Back to the Future: Revisiting Precise Program
Verification using SMT Solvers

November 7, 2007

Technical Report
MSR-TR-2007-88

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Back to the Future

Revisiting Precise Program Verification using SMT Solvers

Shuvendu K. Lahiri

Shaz Qadeer

Microsoft Research
{shuvendu, qadeer}@microsoft.com

Abstract

This paper takes a fresh look at the problempadciseverifica-
tion of heap-manipulating programs using first-order Siatigity-
Modulo-Theories (SMT) solvers. We augment the specificatio
logic of such solvers by introducing thengic of Interpreted Sets
and Bounded Quantificatiofior specifying properties of heap-
manipulating programs. Our logic is expressive, closedeund
weakest preconditions, and efficiently implementable qn ¢b
existing SMT solvers. We have created a prototype impleaent
tion of our logic over the solversi8PLIFY and Z3 and used our
prototype to verify many programs. Our preliminary expece is
encouraging; the completeness and the efficiency of thesideci
procedure is clearly evident in practice and has greatlyravgd
the user experience of the verifier.

1. Introduction

First-order theorem provers likaigPLIFY (Detlefs et al. 2005) are

a fundamental component of many scalable program veriicati
tools. These provers are used in many ways—to solve the-verifi
cation condition of each procedure in a modular analysian@

gan et al. 2002; Barnett et al. 2005) and to compute and refine

abstractions in a whole-program analysis (Ball et al. 208dn-
zinger et al. 2002). First-order reasoning has the impoghitity
to combine various useful theories required for progranificar
tion, e.g., arithmetic, arrays, and uninterpreted fumgjon a sys-
tematic manner (Nelson and Oppen 1979). Recently, Saiigfiab
Modulo-Theories (SMT) solvers (Satisfiability Modulo This
Library (SMT-LIB)) such as YcEes (Dutertre and de Moura 2006)

2002) at reasoning about these programs using first-ordeem
relied heavily on the use of quantifiers both for expressisepe
tions about (unbounded) data structures and for axiomatitieo-
ries for linked lists and trees. The result has been unaatisfy for
two reasons. First, most recursive predicates useful fpressing
invariants about unbounded data-structures cannot benaxized
in first-order logic (Borger et al. 1997). Consequenthesh ax-
iomatizations tend to be incomplete leading to an unacbépfee-
quency of failed proofs. Second, quantifier-reasoning st-firder
SMT solvers remains incomplete, heuristic-driven, andtlbriTo
properly use these solvers, considerable user ingenuiggisred
for writing carefully crafted quantified assertions. Sugpestise is
usually beyond the capability of normal programmers.

In this paper, we revisit the problem pfeciseverification of
heap-manipulating programs using first-order SMT solvenst
work is motivated by our desire to analyze systems softwacé s
as device drivers and operating systems code, which make hea
use of linked lists and deeply-nested linked data strustiée are
interested in building an assertion checker for correctmpesper-
ties of such programs such as memory-safety and datatsteuct
invariants.

Towards this end, we present th@gic of Interpreted Sets
and Bounded Quantificatiofior specifying properties of heap-
manipulating programs and a verifier for proving these prige
Our logic uses first-order logic as a substrate. In additqorovid-
ing useful but conventional theories such as arithmeticeapuality
with uninterpreted functions, the logic also provides savaovel
features that alleviate, to a significant extent, the aferioned
difficulties faced by first-order solvers in verifying daaucture

and Z3 (de Moura and Bjorner 2007), have combined advances in properties. The contributions of this paper can be categdralong

Boolean satisfiability solvers with powerful first-ordeetry rea-
soning using decision procedures. We believe that thesenaow
solvers have created an opportunity for scaling automaaeitica-
tion to deep properties of complex software.

Despite these recent advances, automated verificationagpf he
manipulating programs remains difficult with first-ordeagening.
The main reason behind this difficulty is that the specifaratogic
supported by SMT solvers is not expressive enough. In pdatic
it is usually cumbersome and often impossible to specifyppro
erties of unbounded lists and trees and non-aliasing imtgiof
deeply-nested heap structures. Previous attempts (Flaretgal.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright© ACM [to be supplied]. .. $5.00

the following dimensions:

Logic. We introduce a new logic that facilitates precise, au-
tomated, and efficient reasoning about many heap-intenqsive
grams. The logic provides an interpreted recursive préglicerea-
son about lists and two interpreted set constructors ufafubrit-
ing specifications involving bounded quantification oves tton-
structed sets.

1. The logic isexpressiveln addition to describing rich data struc-
ture invariants (such as disjointness of two lists), angerties
of entire collections (such as sortedness of a list), thie isgex-
pressive enough for describing concisebject invariantsover
a given type and non-aliasing constraints.

2. The logic isclosed under weakest preconditidiven a loop-
free and call-free program annotated with preconditionst
conditions and assertions in our logic, we present a praeedu
to generate a formula also in our logic that is unsatisfidlaled
only ifthe program does not go wrong by failing any assertions.

3. The logic issimple In spite of its expressiveness, the decision
problem for the logic is NP-complete.

The increased expressiveness of our logic due to quantdisis
closure under weakest precondition make it much more &tteac
for program verification, compared to other similar logibkelson
1983; Rakamaric et al. 2007).

Decision procedure.We describe an efficient decision proce-
dure for the logic using a set of sound, complete and terminat
ing inference rules. The resulting decision procedure eserhge
theory reasoning (for arithmetic and uninterpreted fuord) and
conflict-clause driven backtracking search of modern SMvess.
The presence of bounded quantification over interpretecbdleivs
us to instantiate the quantifiers inay manner, an attribute that
is essential for good performance. Lazy instantiation tiyden-
proves the performance of the decision procedure as (o&en u
less) quantifier instantiation is one of the bottleneckdifst-order
SMT provers supporting general quantifiers. We have impteete
an initial prototype of the decision procedure over exgt8MT
solvers $MPLIFY and Z3, using universally quantified first-order
axioms with matchingriggers

Evaluation. We have used our decision procedure to verify
many small to medium-sized C programs. Our preliminary expe
rience is encouraging; the completeness and efficiencyeadidii-
sion procedure is clearly evident in practice and has imgatdhe
robustness of the verification efforts manifold.

Although we have applied our verifier to annotated programs,
where the user supplies the annotations, the ability tooparpre-
cise and automated verification is the cornerstone of mahngrot
verification techniques. Predicate abstraction techisigGeaf and
Saidi 1997) make calls to a theorem prover to construct an ab
straction. Refinement of abstractions (Kurshan 1995; Elatkal.
2000) relies on computing the weakest precondition andirsplv
the generated verification condition. Symbolic executiérpmm-
grams (Godefroid et al. 2005) requires solving path comgare-
cisely. The contributions of this paper are applicable, ardy to
modular program verification, but to these other domainsels w

log_list.head

next f><:i
|F prev

data

/

log_list.tail

next >< >< next
prev prev

B

data

/

data

/

channel_name

et
-

filename

logtype

struct _logentry

Figure 2. The log list

channel_list.;a_d)
next ><
”<—'— prev

data

/

channel_list.tail

C U

data

/

fﬂ

struct _channel_log

next
prev

data

/

name —

topic
log

ftype

struct _channel logfile

Figure 3. The channel list

Proofs of the lemmas and theorems present in Section 3 can be

found in the Appendix.

2. Motivating example

typedef struct _dlink_node typedef struct _dlink_list
struct _dlink_node *next;
struct _dlink_node *prev;
void *data;

} dlink_node;

dlink_node *head;
dlink_node *tail;
} dlink_list;

typedef struct _logentry

char *channel_name;
char *filename;
int logtype;

} logentry;

extern dlink_list log_list;
typedef struct _channel_log typedef struct _channel
int ftype;

FILE *logfile;
} channel_log;

char *name;

char *topic;

channel_log *log;
} channel;

extern dlink_list channel_list;

Figure 1. Main data structures of muh

We consider the linked data structures present in an reddwo
application callechuh (Muh). muh is an Internet Relay Chat (IRC)

bouncer, a program that acts as a middleman between an IB@-cl
and an IRC-server. The application is written in C.

The main data structures, described in Figure 1, consists of
two acyclic doubly-linked lists, pointed to g -list.head and
channel_list.head, containing a list ofiogentry andchannel
nodes respectively. Figure 2 and Figure 3 describe thedligtsheir
contents. Each node in theg_1ist, pointed to by thelata field
in the dlink node, contains two character arrayhannel name
and filename and an integeflogtype. Similarly, each node in
thechannel _list contains two character arraysme, andtopic,
and a pointer to ahannel_log node. Thechannel log Structure
further contains an integeftype and a pointer to &ILE called
logfile.

Note that the list nod&link_node uses itsroid * data field
polymorphically (Figure 1). When the node participates lie t
log-list, the data field is cast to aXogentryx) pointer, and
when it participates in thehannel_list, thedata field is cast to
a (channelx) pointer.

The example is representative of real-world applicatioriten
in C, which consist of a combination of multiple linked dateus-
tures. These data structures can either be recursivelyedefang.
dlink node) or deeply-nested (e.ghannel).

During the lifetime of the application, various operatians-
tate these data structures through a set of functions. Taesgons
correspond to adding or deleting a log to a list, adding oetited a
channel to a list, opening or closingFaLE, or freeing a set of en-
tries of a list. In this section, we focus on the routirgear_logs
andrem_channel, which free objects present in the data structures.
Figure 4 describe parts of the procedures that free eler(igsitgy a

void clear_logs(int clear)

{
dlink_node *ptr;
dlink_node *next_ptr;
struct _logentry *logptr;

/* then clear the loglist */
for(ptr = log_list.head; ptr; ptr =
{

next_ptr)

next_ptr = ptr->next;
logptr = ptr->data;

xfree(logptr->channel_name) ;
xfree(logptr->filename) ;
xfree(logptr);

dlink_delete(ptr, &log_list);
dlink_free(ptr);

}

void rem_channel(struct _channel *chptr)
{
dlink_node *ptr;

/* close the logfile if we have one */
if (chptr->log != NULL)

xfree(chptr->log) ;
}

if ((ptr = dlink_find(chptr, &channel_list)) == NULL)
return;

dlink_delete(ptr, &channel_list);
dlink_free(ptr);

xfree(chptr->name) ;
xfree(chptr->topic);
xfree(chptr);

Figure 4. Freeing entries fromog_list andchannel list.

procedurexfree) from thelog 1ist and thechannel 1ist. An
important memory-safety property to enforce is the follogyi

Absence of double-freédn object is not freed twice in the
applications lifetime.

