
Back to the Future: Revisiting Precise Program
Verification using SMT Solvers

November 7, 2007

Technical Report
MSR-TR-2007-88

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

This page intentionally left blank.

Back to the Future
Revisiting Precise Program Verification using SMT Solvers

Shuvendu K. Lahiri Shaz Qadeer
Microsoft Research

{shuvendu, qadeer}@microsoft.com

Abstract
This paper takes a fresh look at the problem ofpreciseverifica-
tion of heap-manipulating programs using first-order Satisfiability-
Modulo-Theories (SMT) solvers. We augment the specification
logic of such solvers by introducing theLogic of Interpreted Sets
and Bounded Quantificationfor specifying properties of heap-
manipulating programs. Our logic is expressive, closed under
weakest preconditions, and efficiently implementable on top of
existing SMT solvers. We have created a prototype implementa-
tion of our logic over the solvers SIMPLIFY and Z3 and used our
prototype to verify many programs. Our preliminary experience is
encouraging; the completeness and the efficiency of the decision
procedure is clearly evident in practice and has greatly improved
the user experience of the verifier.

1. Introduction
First-order theorem provers like SIMPLIFY (Detlefs et al. 2005) are
a fundamental component of many scalable program verification
tools. These provers are used in many ways—to solve the verifi-
cation condition of each procedure in a modular analysis (Flana-
gan et al. 2002; Barnett et al. 2005) and to compute and refine
abstractions in a whole-program analysis (Ball et al. 2001;Hen-
zinger et al. 2002). First-order reasoning has the important ability
to combine various useful theories required for program verifica-
tion, e.g., arithmetic, arrays, and uninterpreted functions, in a sys-
tematic manner (Nelson and Oppen 1979). Recently, Satisfiability-
Modulo-Theories (SMT) solvers (Satisfiability Modulo Theories
Library (SMT-LIB)) such as YICES (Dutertre and de Moura 2006)
and Z3 (de Moura and Bjorner 2007), have combined advances in
Boolean satisfiability solvers with powerful first-order theory rea-
soning using decision procedures. We believe that these powerful
solvers have created an opportunity for scaling automated verifica-
tion to deep properties of complex software.

Despite these recent advances, automated verification of heap-
manipulating programs remains difficult with first-order reasoning.
The main reason behind this difficulty is that the specification logic
supported by SMT solvers is not expressive enough. In particular,
it is usually cumbersome and often impossible to specify prop-
erties of unbounded lists and trees and non-aliasing invariants of
deeply-nested heap structures. Previous attempts (Flanagan et al.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

2002) at reasoning about these programs using first-order provers
relied heavily on the use of quantifiers both for expressing asser-
tions about (unbounded) data structures and for axiomatizing theo-
ries for linked lists and trees. The result has been unsatisfactory for
two reasons. First, most recursive predicates useful for expressing
invariants about unbounded data-structures cannot be axiomatized
in first-order logic (Börger et al. 1997). Consequently, these ax-
iomatizations tend to be incomplete leading to an unacceptable fre-
quency of failed proofs. Second, quantifier-reasoning in first-order
SMT solvers remains incomplete, heuristic-driven, and brittle. To
properly use these solvers, considerable user ingenuity isrequired
for writing carefully crafted quantified assertions. Such expertise is
usually beyond the capability of normal programmers.

In this paper, we revisit the problem ofpreciseverification of
heap-manipulating programs using first-order SMT solvers.Our
work is motivated by our desire to analyze systems software such
as device drivers and operating systems code, which make heavy
use of linked lists and deeply-nested linked data structures. We are
interested in building an assertion checker for correctness proper-
ties of such programs such as memory-safety and data-structure
invariants.

Towards this end, we present theLogic of Interpreted Sets
and Bounded Quantificationfor specifying properties of heap-
manipulating programs and a verifier for proving these properties.
Our logic uses first-order logic as a substrate. In addition to provid-
ing useful but conventional theories such as arithmetic andequality
with uninterpreted functions, the logic also provides several novel
features that alleviate, to a significant extent, the aforementioned
difficulties faced by first-order solvers in verifying data-structure
properties. The contributions of this paper can be categorized along
the following dimensions:

Logic. We introduce a new logic that facilitates precise, au-
tomated, and efficient reasoning about many heap-intensivepro-
grams. The logic provides an interpreted recursive predicate to rea-
son about lists and two interpreted set constructors usefulfor writ-
ing specifications involving bounded quantification over the con-
structed sets.

1. The logic isexpressive. In addition to describing rich data struc-
ture invariants (such as disjointness of two lists), and properties
of entire collections (such as sortedness of a list), the logic is ex-
pressive enough for describing conciselyobject invariantsover
a given type and non-aliasing constraints.

2. The logic isclosed under weakest precondition. Given a loop-
free and call-free program annotated with preconditions, post-
conditions and assertions in our logic, we present a procedure
to generate a formula also in our logic that is unsatisfiableif and
only if the program does not go wrong by failing any assertions.

3. The logic issimple. In spite of its expressiveness, the decision
problem for the logic is NP-complete.

The increased expressiveness of our logic due to quantifiersand
closure under weakest precondition make it much more attractive
for program verification, compared to other similar logics (Nelson
1983; Rakamarić et al. 2007).

Decision procedure.We describe an efficient decision proce-
dure for the logic using a set of sound, complete and terminat-
ing inference rules. The resulting decision procedure can leverage
theory reasoning (for arithmetic and uninterpreted functions) and
conflict-clause driven backtracking search of modern SMT solvers.
The presence of bounded quantification over interpreted sets allows
us to instantiate the quantifiers in alazy manner, an attribute that
is essential for good performance. Lazy instantiation greatly im-
proves the performance of the decision procedure as (often use-
less) quantifier instantiation is one of the bottlenecks forfirst-order
SMT provers supporting general quantifiers. We have implemented
an initial prototype of the decision procedure over existing SMT
solvers SIMPLIFY and Z3, using universally quantified first-order
axioms with matchingtriggers.

Evaluation. We have used our decision procedure to verify
many small to medium-sized C programs. Our preliminary expe-
rience is encouraging; the completeness and efficiency of the deci-
sion procedure is clearly evident in practice and has improved the
robustness of the verification efforts manifold.

Although we have applied our verifier to annotated programs,
where the user supplies the annotations, the ability to perform pre-
cise and automated verification is the cornerstone of many other
verification techniques. Predicate abstraction techniques (Graf and
Saı̈di 1997) make calls to a theorem prover to construct an ab-
straction. Refinement of abstractions (Kurshan 1995; Clarke et al.
2000) relies on computing the weakest precondition and solving
the generated verification condition. Symbolic execution of pro-
grams (Godefroid et al. 2005) requires solving path constraints pre-
cisely. The contributions of this paper are applicable, notonly to
modular program verification, but to these other domains as well.

Proofs of the lemmas and theorems present in Section 3 can be
found in the Appendix.

