ log(1 + j) (1)

wherer(j) ∈ {0, ..., 4} is the integer label for the relevance level of thejth URL in
the sorted list, and whereT is the truncation level at which the NDCG is computed.
Hereni is a normalization constant chosen so thatNi = 1 for a perfect ranking for
truncation levelT . For multiple queries, the NDCGs are simply averaged.

2 Relation to Previous Work

Recently the problem of learning to rank has attracted increasing attention in the
machine learning community. As described above, a key goal is to set up a learn-
ing problem that can be solved efficiently for an underlying problem that isnon-
smooth, non-convex and in fact combinatoric. Yue et al. used SVMs to optimize
a convex upper bound on Mean Average Precision, a widely used binary measure
[13]. Le and Smola proposed using the Hungarian Marriage algorithm to optimize
a convex bound on any general IR measure [8]. However, although these algo-
rithms are fast in test phase for linear kernels, one generally needs moreexpressive
models for the Web Search problem, and using general kernels renderssuch meth-
ods to be unacceptably slow. Other approaches have modified AdaBoostfor NDCG
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[11] and have considered ranking using the whole list of returned results as input
for computing the score of a given document [4]. At the other extreme, ignoring
the IR measure and treating the problem as a classification problem, using boosted
trees as proposed by Li et al. [9], works remarkably well. However theresulting
algorithm (“McRank”) is slow (in both train and test phases) since it requires as
many trees per iteration as classes (namely, five, in [9]). One might hope thatsim-
ply treating the problem as a regression problem would yield the same performance
speedup for similar accuracy, but [9] showed that regression does not work as well
as classification for this task. Zheng et al. [14] propose a method of usinggradient
boosting for ranking on smooth pairwise loss functions, but most IR metrics,such
as NDCG, are non-smooth and cannot be optimized directly in this framework.
Prior to this work, neural nets were shown to give good results [2, 3], and in par-
ticular, a training method called LambdaRank [2] has been shown to optimize the
NDCG measure [5, 12], which is a very intriguing result. The LambdaRank trick
is basically to note that neural net training requires only the gradients (of the cost
with respect to the model scores), and that these can be chosen heuristically, based
on the rank position and label of each document,after the sort. The LambdaRank
gradients reported in [2, 5, 12] are the gradient of the pairwise log binomial loss
[3] multiplied by the NDCG gained by swapping the two documents, and then
summed over pairs of documents (see Section 4); they are smooth functions of the
document ranks (in that the gradients change smoothly as two adjacent documents
exchange rank positions during learning); the idea is to rely on the (also smooth)
RankNet cost gradient to encode the dependence on the document scores.

Boosted trees are very flexible models. For example, they handle categorical
and count data better than neural nets (they can use count data directly,whereas
nets require inputs with similar dynamic ranges); they give models for which the
importance of each feature can be computed directly; and truncating the number of
boosted trees (in the order in which they were trained) gives a simple method for
trading off speed and accuracy. This tradeoff is particularly important for a Search
Engine, where one is often willing to sacrifice accuracy for improved speed. The
work described above raises the following question: can we combine the flexi-
bility of boosted trees, with the empirical optimality that has been observed for
LambdaRank, to construct a ranker that has the benefits of both methods?It is this
question that we investigate in this paper. Following [9], we will use MART [6]as
the starting point. The principal novelty of our work springs from three mainideas:
first, we use the LambdaRank gradients when training each tree, so that asopposed
to McRank, the number of trees per boosting iteration is just one. In addition,the
use of LambdaRank gradients allows us to consider highly non-smooth IR metrics,
such as DCG and NDCG. Previous work combining pairwise cost functionswith
MART allow for only smooth, twice-differentiable risk functions [14] and donot
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take the entire results set for a given query into consideration, which is very impor-
tant for complex ranking metrics such as NDCG. It is not obvious how to combine
the LambdaRank gradients with MART (for example, the LambdaRank gradients
depend on pairs of samples, and typically MART is used for costs that depend on
individual samples); solving this is a principal contribution of our work. Second,
a major problem that Search Engines face, beyond the basic ranking problem, is
model adaptation: for example, using labeled data for a large, established market as
a starting point to train models for markets with much smaller labeled dataset sizes.
To address this problem we use the additive nature of boosted trees to replace the
first tree with a previously trained model (a “submodel”); hence the name ofour al-
gorithm, “LambdaSMART”, for Lambda-submodel-MART, or LambdaMART for
the case with no submodel. Third, we present a new method for finding the opti-
mal linear combination of any two rankers, for any IR measure. We begin withthe
latter.