Let us consider the procedutgear_logs in Figure 4. The pro-
cedure iterates over the linked list pointed tolng 1ist.head,
freeing the objects in each node. It first frees #h@nnel name
andfilename objects, then frees theogentry object pointed to
by thedata pointer and finally deletes tha ink_node object from
the listand frees it. The procedurem_channel similarly removes
an entry from thechannel_1ist and frees the objects.

Let us examine a few scenarios to understand why it is non-
trivial to establish the absence of double-free for thidirau

1. Consider a given iteration of the loop, whefitannel_name
and filename are freed. If both these pointers are aliased,
then xfree (logptr->filename) would free an object that
has already been freed free (logptr->channel_name).
Hence, we would like to enforce that tlh@annel name and
filename pointers in alogentry node do not alias.

¢ € Integer
x € Variable
f € PFunction
p € Formula =a | piAp2 | p1 Ve | ¢
a € VFormula :=7v | aca Aoz | a1 Vae | Vo € Sa
v € GFormula:=t1 =t2 | t1 <tz |
t1 LtQL?tS | -y
t € Term s=c | x| t1—t2 | t1+t2 |
f(t) | Zte(t = t/7 tlv t2)
S € Set n=g Y (t) | Btwn(f,t1,t2)

Figure 5. Logic of Interpreted Sets and Bounded Quantification
(LISBQ

2. Now consider two different iterations of the loop opargton
two linked list nodes; andv. Let us imagine that->data and
v->data are aliased. In this case, each of the tht&eee calls
on the later iteration would free an already freed object.

. Another scenario causing a double-free could arise if the
channel name Or filename fields in some node ilog_list
aliases withhame or topic fields in some node ihannel list.

In this scenario, a call teem_channel followed by a call to
clear_logs would cause a double-free.

. Finally, if thedata field in adlink _node object aliases with
the channel name fields in alogentry object, a double-free
may be erroneously reported. This situation is avoided by en
forcing that pointers to objects of two different types cawver
be equal.

In Section 3, we present a simple and natural specificatigio lo
that can express the necessary invariants to prove the @bhsén
double-free error in the program. In Section 4, we revisi tx-
ample to illustrate the use of our logic. In spite of the espiee-
ness, the decision problem of the logic still remains NP-oiete
and we propose an efficient decision procedure for the logjitgu
SMT solvers.

3. Logic

Our logic, presented in Figure 5, is interpreted over a finite
partially-ordered seP of sorts. The seP contains the sotknteger

of integers. Each variable has some sorD € D. Each uninter-
preted functionf has a sortD — FE for sortsD, E € D. A model

M for a formula in the logic provides an interpretatiddip for
each sortD, where Mn¢cqer IS just the set of integers. The model
also provides an interpretatiaW, € Mp for each variablec of
sortD and an interpretatiof!; : Mp — Mg for each functionf

of sort D — E. The interpretation is extended to arbitrary terms in
the logic in the natural way.

The logic provides a ternary reachability predicaté NERY
for each functionf of sort D — D whereD € D. The model
M E t Lt2 Ltg iff there aredistinct uo, u1,...,un € Mp
such thatV/ ¢ (u;) = wiy1 foralli € [0,n), uo = My, , un = My,
andu; = M,, for somei € [0,n]. We often refer to the binary

reachability predicaté; Ltz which is defined to be; Ltz Ltz.
The logic allows bounded universal quantification over two

different kinds of (potentially unbounded) sets. The get (¢) is

constructed using a functiofiof sort D — E whereD, E € D

andD # E.The modelM | z € f~'(t) iff M) = M.

The setBtwn(f,t1,t2) is constructed using a functiof of sort

D — D whereD € D. The modelM = = € Btwn(f,t1,t2) iff

M Et ERSER t2. Note that our sorting requirements preclude
the use of the same function symbbin a termf~*(¢) and a term

T ¢ Stmt = Assert(p) | Assume(p) |
x = new | free(x) |
zi=t | flz)i=y |

Ti; Tz | ThOT

Figure 6. Program

Btwn(f, t1,t2). This restriction is important for the completeness
of our decision procedure; it ensures that models for theyset(t)
and Btwn(f, t1, t2) can be computed independently.

The set of formulasFormula in our logic is closed under
boolean combination. We have both universal and existenian-
tification but do not have alternation of quantifiers.

We require that logical formulas satisfy thert-restrictedorop-
erty. This property is crucial for the termination of the & pro-
cedure described in Section 3.3.

In every formulaVx € S.«, the sort of any term inx
containingz as a strict sub-term is less than the sort of

We assume the existence of a type checking or type inference

algorithm that can check for any formulain our logic that it is
type-correct and satisfies the property described above.

3.1 From programs to formulas

In this section, we show how we translate a progrAmvithout
loops and procedure calls into a formdan our logic. The transla-
tion has the property that is unsatisfiable iffS does not go wrong
by failing an assertion. We assume that a preprocessing pitzes
eliminated all loops either soundly by using a programmsgptied
loop invariant or unsoundly by unrolling each loop a bounded
number of times. Similarly, all procedure calls have beemiel
nated either soundly by using programmer-supplied prepast
conditions or unsoundly by inlining upto a bounded depth.

The syntax of the programs we consider is given in Figure 6.

The statementlssert(y) is used to introduce intermediate asser-
tions and postconditions. The stateméntume(y) is used to in-
troduce preconditions and conditional statements. Thersent

x := new creates a new object. Allocation of objects whose ad-
dresses are in soi® is modeled using a magllocp : D —
Integer. The statement := new gets desugared into the code
sequence

Assume(Allocp (k) = 0); Allocp (k) :==1;z:=k

wp(Assert(Y),p) = VY Ap
wp(Assume(y),p) = P =
wp(z:=t,p) = [z/t]
wp(f(z) :==y,0) = T(p f,z,9)

wp(Th; T,

®) wp(T1, wp (T2, @)
wp(T1 0Tz, @)

wp (T, p) A wp(Ts, @)

Figure 7. Weakest precondition

F(Soh f7p7 Q) A F(‘P27 f7p7 q)
(e, f,0,9) VT (g2, f,p,9)
=L, f,p,4q)

F((,Ol A Y2, f7p7 q)
(o1 V2, f,p,9)
T'(—, f,p,q)

Figure 8. Definition of I'(¢, f, p, q)

We use the notatiop|z/t] to indicate the result of syntactically
replacingz everywhere witht in the formulay. The computation
described in Figure 7 is straightforward and follows thessical
description (Dijkstra 1976) except in the case of the statém
f(x) := y. Itis nontrivial to provide the weakest precondition of
a formulay with respect tof (z) := y because of the use of the

predicate I in . This predicate may be used either as an

atomt; 5 t5 L ¢5 or in defining the bound seBtwn(f,t1,t2)
of a universally quantified fact. The main difficulty is thatogal
change in the value of the functighatz might cause global change
in the value of this predicate. However, for closure undeakest
precondition, we must capture this change using the voaapof
the logic.

The functionT" defined in Figures 8-11 is used for comput-
ing the weakest precondition of with respect to the statement
f(p) := q. Figure 8 compute¥ (¢, f,p, q) for a formulay by
straightforward recursion on the structure of the formEigure 9
computesI’(a, f,p, q) for a formulaa. The first two rules are
straightforward recursion but to understand the next fales;
we must first understanti(~, f, p, q) defined in Figure 10 and
T'(¢, f,p, q) defined in Figure 11.

The rules for computing’(¢, f, p,¢) in Figure 11 are mostly

wherek is a fresh variable (not used anywhere else) introduced per straightforward. Letf? denote the function that is identical to

allocation site. The statemefite(x) frees an object. I is of sort
D, this statement is desugared into the code sequence

Assert(Allocp(z) = 1); Allocp(x) == 2.

The statement := ¢ evaluateg and writes it into a variable. The
statementf(x) := y writes the value in variablg into the field f
at cellz. The statemen; 7> evaluatesr; followed by T5. The
statementl; 0T executes eithefs or 7> nondeterministically.
This statement, together with the assume statement, is tased
model conditional execution.

The weakest precondition computation for the various state
ments in our language (other than:= new and free(x) which
are desugared) is given in Figure 7. As we discuss below,éhe s
of formulas in our logic is closed under the computation ofiwe
est precondition with respect to any statem&nt.et true denote
the formulaz = x for some designated variable We first com-
pute wp (T, true) as described in the figure. The translation has
the property that-wp (T, true) is unsatisfiable iffl” does not go
wrong. In Sections 3.2 and 3.3, we present a procedure taeleci
whether—wp (T, true) is satisfiable.

f except atp where its value isq. The only nontrivial rule
L'(f(¢), f,p,q) states that the value off(¢) is ¢ if p = t and
f(L(¢, f,p,q)) otherwise.

In Figure 10,I'(t1 = to, f,p,q) andT'(¢t1 < to, f,p,q) are
obtained in a straightforward fashion by recursively cotimgu
['(t1, f,p, q) andT'(t2, £, p,). The computation of (t; 2 t2 L
ts, f,p,q) is easy sincg is different from f. We need to work
harder, however, to compuié(t; £, ta 1, ts, f,p,q). Supposef
is a function of sorth — D. Letu 2 v be the predicate defined

as follows:

uliv = uwbolwv (uiw A ﬁuLw)
w
Intuitively, u 4. v holds iff u can reachv by following zero

or more f links without going throughw. Formally, the model
M E @ ER to iff there aredistinctup, u1,...,u, € Mp such

t3

that My (u;) = uipa foralli € [0,n), uo = My, , un = My,, and

F(al Aa27f7p7Q) EF(O{l,f,]Lq) /\F(Oég,f,p,q)
F(al va27f7p7Q) EF(O{l,f,]Lq) \/F(Oég,f,p,q)

LYz e g (t).o, f,p,q) =
let
t' = F(t7f7p7‘Z)704, = F(OQ f7p7 Q)
mn
Vo € g7 (t).o

L(Vz e f7H ()., f,p,q) =
let

=Tt f,p,q),0' =T(e, f,p.q)

in
A q=t =dz/plAVz e FHE).o
AN q#At =Veec fTHtae=pVd

I'(Vz € Btwn(g,t1,t2).c, f,p,q) =
let
. tll = F(t17 f?p?q)7t/2 = F(t27 f?p?q)7al = F(a7 f?p?q)
n
Vz € Btwn(g,t},t5).o

I'(Vx € Btwn(f, t1,t2).a, f,p,q) =
let

1 =T(t, f,p,q),ta =T(t2, f,p,q),&’ =T(e, f,p,q)
m

At Lty = va € Buon(f, 61, t5).0/
p
N p# A LpAglty = Vo € Btun(f,t),p).o’
th p

A p#th /\t'l%p/\ q%t'g =V € Btun(f, q,th).a/
2

Figure 9. Definition of I'(«, f, p, q)

u; # My, foralli € [0, n). Then, we have the following identity:

fg 17 oot f
U—v—w= V u—=v—=wAu—w
P

vV p;éw/\uLp/\uLva/\qu
w P

Vv p;ﬁw/\uLp/\quLw/\qu
w P

The first disjunct captures the case whetannot destroy the path

) : moop
witnessingu 1, v L w and therefore: ~ v ~% w holds as well.