2. Motivating example

typedef struct _dlink_node
{
struct _dlink_node *next;
struct _dlink_node *prev;
void *data;

} dlink_node;

typedef struct _dlink_list
{

dlink_node *head;
dlink_node *tail;

} dlink_list;

typedef struct _logentry
{
char *channel_name;
char *filename;
int logtype;

} logentry;

extern dlink_list log_list;

typedef struct _channel_log
{
int ftype;
FILE *logfile;

} channel_log;

typedef struct _channel
{

char *name;
char *topic;
channel_log *log;

} channel;

extern dlink_list channel_list;

Figure 1. Main data structures of muh

We consider the linked data structures present in an real-world
application calledmuh (Muh). muh is an Internet Relay Chat (IRC)

� � � � � � � � � � 	
 � � � � � � � � � � �
 � �

� 	
 � � 	
 � � 	
 �
� � 	 � � � 	 � � � 	 �

�
 �
 �
 �
 �
 �

� �
 � � 	 � �
 � 	� �
 � � 	 � � �
 � 	
� � � 	 �
 � 	� � � 	 �
 � 	

� �� � � � � � 	
� � � � � � � � � � 	 � � � �

Figure 2. The log list

� � � � � � � � � � � � � � � ! � � � � � � � � � � � � � � � �

� � " � � � " � � � " �� � " �
$ � %

� � " �
$ � %

� � " �
$ � %# $ � %

! � � �
$ � %

! � � �
$ � %

! � � �! � � � ! � � � ! � � �

� � & �
� ' # � �

(�
� ') (� * # �

� (� �� � $ + � � � � � � � � � � ') (� � �� � $ + � � � � � � � � � �

� � $ + � � � � � � � � � � � � ')

Figure 3. The channel list

bouncer, a program that acts as a middleman between an IRC-client
and an IRC-server. The application is written in C.

The main data structures, described in Figure 1, consists of
two acyclic doubly-linked lists, pointed to bylog list.head and
channel list.head, containing a list oflogentry andchannel
nodes respectively. Figure 2 and Figure 3 describe the listsand their
contents. Each node in thelog list, pointed to by thedata field
in the dlink node, contains two character arrayschannel name
and filename and an integerlogtype. Similarly, each node in
thechannel list contains two character arraysname, andtopic,
and a pointer to achannel log node. Thechannel log structure
further contains an integerftype and a pointer to aFILE called
logfile.

Note that the list nodedlink node uses itsvoid * data field
polymorphically (Figure 1). When the node participates in the
log list, the data field is cast to a (logentry∗) pointer, and
when it participates in thechannel list, thedata field is cast to
a (channel∗) pointer.

The example is representative of real-world applications written
in C, which consist of a combination of multiple linked data struc-
tures. These data structures can either be recursively defined (e.g.
dlink node) or deeply-nested (e.g.channel).

During the lifetime of the application, various operationsmu-
tate these data structures through a set of functions. Thesefunctions
correspond to adding or deleting a log to a list, adding or deleting a
channel to a list, opening or closing aFILE, or freeing a set of en-
tries of a list. In this section, we focus on the routinesclear logs
andrem channel, which free objects present in the data structures.
Figure 4 describe parts of the procedures that free elements(using a

void clear_logs(int clear)
{

dlink_node *ptr;
dlink_node *next_ptr;
struct _logentry *logptr;

.......

/* then clear the loglist */
for(ptr = log_list.head; ptr; ptr = next_ptr)
{

next_ptr = ptr->next;
logptr = ptr->data;

xfree(logptr->channel_name);
xfree(logptr->filename);
xfree(logptr);

dlink_delete(ptr, &log_list);
dlink_free(ptr);

}
}

void rem_channel(struct _channel *chptr)
{

dlink_node *ptr;

/* close the logfile if we have one */
if(chptr->log != NULL)
{

.....
xfree(chptr->log);

}

if((ptr = dlink_find(chptr, &channel_list)) == NULL)
return;

dlink_delete(ptr, &channel_list);
dlink_free(ptr);

xfree(chptr->name);
xfree(chptr->topic);
xfree(chptr);

}

Figure 4. Freeing entries fromlog list andchannel list.

procedurexfree) from thelog list and thechannel list. An
important memory-safety property to enforce is the following:

Absence of double-free: An object is not freed twice in the
applications lifetime.

Let us consider the procedureclear logs in Figure 4. The pro-
cedure iterates over the linked list pointed to bylog list.head,
freeing the objects in each node. It first frees thechannel name
andfilename objects, then frees thelogentry object pointed to
by thedata pointer and finally deletes thedlink node object from
the list and frees it. The procedurerem channel similarly removes
an entry from thechannel list and frees the objects.

Let us examine a few scenarios to understand why it is non-
trivial to establish the absence of double-free for this routine:

1. Consider a given iteration of the loop, wherechannel name
and filename are freed. If both these pointers are aliased,
then xfree(logptr->filename) would free an object that
has already been freed byxfree(logptr->channel name).
Hence, we would like to enforce that thechannel name and
filename pointers in alogentry node do not alias.

c ∈ Integer
x ∈ Variable
f ∈ Function
ϕ ∈ Formula ::= α | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ
α ∈ ∀Formula ::= γ | α1 ∧ α2 | α1 ∨ α2 | ∀x ∈ S.α
γ ∈ GFormula ::= t1 = t2 | t1 < t2 |

t1
f
−→ t2

f
−→t3 | ¬γ

t ∈ Term ::= c | x | t1 − t2 | t1 + t2 |
f(t) | ite(t = t′, t1, t2)

S ∈ Set ::= g−1(t) | Btwn(f, t1, t2)

Figure 5. Logic of Interpreted Sets and Bounded Quantification
(LISBQ)

2. Now consider two different iterations of the loop operating on
two linked list nodesu andv. Let us imagine thatu->data and
v->data are aliased. In this case, each of the threexfree calls
on the later iteration would free an already freed object.

3. Another scenario causing a double-free could arise if the
channel name or filename fields in some node inlog list
aliases withname ortopic fields in some node inchannel list.
In this scenario, a call torem channel followed by a call to
clear logs would cause a double-free.

4. Finally, if thedata field in a dlink node object aliases with
thechannel name fields in alogentry object, a double-free
may be erroneously reported. This situation is avoided by en-
forcing that pointers to objects of two different types can never
be equal.

In Section 3, we present a simple and natural specification logic
that can express the necessary invariants to prove the absence of
double-free error in the program. In Section 4, we revisit this ex-
ample to illustrate the use of our logic. In spite of the expressive-
ness, the decision problem of the logic still remains NP-complete
and we propose an efficient decision procedure for the logic using
SMT solvers.

3. Logic
Our logic, presented in Figure 5, is interpreted over a finite
partially-ordered setD of sorts. The setD contains the sortInteger
of integers. Each variablex has some sortD ∈ D. Each uninter-
preted functionf has a sortD → E for sortsD,E ∈ D. A model
M for a formula in the logic provides an interpretationMD for
each sortD, whereMInteger is just the set of integers. The model
also provides an interpretationMx ∈ MD for each variablex of
sortD and an interpretationMf : MD →ME for each functionf
of sortD → E. The interpretation is extended to arbitrary terms in
the logic in the natural way.

The logic provides a ternary reachability predicate·
f
−→ ·

f
−→ ·

for each functionf of sortD → D whereD ∈ D. The model

M |= t1
f
−→ t2

f
−→ t3 iff there aredistinct u0, u1, . . . , un ∈ MD

such thatMf (ui) = ui+1 for all i ∈ [0, n),u0 = Mt1 ,un = Mt3 ,
andui = Mt2 for somei ∈ [0, n]. We often refer to the binary

reachability predicatet1
f
−→t2 which is defined to bet1

f
−→ t2

f
−→t2.

