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Abstract

We present a new ranking algorithm that combines the stnsngjttwo
previous methods: boosted tree classification, and LamdntlaRvhich has
been shown to be empirically optimal for a widely used infation retrieval
measure. The algorithm is based on boosted regression &lgssugh the
ideas apply to any weak learners, and it is significantlyefast both train
and test phases than the state of the art, for comparableaagcuNe also
show how to find the optimal linear combination for any twokars, and
we use this method to solve the line search problem exactinglioost-
ing. In addition, we show that starting with a previouslyiried model, and
boosting using its residuals, furnishes an effective tegrnfor model adap-
tation, and we give results for a particularly pressing peobin Web Search
- training rankers for markets for which only small amounitéapeled data
are available, given a ranker trained on much more data friamgar market.

1 Introduction

We consider the ranking problem for Information Retrieval (IR), wibeetask is
to order a set of results (documents, images or other data) by relevaacpiévy
issued by a user. Ranking is a core technology that is fundamental topnedels
applications such as internet search and advertising, recommendansyatel
social networking systems. In this paper, we propose a new rankingthligo
that combines the strengths of two previous approaches: LambdaRarda{P
boosting. LambdaRank has been shown to be a very effective rankjogtiam

for optimizing IR measures. It leverages the fact that neural net traivéads only



the gradients of the cost function, not the function values themselved,randels
those gradients using the sorted positions of the documents for a given Gbis
bypasses two significant problems, namely that typical IR measuresvj¢@jed

as functions of the model scores, are either flat or discontinuousveverg [1],
and that those measures require sorting by score, which itself is a rfieredtfable
operation. On the other hand, it was recently shown that treating the capiob-

lem as a simple classification problem, followed by mapping the outputs to a single
score by computing the expected relevance, and using boosted treescéssti-
fiers (“McRank”), can work remarkably well [9]. However, McRaiskinefficient

in test phase (each round of boosting requires as many trees as thetasses).
Yet, its success suggests that using boosted trees in an algorithm thty diptie
mizes the IR cost function, rather than simply treating the problem as a classific
tion problem, may give further improvement to the accuracy / speed tifaddwis$
paper presents such an algorithm.

We consider retrieval problems with five levels of relevance and we use the
Normalized Discounted Cumulative Gain (NDCG) relevance measure [ghigh
suitable for non-binary relevance measures and which emphasizes tie¢uioed
results. For a given query;,i = 1, ...,m the NDCG is defined as:

T
Ni=n;y (29 —1)/log(1 + j) (1)
j=1

wherer(j) € {0, ..., 4} is the integer label for the relevance level of fi¥e URL in
the sorted list, and whefE is the truncation level at which the NDCG is computed.
Heren; is a normalization constant chosen so tNat= 1 for a perfect ranking for
truncation levell'. For multiple queries, the NDCGs are simply averaged.

2 Relation to Previous Work

Recently the problem of learning to rank has attracted increasing attentioa in th
machine learning community. As described above, a key goal is to set upa lea
ing problem that can be solved efficiently for an underlying problem thaois
smooth, non-convex and in fact combinatoric. Yue et al. used SVMs to ogtimiz
a convex upper bound on Mean Average Precision, a widely usedybimeaisure
[13]. Le and Smola proposed using the Hungarian Marriage algorithmtimiap

a convex bound on any general IR measure [8]. However, althouege thlgo-
rithms are fast in test phase for linear kernels, one generally needsexpmessive
models for the Web Search problem, and using general kernels resusiérsneth-
ods to be unacceptably slow. Other approaches have modified AddBoN&ICG