The second disjunct captures the case when there is a path fro
u to v and the update tg creates a path from to w. The third
disjunct captures the case when there is a path fréaw and the
update tof creates a path from to v.

The identity given above provides a precise update for thd-pr

icateu > v L w with respect to the statemeffitp) := ¢. Con-
sequently, it is crucial for the closure of our logic underakest

preconditions. Finally, this identity provides a simpleywta com-

putel’(¢1 i)tg Lt_‘;, f,p,q) as shown in Figure 10.

We now go back to Figure 9 to understand the last four rules
for computingl'(«, f, p, ¢). The third and fifth rules are straight-
forward becaus¢ andg are different functions. The intuition for
I'(Vz € f~1(t).o, f, p, q) rests on the identity

D) = ite(g=t', fTHE)YU{p}, £THE)\ {p)),

L(tr = ta, f,p,q9) =T(t1, f,p,q) =T (2, f,p,q)
Lt <ta, fip,q9) =T(t1, fip,q) <T(t2, f,p,q)

I1('1"1 i’tZ i>t37 f7p>Q) =
let

t,1 = F(t17f7p7 Q)7t,2 = F(t27f7p7 Q)7t% = F(t37f7p7 Q)
m

g g
th Sth S th

F(tlLtQLt&faIL Q) =
let
t’l = F(t17f7p7 q)7t,2 = F(t27f7p7 q)7té = F(t37f7p7 q)
m
/7

—>th

fp
Lt

th

C(=, f,pq) = -T(v, f,p,9)

Figure 10. Definition of I'(, f, p, q)

L(c f,p,q) =c

Lz, fp,q) ==

Dty +t2, f,p,q) =Lt fop,0) + T(t2, f,p,q)
Dty = t2, f,p,q) =L(t1, f,p,q) — T(t2, f,p,q)
L(g(t), f,p,q) = 9(U(E, f,p,q))

L(f(t), f,pq) =
let
‘t/ :F(t7f7p7q)
m

ite(p=1t', q, f(t'))

D(ite(t1 = t2, t3, ta), f,p,q) =
let
ty =D (t1, f,p,q),to =T (t2, f,p,q),
ty =T(ts, f,p,q),ts = T(ts, f,p,q)
m
ite(ty = t, t, th)

Figure 11. Definition of I'(¢, £, p, q)

wheret’ = T'(¢, f,p,q) and we have extended thée(:, -, -)
constructor to sets for brevity. The intuition for the ral¢vz €

p

. . .1 f.
Btun(f,t1,t2).c, f, p, q) rests on the identity relating— v ~*

w andu L v L w defined above; there is a one-one correspon-
dence between the disjuncts there and the conjuncts in firé-de
tion of I'(Vx € Btwn(f,t1,t2).c, f,p,q).

The contribution of this section can be summarized in the fol
lowing theorem about the definition of thep(T', ¢) captured by
Figures 7-11.

THEOREML1. For any programT’, the formula—wp (T, true) is
in the logic LISBQ. Moreover, the prograf goes wrong iff
—wp(T, true) is satisfiable.

[AND] [oR]
P1 A p2 P1Vp2
01,92 01 P2
[ITE] [EQ]
plite(ty = to, t3, ta)] pi1ta] polte]
t1 =to, @[t3] t1 # t2,o[ta] t1 =t2 t1 #t2

Figure 12. Basic inference

3.2 Decision procedure for ground logic

In this section, we provide a decision procedure for cherkatis-
fiability of a formulay in our logic. First, we converp into nega-
tion normal form and skolemize the resulting existentiamifiers
that result from moving a negation inside a universal qtientiThe
resulting formula remains in our logic. We first present aislen
procedure for the case of ground formulas (Figures 12 andnid®)
then augment the procedure to deal with quantifiers (Figdye 1

Our algorithm maintains aontexf which is a conjunction of
formulas currently asserted to be true. The algorithm plesvia
collection of rewrite rules that operate over the contemtehch
step of the algorithm, an applicable rewrite rule is appliddch
may cause a case-split together with the addition to theezoof
one or more formulas.

Each inference rule is written as a conjunction of anteceden
above the line and a disjunction of consequents below thee lin
In some cases such asND], a consequent below the line might
have several comma-separated formulas which are interheet
conjoined. If there is a rule such that the current contertaias
all the formulas above the line, then the it is guaranteet tthe
disjunction of the formulas below the line is entailed by thatext.

In this case, we say that the rulgatcheghe context. A context is
calledsaturatedif for every matching rule, the context contains all
the formulas in one of the disjuncts below the line.

Let U denote the quantifier-free theory of equality with unin-
terpreted functions and relations. The signaturd/ofontains all
symbols of our logid_ISBQ (Figure 5) exceptt, —, <, and the

constants innteger. Note that whileLISBQinterprets the relation

AN -, the logic U treats it as uninterpreted. L&t denote the

logic with the same signature &&in which the relation EIRREIE N

interpreted. Letd denote the quantifier-free theory of linear arith-
metic. The signature ofi contains all symbols oEISBQ except

the function symbols, such g5 and the relation symbols, such a

L L The only symbols shared amorigand A are the vari-

ables in Variable. Let UA denote the combination off and A.
The signature ofUA is exactly the same as the logic in Figure 5

except that inUA the relation 1.1, istreated as uninterpreted.
A literal is a quantifier-free formula that is free of boolean con-
nectivesA andv, andite(-, -, -) terms. We assume the existence
of an oracle for the theory/A that can decide whether the set of
literals in the current context is satisfiable. The contegbnsistent
if the oracle decides that set of literals in the context tisfiable.
Otherwise, the context iaconsistent
Our algorithm essentially explores a decision tree whilénma
taining a context. It initializes the context to the inputrfaula .
At each step, if the current context is inconsistent, theritigm
backtracks to the last untried decision if there remainsasrtkoth-
erwise returns unsatisfiable. Otherwise, if the currentexdns sat-
urated, the algorithm reports thatis satisfiable. Otherwise, there
is a matching rule such that none of the formulas below tredie
present in the context. If there is only one formula belowlthe,
it is added to the context. Otherwise, a case split is perédrmith
one formula added to the context for each case.

[REFLEXIVE] [STER [REACH]
F®) ft) tilt
f f
t—t t— f(t) t1 =t2 tli>f(t1)i’t2
[cYCLE] [SANDWICH]
fit) =t t Ltg t1 Ltg Lh
t1 = to t1 =12
[ORDER]] [ORDERZ]
t1 Ltz t1 Ltg t1 Lt2i>t3
f f

t1Lota, 12 Loty

[TRANSITIVE]] [TRANSITIVEZ]

Loty 1o Loty to Loty Lt 11 Lt Ly,
ty Loty toLotr Lot to Lt Loty

[TRANSITIVE

toLtiﬂh

toLtLtm tLh Ltz

to Loty Lot

Figure 13. Reachability

Figure 12 gives the basic inference rules. The rule] and
[oR] are straightforward and follow from the logical meaningrof
andV. The rule [TE] is applicable whenever the context contains
a ground formulay containing a termite(t1 = to, t3, ta), iN
which case we perform a case split on = t2. If t1 = t2 we
replaceite(t1 = to2, t3, ta) with ¢35 in ¢, otherwise we replace
ite(t1 = ta, t3, ta) with t4. The rule EQ] performs a case split
on the equality between any two termsandt, that exist in the
context.

The rules in Figure 13 are dedicated to proving facts about

the ternary reachability predicatei v L w. The rules make
extensive use of the binary reachability predicmé» v which, as
mentioned earlier, is equivalentmiv L, v. Rule [REFLEXIVE]

says that 1, is a reflexive relation. In rulegTeH, as in a few
other rules discussed later, we take a notational liberfyuiting a
term f(¢t) above the line. RulegTER is applicable whenever a term
f(t) occurs in any ground formula in the context and concludes the
obvious fact thatf(¢) is reachable fromt. Rule [REACH] draws
conclusions based on the presence @f) in the context and the
reachability from¢; of another ternts.

Rules cYcLE] and [saNDWICH] entail an equality without in-
troducing a case split. Both rules draw conclusions frompifes-
ence of cycles in the graph of the reachability relation.eRul
[ORDERL] and [ORDERZ2] connect the ternary and binary reacha-
bility predicates. Rule§rDER1] says that ift; reaches botk, and
ts, then eithert; reaches, followed by ¢3 or t1 reachess fol-
lowed byt,. Rule [DRDER2] draws the more obvious conclusion
in the other direction. RuleTRANSITIVEL], [TRANSITIVEZ], and
[TRANSITIVEZ] state various facts related to the transitivity d .

and- L. L.

Given a quantifier-free formula as input, the procedure de-
fined by the rules in Figures 12 and 13 terminates becauseithe n
ber of new terms created is bounded by the number«gf, -, -)
terms inp. Since the procedure simply combines backtracking with
the creation of new facts among this bounded set of termspwe ¢
clude that the procedure will terminate. Soundness of tardhm
is proved by reasoning locally about each inference rulestify

that the conjunction of antecedents indeed implies theidlision
of the consequents.