3 How To Optimally Combine Two Rankers

The problems that IR measures present for optimization, as described above, can
be turned to our advantage. Here we show how this property can be leveraged
to find the optimal linear combination of any two rankers. For concreteness we
will refer to NDCG, but the method applies to any IR measure. Our method can
be used to combine, for example, rankers trained on different data sets,or trained
using different algorithms; we will use it below to find optimal combinations of
weak learners during boosting.

The idea is a path-following method and is illustrated in Figure 1. There, the
vertical lines represent the ranges of the outputs of two different rankers,R and
R′, for the same single query; each point on each line is the score for a particular
document, wheresR

i denotes the score for documenti from RankerR, and the
scoressR

i andsR′

i are convexly combined assi = (1 − α)sR
i + αsR′

i , α ∈ [0, 1].
As α sweeps from 0 to 1, the score for each document follows the corresponding
line moving from left to right. Whenα = 0, the score is precisely RankerR’s
score, and whenα = 1, the score is precisely RankerR′’s score. Due to its discrete
nature, the NDCG can only change when two or more lines cross (and whenthe
corresponding labels of the documents differ). Hence we can simply enumerate all
possible values ofα for which the NDCG changes by analytically computing all
possible crossing points. Thus, at each crossing point, we only have to evaluate the
change in NDCG caused by swapping the two documents involved in the crossing.
This is anO(n2) algorithm, wheren is the mean number of documents returned
per query (as are many ranking algorithms). Note that the requirement thatwe
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keep track of the NDCG as the mixing parameterα sweeps from 0 to 1 means
that (1) for a given query, every pair of documents with different labels must be
examined (since the NDCG will change when they swap rank positions) and (2) for
a given query, every pair of documents with the same label must also be examined
(since we must also keep track of every document’s rank to use in subsequent
computations of the NDCG). These together mean that the algorithm cannot do
better thanO(n2). For multiple queries, we compute all crossing pointsαc for all
queries, and then sort theαc. By traversing this sorted list we can then analytically
compute the change in NDCG for every crossing point across all queries, and save
the value ofαc that gives the highest overall NDCG.

A boosting model in functional form may be written asF (x) =
∑

i αifi(x),
wherex is the input feature vector and where thefi are the weak learners. Usually
the weightαi is learned oncefi has been trained, using for example a Newton-
Raphson step (which requires an estimate of the inverse Hessian) [6], and αi is
then left fixed. The inverse Hessian is approximated since it is too expensive to
compute exactly. The method proposed here gives anO(n2) algorithm to com-
puteαi exactly, given the trainedfi, obviating the need for the Newton-Raphson
step. Methods to avoid overfitting, such as “shrinkage” [6], can equallywell be
applied to theα’s computed using our path following algorithm, which has the sig-
nificant advantage that theα one starts with is known to be optimal for the training
data. In the case of boosting models, it is more convenient to fix the weight of
the current rankerR output at 1 and letα vary from 0 up to some maximal value:
si = sR

i + αsR′

i , whereR =
∑i−1

j=1 αifi(x) is the model up to that boosting itera-
tion andR′ = fi(x) is the new tree to be added to the model. In computing a given
α, degeneracies (where several lines in Figure 1 cross at the same point)can either
be computed analytically or removed by adding jitter (very small random values) to
the scores. Degeneracies at the endpoints (which is commonly encountered when
training trees) can be similarly handled, or can be broken by addingε � 1 times
the value of a strong, floating point feature that correlates positively with relevance
(such as BM25) to the model score; however we chose a more principled approach,
that of computing the expectation of the NDCG, given that the ranks of the docu-
ments with a given score all have equal probability. Note that this expectationcan
in fact be computed efficiently with a single loop over the documents for any given
query. Finally we note that, for cases where limiting the number of trees provides
sufficient regularization for the data at hand (so that no shrinkage is needed), we
can get improved fits for all theαi by iteratively recomputingαj given that allαk 6=j

are held fixed, so that at any iteration we are computing the optimal combination
of two rankers. This iterative procedure is guaranteed to converge since the NDCG
is monotonically non-decreasing at every step. We emphasize that our method for
optimally combining ranker works for any set of rankers (although optimality is
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only guaranteed for a given pair of rankers), and in particular it is notlimited to
boosting models; it may for example prove useful for constructing ensembles of
rankers.