The logic allows bounded universal quantification over two
different kinds of (potentially unbounded) sets. The setf−1(t) is
constructed using a functionf of sortD → E whereD,E ∈ D
andD 6= E. The modelM |= x ∈ f−1(t) iff Mf(x) = Mt.
The setBtwn(f, t1, t2) is constructed using a functionf of sort
D → D whereD ∈ D. The modelM |= x ∈ Btwn(f, t1, t2) iff

M |= t1
f
−→ x

f
−→ t2. Note that our sorting requirements preclude

the use of the same function symbolf in a termf−1(t) and a term

T ∈ Stmt ::= Assert(ϕ) | Assume(ϕ) |
x := new | free(x) |
x := t | f(x) := y |
T1;T2 | T12T2

Figure 6. Program

Btwn(f, t1, t2). This restriction is important for the completeness
of our decision procedure; it ensures that models for the setsg−1(t)
andBtwn(f, t1, t2) can be computed independently.

The set of formulasFormula in our logic is closed under
boolean combination. We have both universal and existential quan-
tification but do not have alternation of quantifiers.

We require that logical formulas satisfy thesort-restrictedprop-
erty. This property is crucial for the termination of the decision pro-
cedure described in Section 3.3.

In every formula∀x ∈ S.α, the sort of any term inα
containingx as a strict sub-term is less than the sort ofx.

We assume the existence of a type checking or type inference
algorithm that can check for any formulaϕ in our logic that it is
type-correct and satisfies the property described above.

3.1 From programs to formulas

In this section, we show how we translate a programT without
loops and procedure calls into a formulaϕ in our logic. The transla-
tion has the property thatϕ is unsatisfiable iffS does not go wrong
by failing an assertion. We assume that a preprocessing phase has
eliminated all loops either soundly by using a programmer-supplied
loop invariant or unsoundly by unrolling each loop a bounded
number of times. Similarly, all procedure calls have been elimi-
nated either soundly by using programmer-supplied pre- andpost-
conditions or unsoundly by inlining upto a bounded depth.

The syntax of the programs we consider is given in Figure 6.
The statementAssert(ϕ) is used to introduce intermediate asser-
tions and postconditions. The statementAssume(ϕ) is used to in-
troduce preconditions and conditional statements. The statement
x := new creates a new object. Allocation of objects whose ad-
dresses are in sortD is modeled using a mapAllocD : D →
Integer . The statementx := new gets desugared into the code
sequence

Assume(AllocD(k) = 0);AllocD(k) := 1; x := k

wherek is a fresh variable (not used anywhere else) introduced per
allocation site. The statementfree(x) frees an object. Ifx is of sort
D, this statement is desugared into the code sequence

Assert(AllocD(x) = 1); AllocD(x) := 2.

The statementx := t evaluatest and writes it into a variablex. The
statementf(x) := y writes the value in variabley into the fieldf
at cellx. The statementT1;T2 evaluatesT1 followed byT2. The
statementT12T2 executes eitherT1 or T2 nondeterministically.
This statement, together with the assume statement, is usedto
model conditional execution.

The weakest precondition computation for the various state-
ments in our language (other thanx := new and free(x) which
are desugared) is given in Figure 7. As we discuss below, the set
of formulas in our logic is closed under the computation of weak-
est precondition with respect to any statementT . Let true denote
the formulax = x for some designated variablex. We first com-
pute wp(T, true) as described in the figure. The translation has
the property that¬wp(T, true) is unsatisfiable iffT does not go
wrong. In Sections 3.2 and 3.3, we present a procedure to decide
whether¬wp(T, true) is satisfiable.

wp(Assert(ψ), ϕ) = ψ ∧ ϕ
wp(Assume(ψ), ϕ) = ψ ⇒ ϕ

wp(x := t, ϕ) = ϕ[x/t]
wp(f(x) := y,ϕ) = Γ(ϕ, f, x, y)

wp(T1;T2, ϕ) = wp(T1,wp(T2, ϕ))
wp(T12T2, ϕ) = wp(T1, ϕ) ∧ wp(T2, ϕ)

Figure 7. Weakest precondition

Γ(ϕ1 ∧ ϕ2, f, p, q) ≡ Γ(ϕ1, f, p, q) ∧ Γ(ϕ2, f, p, q)
Γ(ϕ1 ∨ ϕ2, f, p, q) ≡ Γ(ϕ1, f, p, q) ∨ Γ(ϕ2, f, p, q)

Γ(¬ϕ, f, p, q) ≡ ¬Γ(ϕ, f, p, q)

Figure 8. Definition ofΓ(ϕ, f, p, q)

We use the notationϕ[x/t] to indicate the result of syntactically
replacingx everywhere witht in the formulaϕ. The computation
described in Figure 7 is straightforward and follows the classical
description (Dijkstra 1976) except in the case of the statement
f(x) := y. It is nontrivial to provide the weakest precondition of
a formulaϕ with respect tof(x) := y because of the use of the

predicate·
f
−→ ·

f
−→ · in ϕ. This predicate may be used either as an

atomt1
f
−→ t2

f
−→ t3 or in defining the bound setBtwn(f, t1, t2)

of a universally quantified fact. The main difficulty is that alocal
change in the value of the functionf atxmight cause global change
in the value of this predicate. However, for closure under weakest
precondition, we must capture this change using the vocabulary of
the logic.

The functionΓ defined in Figures 8-11 is used for comput-
ing the weakest precondition ofϕ with respect to the statement
f(p) := q. Figure 8 computesΓ(ϕ, f, p, q) for a formulaϕ by
straightforward recursion on the structure of the formula.Figure 9
computesΓ(α, f, p, q) for a formulaα. The first two rules are
straightforward recursion but to understand the next four rules,
we must first understandΓ(γ, f, p, q) defined in Figure 10 and
Γ(t, f, p, q) defined in Figure 11.

The rules for computingΓ(t, f, p, q) in Figure 11 are mostly
straightforward. Letfp

q denote the function that is identical to
f except atp where its value isq. The only nontrivial rule
Γ(f(t), f, p, q) states that the value offp

q (t) is q if p = t and
f(Γ(t, f, p, q)) otherwise.