The argument for the completeness of the algorithm is as fol-
lows. Suppose during the execution of the algorithm, weaiat a
consistent and saturated contéxtWe create a model that satisfies
each formula irC' using the following steps: Remove each formula
in C that is not a literal. Due to the rulesNip], [OR], and [ITE], it
suffices to find a model for the resulting set of formulas. fufie
remaining literals by introducing fresh variables and newadities
and saturate the context with all derived facts in the thédnsing
congruence closure. For each sbrtintroduce a fresh variablé p
and add literalsL p# «, for every other variable of sort D. The
role of these variables will become clear later when we defiee
model. Note that the addition of these disequalities to theext
does not create any fresh implications. Split the contexttime set
C'v containing literals only from theory” and the se€'4 contain-
ing literals only from theoryA. Due to the rule§q], bothC'v and
C4 areconvexand entail the same set of equalities. In addition,
both theoriesl” and A are stably infinite. Therefore, in order to get
a model forCy A C4, we only need to get models separatély
andC'4 (Nelson and Oppen 1979). Here we only show how to gen-
erate a model fo€'y, since a model fo€'4 can be generated from
the decision procedure for arithmetic.

We now show how to construct a mod&!l for a consistent
and saturated”y. In order to define a modeM for Cy, we
need for each sorD different from the sort/nteger, a domain
Mp, an assignmeniif, € D for every variablex of sort D,
and an assignmen¥; : Mp — Mp for every functionf of
sort D — D. We start in the usual way and definép to be the
partition {u1, ..., u,} of the set of variables of sof satisfying
the following condition: for all € [1,...,n] and for all variables
x andy of sortD, x € u; andy € wu; iff © =y € Cv. For each
u € Mp, let|u] denote a fixed representative member.oNow
we defineM, to be the unique: € Mp such thate € u. Note that
the equivalence class containing the variablg is the singleton
{Llp} because’y contains disequalities differentiatingp from
every variable of sorD.

We would like to definef () for an arbitrary element € Mp.

If (f(Ju]) = [v]) € Cv for somev € Mp, then we define
My (u) = v. However, if(f(Ju]) = [v]) € Cv foranyv € Mp,
then we must pick some element 8fp to be f(u). The main
difficulty is that the interpretation of the functiofiis tied to the
interpretation of the relation ©> - L. .. We must be careful not
to define f(u) to be inconsistent with the constraints @, . To
help us in this task, we define for each € Mp, the relation

Ry ={(v,w) € Mp x Mp | [u] &+ [o] & Jw] € Cv}.
LEMMA 1. For all w € Mp, the following facts hold:

1. (u,u) € Ru.

2. R, is reflexive ovedom(R.,).

3. R, is transitive.

4. R, is totally-ordered ovedlom(R.,).

With the aid of R,,, we now provide a complete interpretation for
M;y. Letu be an arbitrary element a¥/p. If (f(Ju]) = [v]) €
Cy for somev € Mp, then defineMy(u) = v. Otherwise, if
R, = {(u, u)} then defineM; (u) = u. Otherwise, defind/(u)

to be the least element, with respectRq, of dom(R.) \ {u}.
Lemma 1 guarantees that definifign the last two cases does not
create any contradictions with the cont&Xi,. The interpretation

for - LI is now defined as

ubvliw e u] L] L] € ov.

[INV] [BTWN]
f)=t Lt Lty
Vo e 7).« Vz € Btwn(f,t1,t2).c0
afz/t'] alz/]

Figure 14. Quantifier instantiation

In addition to defining the interpretation for each functifn
of sort D — D, we also need to define an assignmanj :
Mp — Mg for every functiong whose sort isD — E where
D and E are different. Letu be an arbitrary element al/p.
If (g(Jul) Jv]) € Cv for somev € Mg, then we define
Mgy (u) = v. Otherwise, we defind/, (u) = {Lg}.

LEMMA 2. The modelM defined above satisfied = Cy .

Based on Lemma 2, we obtain the following theorem.

THEOREM2. Letp € Formula be quantifier-free. Then the pro-
cedure described by the rules in Figures 12 and 13 terminaiels
decides the satisfiability of.

In Section 3.3, we extend our decision procedure to thedgltl
with quantification. The following lemma captures an impott
property of the rules in Figures 12 and 13 that is used to prove
the completeness of our decision procedure for the fulldogi

LEMMA 3. Let X be any collection of facts of the form = t-.

LetY be any collection of facts of the formLtz 4, ts. LetC be
any consistent and saturated contexiClentails\/(X UY’), then
one of the following must hold:

1. t1 =te € C forsomet; =t € X.
2.t Ltz i)tg € C for somet; Ltz L)tg eyY.

3.3 Decision procedure for quantified logic

We now extend our decision procedure to handle quantifiets fac
by adding the rules in Figure 14. The first rulevy] handles
quantification over the set constructbr! (¢); if the current context
contains the facyf(¢') = ¢ then this rule instantiates the body of
the quantifier at’. The rule BTwN] works in similarly for the set
constructorBtwn(f, t1,t2).

Our decision procedure terminates even after adding the-qua
tifier instantiation rules in Figure 14 because the inpuirfala is
required to besort-restricted There is a partial-order on the set
of sorts and whenever a quantifiér € S.¢ is instantiated, any
new terms generated are of a sort less than the sart Bf well-
founded induction over the partial-order on the set of savéscan
show that for each sof? there is a decision depth in the backtrack-
ing search beyond which the number of terms of dortemains
unchanged. In fact, for an input formufa the number of terms of
sort D generated by our algorithm is bounded|by - K!P! where
K is the number of function symbols. Since the number of sorts
is finite, the procedure will terminate. Since the size ofiedel
constructed in Section 3.2 is linear in the number of terntstha
number of terms is linear in the size of the formula, we hawee th
following theorem about the complexity of our logic.

THEOREM 3. The satisfiability problem for the logic LISBQ is NP-
complete.

The local soundness of the rulesy] and [BTWN] is obvious.
For completeness, we appeal to Lemma 3. Consider a cofitext
that is consistent and saturated with respect to all thesrire
Figures 12, 13, and 14. Ld®; be the conjunctior\ t1 # t» for
all t; andts such thatt; = t2 ¢ C. Let Dy be the conjunction

N\t Ltz Ltg for all ¢1, t2, andts such that, Ltz Ltg ¢ C.

Lemma 3 guarantees that A D1 A D is satisfiable, which in
turn implies that all the quantified facts @have been instantiated
enough. Therefore, a model for the set of literal€ins a model
for all the facts inC'. We have already shown, earlier in this section,
how to construct a model for the set of literalsih Thus, we have
the following theorem.

THEOREMA4. Let ¢ € Formula. Then the procedure described
by the rules in Figures 12, 13, and 14 terminates and decides t
satisfiability ofyp.

It is important to note that set-bounded quantification i$ no
essential for either termination or completeness of ouisi@mt
procedure. Termination is ensured by 8wt-restrictedproperty.
Completeness could be ensured simply by instantiatingttigth
facts on all ground terms of the appropriate sort. Howevechs

a procedure would lead to a huge number of instantiations and

would consequently be very expensive in practice. Set-thedn
quantification allows us to instantiate quantifiers lazihdgields
an efficient implementation.

3.4 Expressiveness

In this section, we show various examples to illustrate tes-
siveness of our logic.

Cyclic lists. We specify thatd points to the head of a cyclic
list as follows:

hd # null A £(hd) - hd
Suppose each element of this list contains a fielek. The invari-

ant for a loop that iterates, using a varialeover this list setting
thedata field to 0 is specified as follows:

Vu € Btwn(f, £(hd),i) \ {i}. data(u) =0
Sortedness.Supposehd points to a null-terminated list. The

invariant that the values stored in theta field of the list members
are sorted is specified as follows:

Vu € Btwn(f, £(hd),null) \ {null}.
Vv € Btwn(f,u,null) \ {null}. data(u) < data(v)

List of lists. Supposend is pointing to a null-terminated list
linked by the fieldf and each member of the list has a figlthat
points to a distinct null-terminated list linked by the figdd The
disjointness of these lists is specified as follows:

Vu € Btwn(f,hd,null) \ {null}.
Vv € Btun(f,hd,null) \ {null}.
u=vVVYw € Btwn(g, 1(u),null) \ {null}.-1(v) &w
The ability to specify such invariants is useful for verifgisystems
software that uses composite data structures (Berdine Z0@).
List union. Supposes, b, andc are null-terminated lists con-
structed using linking fields,, £, andfs respectively. We specify
thata is the union ob andc as follows:
Yu € Btun(fy,a, null).bf—2>u Ve
Vu € Btun(fz,b,null).a S
Vu € Btun(fs, c,null).af—1>u
This invariant is useful in proving the correctness of theliace
list reversal program.

4. Revisiting the motivating example

In this section, we revisit the example presented in Se@iand
describe the various invariants required to prove the afesef
double-free property. We show that these invariants cambeally

For the purpose of illustration, we consider programs emitt
in a subset of C that is simple yet rich enough to express the pr
gram in Section 2. The language precludes performing aetitm
on pointers, taking the address of (using theoperator) a stack
variable or a field inside a structure, and the use of arrayisns
and nested structures. Before we describe our specificatioa
briefly describe the memory model and how we define the opera-
tional semantics of the program.

e The memory is partitioned into a set of maps £, ..., fa,
one corresponding to each field declared in the program, and
indexed by the objects or references. Without loss of gdibgra
we assume that the field names are globally distinct.

e The value of the C expressionr>£ is obtained by looking up
the mapf at the index obtained by evaluating An update
x->f = y updates the map at the location obtained by evalu-
atingx, with the value obtained by evaluating

4.1 Sorts

To generate a well-sorted formula from a program, we assgs s
to the different fields and variables in the program. Thessare
generated by analyzing the type structure of the prograitially,

a sort is assigned to each distinct type in the program. Iftiyes
can be the target of @oidx field (e.g.data in our example), we
merge the sorts for the two types. For our example, the sairtd s
D consists of at least the following sorts:

D = {Integer,P_.dlink node,P_(logentry, channel),

P_channel_log, P_FILE, P_char,...}

P_dlink node is the sort for a pointer to alink node. The sort
P_(logentry, channel) is for a pointer to eithelogentry or
channel, unified due to the presence of the polymorphicta
field in dlink_node. Given the sort seD, we can assign sorts to
the different variables and fields in the program, by sulntig the
sort corresponding to each type in the program.