sR
k

sR′

ksR
i

sR′

i

sR
j sR′

j

α = 0 α = 1

RankerR RankerR′

Figure 1: Optimally combining two rankers. NDCG changes only at the crossing
points. The two vertical lines represent the sorted list of scores output by Ranker
R andR′, respectively.sR

i indicates the score of documenti ouput by rankerR.

4 The LambdaSMART Algorithm

LambdaSMART is built on MART, the details for which we refer the reader to
[6]. Recall that at each boosting iteration, MART builds a regression treeto model
the functional gradient of the cost function of interest, evaluated at all the training
points. Our approach does the same but with the LambdaRank functional gradi-
ents, since we are interested in optimizing NDCG. Since NDCG is either flat or
discontinuous everywhere, LambdaRank uses an approximation to the gradient of
the cost, calledλ-gradients. A particular document is given a (scalar)λ-gradient
which is computed using all the pairs of documents for which that document occurs
as a member of the pair, and for which the other member of the pair was gener-
ated for the same query, but has a different label. Theλ-gradient consists of the
product of two factors: (1) the RankNet cost [3] (a pairwise cross-entropy loss,
applied to the logistic of the difference of the model scores), and (2) the NDCG
gained by swapping the pair,∆NDCG. Although the first factor is pairwise (only
depending on the local information of the pair), the second factor depends on the
global structure of the entire query and the metric under consideration (in our case,
NDCG). It is due to these two components that LambdaRank can be applied to any
IR metric (by substituting that metric for NDCG), and in fact has been shown to
be empirically optimal for several such metrics [5, 12]. Theλ-gradients may be
written as

λij ≡ Sij

∣

∣

∣

∣

∆NDCG
∂Cij

∂oij

∣

∣

∣

∣

(2)
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whereoij ≡ si − sj is the difference in ranking scores for a pair of documents in a
query (here we are usingsi as a shorthand forF (xi)), Cij ≡ C(oij) = sj − si +
log(1 + esi−sj ) is the cross-entropy cost applied to the logistic of the difference
of the scores,∆NDCG is the NDCG gained by swapping those two documents
(after sorting all documents by their current scores), andSij ∈ {−1, 1} is plus
one if documenti is more relevant than documentj (has higher label value) and
minus one if documenti is less relevant than documentj (has lower label value)
[2]. Note that∂Cij/∂oij = ∂Cij/∂si = −1/(1+eoij ), and that the overall sign of
λij depends only on the labels of documentsi andj, and not on their rank position.
Each point then sums itsλ-gradients for all pairsP in which it occurs

λi =
∑

j∈P

λij (3)

LambdaRank has a physical interpretation in which the documents are point masses
and theλ-gradients are forces on those point masses; theλ’s generated by any given
pair of documents are then equal and opposite. A positive lambda indicates apush
toward the top rank position and a negative lambda indicates a push toward the
lower rank positions [2].

Algorithm 1 The LambdaSMART algorithm.
1: for i = 0 to N do
2: F0(xi) = BaseModel(xi) \\BaseModel may be empty or set to a sub-

model.
3: end for
4: for m = 1 to M do
5: for i = 0 to N do
6: yi = λi

7: wi = ∂yi

∂F (xi)
8: end for
9: {Rlm}L

l=1 \\CreateL-terminal node tree on{yi, xi}
N
i=1

10: γlm =

∑

xi∈Rlm
yi

∑

xi∈Rlm
wi

\\Find the leaf values based on approximate Newton

step.
11: Fm(xi) = Fm−1(xi) + v

∑

l γlm1(xi ∈ Rlm)
12: end for

Algorithm 1 summarizes the LambdaSMART algorithm; it assumes there are
N total documents in our training set and that we wish to trainM stages (trees).
We optionally load a submodel in Step 2. This is easy to implement: one simply
starts by computing the LambdaRank functional gradients of the cost function us-
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ing the scores output by the submodel, and then trains the trees as described in the
algorithm.