[11] and have considered ranking using the whole list of returnedtsessl input
for computing the score of a given document [4]. At the other extremeriigm
the IR measure and treating the problem as a classification problem, usistgdboo
trees as proposed by Li et al. [9], works remarkably well. Howeverdlalting
algorithm (“McRank”) is slow (in both train and test phases) since it reguis
many trees per iteration as classes (namely, five, in [9]). One might hopsniat
ply treating the problem as a regression problem would yield the sameparioe
speedup for similar accuracy, but [9] showed that regression ddegank as well
as classification for this task. Zheng et al. [14] propose a method of gsiatient
boosting for ranking on smooth pairwise loss functions, but most IR mesucs,
as NDCG, are non-smooth and cannot be optimized directly in this framework.
Prior to this work, neural nets were shown to give good results [2,r#],ia par-
ticular, a training method called LambdaRank [2] has been shown to optimize the
NDCG measure [5, 12], which is a very intriguing result. The LambdaRaok tr
is basically to note that neural net training requires only the gradients€afait
with respect to the model scores), and that these can be chosen hallyjstased
on the rank position and label of each documaefier the sort. The LambdaRank
gradients reported in [2, 5, 12] are the gradient of the pairwise log bindosia
[3] multiplied by the NDCG gained by swapping the two documents, and then
summed over pairs of documents (see Section 4); they are smooth fundttbes o
document ranks (in that the gradients change smoothly as two adjacem eiots
exchange rank positions during learning); the idea is to rely on the (alsotgjno
RankNet cost gradient to encode the dependence on the documess. sco

Boosted trees are very flexible models. For example, they handle catdgoric
and count data better than neural nets (they can use count data dindwthgas
nets require inputs with similar dynamic ranges); they give models for which the
importance of each feature can be computed directly; and truncating theenoimb
boosted trees (in the order in which they were trained) gives a simple mathod f
trading off speed and accuracy. This tradeoff is particularly importard Search
Engine, where one is often willing to sacrifice accuracy for improveddpéhe
work described above raises the following question: can we combine ttie fle
bility of boosted trees, with the empirical optimality that has been observed for
LambdaRank, to construct a ranker that has the benefits of both methizigis
question that we investigate in this paper. Following [9], we will use MARTE$]
the starting point. The principal novelty of our work springs from three rtEas:
first, we use the LambdaRank gradients when training each tree, so taiesed
to McRank, the number of trees per boosting iteration is just one. In additien,
use of LambdaRank gradients allows us to consider highly non-smooth Iiesyetr
such as DCG and NDCG. Previous work combining pairwise cost functidths
MART allow for only smooth, twice-differentiable risk functions [14] and wiat
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take the entire results set for a given query into consideration, whichyismeor-
tant for complex ranking metrics such as NDCG. It is not obvious how to auenb
the LambdaRank gradients with MART (for example, the LambdaRank gitadien
depend on pairs of samples, and typically MART is used for costs thahdege
individual samples); solving this is a principal contribution of our workc@&wl,

a major problem that Search Engines face, beyond the basic rankiblgmras
model adaptation: for example, using labeled data for a large, establisinleet as

a starting point to train models for markets with much smaller labeled dataset sizes.
To address this problem we use the additive nature of boosted treedacerépe
first tree with a previously trained model (a “submodel”); hence the naroerdil-
gorithm, “LambdaSMART”, for Lambda-submodel-MART, or LambdaMART f
the case with no submodel. Third, we present a new method for finding the op
mal linear combination of any two rankers, for any IR measure. We begintiéth
latter.

3 How To Optimally Combine Two Rankers

The problems that IR measures present for optimization, as describee, aiam
be turned to our advantage. Here we show how this property can badeder
to find the optimal linear combination of any two rankers. For concreteness w
will refer to NDCG, but the method applies to any IR measure. Our method can
be used to combine, for example, rankers trained on different databsétained
using different algorithms; we will use it below to find optimal combinations of
weak learners during boosting.