For each sortD € D, we maintain a mafype, : D —
Integer, that maps an object of sofd to an integer constant
denoting the dynamic type of object. We introduce a condtamt
each type, by prefixing & to the type name (e.®logentry for
an object of typ&ogentry, @channel_log for an object of type
channel _log). The dynamic type of each object is assigned during
the allocation of the object. All the casts in the programciiecked
to see that they match the dynamic type of the objects.

Finally, the partial orde< on D is generated by analyzing the
signature of the fields in the program, apart from the linkiels
like next andprev. For each field : D — FE in the program, we
add the constraint thal < D. The partial order for our program
is the following:

P_(logentry,channel) < P_dlink node

P_char < P_(logentry, channel)
Integer < P_(logentry, channel)
P_channel_log < P_(logentry, channel)
Integer < P_channel_log

P_FILE < P_channel_log

4.2 Specifications using ' set constructor

Theg™! set constructor is useful for expressing both non-aliasing
of heap objects antype invariants

To prove the absence of double-free property in our example,
we need to ensure non-aliasing of various fields of the same so
(e.g. thecharx fields channel name, filename, etc.). For a field
£, and a set of fieldB, we first define a macotAliased(f, F, u)

expressed using the simple logic we presented in Sectiorn3. T as follows:

easily follow the specifications, the reader should reeranthe
program in Section 2.

NotAliased(f,F,u) =

(W) = {u} A Ay (E() = {3}

This macro specifies that the objef¢ia) pointed to by a given
field £, cannot be also pointed to by any of the field§iriThe set
F usually contains a set of fields that have the same sdrtste
that we have used set equality as a syntactic sugar for the mor
elaborate formula using bounded quantification.

We can use this macro to specify that any object pointed to by
the charx field channel_name is distinct from the objects pointed
to by the othekharx fields as follows:

—1
Vu € TypeP_(logentry,channel) (@1ogentIY)'
NotAliased(channel_name, {filename, name, topic},u)

It means for any objeat of sortP_(logentry, channel) with
a dynamic typelogentry, the objectchannel name(u) of sort
P_char, can't be pointed to by any of the othetiarx fields.

Observe that the use Dfpe, ' (QT") allows us to describype
invariantsfor any given dynamic typ& within the sortD, such as
logentry in the previous example.

4.3 Specifications usin®twn(f, x,y) set constructor

Let us now illustrate the use of the set construsteown(f, x,y) to
describe properties of linked lists.

¢ Disjointness of listsTo specify that the two linked lists have
disjoint elements, we can exploit the fact that the node&ién t
two linked lists have different dynamic types:

Vu € Btun(next, log list.head, null) \ {null}.
TypeP_<logentry,channe1> (data(u)) = @logentry

Vu € Btwn(next, channel_list.head,null) \ {null}.
TypeP_<logentry,channe1> (data(u)) = Qchannel

These invariants describe that for any nadi@ the linked list
betweenlog list.head (respectively,channel_list.head)
andnull, but excludingaull, the type of the object pointed to
by data(u) is @logentry (respectivelyQchannel). By the
property of functions, this ensures that the set of nodeken t
two lists are disjoint. The interesting nature of this sfieation

is that we can specify the disjointness of the two lists bgirsga
an invariant locally for each list.

Non-aliasing for listsWe also need to ensure that each node in
each linked list points to a distinct object. We use both #te s
constructors in the following specification:

Vu € Btun(next, log-list.head, null) \ {null}.
NotAliased(data, {},u)

Vu € Btun(next, channel_list.head,null) \ {null}.
NotAliased(data, {},u)

The first invariant describes that for any nodén the linked
list betweernlog 1ist.head andnull, but excludinghull, the
object pointed to bylata(u) has exactly one object (namely
pointing into it using thelata field. This ensures that thiata
field for each object in the list points to a distinct objecheT
second invariant states this property for the second list.

Data structure invariantin Figure 4, the routineslear_logs
andrem_channel delete pointers from the doubly-linked lists
using thedlink delete routine. The correctness of the routine
relies on the input list being a doubly-linked list. We use th
following macro to describe the invariants for a genericcicy

doubly-linked listD1istInv(dlist,next, prev):

DlistInv(dlist,next,prev) =

A prev(dlist.head) = null

A next(dlist.tail) = null

A Btwn(next,dlist.head,null) =
Btwn(prev,dlist.tail,null)

A null € Btwn(next,dlist.head,null)

A Yu € Btun(next, dlist.head,null) \ {null}.
u = dlist.head V next(prev(u)) =u

A Yu € Btun(prev,dlist.tail,null) \ {null}.

u=dlist.tail V prev(next(u)) =u

The first two invariants are self-explanatory. The thirchinant
states that the set of objects reachable followingnihet field
from thedlist.head is the same as the set reachable following
theprev field from thed1ist.tail. The fourth invariant states
that the lists obtained by following theext andprev fields are
both acyclic. The last two invariants constrain the fialdst
andprev to be fields of a doubly-linked list.

Although the invariant looks complex, these data structore
variants have to be written only once for each type of doubly-
linked list. and then instantiated for the different listsg.
log-list andchannel _list) in the program. This predicate
can be reused across all other programs that manipulatéacyc
doubly-linked lists as well.

In addition to these invariants, we also need invariantngta
that all objects reachable from the two lists are allocatateover,
for the loops iterating over the lists, we need to specifyt the
iterator (e.gptr in clear_logs) points to an object in the list. All
these invariants are expressible in our logic.

4.4 Sort-restriction

To enable the algorithm described in Section 3.3 to terraimat
the above queries, we need to ensure that the formulasoare
restricted as well. In this section, we show that almost all the
formulas in this section meet the requirement.

Let us consider the following invariant, described in Satd.3.

Vu € Btwn(next, channel_list.head,null) \ {null}.
TypeP_<logentry,channel> (data(u)) = Qchannel

For this formula, the variable of sortP_dlink_node appears as

a subterm ofdata(u), which has a sorP_(logentry, channel)

and a subterm afype; 1 zentry chaner) (d2ta(w)), Which has a sort

Integer. In both cases, the sorts of the subterms are less than the

sort foru, according to the partial ordet described in Section 4.1.
However, consider the following invariant also describedthie

previous section:

Vu € Btwn(next, dlist.head,null) \ {null}.
u = dlist.head V next(prev(u)) =u

In this formula,u appears as a strict subterm pfev(u) and
next(prev(u)), both of which have the same sort aslin fact,
any legal sort assignment would equate the sorts for thesterm
next(prev(u)) andu, and therefore the formula can not sert-
restrictedfor any sort assignment.

It turns out that for this example (and also for the rest of the
examples we consider this paper), the only two formulasdbaiot
meet the sort restrictions are the last two invariantBldafst Inv.
This is not surprising because the invariant constrainsibdields
next and prev that form singly-linked lists. In Section 6, we
describe our solution for ensuring that the algorithm teatgs on
such ill-behaved formulas as well.

[ORDERL] Vz,y,z: {Reach(f,z,y,y), Reach(f,x,z,2)}
Reach(f,z,y,y) N\ Reach(f,z,z,z) =
Reach(f,x,y,z)V Reach(f,x, z,vy)

[TRANSITIVEL] Vz,y,z: {Reach(f,z,y,y), Reach(f,y,z,2)}

Reach(f, 2, 4, 4) A Reach(f,y,=,2) =
Reach(f,z,z, z)

Figure 15. Encoding inference rules using axioms with triggers

5. Implementation

We have created an initial prototype of the decision procedu
framework over existing SMT solvers, where we encode our in-
ference rules using universally-quantified first-orderoas with
appropriate matchingriggers Our implementation translates an-
notated C programs into the BoogiePL intermediate lang(age
Line and Leino 2005). Each procedure in a BoogiePL program is
translated into a verification condition by the Boogie verifBar-
nett and Leino 2005). Finally, the verification conditioms proved
by the SmpLIFY (Detlefs et al. 2005) and Z3 (de Moura and
Bjorner 2007) automated theorem provers.

Figure 15 gives the axioms encoding two illustrative resvrit
rules from Figure 13. We use predicat&ach(f,z,y,z) and

In(z,y) to stand for the relationsiy 2, 2 ande respectively. To
avoid the use of excessive parentheses, we use the convémdio
= has lower precedence thanand V. For each axiom, a set of
triggers is specified using curly braces. Each trigger isli@ction
of terms enclosed withi{-}, which together must refer to all
of the universally-quantified variables. The axiom is inited
for those terms which if substituted for the quantified Viales
in the trigger terms result in terms that are all present wugd
formulas. Typically, each rewrite rule results in an axionwihich
the conjunction of the literals above the line implies thgudiction
of the literals below the line and the terms in the literalewabthe
line appear in the trigger.

In addition to encoding the rules of our decision procedure
as axioms, we also provide triggers for the universallyntifiad
assertions in the program. To encode the reasoning for tiee ru
[BTWN] (Figure 14), we infer a triggef Reach(f,t1,x,t2)} for
the formulavz € Btwn(f,t1,t2).c. To encode the reasoning for
the rule [Nv], we infer a triggerin(z, f~*(t)) for the formula
Va € f~'(t).a. To generate the termn(z, f~*(t)), we add the
following axiom:

[ININV]

vy: {f@)} In(y, 7 (f ()

We automatically generate the appropriate triggers fouaiyersally-
quantified assertions that belongs to sioet-restrictedfragment of
our logic.

There are many advantages to implementing a rewritingebase
decision procedure using first-order axioms over SMT setver

1. First, it allows us to quickly create an initial prototyper
evaluation.

2. Second, it allows us to leverage efficient ground reagpfin

equality, uninterpreted functions and arithmetic.

. Finally, we can leverage the advances in matching basaa-qu
tifier instantiation using triggers (Detlefs et al. 2005;Meura
and Bjorner 2007). This is useful not only for the implementa
tion of the rewrite rules, but also allows us to express gfiadt
invariants outside our logic in the rare cases when requiféd
present the need for such invariants, and our solution tb dea
with them in Section 6.