LambdaSMART training then proceeds similarly to [6].M rounds of boosting
are performed, and at each boosting iteration, a regression tree is constructed and
trained on all documents for all queries. We can choose the iteration to stop at
based on performance on a validation set.

Steps 6 calculates theλ-gradients for each documenti, as described above.
Step 7 calculates the second-order derivative using theλ-gradients (which are
smooth in the scores). A regression tree withL terminal nodes is built in step
9, using Mean Squared Error to determine the best split at any node in the regres-
sion tree. The value associated with a given leaf of the trained tree is computed
first as the mean of theλ gradients for the training samples that land at that leaf.
Then, since each leaf corresponds to a different mean, a one-dimensional Newton-
Raphson line step is computed for each leaf (Step 10). These line steps may be
simply computed as the derivatives of the LambdaRank gradients with respect to
the model scoressi. Finally, in Step 11, the regression tree is added to the current
boosted tree model, weighted by the shrinkage coefficientv, which is chosen to
regularize the model.

LambdaSMART has three main parameters:M , the total number of boosting
iterations,L, the number of leaf nodes for each regression tree, andv, the “shrink-
age coefficient” - the fraction of the optimal line step taken. Using a shrinkage
coefficient with value less than one is a form of regularization [6]. We selected
the optimal parameters by using a validation set. Fortunately, as verified in our
experiments, the performance of the algorithm is relatively insensitive to these pa-
rameters as long as they are in a reasonable range: given the training setof a few
thousand queries or moreM = 500, L = 15, andv = 0.1 usually give good
performance. Smaller trees and shrinkage may be used if the training data set is
smaller.

A novelty of our approach over the algorithms described in [6] is that we use a
pairwise cost function, in particular for non-smooth metrics, which has been shown
to give excellent performance for ranking [2, 3]. Since we are optimizingNDCG
at each step, we do not need thenumber-of-classes trees per iteration that McRank
needs. We could also achieve one tree per iteration by considering regression in-
stead of classification. However, regression has been shown to causea decrease in
accuracy (see Figure 1 of [9]); our approach overcomes this drawback.
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5 Experiments

We perform experiments to (1) compare the accuracy and speed of LambdaSMART
and LambdaMART to LambdaRank and McRank (the latter two algorithms are
state-of-the-art rankers and have been reported to outperform previous state-of-the-
art rankers on the Web Search task); (2) assess the effectivenessof model adapta-
tion by training a base model and boosting it using different data sets; and (3)
provide preliminary results on whether the optimal ranker combination improves
the NDCG and the learning speed over the Newton step.

5.1 The Data

The data sets include the artificial and Web-1 data sets used in [2, 3, 9], and a more
recent data set, Web-2, used for the model adaptation studies. We also use four
language data sets, namely Korean, English, Chinese, and Japanese, for model
adaptation studies. All data sets contain samples labeled on a 5-level relevance
scale. In all cases, the train/valid/test sets contain non-overlapping queries.

The artificial data set was synthetically produced to mimic a perfectly labeled
data set, as in [3]. It was created from random cubic polynomials and contains
50 features. There are 50 URLs per query and 10K/5K/10K in train/valid/test
sets. The Web-1 data has 367 features, with on average 26 URLs per query,
and 10K/5K/10K queries for train/valid/test sets. Web-2 is constructed by sub-
sampling queries whose length1 are four or more from its superset Web-2-Super.
Web-2-Super contains queries of all lengths. The Web-2 data has 4666features. On
average, there are 170 URLs per query, and 525/225/500 queries for train/valid/test
sets. The Web-2-Super set contains 14893/1230/6402 queries for train/valid/test
sets. In our query length model adaptation experiment, Web-2-Super serves as the
background domain and Web-2 serves as the adaptation domain.