The idea is a path-following method and is illustrated in Figure 1. There, the
vertical lines represent the ranges of the outputs of two differenterank and
R/, for the same single query; each point on each line is the score for aytertic
document, wheref12 denotes the score for documenfrom RankerR, and the
scoress ands are convexly combined as = (1 — a)s? 4 as¥, a € [0,1].
As o sweeps from 0 to 1, the score for each document follows the corrdsmpn
line moving from left to right. Whenx = 0, the score is precisely Ranké&'s
score, and whea = 1, the score is precisely RankBf’s score. Due to its discrete
nature, the NDCG can only change when two or more lines cross (and tivben
corresponding labels of the documents differ). Hence we can simply eatevadr
possible values of; for which the NDCG changes by analytically computing all
possible crossing points. Thus, at each crossing point, we only havelt@mte the
change in NDCG caused by swapping the two documents involved in theéngyoss
This is anO(n?) algorithm, where: is the mean number of documents returned
per query (as are many ranking algorithms). Note that the requiremenivéhat



keep track of the NDCG as the mixing parametesweeps from 0 to 1 means
that (1) for a given query, every pair of documents with different laineust be
examined (since the NDCG will change when they swap rank positionsPafat (

a given query, every pair of documents with the same label must also bered
(since we must also keep track of every document’s rank to use in sud#eq
computations of the NDCG). These together mean that the algorithm cannot do
better tharO(n?). For multiple queries, we compute all crossing poimtgor all
queries, and then sort the. By traversing this sorted list we can then analytically
compute the change in NDCG for every crossing point across all quaridsave

the value ofx, that gives the highest overall NDCG.

A boosting model in functional form may be written &%z) = ), «; fi(z),
wherez is the input feature vector and where there the weak learners. Usually
the weighta; is learned once; has been trained, using for example a Newton-
Raphson step (which requires an estimate of the inverse Hessian) {6{y; as
then left fixed. The inverse Hessian is approximated since it is too exgettsi
compute exactly. The method proposed here give®@art) algorithm to com-
putea; exactly, given the trained;, obviating the need for the Newton-Raphson
step. Methods to avoid overfitting, such as “shrinkage” [6], can equedlly be
applied to thex’s computed using our path following algorithm, which has the sig-
nificant advantage that theone starts with is known to be optimal for the training
data. In the case of boosting models, it is more convenient to fix the weight of
the current rankeR output at 1 and let vary from O up to some maximal value:

s; = sf + asl’, whereR = Y77} o, fi(x) is the model up to that boosting itera-
tion andR’ = f;(x) is the new tree to be added to the model. In computing a given
a, degeneracies (where several lines in Figure 1 cross at the samegawitther

be computed analytically or removed by adding jitter (very small random Jetines
the scores. Degeneracies at the endpoints (which is commonly encalwteza
training trees) can be similarly handled, or can be broken by addiggl times

the value of a strong, floating point feature that correlates positively efigivance
(such as BM25) to the model score; however we chose a more princigbedah,
that of computing the expectation of the NDCG, given that the ranks of tbe-do
ments with a given score all have equal probability. Note that this expectaion

in fact be computed efficiently with a single loop over the documents for argngi
guery. Finally we note that, for cases where limiting the number of trees m®vid
sufficient regularization for the data at hand (so that no shrinkagecdeg, we
can get improved fits for all the; by iteratively recomputing;; given that alk,

are held fixed, so that at any iteration we are computing the optimal combination
of two rankers. This iterative procedure is guaranteed to converge ia NDCG

is monotonically non-decreasing at every step. We emphasize that ourdrietho
optimally combining ranker works for any set of rankers (although optimality is
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only guaranteed for a given pair of rankers), and in particular it idimoted to
boosting models; it may for example prove useful for constructing enssroble
rankers.

RankerR RankerR’
R R
S% I\ Sk
S R’
R R’
a=20 a=1

Figure 1: Optimally combining two rankers. NDCG changes only at the crgssin
points. The two vertical lines represent the sorted list of scores ouyplahker
RandR/, respectivelysf indicates the score of documemnuput by rankerR.