Example SIMPLIFY SIMPLIFY Z3
Old Time (s) | New Time (s) | Time (s)

iterate 1.8 1.4 1.5
iterate_acyclic 1.7 15 1.43
slist_add 15 1.3 1.36
reverse_acyclic 2.0 1.4 1.37
slist_sorted_insert 16.4 3.1 4.85
dlist_add 38.9 7.1 1.75
dlist_remove 454 2.4 1.65

allocator *(901.8) 57.1 2.0
list_appl * 200.1 30.22

muh_free * * 8.2

Figure 16. Results of assertion checking. The experiments were
conducted on a 3.6GHz, 2GB machine running Windows XP. A
timeout (indicated by *) of 5000 seconds was set for eachréxpe
ment. Forallocator, time inside the parenthesis denotes the run-
time after manual decomposition.

allow us to perform additional optimizations, e.g. ordgrthe var-
ious rules to detect unsatisfiability faster in common cases

6. Evaluation

We have used the decision procedure presented in this paper i
the tool Havoc (Chatterjee et al. 2007), and performed a set of
preliminary experiments for verifying small to medium siz€
benchmarks. HWvoc is a tool for checking properties of heap-
manipulating C programs. The memory model inMéC accounts

for additional complications of low-level C programs, inding
pointer arithmetic, internal pointers, nested structuoesons and
arrays. The main differences over the memory model predente
in this paper are: (i) each expression evaluates to a poiyper
ptr : (Obj, int) consisting of an object and an offset; and (ii)
there is a single malpem : ptr — ptr for the entire memory. This
low-level model is required to maintain soundness acrogstqo
arithmetic and internal pointers in C.AdocC also uses a alternate
variant of the reachability predicate presented in thisspagalled
well-foundedeachability predicate (Lahiri and Qadeer 2006; Chat-
terjee et al. 2007).The rules presented in the paper were suitably
extended to account for this memory model and reachabilégip
cate.

Figure 16 presents a set of C benchmarks that manipulate
singly and doubly-linked lists. These benchmarks use point
arithmetic, internal pointers into objects and cast opanat in
addition to linked data structures. The exampigerate and
iterate_acyclic respectively initialize the data elements of a
cyclic and acyclic lists respectivelglist_add adds a node to a
singly linked list;reverse_acyclic is a routine for in-place rever-
sal of an acyclic list. The examplelist_sorted_insert inserts
a node into a sorted (by the data field) linked lgtist_add and
dlist_remove are the insertion and deletion routines for cyclic
doubly-linked listsallocator is a low-level custom storage allo-
cator; it maintains a list of freed regions in an object andimes
a region whose size satisfies the clients requesit_appl is a
simple application with multiple doubly-linked lists, et point-
ers, and uses the primitive doubly-linked list operatiatit_free
is a simplified version of theuh example presented in Section 2.
The examples range from 10 to 150 lines of C code. For all these
examples, we check a set of partial correctness propentesiing

1The well-founded reachability predicate also enjoys mbgi@properties

However, our approach has some drawbacks over a custom im-of ,, £, y 2, -, such as closure under weakest-precondition, and a

plementation. First, matching in typical SMT solvers is exgive.
Second, a custom implementation of our decision procedotgdy

rewriting-based decision procedure for the ground fragme€he results
are present in a recent technical report (Lahiri and Qade@r)2

(but not limited to) the implicit memory-safety requirent&nFor
instance, we check that the output listsdfist_sorted_insert
is sorted; forreverse_acyclic, we verify that the input and the
output lists have the same nodes; &rlocator, we verify that
the region returned by the application was already presettiaé
free list and meets the size requirement; fost_appl, we verify
that the disjoint lists satisfies certain data invariant&lfy for muh
we check the absence of double-free property.

In an earlier work (Chatterjee et al. 2007), we verified a stibs
of the examples in Figure 16 using an incomplete axiomatizat
of the reachability predicate, with universally quantifiedariants.
For most of the examples, we had to write down the triggers
for the quantified invariants carefully; the theorem preverere
quickly overwhelmed without such restrictions. The seccoidmn
in Figure 16 denotes the runtime using our previous approach
using the $vPLIFY theorem prover (reported from (Chatterjee
et al. 2007)). The third and the fourth column denotes thémen
using the algorithm described in this paper (using8.IFy and
Z3 as the SMT provers respectively); for these cases, thegers
for the quantified invariants (with a couple of exceptionfon
were generated automatically, using the scheme of Figure 15

The results clearly indicate that the new algorithm outper-
forms the older axiomatization in terms of efficiency. We can
now solve several new exampletift_appl, muh _free) that

vides the weakest precondition for the predicate. Rakanedral.
(2007) provide a rewriting-based decision procedure fergitound

fragment of our logic withe ER y e However, they do not pro-
vide the weakest precondition for the predicate, and aregnige
across updates to the linking fields. In addition, the remides in
our decision procedure are fewer and simpler resulting imalsr
proof of completeness. Balaban et al. (2005) present a tbgic
allows reachability over singly-linked lists to be exprs$sTheir
decision procedure is based on a small-model property dbtie.
In all these cases, the logics are strictly less expreshae ours
since they do not have any support for quantifiers — as a result
they cannot express most of the properties that we discugssin
paper.

Ranise and Zarba (2006) present a decidable ground logdic tha
combines reachability constraints with arithmetic. Batytprovide
no implementation to evaluate the feasibility of their aggmh.
Moreover, the logic can't express many properties of ctibes
(such as sortedness of lists), since it does not provideostfgr
quantifiers. Kuncak and Rinard (2005) provide a logic witts $er
reasoning about data structures. Unlike our logic, thejiclaoes
not allow sets to be constructed from the reachability mazei

There have been several other attempts at first-order akizana
tion of reachability (Lev-Ami et al. 2005; Lahiri and Qad&806),
which are incomplete. McPeak and Necula (2005) use de&dabl

were not amenable to be solved by our previous approach. Forfagment of first-order logic augmented with arithmetic @alar

the allocator example, the time reported inside the parenthesis
(901.8 seconds) denotes the time taken to verify the exawifte
our previous approach, using additional triggers and madea
composition of the proof into two VCs — without these changes
the example did not verify within the time limit. It illustras the
brittleness of our previous approach. The improved reswits
Z3 (over SMPLIFY) also indicate that the recent advances in SMT
solvers are crucial to scale better. However, the receraramhs
alone are not sufficient to solve these problems (as we lddrom
our failed attempts with Z3 with our old axiomatization).riost
of these cases, the theorem provers quickly ran out of memory
due to large number of (often useless) instantiations ofjtfemti-
fiers. However, the real gain (not evident from the resulis$
the predictability of the new approach. In our experiencesnof
the failed proofs in our verification effort with the new framork
points at insufficient assertions or bugs in the program.

For these examples, the main source of formulas that do not fit
the sort-restrictedfragment of LISBQ comes from specification
of the doubly-linked list invariant. For the following dolydinked
list assertion mentioned in Section 2:

Vu € Btwn(next, dlist.head,null) \ {null}.
u = dlist.head V next(prev(u)) =u

our solution has been to add a trigggirev(u)} to ensure that
this assertion never generates a new tptiew(t) after instantiat-
ing u with t. Note that even though a new tetiext (prev(t))
could still be generated after instantiation, assertirig titeral
next(prev(t)) = t in the context would cause this term to be
equated with an existing term This restriction ensures that the
instantiations terminates even in the presence of suchulasn

7. Related work

In this work, we have augmented first-order SMT solvers wib-u
ful theories for precise verification of heap-manipulagonggrams.
We discuss the various works that are similar in spirit to goal
of automatically verifying such programs.

Nelson (1983) presents a ground logic with the ternary predi
catex Ly, and an axiomatization for the logic. No claim is made

about the completeness of the axiomatization, but the paimer

field to specify properties of data structures. Howevely tie not
provide any theories for recursive predicates like reaitihgland
rely on user providedhostvariables to express properties of data
structures — the updates to these ghost variables have neéad
manually by the user to generate the verification conditibtosv-
ever, they demonstrate completeness of quantifier inataontifor
certain syntactic class of formulas that could help extamddeci-
sion procedure for doubly-linked list assertions.

Unlike the papers discussed so far that have essentially use
first-order logic for reasoning about linked data structumraher
approaches have used higher-order logic for the same prpbe
pointer assertion logic engine (PALE) (Mgller and Schwaatzh
2001) uses monadic second-order logic to express propertie
volving reachability. Although the logic can express masenplex
shape properties than that allowed by our logic, the logclodes
the use of integer valued functions and the decision proeefiu
the logic has high complexity. The work of Yorsh et al. (2006)
the logic of reachable patterns is in a similar directioneyllpro-
vide a logic for expressing complex shape properties, show h
to generate precise verification conditions and provide Gsamn
procedure by translation to monadic second-order logic.

Separation logic (Reynolds 2002) has been proposed torreaso
about heap-manipulating programs. Berdine et al. (200=Qritee a
rewrite-based decision procedure for a fragment of separkitgic
with linked lists. Among other things, it is not clear how tarhess
efficient arithmetic theory reasoning in this framework.

Automatic computation of (shape) invariants for progranithw
linked data structuresfiape analysjshas also received consider-
able attention in recent years. This work is orthogonal amdpde-
mentary to our work and we only discuss it briefly. Most of this
work is based on specialized abstract domains for the heap (L
Ami and Sagiv 2000; Distefano et al. 2006) or use predicate ab
straction (Graf and Saidi 1997) with decision proceduceddg-
ics with reachability (Balaban et al. 2005; Rakamaric e2aD7;
Lahiri and Qadeer 2006). Better decision procedures areiaru
for the latter approaches, but they can also be used to irapghay
imprecision of the underlying abstract domain in the forrapr
proaches (Lev-Ami et al. 2005).

8. Conclusions

In this paper, we revisit the problem pfeciseverification of heap-
manipulating programs using first-order SMT solvers. Toathis
problem, we present thkeogic of Interpreted Sets and Bounded
Quantificationfor specifying properties of heap-manipulating pro-
grams and a verifier for proving these properties. The vatifia

is fully precise within a procedure and loop body, and is aioial
across typical loop-free code fragments found in practice.

We are currently working on extending our work in two direc-
tions: First, we would like to extend our logic to supportgarof
indices of an array as another interpreted set constructdhis—
would allow reasoning about rich properites of the most camm
data structures (arrays and lists) in a single frameworkofe,
we would like to perform abstraction across loop and procedu
boundaries to reduce the annotation requirement by autoatigt
inferring many annotations. The recent advances in SMTesslv
and the results of this paper that leverage these advancesie
ated a strong foundation for carrying forward this work.

Acknowledgments

We would like to thank Nikolaj Bjorner and Leonardo de Moura
for help with Z3 and Amit Goel and Sava Krsti¢ for suggesting
improvements to our decision procedure.