For across-domain adaptation experiments from non-Korean to Korean mar-
kets, we use Korean data for the adaptation domain, and English, Chinese,and
Japanese data sets as the background domain. The Korean data has 425features
with a total of 4430 queries. The average number of URLs per query is 75. The
train/valid/test sets contain 3724/372/334 queries, respectively. The English data
contains 6167 queries, with on average 198 URLs per query. The Chinese data
comprises 32827 queries with on average 72 URLs per query. The Japanese data
comprises 45012 queries with on average 58 URLs per query.

The Web and language data sets contain features constructed from the docu-
ment (including anchor text and URL information), the query, and matches be-
tween the document and the query. Although the data sets are not of the sizethe

1We use query length to mean the number of words in the query.
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ranker would see at test phase, the sets used for training are of the rough order of
magnitude of those used for web scale training. In particular, we show thatour
algorithm is fast enough at test phase to handle web scale test data, in particular
due to the fewer number of required trees.

5.2 Model Parameters

Model parameters are chosen using validation sets: here we summarize the best
settings found. LambdaRank is tuned by varying the number of layers, the number
of hidden nodes, and the learning rate. For all data sets we use two layersunless
otherwise stated, and ten hidden nodes. On the artificial data, we use a learning
rate of10−4; for the Web-1 data, we use a learning rate of10−5; and for the Web-
2 data, we use a learning rate of10−4. McRank and LambdaSMART are both
tuned by varying the number of leaf nodesL, the shrinkagev, and the number
of boosting iterationsM . For McRank we setL = 10, L = 0.05 and M =
1000 for all datasets, as in [9]. For LambdaMART we useM = 1000 andv =
0.1 for all datasets,L = 10 for the artificial data, andL = 15 for the Web-
1 data. For LambdaSMART (the model adaptation experiments) we useM =
500, L = 20, andv = 0.1. Although LambdaSMART is in general not sensitive
to model parameters, we report the best parameters found on validation data for
completeness and as a principled way to find model parameters. Our results do not
imply sensitivity to model parameters.

5.3 Accuracy Results

We compare results of LambdaRank, McRank, and LambdaMART on the artifi-
cial and Web-1 data. We use LambdaMART since we found that in this setting it
performs as well or better than LambdaSMART on the validation data. We report
NDCG results (where queries for which all URLs have the same label havebeen
dropped), at truncation levels 10, 3, and 1.

Table 1 lists the NDCG results on the 10K artificial test queries. The artificial
data has no label noise, so less strongly regularized models such as McRank and
LambdaMART learn the data well and outperform a 2-layer LambdaRank model.
Both McRank and LambdaMART were run for 1000 iterations; note that McRank
therefore has 5000 trees, as opposed to LambdaMART’s 1000.

Table 2 lists the results of the three algorithms on the 10K Web-1 test queries.
McRank and LambdaMART exhibit similar asymptotic performance here, although
as we shall see in the next section, LambdaMART exhibits better speed/accuracy
tradeoff behavior. The NDCG results on both data sets indicate that McRank and
LambdaMART outperform LambdaRank.
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Table 1: LambdaMART, McRank and LambdaRank results on the artificial data
set, with 95% confidence intervals. Results are reported for NDCG at truncation
levels 10, 3 and 1.

λ-MART McRank λ-Rank

NDCG@10 87.9 (0.16) 83.7 (0.19) 75.4 (0.25)
NDCG@3 81.7 (0.32) 75.6 (0.36) 67.8 (0.41)
NDCG@1 79.6 (0.56) 72.2 (0.65) 65.8 (0.66)

Table 2: LambdaMART, McRank and LambdaRank results on the Web-1 dataset.
Results are reported for NDCG at truncation levels 10, 3 and 1.