4 ThelLambdaSMART Algorithm

LambdaSMART is built on MART, the details for which we refer the reader to
[6]. Recall that at each boosting iteration, MART builds a regressiortere®del

the functional gradient of the cost function of interest, evaluated atalr#ining
points. Our approach does the same but with the LambdaRank functi@ui gr
ents, since we are interested in optimizing NDCG. Since NDCG is either flat or
discontinuous everywhere, LambdaRank uses an approximation to thiergraf

the cost, called\-gradients. A particular document is given a (scalagradient
which is computed using all the pairs of documents for which that documeunt®c

as a member of the pair, and for which the other member of the pair was gener-
ated for the same query, but has a different label. Xlggadient consists of the
product of two factors: (1) the RankNet cost [3] (a pairwise crssopy loss,
applied to the logistic of the difference of the model scores), and (2) the®ID
gained by swapping the paifNDCG. Although the first factor is pairwise (only
depending on the local information of the pair), the second factor dspamthe
global structure of the entire query and the metric under considerationr(itese,
NDCG). Itis due to these two components that LambdaRank can be applieg to a
IR metric (by substituting that metric for NDCG), and in fact has been shown to
be empirically optimal for several such metrics [5, 12]. Thgradients may be
written as

ANDCGaaC”

)\ij = Sij 0
1]
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whereo;; = s; — s; is the difference in ranking scores for a pair of documents in a
query (here we are using as a shorthand faF'(z;)), Ci; = C(0;5) = sj — s; +
log(1 + e®~%7) is the cross-entropy cost applied to the logistic of the difference
of the scoresANDCG is the NDCG gained by swapping those two documents
(after sorting all documents by their current scores), 8pde {—1,1} is plus
one if document is more relevant than documenihas higher label value) and
minus one if documentis less relevant than documenthas lower label value)
[2]. Note thatoC};/0o;; = 0C;5/0s; = —1/(1+ e ), and that the overall sign of
Ai; depends only on the labels of documeindsidj, and not on their rank position.
Each point then sums its-gradients for all pairg” in which it occurs

A= N 3)

jepP

LambdaRank has a physical interpretation in which the documents are pGis¢sna
and the\-gradients are forces on those point masses)‘tgenerated by any given

pair of documents are then equal and opposite. A positive lambda indicatesh a
toward the top rank position and a negative lambda indicates a push toward the
lower rank positions [2].

Algorithm 1 The LambdaSMART algorithm.

1: for i =0to N do
Fy(z;) = BaseModel(x;) \\BaseModel may be empty or set to a sub-
model.
3: end for
4: for m =1to M do
5  fori=0toN do
6: Yi = A
7
8
9

N

Wi = Fr(a)
end for

{Rim}E | \\CreateL-terminal node tree of;, z; }¥ ;

10:  Ypn = M \\Find the leaf values based on approximate Newton

w

T E Ry T
Step.
11: Fm({L'Z) = Fm_l(l'i) + v Zl *ylml(xi S le)
12: end for

Algorithm 1 summarizes the LambdaSMART algorithm; it assumes there are
N total documents in our training set and that we wish to tidirstages (trees).
We optionally load a submodel in Step 2. This is easy to implement: one simply
starts by computing the LambdaRank functional gradients of the cost fangio



ing the scores output by the submodel, and then trains the trees as digcihee
algorithm.

LambdaSMART training then proceeds similarly to [B}. rounds of boosting
are performed, and at each boosting iteration, a regression tree tsucted and
trained on all documents for all queries. We can choose the iteration to tstop a
based on performance on a validation set.

Steps 6 calculates the-gradients for each documefitas described above.
Step 7 calculates the second-order derivative usingitigeadients (which are
smooth in the scores). A regression tree withierminal nodes is built in step
9, using Mean Squared Error to determine the best split at any node iegress
sion tree. The value associated with a given leaf of the trained tree is campute
first as the mean of th& gradients for the training samples that land at that leaf.
Then, since each leaf corresponds to a different mean, a one-dimahs@wvton-
Raphson line step is computed for each leaf (Step 10). These line stepsemay b
simply computed as the derivatives of the LambdaRank gradients with tedepec
the model scores;. Finally, in Step 11, the regression tree is added to the current
boosted tree model, weighted by the shrinkage coeffiaiemthich is chosen to
regularize the model.