In Figure 10,Γ(t1 = t2, f, p, q) and Γ(t1 < t2, f, p, q) are
obtained in a straightforward fashion by recursively computing
Γ(t1, f, p, q) andΓ(t2, f, p, q). The computation ofΓ(t1

g
−→ t2

g
−→

t3, f, p, q) is easy sinceg is different fromf . We need to work

harder, however, to computeΓ(t1
f
−→ t2

f
−→ t3, f, p, q). Supposef

is a function of sortD → D. Let u
f
−→
w
v be the predicate defined

as follows:

u
f
−→
w
v ≡ u

f
−→v

f
−→w ∨ (u

f
−→v ∧ ¬u

f
−→w)

Intuitively, u
f
−→
w

v holds iff u can reachv by following zero

or moref links without going throughw. Formally, the model

M |= t1
f
−→
t3

t2 iff there aredistinct u0, u1, . . . , un ∈ MD such

thatMf (ui) = ui+1 for all i ∈ [0, n), u0 = Mt1 , un = Mt2 , and

Γ(α1 ∧ α2, f, p, q) ≡ Γ(α1, f, p, q) ∧ Γ(α2, f, p, q)

Γ(α1 ∨ α2, f, p, q) ≡ Γ(α1, f, p, q) ∨ Γ(α2, f, p, q)

Γ(∀x ∈ g−1(t).α, f, p, q) ≡
let
t′ = Γ(t, f, p, q), α′ = Γ(α, f, p, q)

in

∀x ∈ g−1(t′).α′

Γ(∀x ∈ f−1(t).α, f, p, q) ≡
let
t′ = Γ(t, f, p, q), α′ = Γ(α, f, p, q)

in

∧ q = t′ ⇒ α′[x/p] ∧ ∀x ∈ f−1(t′).α′

∧ q 6= t′ ⇒ ∀x ∈ f−1(t′).x = p ∨ α′

Γ(∀x ∈ Btwn(g, t1, t2).α, f, p, q) ≡
let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q), α

′ = Γ(α, f, p, q)
in
∀x ∈ Btwn(g, t′1, t

′
2).α

′

Γ(∀x ∈ Btwn(f, t1, t2).α, f, p, q) ≡
let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q), α

′ = Γ(α, f, p, q)
in

∧ t′1
f
−→
p
t′2 ⇒ ∀x ∈ Btwn(f, t′1, t

′
2).α

′

∧ p 6= t′2 ∧ t
′
1

f
−→
t′
2

p ∧ q
f
−→
p
t′2 ⇒ ∀x ∈ Btwn(f, t′1, p).α

′

∧ p 6= t′2 ∧ t
′
1

f
−→
t′
2

p ∧ q
f
−→
p
t′2 ⇒ ∀x ∈ Btwn(f, q, t′2).α

′

Figure 9. Definition ofΓ(α, f, p, q)

ui 6= Mt3 for all i ∈ [0, n). Then, we have the following identity:

u
fp

q

−−→v
fp

q

−−→w ≡ ∨ u
f
−→v

f
−→w ∧ u

f
−→
p
w

∨ p 6= w ∧ u
f
−→
w
p ∧ u

f
−→v

f
−→p ∧ q

f
−→
p
w

∨ p 6= w ∧ u
f
−→
w
p ∧ q

f
−→v

f
−→w ∧ q

f
−→
p
w

The first disjunct captures the case whenp cannot destroy the path

witnessingu
f
−→ v

f
−→w and thereforeu

fp

q

−−→ v
fp

q

−−→w holds as well.
The second disjunct captures the case when there is a path from
u to v and the update tof creates a path fromv to w. The third
disjunct captures the case when there is a path fromv tow and the
update tof creates a path fromu to v.

The identity given above provides a precise update for the pred-

icateu
f
−→ v

f
−→ w with respect to the statementf(p) := q. Con-

sequently, it is crucial for the closure of our logic under weakest
preconditions. Finally, this identity provides a simple way to com-

puteΓ(t1
f
−→ t2

f
−→t3, f, p, q) as shown in Figure 10.

We now go back to Figure 9 to understand the last four rules
for computingΓ(α, f, p, q). The third and fifth rules are straight-
forward becausef andg are different functions. The intuition for
Γ(∀x ∈ f−1(t).α, f, p, q) rests on the identity

(fp
q)−1(t′) = ite(q = t′, f−1(t′) ∪ {p}, f−1(t′) \ {p}),

Γ(t1 = t2, f, p, q) ≡ Γ(t1, f, p, q) = Γ(t2, f, p, q)

Γ(t1 < t2, f, p, q) ≡ Γ(t1, f, p, q) < Γ(t2, f, p, q)

Γ(t1
g
−→t2

g
−→t3, f, p, q) ≡

let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q), t

′
3 = Γ(t3, f, p, q)

in

t′1
g
−→t′2

g
−→t′3

Γ(t1
f
−→ t2

f
−→t3, f, p, q) ≡

let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q), t

′
3 = Γ(t3, f, p, q)

in

t′1
fp

q

−−→t′2
fp

q

−−→ t′3

Γ(¬γ, f, p, q) ≡ ¬Γ(γ, f, p, q)

Figure 10. Definition ofΓ(γ, f, p, q)

Γ(c, f, p, q) ≡ c

Γ(x, f, p, q) ≡ x

Γ(t1 + t2, f, p, q) ≡ Γ(t1, f, p, q) + Γ(t2, f, p, q)

Γ(t1 − t2, f, p, q) ≡ Γ(t1, f, p, q) − Γ(t2, f, p, q)

Γ(g(t), f, p, q) ≡ g(Γ(t, f, p, q))

Γ(f(t), f, p, q) ≡
let
t′ = Γ(t, f, p, q)

in
ite(p = t′, q, f(t′))

Γ(ite(t1 = t2, t3, t4), f, p, q) ≡
let
t′1 = Γ(t1, f, p, q), t

′
2 = Γ(t2, f, p, q),

t′3 = Γ(t3, f, p, q), t
′
4 = Γ(t4, f, p, q)

in
ite(t′1 = t′2, t

′
3, t

′
4)

Figure 11. Definition ofΓ(t, f, p, q)

where t′ = Γ(t, f, p, q) and we have extended theite(·, ·, ·)
constructor to sets for brevity. The intuition for the ruleΓ(∀x ∈

Btwn(f, t1, t2).α, f, p, q) rests on the identity relatingu
fp

q

−−→v
fp

q

−−→

w andu
f
−→ v

f
−→ w defined above; there is a one-one correspon-

dence between the disjuncts there and the conjuncts in the defini-
tion of Γ(∀x ∈ Btwn(f, t1, t2).α, f, p, q).

The contribution of this section can be summarized in the fol-
lowing theorem about the definition of thewp(T, ϕ) captured by
Figures 7-11.

THEOREM1. For any programT , the formula¬wp(T, true) is
in the logic LISBQ. Moreover, the programT goes wrong iff
¬wp(T, true) is satisfiable.

[AND]
ϕ1 ∧ ϕ2

ϕ1, ϕ2

[OR]
ϕ1 ∨ ϕ2

ϕ1 ϕ2

[ITE]
ϕ[ite(t1 = t2, t3, t4)]

t1 = t2, ϕ[t3] t1 6= t2, ϕ[t4]

[EQ]
ϕ1[t1] ϕ2[t2]

t1 = t2 t1 6= t2

Figure 12. Basic inference

3.2 Decision procedure for ground logic

In this section, we provide a decision procedure for checking satis-
fiability of a formulaϕ in our logic. First, we convertϕ into nega-
tion normal form and skolemize the resulting existential quantifiers
that result from moving a negation inside a universal quantifier. The
resulting formula remains in our logic. We first present a decision
procedure for the case of ground formulas (Figures 12 and 13)and
then augment the procedure to deal with quantifiers (Figure 14).

Our algorithm maintains acontext, which is a conjunction of
formulas currently asserted to be true. The algorithm provides a
collection of rewrite rules that operate over the context. In each
step of the algorithm, an applicable rewrite rule is appliedwhich
may cause a case-split together with the addition to the context of
one or more formulas.