λ-MART McRank λ-Rank

NDCG@10 69.3 (0.46) 69.7 (0.46) 68.6 (0.47)
NDCG@3 62.5 (0.60) 62.9 (0.60) 61.5 (0.60)
NDCG@1 61.3 (0.81) 61.6 (0.81) 60.4 (0.82)

5.4 Speed vs. Accuracy Results

The most significant advantage of LambdaSMART over McRank is its improved
behavior regarding the speed/accuracy tradeoff. This is crucial forreal time appli-
cations such as Web Search, where typically results must be returned to theuser
within milliseconds of their issuing a query. Figure 2 plots accuracy (NDCG@10)
versus speed (the number of boosted trees) for bothλ-MART and McRank, for
both the artificial and the Web-1 data. Again the validation set was used to choose
the optimal settings, which were found to beL = 20 andv = 0.15 (from ranges
L = 10, 15, 20 andv = 0.05, 0.1, 0.15). The graphs show the results on the test
set, for systems trained with the above optimal settings. Since both methods use
the same number of leaf nodes, the number of trees provides a reliable measure of
speed. The faster learning exhibited byλ-MART gives a significant speed-up for
a large range of accuracies: although the curves in the right panel appear close, a
single point of NDCG gain is a significant increase in accuracy for Web Search.
Achieving the same accuracy, but with approximately half as many trees, is a big
win.

Additional speed-ups can be obtained by increasing the shrinkage parameter at
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(a) Results on the artificial data.
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Figure 2: Speed versus accuracy results for McRank andλ-MART on the artificial
and Web-1 data sets.

a small cost in accuracy or by performing early stopping by essentially reducing the
number of boosting iterations. However, these methods can be applied to McRank
as well, and any speed-ups gained by using them for McRank will also benefit
LambdaSMART.

5.5 Model Adaptation Results

Ranking model adaptation attempts to adjust the parameters of a ranking model
trained on one domain (called the background domain), for which large amounts
of training data are available, to a different domain (the adaptation domain), for
which only a small amount of training data is available. In Web search applications,
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Table 3: Results on Web-2 test data, for LambdaRank and for LambdaSMART with
the LambdaRank net as submodel. All models were trained with Web-2-Super.

λ-Rank λ-SMART

NDCG@10 70.5 (2.48) 70.7 (2.51)
NDCG@3 62.6 (3.06) 62.3 (3.04)
NDCG@1 54.0 (4.06) 55.4 (4.04)

domains can be defined by query length, languages, dates, etc.
In this section we report results on two adaptation experiments. The first uses

a large set of Web data, Web-2-Super, as the background domain and uses Web-2
(data containing only queries of length 4 or more) as the adaptation domain. In
this scenario, the idea is that we have very little data for long queries containing
4 or more words, but we have lots of Web data on queries of all lengths. We
compare using a 2-layer LambdaRank model with 10 hidden nodes trained onWeb-
2-Super and a subset of 440 features, to a LambdaSMART model that takes as an
initial model that LambdaRank model, but “adapts” using the Web-2 data. We
train LambdaSMART withL = 10, M = 263 (chosen using the validation set)
andv = 0.1. The results are listed in Table 3. Here, no statistically significant gain
was observed. This, together with the successful adaptation experimentsdescribed
below, suggests that for successful adaptation with LambdaSMART, using just a
few hundred queries for the adaptation training phase is not sufficient.

The second experiment is an adaptation experiment involving data from several
languages. Two-layer LambdaRank baseline rankers are first built from Korean,
English, Japanese, and Chinese training data and tested on Korean test data (Table
4). These baseline rankers then serve as submodels for LambdaSMARTand are
“adapted” using the Korean training data, and tested on the Korean test data (Table
5). We randomly divided the Korean dataset into three non-overlapping subsets. A
subset containing 3724 queries is used as training data (adaptation trainingdata in
our model adaptation experiments). The subset containing 372 queries is used as
validation set, and the remaining subset with 334 queries is used as test set. For the
LambdaSMART training, we usedL = 20, M = 500 andv = 0.1. Although the
Korean train data set is much smaller than the other three data sets, Table 4 shows
that the ranking model trained on the Korean data set is still much better than
other models trained on much larger cross-domain training data (due to the domain
mismatch between training and test data). This is a typical result of cross-domain
training.
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Table 4: Baseline model adaptation results: LambdaRank trained on the fourtrain-
ing sets (one for each language) but tested on Korean.