LambdaSMART has three main parametels; the total number of boosting
iterations,L, the number of leaf nodes for each regression treepatite “shrink-
age coefficient” - the fraction of the optimal line step taken. Using a shrimkag
coefficient with value less than one is a form of regularization [6]. Wecsede
the optimal parameters by using a validation set. Fortunately, as verified in our
experiments, the performance of the algorithm is relatively insensitive te thees
rameters as long as they are in a reasonable range: given the trainofgadetv
thousand queries or mo® = 500, L = 15, andv = 0.1 usually give good
performance. Smaller trees and shrinkage may be used if the training t&a se
smaller.

A novelty of our approach over the algorithms described in [6] is that weaus
pairwise cost function, in particular for non-smooth metrics, which has bleewn
to give excellent performance for ranking [2, 3]. Since we are optimikBgG
at each step, we do not need thenber-of-classes trees per iteration that McRank
needs. We could also achieve one tree per iteration by consideringsiEgrén-
stead of classification. However, regression has been shown to@desecase in
accuracy (see Figure 1 of [9]); our approach overcomes this dreiwb



5 Experiments

We perform experiments to (1) compare the accuracy and speed of bB&WHRT

and LambdaMART to LambdaRank and McRank (the latter two algorithms are
state-of-the-art rankers and have been reported to outperfouiopsestate-of-the-

art rankers on the Web Search task); (2) assess the effectiveinasslel adapta-
tion by training a base model and boosting it using different data sets;3nd (
provide preliminary results on whether the optimal ranker combination improves
the NDCG and the learning speed over the Newton step.

5.1 TheData

The data sets include the artificial and Web-1 data sets used in [2, 309, raore
recent data set, Web-2, used for the model adaptation studies. We alfouus
language data sets, namely Korean, English, Chinese, and Japamesmdel
adaptation studies. All data sets contain samples labeled on a 5-level oelevan
scale. In all cases, the train/valid/test sets contain non-overlappingsguer

The artificial data set was synthetically produced to mimic a perfectly labeled
data set, as in [3]. It was created from random cubic polynomials anihiogn
50 features. There are 50 URLs per query and 10K/5K/10K in train/vadid/te
sets. The Web-1 data has 367 features, with on average 26 URLs esf, qu
and 10K/5K/10K queries for train/valid/test sets. Web-2 is constructecuby s
sampling queries whose lengdthre four or more from its superset Web-2-Super.
Web-2-Super contains queries of all lengths. The Web-2 data hage#6iées. On
average, there are 170 URLSs per query, and 525/225/500 quertesifdvalid/test
sets. The Web-2-Super set contains 14893/1230/6402 queriesifdvatia/test
sets. In our query length model adaptation experiment, Web-2-Supesses the
background domain and Web-2 serves as the adaptation domain.

For across-domain adaptation experiments from non-Korean to Koreen ma
kets, we use Korean data for the adaptation domain, and English, Chareke,
Japanese data sets as the background domain. The Korean data feastd2s
with a total of 4430 queries. The average number of URLS per query.igfié
train/valid/test sets contain 3724/372/334 queries, respectively. ThesEdgta
contains 6167 queries, with on average 198 URLs per query. The $hifeda
comprises 32827 queries with on average 72 URLs per query. Thaekpdata
comprises 45012 queries with on average 58 URLSs per query.

The Web and language data sets contain features constructed fronctihe do
ment (including anchor text and URL information), the query, and matckes b
tween the document and the query. Although the data sets are not of thhesize

1We use query length to mean the number of words in the query.



ranker would see at test phase, the sets used for training are of tjle scder of
magnitude of those used for web scale training. In particular, we showothat
algorithm is fast enough at test phase to handle web scale test datatidalpar
due to the fewer number of required trees.