A. Proofs
A.1 Proof of Lemma 1
LEMMA 1. For all w € Mp, the following facts hold:

1. (u,u) € Ry.

2. R, is areflexive relation ovetdom (R.,).
3. R, is transitive.

4. R, is totally-ordered ovetlom(R.,).

PROOF.SinceC'y is saturated with respect t® fFLEXIVE] and

[ORDER1], we have]u| ER Ju] ER Ju] € Cv. Therefore(u, u) €

R,.
Recall thatdom(R,) = {v | Jw.(v,w) € R,}. Suppose
v € dom(R.). Then there exists such that(v,w) € R, and

hence]u] ER [v] ER Jw] € Cv. SinceC'y is saturated with respect

to [ORDER2], we know that]u]| ER [v] € Cv. Finally, saturation

with respect to GRDERL] gives usju| ER [v] ER [v] € Cv.
Therefore(v,v) € R..

Let (v,w) € R, and (w,w’) € R,. In this case, we know
Ju] L o] L [w] € Cv andu] L [w] L Jw'] € Cv. SinceC'y
is saturated with respect toRANSITIVEZ], [u] ER [v] ER Jw'] €
Cv, and hencév, w’) € R,.

Considerv,w € dom(R.). SinceR, is a reflexive relation

over dom(R.), we know |u] ER [v] ER Jv] € Cv and[u| ER

Jw] ER Jw] € Cv. Saturation with respect t@RDER2] gives us
Jul ER Jv] € Cv and|u] ER Jw] € Cv. SinceCy is saturated
with respect to QRDERL], either Ju| ER [v] ER Jw] € Cv or

Ju] =R Jw] ER Jv] € Cv. Inthe former casev,w) € R, and in
the latter(w, v) € R,. O

A.2 Proof of Lemma 2

We now give the proof of the following lemma, first presentad i
Section 3.2, which essentially claims completeness forutes in
Figure 13.

LEMMA 2. The modelM defined in Section 3.2 satisfidd =
Cv.

The proof of Lemma 2 is decomposed into Lemmas 4-8 proved in
this section.

Consider a functiorf of sort D — D. Letwu be an equivalence
class inMp. Suppose there is n@ in Mp such thatf(Ju]) =
Jw] € Cv. Then, we use the relatioR,, to define f(u) in the
modelM to be some equivalence clasdNe will add the constraint
f(Ju]) = [v] to Cv (together with constraintg([u]) = ¢ for all
termst such that = Jv] € Cv and constraintg (Ju]) # t for
all termst such that # [v] € Cv) and argue tha€'y remains
consistent and saturated. The tefifju]) was absent fronC'v
before the addition of this constraint. Moreover, this ¢maist is
introduced only once for each equivalence clas§hese two facts
ensure tha€'y is saturated with respect to congruence closure. We
now show thatCy remains saturated with respect to the rules in
Figure 12-14. Consequently,y remains consistent as well.

The only rule in Figure 12 that might become applicable by the
introduction of the terny'(Ju|) is [EQ]. Let ¢ be an arbitrary term
of sort D in Cy. SinceCy was saturated with respect teq to
begin with, eithert = [v] € Cv or¢ # Jv] € Cv. In the first
case, we have addef{|u]) = ¢ to C'v. In the second case, we
have added(Ju]) # ¢ to Cv. Therefore,C'v remains saturated
with respect togq].

The only rules in Figure 13 that might become applicable ly th
introduction of the ternf (Ju]) are [STEA, [REACH], and [CYCLE].
We now split cases oR,, = {(u, u)}.

1. If Ry = {(u,u)}, thenv = u. By [REFLEXIVE], Ju| i>[|u|] €

C'v and therefore§TEHA is saturated. Sinc&,, = {(u,u)},

we know that if]u| ER [v] € Cv thenu = v. Therefore, both
[REACH] and [cYCLE] are saturated.

2. If Ry # {(u,u)}, thenv is the least element afomn (R.) \ {u}
with respect taR,,. Sincev € dom(R.), by Lemma 1(v,v) €

R, from which we conclude thafu]| ER [v] ER Jv] € Cv.
Therefore §TEH is saturated. Let us consider the rukejpcH].

Supposdu| ER Jw] € Cv. If u = w then [REACH] is already
saturated. Otherwise» € dom(R.) \ {u}. Sincew is the

least element oflom(R.) \ {u}, we conclude thaju| ER

[v] ER [w] € Cv. Therefore REACH] is saturated. Since
v € dom(Ry)\ {u}, we havev # v and]v] # Ju[. Therefore
f(Qu]) = [v] # |u|- Consequently, the rulecfcLE] is
inapplicable and saturated.

Consider the rules in Figure 14. The rul@y] remains satu-
rated with respect t@'y because we have only added constraints
for functions f of sort D — D whereD € D. The rule BTWN]
remains saturated with respectda because we did not add any

constraintt; Ltin:g toCy.

Consider a functiory of sort D — E, whereD # E. Letu
be an equivalence class Mp. Suppose there is no in Mg such
thatg(Ju]) = [w] € Cv. Then, we defing(u) = { Lg}. We add
the constrainy(Ju]) =L g (together with constraintg(u]) = ¢
for all termst such that =L g€ Cv andg(Ju]) # ¢ for all termst
suchthat #_1 ge Cy)toCy and argue thaf'y: remains saturated
with respect to all rules in Figure 12-14.

The only rule in Figure 12 that might become applicable by the
introduction of the terny(]u]) is [EQ]. Let ¢ be an arbitrary term
of sort £ in C'v. SinceC'v was saturated with respect teq to
begin with, eithet =1 g€ Cy ort #1 g€ Cy. In the first case,
we have added([u]) = ¢ to Cv. In the second case, we have
addedg(Ju]) # ¢ to Cv. Therefore,C'v remains saturated with
respect to Q).

The rules in Figure 12 and the ruleffwnN] remain saturated
because they are related to functions of sort— D. The rule
[INnv] remains disabled because the equivalence class corgainin

1 g is a singleton. Consequently, for any quantified formutac
g~ ' (t).ain Cy, the literalt #1 g€ C.

f f f

LEMMA 4. If [u] = [v] € Cv, thenJu| = [u] = [v] € Cv.

f

PROOF.By saturation underEFLEXIVE], we have]u] = Ju| €
C'v. By saturation undeirdrDER1], either|u| ER Jul ER [v] € Cv

or Juf ER Jvl ER Ju] € Cv.Inthe first case, we are already done.
In the second case, we are done once we apply saturation tineder
[SANDWICH] rule. O

LEMMA 5. If there are distinctug, u1, . . ., u, such thafu,+1] =
1f(u:)] € Cvy forall i € [0,n), thenfuo| L [un] € Cv.

PROOF.The proof is by induction omn. For the base case, we have

n = 0 and Juf ER Ju] € Cv follows by saturation with respect
to [REFLEXIVE]. For the inductive case, suppose there are distinct
U0, UL, - - -, Un, Unt1 SUCH thatluii] = [f(wi)] € Cyv for all

i € [0,n + 1). Then]uo] ER Jui] € Cv follows by saturation
with respect to $TEA and [u. | ER Juns1] € Cv follows by the
inductive hypothesis. Therefofeo| ER [unt1] € Cv follows by
saturation with respect ta RANSITIVEL]. O

LEMMA 6. Suppose there are distinaty, u1,...,u, such that
luisa] = [f(us)] € Cv forall i € [0,n). Then]uo] L Ju:] &
Jun] € Cv forall i € [0,n].

PROOF.The proof is by induction om. For the base case, we have

n = 0 andJu| ER Ju] ER Ju] € Cv follows by saturation with
respect to REFLEXIVE]. For the inductive case, suppose there are
distinctuo, u1, . . ., Un, Unt+1 Such thatu;1 = f(u;) € Cv for

alli € [0,n+ 1). By Lemma 5, we hav§uo| Lﬂunﬂﬂ € Cy. If
i =0, then]uo] R Juo] R Juns1] € Cv by Lemma 4. Ifi # 0,

theni € [1,n+1]. Then|uo| i>[|u1|]i>|]un+1|] € Cy follows by
saturation with respect t&EACH]. By the inductive hypothesis, we

have]ur | 5 Jui] L Juni1] € Cv anduo| 5 Jui] L Jun 1] €
C'y follows by saturation with respect toRANSITIVE2]. O

Let S(u,w) = {v | Ju] & Jv] L Jw] € Cv}.

LEMMA 7. For all variables v and w, the following facts hold
aboutS (u, w).

1. S(u,u) = {u}

2. S(u,w) =0V {u,w} C S(u,w).
Bu=wVugS(f(u),w).

4. S(u,w) =0Vu=wVS(f(u),w)CS(u,w).

PROOF.Letv € S(u,u). Then]u| L[]vﬂ ER Ju] € Cv. SinceCy
is saturated with respect tsANDWICH] rule, v = u.

Let S(u,w) # 0. Therefore there exists@such that]u| ER
Jvl ER Jw] € Cv. SinceC'y is saturated with respect toRDER2]
and [TRANSITIVED], Ju| ER Jw] € Cv, and hencev € S(u,w).
Now [u] ER [u] € Cv by [REFLEXIVE]. From [u| ER Ju] and
Jw], it follows (from [ORDERL]) either u|

Jw] € Cv or |u] ER Jw] ER Ju] € Cv. However, the latter
implies u w using [SANDWICH]. Therefore, in either case,

Ju] L Ju] L Jw] € Cv and hencu, w} € S(u, w).

Letw # w. This fact implies thafu] # |w|. Let us assume
15 ()] ER Ju] ER Jw] € Cv. From rule pRDERZ], we get
Ju] ER Jw] € Cvy. From rule REACH], either Ju| Jw] or

Jul % L) L

Jul ER F(u]) ER Jw]. The first case leads to a contradiction so we
consider the second case. The rulRANSITIVE2] gives us|u] !

F(lu]) L Ju] and by rule fanbwicH] we get f([u]) = [u].
Finally, the rule EYCLE] gives us|u]| Jw] which leads to a
contradiction.

Let S(u,w) # 0 andu # w. We know that{u, w} C S(u, w),
and thereforeS(u,w) # 0. If S(f(u),w) = @, we are done.
AssumeS|(f(u),w) # 0. Consider a € S(f(u),w). This means

that | f (u)] ER Jw] € Cv. From saturation with respect to
[ORDER2], we get] f(u)] ER Jw] € Cv. By [STEH, we get]u] ER

[f(u)] € Cv. From [TRANSITIVE]], we get]u] ER Jw] € Cv.
Sincef(u) is present in the context, by the saturation®EACH],

[o]

we know eitheru = w € Cv or |u] ER 1f(w)] ER Jw] € Cv.
Since we assumed # w, we get]u] ER 1f(w)] ER Jw] € Cv.