Korean English Japanese Chinese

NDCG@10 61.4 58.3 53.9 52.8
NDCG@3 56.9 53.3 49.1 45.8
NDCG@1 58.4 53.1 48.5 42.5

Table 5: NDCG results of the non-Korean baseline models adapted on Korean
training data using LambdaSMART, and also using a linear interpolation model
(Interp).

English Japanese Chinese Interp.

NDCG@10 64.7 63.6 64.1 61.5
NDCG@3 60.9 59.5 59.6 57.1
NDCG@1 61.2 60.2 60.8 58.8

Table 5 shows that all adaptation results are significantly better than the cor-
responding baseline, and that LambdaSMART is a very effective model adaption
technique. We also compared our method with model interpolation. Model linear
interpolation has been widely used as a baseline for model adaptation in the speech
and natural language processing communities and is still considered the state-of-
the-art method of model adaptation. We could also consider merging the data sets
and training a model on the merged data. In our experiments, linearly interpolating
models trained on background and adaptation data sets respectively achieves better
results than simply training on merged datasets. We linearly interpolate the four
baseline rankers, which are trained respectively on the Korean, English, Japanese,
and Chinese datasets as aforementioned. The interpolation weights are learned
using the Powell Search algorithm to optimize NDCG on the Korean validation
data set. The results are listed in the right hand column of Table 5. They are only
slightly better than the baseline results. However LambdaSMART model adapta-
tion achieves significant NDCG gains over interpolation and over the baseline.
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5.6 Optimal Combination Results

Here we present results validating the optimal combination method described in
Section 3. For the model we used LambdaMART. We trained a baseline model,
which uses the full Newton step to compute the combination weight for each leaf,
and a model “OC” that uses the optimal combiner to compute the global com-
bination weights (i.e. one per tree). We used the artificial data as describedin
[3]. The advantage of the optimal combiner is that it bypasses the (diagonalized)
Newton-Raphson approximation and returns the exact answer. However, here we
are replacing the per-leaf weights (each computed with its own Newton-Raphson
step) with a single global (but optimal) mixing parameter. Our intent here is simply
to show that using the optimal combination strategy works, and can help, despite
the approximation introduced by replacing per-leaf weights by a single weight per
tree; we emphasize that the optimal combination trick is likely to also prove useful
elsewhere.

Figure 3 shows the results of training on the 10K queries and using the 5K
validation queries to choose the optimal step size. Note that both training and
test accuracy converge significantly faster using OC. This experiment used a ver-
sion of OC where the combined score takes the formsi = sR

i + αsR′

i , where
R is the model of previously trained trees andR′ is the new tree to add, which
is more convenient for boosting (the convex combination version requiresrepeat-
edly changing the weights of the previously trained trees). We limitα to lie in
the interval [0.1,100]; the lower limit is necessary because occasionally a new tree
provides almost no gain, and the optimal combiner therefore sets its weight close
to zero, resulting in the training essentially stopping. In this experiment we handle
the problem of ties using the probabilistic averaging method described in Section
3. This data set does not require setting the shrinkage to a value less than one, but
we emphasize that using the optimal combination method does not preclude using
shrinkage, or other regularization methods.

6 Discussion and Future Work

LambdaSMART inherits significant advantages from both MART and LambdaRank.
It has the flexibility and the interpretability of boosted trees, and we have shown
that replacing the first tree with a previously trained model significantly improves
accuracy for the model adaptation problem. From LambdaRank it inherits the
property of direct optimization of the IR measure at hand, and in addition pro-
duces models that have significantly better behavior regarding the speed/accuracy
tradeoff. It is intriguing that the gains are so different between the artificial and
real data sets. The artificial data set was chosen to have properties thatare as close
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Figure 3: NDCG@10 versus boosting iteration; the curves are ordered as in the
legend.

as possible to the real data (i.e. the distribution of labels, the number of features,
and the number of urls per query). One significant difference is that thereal data is
known to be very noisy (with both label noise and feature noise) and we plan to in-
vestigate whether modifying the boosted tree methods to better handle noise gives
further improvements. We also plan to investigate whether similar ideas - boosted
trees trained with LambdaRank-type gradients - can be used to optimize for other
commonly used IR measures. Finally, the optimal combination results suggest that
finding per-leaf optimal weights may also prove useful.
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