Each inference rule is written as a conjunction of antecedents
above the line and a disjunction of consequents below the line.
In some cases such as [AND], a consequent below the line might
have several comma-separated formulas which are interpreted as
conjoined. If there is a rule such that the current context contains
all the formulas above the line, then the it is guaranteed that the
disjunction of the formulas below the line is entailed by thecontext.
In this case, we say that the rulematchesthe context. A context is
calledsaturatedif for every matching rule, the context contains all
the formulas in one of the disjuncts below the line.

Let U denote the quantifier-free theory of equality with unin-
terpreted functions and relations. The signature ofU contains all
symbols of our logicLISBQ (Figure 5) except+, −, <, and the
constants inInteger . Note that whileLISBQinterprets the relation

·
f
−→·

f
−→·, the logicU treats it as uninterpreted. LetV denote the

logic with the same signature asU in which the relation·
f
−→·

f
−→· is

interpreted. LetA denote the quantifier-free theory of linear arith-
metic. The signature ofA contains all symbols ofLISBQexcept
the function symbols, such asf , and the relation symbols, such a

·
f
−→·

f
−→ ·. The only symbols shared amongU andA are the vari-

ables inVariable. Let UA denote the combination ofU andA.
The signature ofUA is exactly the same as the logic in Figure 5

except that inUA the relation·
f
−→·

f
−→· is treated as uninterpreted.

A literal is a quantifier-free formula that is free of boolean con-
nectives∧ and∨, andite(·, ·, ·) terms. We assume the existence
of an oracle for the theoryUA that can decide whether the set of
literals in the current context is satisfiable. The context isconsistent
if the oracle decides that set of literals in the context is satisfiable.
Otherwise, the context isinconsistent.

Our algorithm essentially explores a decision tree while main-
taining a context. It initializes the context to the input formulaϕ.
At each step, if the current context is inconsistent, the algorithm
backtracks to the last untried decision if there remains oneand oth-
erwise returns unsatisfiable. Otherwise, if the current context is sat-
urated, the algorithm reports thatϕ is satisfiable. Otherwise, there
is a matching rule such that none of the formulas below the line are
present in the context. If there is only one formula below theline,
it is added to the context. Otherwise, a case split is performed with
one formula added to the context for each case.

[REFLEXIVE]

t
f
−→ t

[STEP]
f(t)

t
f
−→f(t)

[REACH]

f(t1) t1
f
−→ t2

t1 = t2 t1
f
−→f(t1)

f
−→t2

[CYCLE]

f(t1) = t1 t1
f
−→ t2

t1 = t2

[SANDWICH]

t1
f
−→ t2

f
−→ t1

t1 = t2

[ORDER1]

t1
f
−→ t2 t1

f
−→t3

t1
f
−→ t2

f
−→ t3 t1

f
−→t3

f
−→t2

[ORDER2]

t1
f
−→t2

f
−→t3

t1
f
−→t2, t2

f
−→t3

[TRANSITIVE1]

t1
f
−→ t2 t2

f
−→t3

t1
f
−→t3

[TRANSITIVE2]

t0
f
−→t1

f
−→t2 t1

f
−→ t

f
−→ t2

t0
f
−→ t1

f
−→ t, t0

f
−→t

f
−→t2

[TRANSITIVE3]

t0
f
−→ t1

f
−→ t2 t0

f
−→t

f
−→t1

t0
f
−→t

f
−→ t2, t

f
−→t1

f
−→ t2

Figure 13. Reachability

Figure 12 gives the basic inference rules. The rules [AND] and
[OR] are straightforward and follow from the logical meaning of∧
and∨. The rule [ITE] is applicable whenever the context contains
a ground formulaϕ containing a termite(t1 = t2, t3, t4), in
which case we perform a case split ont1 = t2. If t1 = t2 we
replaceite(t1 = t2, t3, t4) with t3 in ϕ, otherwise we replace
ite(t1 = t2, t3, t4) with t4. The rule [EQ] performs a case split
on the equality between any two termst1 andt2 that exist in the
context.

The rules in Figure 13 are dedicated to proving facts about

the ternary reachability predicateu
f
−→ v

f
−→ w. The rules make

extensive use of the binary reachability predicateu
f
−→ v which, as

mentioned earlier, is equivalent tou
f
−→ v

f
−→ v. Rule [REFLEXIVE]

says that·
f
−→ · is a reflexive relation. In rule [STEP], as in a few

other rules discussed later, we take a notational liberty byputting a
termf(t) above the line. Rule [STEP] is applicable whenever a term
f(t) occurs in any ground formula in the context and concludes the
obvious fact thatf(t) is reachable fromt. Rule [REACH] draws
conclusions based on the presence off(t1) in the context and the
reachability fromt1 of another termt2.

Rules [CYCLE] and [SANDWICH] entail an equality without in-
troducing a case split. Both rules draw conclusions from thepres-
ence of cycles in the graph of the reachability relation. Rules
[ORDER1] and [ORDER2] connect the ternary and binary reacha-
bility predicates. Rule [ORDER1] says that ift1 reaches botht2 and
t3, then eithert1 reachest2 followed by t3 or t1 reachest3 fol-
lowed byt2. Rule [ORDER2] draws the more obvious conclusion
in the other direction. Rules [TRANSITIVE1], [TRANSITIVE2], and
[TRANSITIVE3] state various facts related to the transitivity of·

f
−→·

and·
f
−→·

f
−→·.

Given a quantifier-free formulaϕ as input, the procedure de-
fined by the rules in Figures 12 and 13 terminates because the num-
ber of new terms created is bounded by the number ofite(·, ·, ·)
terms inϕ. Since the procedure simply combines backtracking with
the creation of new facts among this bounded set of terms, we con-
clude that the procedure will terminate. Soundness of the algorithm
is proved by reasoning locally about each inference rule to verify

that the conjunction of antecedents indeed implies the disjunction
of the consequents.

The argument for the completeness of the algorithm is as fol-
lows. Suppose during the execution of the algorithm, we arrive at a
consistent and saturated contextC. We create a model that satisfies
each formula inC using the following steps: Remove each formula
in C that is not a literal. Due to the rules [AND], [OR], and [ITE], it
suffices to find a model for the resulting set of formulas. Purify the
remaining literals by introducing fresh variables and new equalities
and saturate the context with all derived facts in the theoryU using
congruence closure. For each sortD, introduce a fresh variable⊥D

and add literals⊥D 6= x, for every other variablex of sortD. The
role of these variables will become clear later when we definethe
model. Note that the addition of these disequalities to the context
does not create any fresh implications. Split the context into the set
CV containing literals only from theoryV and the setCA contain-
ing literals only from theoryA. Due to the rule [EQ], bothCV and
CA are convexand entail the same set of equalities. In addition,
both theoriesV andA are stably infinite. Therefore, in order to get
a model forCV ∧ CA, we only need to get models separatelyCV

andCA (Nelson and Oppen 1979). Here we only show how to gen-
erate a model forCV , since a model forCA can be generated from
the decision procedure for arithmetic.