5.2 Model Parameters

Model parameters are chosen using validation sets: here we summarizesthe b
settings found. LambdaRank is tuned by varying the number of layersuthbar

of hidden nodes, and the learning rate. For all data sets we use two layjess
otherwise stated, and ten hidden nodes. On the artificial data, we useniadear
rate of 10~4; for the Web-1 data, we use a learning ratd @f°; and for the Web-

2 data, we use a learning rate i—4. McRank and LambdaSMART are both
tuned by varying the number of leaf nodés the shrinkagey, and the number
of boosting iterations\/. For McRank we sef. = 10, L = 0.05 and M =
1000 for all datasets, as in [9]. For LambdaMART we uke = 1000 andv =
0.1 for all datasets,L. = 10 for the artificial data, and. = 15 for the Web-

1 data. For LambdaSMART (the model adaptation experiments) wellise
500, L. = 20, andv = 0.1. Although LambdaSMART is in general not sensitive
to model parameters, we report the best parameters found on validataofoda
completeness and as a principled way to find model parameters. Our resuotis d
imply sensitivity to model parameters.

5.3 Accuracy Results

We compare results of LambdaRank, McRank, and LambdaMART on the artifi
cial and Web-1 data. We use LambdaMART since we found that in this setting it
performs as well or better than LambdaSMART on the validation data. Wetrepo
NDCG results (where queries for which all URLs have the same label hese
dropped), at truncation levels 10, 3, and 1.

Table 1 lists the NDCG results on the 10K artificial test queries. The artificial
data has no label noise, so less strongly regularized models such aniMaRa
LambdaMART learn the data well and outperform a 2-layer LambdaRanlkimod
Both McRank and LambdaMART were run for 1000 iterations; note that &héR
therefore has 5000 trees, as opposed to LambdaMART’s 1000.

Table 2 lists the results of the three algorithms on the 10K Web-1 test queries.
McRank and LambdaMART exhibit similar asymptotic performance here, althoug
as we shall see in the next section, LambdaMART exhibits better speediagcu
tradeoff behavior. The NDCG results on both data sets indicate that Ntciteh
LambdaMART outperform LambdaRank.
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Table 1: LambdaMART, McRank and LambdaRank results on the artifictal da
set, with 95% confidence intervals. Results are reported for NDCG atétion
levels 10, 3 and 1.

| AMART  McRank  A-Rank

NDCG@10| 87.9 (0.16) 83.7 (0.19) 75.4(0.25)
NDCG@3 | 81.7 (0.32) 75.6(0.36) 67.8(0.41)
NDCG@1 | 79.6 (0.56) 72.2(0.65) 65.8(0.66)

Table 2: LambdaMART, McRank and LambdaRank results on the Web-Isdata
Results are reported for NDCG at truncation levels 10, 3 and 1.

| MART  McRank  \-Rank

NDCG@10| 69.3 (0.46) 69.7 (0.46) 68.6(0.47)
NDCG@3 | 62.5(0.60) 62.9 (0.60) 61.5 (0.60)
NDCG@1 | 61.3(0.81) 61.6(0.81) 60.4(0.82)

5.4 Speed vs. Accuracy Results

The most significant advantage of LambdaSMART over McRank is its imgrove
behavior regarding the speed/accuracy tradeoff. This is crucia&btime appli-
cations such as Web Search, where typically results must be returnedusethe
within milliseconds of their issuing a query. Figure 2 plots accuracy (NDCG@1
versus speed (the number of boosted trees) for BaMART and McRank, for
both the artificial and the Web-1 data. Again the validation set was used éseho
the optimal settings, which were found to be= 20 andv = 0.15 (from ranges
L = 10,15,20 andv = 0.05,0.1,0.15). The graphs show the results on the test
set, for systems trained with the above optimal settings. Since both methods use
the same number of leaf nodes, the number of trees provides a reliablerenefasu
speed. The faster learning exhibited WMART gives a significant speed-up for
a large range of accuracies: although the curves in the right panehaplose, a
single point of NDCG gain is a significant increase in accuracy for Wetrche
Achieving the same accuracy, but with approximately half as many treesjgs a b
win.