This when combined with f (u)] ER [v] ER Jw] € Cv gives us

the fact that]u| ER [v] ER J[w] € Cv by [TRANSITIVEZ] rule.
Moreover, we already know € S(u,w) butu ¢ S(f(u),w).
HenceS(f(u),w) C S(u,w). O

LEMMA 8. Suppos€u] ER [v] ER Jw] € Cv. Then there are
distinct ug, u1, . .., u, such thatu,y1 = f(u;) € Cy for all

i € [0,n), u = uo, w = un, and there exists € [0, n] such
thatv = wu;.

PROOF.Since|u]| ER Jv] ER Jw] € Cv, we haveS(u,w) # 0.
We prove by induction on the cardinality 8fu, w). For the base
case, le{S(u, w)| = 1. By Lemma 7, we hav§u, w} C S(u,w)
from which we conclude that = w. From saturation with respect
to [SANDWICH], we obtainu = v = w and we are done. For the
inductive case, letS(u,w)| > 1. Then Lemma 7 guarantees that
u # wand S(f(u),w) C S(u,w). We perform a case split on
u="7v.

If w = v, then saturation with respect toRDER2] implies

that |u| ER Jw] € Cv. Saturation with respect tREACH] and

u # w implies that]u| ER 15 ()] ER Jw] € Cv. Saturation with
respect to PRDER2] implies that| f(u)] ER Jw] € Cv and by

f

Lemma 4, we concludgf (u)]| ER [f(w)] = Jw] € Cv. By the
inductive hypothesis, there are disting, u1, ..., u, such that
luiv1] = [f(uwi)] € Cv forall i € [0,n), f(u) uo and

w = up. If u = u; for somei € [0, n], then by Lemma 6 we

have| f(u)] ER Ju] ER |[w] € Cv. However, by Lemma 7, we
haveu ¢ S(f(u),w). Thereforeu # u; for anyi € [0,n] and
u, ug, U1, - - - , Un IS the desired sequence.

If u # v, then saturation with respect tagACH] implies that
uLs 15 ()] ER [v] € Cv and then saturation with respect to
[TRANSITIVEZ] implies | f(u)] ER [v] ER Jw] € Cv. By the
inductive hypothesis, there are distings, u1,...,u, such that
Juit1] = |f(wi)] € Cv foralli € [0,n), f(u) = vo, w = unp,
and there exist$ € [0, n] such thaty = w;. If u = u; for some
i € [0, n], then by Lemma 6 we havjgf (u)] ER Juf ER Jw] € Cv.
However, by Lemma 7, we have ¢ S(f(u),w). Therefore
u # wu; foranyi € [0,n] and u,uo, u1,...,u, is the desired
sequenced

A.3 Proof of Lemma 3
LEMMA 3. Let X be any collection of facts of the form = t».

LetY be any collection of facts of the fonmLtg Ltg. LetC be
any consistent and saturated contexiClentails\/(X UY'), then
one of the following must hold:

1. t1 =t2 € C forsomet; = t2 € X.
2.t Ltz L)tg e C for somet; LtQL)tS €Y.

PROOF.Let X = {t1 £ to | t1 = t» € X} andY = {-t; L

to Ltg | t1 L?tg Lts S Y}
Now, let us assumé&' entails\/(X U Y'). This implies that

C A /\()? U 17) is inconsistent. We know that the rules presented
in Figure 12 and Figure 13 are sound, complete and termipatin

for the ground logic — i.e., for any inconsistent formyan this
logic, the set of inference rules derive a contradiction fidse).
The proof of the lemma relies on two observations:

1. There is only one way to derive contradiction in our system
if both the literalsi and -l are present in the context, where
literals could either be equality:(= t2) or reachability {1 ER
to Lt;;) fact.

2. None of the inference rules in Figure 12, Figure 13 and the
congruence closure (Nelson and Oppen 1980) algorithm &or th

theory UA use a negated literal (either # t2 or =ty Ltg ER
t3) in the antedent of the inference rules.

SinceC is saturated and consistent, the only way A (X UY)
can be inconsistent is if there is a literal = t» € C and

th#teXoti Lts Lty ecand—t; Lty Lty e V.
This is because the additional factsXhandY would not trigger
any of the inference rule§

References

I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by jpetdi ab-
straction. InVerification, Model checking, and Abstract Interpretation
(VMCAI '05), LNCS 3385, pages 164-180, 2005.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Autatit predicate
abstraction of C programs. IRrogramming Language Design and
Implementation (PLDI '01)pages 203-213, 2001.

M. Barnett and K. R. M. Leino. Weakest-precondition of uanstured
programs. InProgram Analysis For Software Tools and Engineering
(PASTE '05) pages 82-87, 2005.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# prograngm
system: An overview. lI€onstruction and Analysis of Safe, Secure and
Interoperable Smart DeviceENCS 3362, pages 49-69, 2005.

J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’HearnWies, and
H. Yang. Shape analysis for composite data structuresComputer
Aided Verification (CAV '07)LNCS 4590, pages 178-192, 2007.

J. Berdine, C. Calcagno, and P. W. O'Hearn. A decidable feagnof
separation logic. IFFSTTCS '04: Foundations of Software Technology
and Theoretical Computer SciendeNCS 3328, pages 97-109, 2004.

E. Borger, E. Gradel, and Y. GurevichiThe Classical Decision Problem
Springer-Verlag, 1997.

S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamaric.eachability
predicate for analyzing low-level software. Tools and Algorithms for
the Construction and Analysis of Systems (TACAS, 'ORCS 4424,
pages 19-33, 2007.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Cousxample-
guided abstraction refinement. ®omputer Aided Verification (CAV
'00), LNCS 1855, pages 154-169, 2000.

L. de Moura and N. Bjorner. Efficient Incremental E-matchfog SMT
Solvers. InConference on Automated Deduction (CADE ;0MNCS
4603, pages 183-198, 2007.

R. DeLine and K. R. M. Leino. BoogiePL: A typed proceduraldaage for
checking object-oriented programs. Technical Report M&R2005-
70, Microsoft Research, 2005.

D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theoremverdor
program checkingd. ACM 52(3):365-473, 2005.

E.W. Dijkstra. A Discipline of ProgrammingPrentice-Hall, 1976.

D.

C.

P.

Distefano, P. W. O’Hearn, and H. Yang. A local shape ansilpased
on separation logic. Ifools and Algorithms for the Construction and
Analysis of Systems (TACAS '0BNCS 3920, pages 287—-302, 2006.

. Dutertre and L. M. de Moura. A Fast Linear-Arithmetic Saivfor

DPLL(T). InComputer Aided Verification (CAV '08)NCS 4144, pages
81-94, 2006.

Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. Bax, and
R. Stata. Extended static checking for JavaPtagramming Language
Design and Implementation (PLDI'02)ages 234-245, 2002.

Godefroid, N. Klarlund, and K. Sen. DART: Directed auté@darandom
testing. InProgramming Language Design and Implementation (PLDI
'05), pages 213-223. ACM, 2005.

. Graf and H. Saidi. Construction of abstract state graptisPVS. In

Computer-Aided Verification (CAV '97NCS 1254, pages 72-83, June
1997.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazyrabon. In

V.

R.

S.

Principles of Programming Languages (POPL '0pages 58-70, 2002.

Kuncak and M. C. Rinard. Decision procedures for set-edlfields.
Electr. Notes Theor. Comput. Sci31:51-62, 2005.

P. Kurshan. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approachrinceton University Press, 1995.

K. Lahiriand S. Qadeer. Verifying properties of well-faled linked lists.
In Principles of Programming Languages (POPL '0fpges 115-126,
2006.

. K. Lahiri and S. Qadeer. A decision procedure for wellrided reacha-

bility. Technical Report MSR-TR-2007-43, Microsoft Resdg 2007.

. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srivastazad

G. Yorsh. Simulating reachability using first-order logidgiwapplica-
tions to verification of linked data structures. @onference on Auto-
mated Deduction (CADE '05).NCS 3632, pages 99-115, 2005.

. Lev-Ami and S. Sagiv. TVLA: A system for implementing $taanaly-

ses. InStatic Analysis Symposium (SAS J00NCS 1824, pages 280—
301, 2000.

.McPeak and G. C. Necula. Data structure specificatiorlssdd equality

axioms. InComputer-Aided Verification (CAV '05)NCS 3576, pages
476-490, 2005.

Anders Mgller and Michael |. Schwartzbach. The pointer @isselogic

engine. InProgramming Language Design and Implementation (PLDI
'01), pages 221-231, 2001.

Muh. Available athttp://muh.sourceforge.net/.

G.

G.
Greg Nelson.

Z.

S.

Nelson and D. C. Oppen. Simplification by cooperating sieni pro-
cedures. ACM Transactions on Programming Languages and Systems
(TOPLAS)2(1):245-257, 1979.

Nelson and D. C. Oppen. Fast decision procedures basé@ aongru-
ence closureJournal of the ACM27(2):356-364, 1980.

Verifying reachability invariants of linketrietures. In
Principles of Programming Languages (POPL '8Bages 38—47, 1983.

Rakamaric, J. Bingham, and A. J. Hu. An inference-ridedal decision
procedure for verification of heap-manipulating progranith wutable
data and cyclic data structures.V\arification, Model Checking, and Ab-
stract Interpretation (VMCAI '06)LNCS 4349, pages 106-121, 2007.

Ranise and C. G. Zarba. A theory of singly-linked lists &méxtensible
decision procedure. liBoftware Engineering and Formal Methods
(SEFM '06) pages 206-215, 2006.

J. C. Reynolds. Separation logic: A logic for shared mutdala structures.

Satisfiability Modulo Theories Library (SMT-LIB).

G.

In Logic in Computer Science (LICS '023)ages 55-74, 2002.

Availad at
http://goedel.cs.uiowa.edu/smtlib/.

Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouaja A
logic of reachable patterns in linked data-structures. Fdnndations
of Software Science and Computation Structures (FOSSa8)3.RCS
3921, pages 94-110, 2006.