We now show how to construct a modelM for a consistent
and saturatedCV . In order to define a modelM for CV , we
need for each sortD different from the sortInteger , a domain
MD , an assignmentMx ∈ D for every variablex of sort D,
and an assignmentMf : MD → MD for every functionf of
sortD → D. We start in the usual way and defineMD to be the
partition{u1, . . . , un} of the set of variables of sortD satisfying
the following condition: for alli ∈ [1, . . . , n] and for all variables
x andy of sortD, x ∈ ui andy ∈ ui iff x = y ∈ CV . For each
u ∈ MD , let [|u|] denote a fixed representative member ofu. Now
we defineMx to be the uniqueu ∈MD such thatx ∈ u. Note that
the equivalence class containing the variable⊥D is the singleton
{⊥D} becauseCV contains disequalities differentiating⊥D from
every variable of sortD.

We would like to definef(u) for an arbitrary elementu ∈MD .
If (f([|u|]) = [|v|]) ∈ CV for somev ∈ MD , then we define
Mf (u) = v. However, if(f([|u|]) = [|v|]) 6∈ CV for anyv ∈ MD ,
then we must pick some element ofMD to be f(u). The main
difficulty is that the interpretation of the functionf is tied to the

interpretation of the relation·
f
−→ ·

f
−→ ·. We must be careful not

to definef(u) to be inconsistent with the constraints inCV . To
help us in this task, we define for eachu ∈ MD , the relation

Ru = {(v, w) ∈MD ×MD | [|u|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV }.

LEMMA 1. For all u ∈MD , the following facts hold:

1. (u, u) ∈ Ru.
2. Ru is reflexive overdom(Ru).
3. Ru is transitive.
4. Ru is totally-ordered overdom(Ru).

With the aid ofRu, we now provide a complete interpretation for
Mf . Let u be an arbitrary element ofMD . If (f([|u|]) = [|v|]) ∈
CV for somev ∈ MD , then defineMf (u) = v. Otherwise, if
Ru = {(u, u)} then defineMf (u) = u. Otherwise, defineMf (u)
to be the least element, with respect toRu, of dom(Ru) \ {u}.
Lemma 1 guarantees that definingf in the last two cases does not
create any contradictions with the contextCV . The interpretation

for ·
f
−→·

f
−→· is now defined as

u
f
−→v

f
−→w ⇔ [|u|]

f
−→ [|v|]

f
−→ [|w|] ∈ CV .

[INV]
f(t′) = t

∀x ∈ f−1(t).α

α[x/t′]

[BTWN]

t1
f
−→ t

f
−→t2

∀x ∈ Btwn(f, t1, t2).α
α[x/t]

Figure 14. Quantifier instantiation

In addition to defining the interpretation for each functionf
of sort D → D, we also need to define an assignmentMg :
MD → ME for every functiong whose sort isD → E where
D andE are different. Letu be an arbitrary element ofMD .
If (g([|u|]) = [|v|]) ∈ CV for somev ∈ ME , then we define
Mg(u) = v. Otherwise, we defineMg(u) = {⊥E}.

LEMMA 2. The modelM defined above satisfiesM |= CV .

Based on Lemma 2, we obtain the following theorem.

THEOREM2. Letϕ ∈ Formula be quantifier-free. Then the pro-
cedure described by the rules in Figures 12 and 13 terminatesand
decides the satisfiability ofϕ.

In Section 3.3, we extend our decision procedure to the full logic
with quantification. The following lemma captures an important
property of the rules in Figures 12 and 13 that is used to prove
the completeness of our decision procedure for the full logic.

LEMMA 3. LetX be any collection of facts of the formt1 = t2.

LetY be any collection of facts of the formt1
f
−→t2

f
−→ t3. LetC be

any consistent and saturated context. IfC entails
�

(X ∪ Y), then
one of the following must hold:

1. t1 = t2 ∈ C for somet1 = t2 ∈ X.

2. t1
f
−→t2

f
−→ t3 ∈ C for somet1

f
−→t2

f
−→t3 ∈ Y .

3.3 Decision procedure for quantified logic

We now extend our decision procedure to handle quantified facts
by adding the rules in Figure 14. The first rule [INV] handles
quantification over the set constructorf−1(t); if the current context
contains the factf(t′) = t then this rule instantiates the body of
the quantifier att′. The rule [BTWN] works in similarly for the set
constructorBtwn(f, t1, t2).

Our decision procedure terminates even after adding the quan-
tifier instantiation rules in Figure 14 because the input formula is
required to besort-restricted. There is a partial-order on the set
of sorts and whenever a quantifier∀x ∈ S.ϕ is instantiated, any
new terms generated are of a sort less than the sort ofx. By well-
founded induction over the partial-order on the set of sorts, we can
show that for each sortD there is a decision depth in the backtrack-
ing search beyond which the number of terms of sortD remains
unchanged. In fact, for an input formulaϕ, the number of terms of
sortD generated by our algorithm is bounded by|ϕ| ·K|D|, where
K is the number of function symbols. Since the number of sorts
is finite, the procedure will terminate. Since the size of themodel
constructed in Section 3.2 is linear in the number of terms and the
number of terms is linear in the size of the formula, we have the
following theorem about the complexity of our logic.

THEOREM3. The satisfiability problem for the logic LISBQ is NP-
complete.

The local soundness of the rules [INV] and [BTWN] is obvious.
For completeness, we appeal to Lemma 3. Consider a contextC
that is consistent and saturated with respect to all the rules in
Figures 12, 13, and 14. LetD1 be the conjunction� t1 6= t2 for
all t1 and t2 such thatt1 = t2 6∈ C. Let D2 be the conjunction

� ¬t1
f
−→t2

f
−→ t3 for all t1, t2, andt3 such thatt1

f
−→ t2

f
−→t3 6∈ C.

Lemma 3 guarantees thatC ∧ D1 ∧ D2 is satisfiable, which in
turn implies that all the quantified facts inC have been instantiated
enough. Therefore, a model for the set of literals inC is a model
for all the facts inC. We have already shown, earlier in this section,
how to construct a model for the set of literals inC. Thus, we have
the following theorem.

THEOREM 4. Let ϕ ∈ Formula. Then the procedure described
by the rules in Figures 12, 13, and 14 terminates and decides the
satisfiability ofϕ.

It is important to note that set-bounded quantification is not
essential for either termination or completeness of our decision
procedure. Termination is ensured by thesort-restrictedproperty.
Completeness could be ensured simply by instantiating quantified
facts on all ground terms of the appropriate sort. However, such
a procedure would lead to a huge number of instantiations and
would consequently be very expensive in practice. Set-bounded
quantification allows us to instantiate quantifiers lazily and yields
an efficient implementation.

3.4 Expressiveness

In this section, we show various examples to illustrate the expres-
siveness of our logic.

Cyclic lists. We specify thathd points to the head of a cyclic
list as follows:

hd 6= null ∧ f(hd)
f
−→hd

Suppose each element of this list contains a fielddata. The invari-
ant for a loop that iterates, using a variablei, over this list setting
thedata field to0 is specified as follows:

∀u ∈ Btwn(f, f(hd), i) \ {i}. data(u) = 0

Sortedness.Supposehd points to a null-terminated list. The
invariant that the values stored in thedata field of the list members
are sorted is specified as follows:

∀u ∈ Btwn(f, f(hd), null) \ {null}.
∀v ∈ Btwn(f, u, null) \ {null}. data(u) ≤ data(v)

List of lists. Supposehd is pointing to a null-terminated list
linked by the fieldf and each member of the list has a fieldl that
points to a distinct null-terminated list linked by the fieldg. The
disjointness of these lists is specified as follows:

∀u ∈ Btwn(f, hd, null) \ {null}.
∀v ∈ Btwn(f, hd, null) \ {null}.

u = v ∨ ∀w ∈ Btwn(g, l(u), null) \ {null}.¬l(v)
g
−→w

The ability to specify such invariants is useful for verifying systems
software that uses composite data structures (Berdine et al. 2007).