Additional speed-ups can be obtained by increasing the shrinkagagamat
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(a) Results on the artificial data.
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(b) Results on the Web-1 data.

Figure 2: Speed versus accuracy results for McRank\aRtART on the artificial
and Web-1 data sets.

a small cost in accuracy or by performing early stopping by essentiallicieglthe
number of boosting iterations. However, these methods can be applied tandcR
as well, and any speed-ups gained by using them for McRank will alsefiben
LambdaSMART.

5.5 Model Adaptation Results

Ranking model adaptation attempts to adjust the parameters of a ranking model
trained on one domain (called the background domain), for which large r@mou
of training data are available, to a different domain (the adaptation domam), f
which only a small amount of training data is available. In Web search appheatio
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Table 3: Results on Web-2 test data, for LambdaRank and for Lambd&3M#th
the LambdaRank net as submodel. All models were trained with Web-2-Super

| A-Rank  \-SMART

NDCG@10| 70.5 (2.48) 70.7 (2.51)
NDCG@3 | 62.6 (3.06) 62.3 (3.04)
NDCG@1 | 54.0 (4.06) 55.4 (4.04)

domains can be defined by query length, languages, dates, etc.

In this section we report results on two adaptation experiments. The fast us
a large set of Web data, Web-2-Super, as the background domairsesd\eb-2
(data containing only queries of length 4 or more) as the adaptation domain. In
this scenario, the idea is that we have very little data for long queries corgainin
4 or more words, but we have lots of Web data on queries of all lengths. We
compare using a 2-layer LambdaRank model with 10 hidden nodes train®dimn
2-Super and a subset of 440 features, to a LambdaSMART model tlestdalan
initial model that LambdaRank model, but “adapts” using the Web-2 data. We
train LambdaSMART withZ, = 10, M = 263 (chosen using the validation set)
andv = 0.1. The results are listed in Table 3. Here, no statistically significant gain
was observed. This, together with the successful adaptation experidesctibed
below, suggests that for successful adaptation with LambdaSMART] jis$h a
few hundred queries for the adaptation training phase is not sufficient.

The second experiment is an adaptation experiment involving data frarasev
languages. Two-layer LambdaRank baseline rankers are first haift iKorean,
English, Japanese, and Chinese training data and tested on KoreaatagJiadble
4). These baseline rankers then serve as submodels for LambdaSkt#Rare
“adapted” using the Korean training data, and tested on the Korean tagiidale
5). We randomly divided the Korean dataset into three non-overlapplmggss. A
subset containing 3724 queries is used as training data (adaptation tideténio
our model adaptation experiments). The subset containing 372 queriesdas
validation set, and the remaining subset with 334 queries is used as testrdbe F
LambdaSMART training, we usetl = 20, M = 500 andv = 0.1. Although the
Korean train data set is much smaller than the other three data sets, Tables4 sho
that the ranking model trained on the Korean data set is still much better than
other models trained on much larger cross-domain training data (due to thindoma
mismatch between training and test data). This is a typical result of crosaido
training.
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Table 4: Baseline model adaptation results: LambdaRank trained on thiediour
ing sets (one for each language) but tested on Korean.

| Korean English Japanese Chinese

NDCG@10| 61.4 58.3 53.9 52.8
NDCG@3 | 56.9 53.3 49.1 45.8
NDCG@1 | 58.4 53.1 48.5 42.5

Table 5: NDCG results of the non-Korean baseline models adapted omarKore
training data using LambdaSMART, and also using a linear interpolation model
(Interp).

| English Japanese Chinese Interp.