List union. Supposea, b, andc are null-terminated lists con-
structed using linking fieldsf1, f2, andf3 respectively. We specify
thata is the union ofb andc as follows:

∀u ∈ Btwn(f1, a, null).b
f2−→u ∨ c

f3−→u

∀u ∈ Btwn(f2, b, null).a
f1−→u

∀u ∈ Btwn(f3, c, null).a
f1−→u

This invariant is useful in proving the correctness of the in-place
list reversal program.

4. Revisiting the motivating example
In this section, we revisit the example presented in Section2 and
describe the various invariants required to prove the absence of
double-free property. We show that these invariants can be naturally
expressed using the simple logic we presented in Section 3. To
easily follow the specifications, the reader should reexamine the
program in Section 2.

For the purpose of illustration, we consider programs written
in a subset of C that is simple yet rich enough to express the pro-
gram in Section 2. The language precludes performing arithmetic
on pointers, taking the address of (using the& operator) a stack
variable or a field inside a structure, and the use of arrays, unions
and nested structures. Before we describe our specifications, we
briefly describe the memory model and how we define the opera-
tional semantics of the program.

• The memory is partitioned into a set of mapsf1, f2, . . . , fn,
one corresponding to each field declared in the program, and
indexed by the objects or references. Without loss of generality,
we assume that the field names are globally distinct.

• The value of the C expressionx->f is obtained by looking up
the mapf at the index obtained by evaluatingx. An update
x->f = y updates the mapf at the location obtained by evalu-
atingx, with the value obtained by evaluatingy.

4.1 Sorts

To generate a well-sorted formula from a program, we assign sorts
to the different fields and variables in the program. The sorts are
generated by analyzing the type structure of the program. Initially,
a sort is assigned to each distinct type in the program. If twotypes
can be the target of avoid∗ field (e.g.data in our example), we
merge the sorts for the two types. For our example, the set of sorts
D consists of at least the following sorts:

D ≡ {Integer , P dlink node, P 〈logentry, channel〉,
P channel log, P FILE, P char, . . .}

P dlink node is the sort for a pointer to adlink node. The sort
P 〈logentry, channel〉 is for a pointer to eitherlogentry or
channel, unified due to the presence of the polymorphicdata
field in dlink node. Given the sort setD, we can assign sorts to
the different variables and fields in the program, by substituting the
sort corresponding to each type in the program.

For each sortD ∈ D, we maintain a mapTypeD : D →
Integer , that maps an object of sortD to an integer constant
denoting the dynamic type of object. We introduce a constantfor
each type, by prefixing a@ to the type name (e.g.@logentry for
an object of typelogentry, @channel log for an object of type
channel log). The dynamic type of each object is assigned during
the allocation of the object. All the casts in the program arechecked
to see that they match the dynamic type of the objects.

Finally, the partial order≺ onD is generated by analyzing the
signature of the fields in the program, apart from the linkingfields
like next andprev. For each fieldf : D → E in the program, we
add the constraint thatE ≺ D. The partial order for our program
is the following:

P 〈logentry, channel〉 ≺ P dlink node
P char ≺ P 〈logentry, channel〉
Integer ≺ P 〈logentry, channel〉
P channel log ≺ P 〈logentry, channel〉
Integer ≺ P channel log
P FILE ≺ P channel log

4.2 Specifications usingg−1 set constructor

Theg−1 set constructor is useful for expressing both non-aliasing
of heap objects andtype invariants.

To prove the absence of double-free property in our example,
we need to ensure non-aliasing of various fields of the same sort
(e.g. thechar∗ fieldschannel name, filename, etc.). For a field
f, and a set of fieldsF, we first define a macroNotAliased(f, F, u)
as follows:

NotAliased(f, F, u) ≡
f−1(f(u)) = {u} ∧ �g∈F g

−1(f(u)) = {}

This macro specifies that the objectf(u) pointed to by a given
field f, cannot be also pointed to by any of the fields inF. The set
F usually contains a set of fields that have the same sort asf. Note
that we have used set equality as a syntactic sugar for the more
elaborate formula using bounded quantification.

We can use this macro to specify that any object pointed to by
thechar∗ field channel name is distinct from the objects pointed
to by the otherchar∗ fields as follows:

∀u ∈ TypeP 〈logentry,channel〉
−1(@logentry).

NotAliased(channel name, {filename, name, topic}, u)

It means for any objectu of sortP 〈logentry, channel〉 with
a dynamic typelogentry, the objectchannel name(u) of sort
P char, can’t be pointed to by any of the otherchar∗ fields.

Observe that the use ofTypeD
−1(@T) allows us to describetype

invariantsfor any given dynamic typeT within the sortD, such as
logentry in the previous example.

4.3 Specifications usingBtwn(f, x, y) set constructor

Let us now illustrate the use of the set constructorBtwn(f, x, y) to
describe properties of linked lists.

• Disjointness of lists: To specify that the two linked lists have
disjoint elements, we can exploit the fact that the nodes in the
two linked lists have different dynamic types:

∀u ∈ Btwn(next, log list.head, null) \ {null}.
TypeP 〈logentry,channel〉(data(u)) = @logentry

∀u ∈ Btwn(next, channel list.head, null) \ {null}.
TypeP 〈logentry,channel〉(data(u)) = @channel

These invariants describe that for any nodeu in the linked list
betweenlog list.head (respectively,channel list.head)
andnull, but excludingnull, the type of the object pointed to
by data(u) is @logentry (respectively,@channel). By the
property of functions, this ensures that the set of nodes in the
two lists are disjoint. The interesting nature of this specification
is that we can specify the disjointness of the two lists by stating
an invariant locally for each list.

• Non-aliasing for lists: We also need to ensure that each node in
each linked list points to a distinct object. We use both the set
constructors in the following specification:

∀u ∈ Btwn(next, log list.head, null) \ {null}.
NotAliased(data, {}, u)

∀u ∈ Btwn(next, channel list.head, null) \ {null}.
NotAliased(data, {}, u)

The first invariant describes that for any nodeu in the linked
list betweenlog list.head andnull, but excludingnull, the
object pointed to bydata(u) has exactly one object (namelyu)
pointing into it using thedata field. This ensures that thedata
field for each object in the list points to a distinct object. The
second invariant states this property for the second list.