NDCG@10| 64.7 63.6 64.1 61.5
NDCG@3 | 60.9 59.5 59.6 57.1
NDCG@1 | 61.2 60.2 60.8 58.8

Table 5 shows that all adaptation results are significantly better than the cor-
responding baseline, and that LambdaSMART is a very effective maidgitian
technique. We also compared our method with model interpolation. Model linear
interpolation has been widely used as a baseline for model adaptation iretehsp
and natural language processing communities and is still considered thefstate
the-art method of model adaptation. We could also consider merging theedsata s
and training a model on the merged data. In our experiments, linearly intengola
models trained on background and adaptation data sets respectivelyeadbetter
results than simply training on merged datasets. We linearly interpolate the four
baseline rankers, which are trained respectively on the Korean, Endgipanese,
and Chinese datasets as aforementioned. The interpolation weights aexllear
using the Powell Search algorithm to optimize NDCG on the Korean validation
data set. The results are listed in the right hand column of Table 5. Theylgre o
slightly better than the baseline results. However LambdaSMART model adapta
tion achieves significant NDCG gains over interpolation and over the baselin
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5.6 Optimal Combination Results

Here we present results validating the optimal combination method described in
Section 3. For the model we used LambdaMART. We trained a baseline model,
which uses the full Newton step to compute the combination weight for each leaf
and a model “OC” that uses the optimal combiner to compute the global com-
bination weights (i.e. one per tree). We used the artificial data as desanibed
[3]. The advantage of the optimal combiner is that it bypasses the (dibzgha
Newton-Raphson approximation and returns the exact answer. Howeve we

are replacing the per-leaf weights (each computed with its own NewtonsRaph
step) with a single global (but optimal) mixing parameter. Our intent here is simply
to show that using the optimal combination strategy works, and can helgtedesp
the approximation introduced by replacing per-leaf weights by a single weégh
tree; we emphasize that the optimal combination trick is likely to also prove useful
elsewhere.

Figure 3 shows the results of training on the 10K queries and using the 5K
validation queries to choose the optimal step size. Note that both training and
test accuracy converge significantly faster using OC. This experinseat & ver-
sion of OC where the combined score takes the fem= s + asf, where
R is the model of previously trained trees aRdis the new tree to add, which
is more convenient for boosting (the convex combination version requspesat-
edly changing the weights of the previously trained trees). We lintio lie in
the interval [0.1,100]; the lower limit is necessary because occasionadiy drae
provides almost no gain, and the optimal combiner therefore sets its weight clo
to zero, resulting in the training essentially stopping. In this experiment weaidnan
the problem of ties using the probabilistic averaging method described in $ectio
3. This data set does not require setting the shrinkage to a value lessthasub
we emphasize that using the optimal combination method does not preclude using
shrinkage, or other regularization methods.

6 Discussion and Future Work

LambdaSMART inherits significant advantages from both MART and LaiRbd&.

It has the flexibility and the interpretability of boosted trees, and we hawsrsho
that replacing the first tree with a previously trained model significantly imggov
accuracy for the model adaptation problem. From LambdaRank it inherits the
property of direct optimization of the IR measure at hand, and in addition pro
duces models that have significantly better behavior regarding the spaadiey
tradeoff. It is intriguing that the gains are so different between the datifamd

real data sets. The artificial data set was chosen to have propertiasafaatclose
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Figure 3: NDCG@10 versus boosting iteration; the curves are orderedthe
legend.

as possible to the real data (i.e. the distribution of labels, the number ofdeatur
and the number of urls per query). One significant difference is thaetieata is
known to be very noisy (with both label noise and feature noise) and we@ia-
vestigate whether modifying the boosted tree methods to better handle na@se giv
further improvements. We also plan to investigate whether similar ideas - boosted
trees trained with LambdaRank-type gradients - can be used to optimize évr oth
commonly used IR measures. Finally, the optimal combination results suggest tha
finding per-leaf optimal weights may also prove useful.
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