• Data structure invariant: In Figure 4, the routinesclear logs
andrem channel delete pointers from the doubly-linked lists
using thedlink delete routine. The correctness of the routine
relies on the input list being a doubly-linked list. We use the
following macro to describe the invariants for a generic acyclic

doubly-linked listDlistInv(dlist, next, prev):

DlistInv(dlist, next, prev) ≡
∧ prev(dlist.head) = null
∧ next(dlist.tail) = null
∧ Btwn(next, dlist.head, null) =

Btwn(prev, dlist.tail, null)
∧ null ∈ Btwn(next, dlist.head, null)
∧ ∀u ∈ Btwn(next, dlist.head, null) \ {null}.

u = dlist.head ∨ next(prev(u)) = u
∧ ∀u ∈ Btwn(prev, dlist.tail, null) \ {null}.

u = dlist.tail ∨ prev(next(u)) = u

The first two invariants are self-explanatory. The third invariant
states that the set of objects reachable following thenext field
from thedlist.head is the same as the set reachable following
theprev field from thedlist.tail. The fourth invariant states
that the lists obtained by following thenext andprev fields are
both acyclic. The last two invariants constrain the fieldsnext
andprev to be fields of a doubly-linked list.

Although the invariant looks complex, these data structurein-
variants have to be written only once for each type of doubly-
linked list. and then instantiated for the different lists (e.g.
log list andchannel list) in the program. This predicate
can be reused across all other programs that manipulate acyclic
doubly-linked lists as well.

In addition to these invariants, we also need invariants stating
that all objects reachable from the two lists are allocated.Moreover,
for the loops iterating over the lists, we need to specify that the
iterator (e.g.ptr in clear logs) points to an object in the list. All
these invariants are expressible in our logic.

4.4 Sort-restriction

To enable the algorithm described in Section 3.3 to terminate on
the above queries, we need to ensure that the formulas aresort-
restricted as well. In this section, we show that almost all the
formulas in this section meet the requirement.

Let us consider the following invariant, described in Section 4.3.

∀u ∈ Btwn(next, channel list.head, null) \ {null}.
TypeP 〈logentry,channel〉(data(u)) = @channel

For this formula, the variableu of sort P dlink node appears as
a subterm ofdata(u), which has a sortP 〈logentry, channel〉
and a subterm ofTypeP 〈logentry,channel〉(data(u)), which has a sort
Integer . In both cases, the sorts of the subterms are less than the
sort foru, according to the partial order≺ described in Section 4.1.

However, consider the following invariant also described in the
previous section:

∀u ∈ Btwn(next, dlist.head, null) \ {null}.
u = dlist.head ∨ next(prev(u)) = u

In this formula, u appears as a strict subterm ofprev(u) and
next(prev(u)), both of which have the same sort asu. In fact,
any legal sort assignment would equate the sorts for the terms
next(prev(u)) andu, and therefore the formula can not besort-
restrictedfor any sort assignment.

It turns out that for this example (and also for the rest of the
examples we consider this paper), the only two formulas thatdo not
meet the sort restrictions are the last two invariants ofDlistInv.
This is not surprising because the invariant constrains thetwo fields
next and prev that form singly-linked lists. In Section 6, we
describe our solution for ensuring that the algorithm terminates on
such ill-behaved formulas as well.

[ORDER1] ∀x, y, z : {Reach(f, x, y, y), Reach(f, x, z, z)}
Reach(f, x, y, y) ∧ Reach(f, x, z, z) ⇒
Reach(f, x, y, z) ∨ Reach(f, x, z, y)

[TRANSITIVE1] ∀x, y, z : {Reach(f, x, y, y), Reach(f, y, z, z)}
Reach(f, x, y, y) ∧ Reach(f, y, z, z) ⇒
Reach(f, x, z, z)

Figure 15. Encoding inference rules using axioms with triggers

5. Implementation
We have created an initial prototype of the decision procedure
framework over existing SMT solvers, where we encode our in-
ference rules using universally-quantified first-order axioms with
appropriate matchingtriggers. Our implementation translates an-
notated C programs into the BoogiePL intermediate language(De-
Line and Leino 2005). Each procedure in a BoogiePL program is
translated into a verification condition by the Boogie verifier (Bar-
nett and Leino 2005). Finally, the verification conditions are proved
by the SIMPLIFY (Detlefs et al. 2005) and Z3 (de Moura and
Bjorner 2007) automated theorem provers.

Figure 15 gives the axioms encoding two illustrative rewrite
rules from Figure 13. We use predicatesReach(f, x, y, z) and

In(x, y) to stand for the relationsx
f
−→y

f
−→z and∈ respectively. To

avoid the use of excessive parentheses, we use the convention that
⇒ has lower precedence than∧ and∨. For each axiom, a set of
triggers is specified using curly braces. Each trigger is a collection
of terms enclosed within{·}, which together must refer to all
of the universally-quantified variables. The axiom is instantiated
for those terms which if substituted for the quantified variables
in the trigger terms result in terms that are all present in ground
formulas. Typically, each rewrite rule results in an axiom in which
the conjunction of the literals above the line implies the disjunction
of the literals below the line and the terms in the literals above the
line appear in the trigger.

In addition to encoding the rules of our decision procedure
as axioms, we also provide triggers for the universally-quantified
assertions in the program. To encode the reasoning for the rule
[BTWN] (Figure 14), we infer a trigger{Reach(f, t1, x, t2)} for
the formula∀x ∈ Btwn(f, t1, t2).α. To encode the reasoning for
the rule [INV], we infer a triggerIn(x, f−1(t)) for the formula
∀x ∈ f−1(t).α. To generate the termIn(x, f−1(t)), we add the
following axiom:

[I NINV] ∀y : {f(y)} In(y, f−1(f(y)))

We automatically generate the appropriate triggers for anyuniversally-
quantified assertions that belongs to thesort-restrictedfragment of
our logic.

There are many advantages to implementing a rewriting-based
decision procedure using first-order axioms over SMT solvers:

1. First, it allows us to quickly create an initial prototypefor
evaluation.

2. Second, it allows us to leverage efficient ground reasoning for
equality, uninterpreted functions and arithmetic.

3. Finally, we can leverage the advances in matching based quan-
tifier instantiation using triggers (Detlefs et al. 2005; deMoura
and Bjorner 2007). This is useful not only for the implementa-
tion of the rewrite rules, but also allows us to express quantified
invariants outside our logic in the rare cases when required. We
present the need for such invariants, and our solution to deal
with them in Section 6.

However, our approach has some drawbacks over a custom im-
plementation. First, matching in typical SMT solvers is expensive.
Second, a custom implementation of our decision procedure would

Example SIMPLIFY SIMPLIFY Z3
Old Time (s) New Time (s) Time (s)

iterate 1.8 1.4 1.5
iterate acyclic 1.7 1.5 1.43

slist add 1.5 1.3 1.36
reverse acyclic 2.0 1.4 1.37

slist sorted insert 16.4 3.1 4.85
dlist add 38.9 7.1 1.75

dlist remove 45.4 2.4 1.65
allocator * (901.8) 57.1 2.0
list appl * 200.1 30.22
muh free * * 8.2

Figure 16. Results of assertion checking. The experiments were
conducted on a 3.6GHz, 2GB machine running Windows XP. A
timeout (indicated by *) of 5000 seconds was set for each experi-
ment. Forallocator, time inside the parenthesis denotes the run-
time after manual decomposition.

allow us to perform additional optimizations, e.g. ordering the var-
ious rules to detect unsatisfiability faster in common cases.

6. Evaluation
We have used the decision procedure presented in this paper in
the tool HAVOC (Chatterjee et al. 2007), and performed a set of
preliminary experiments for verifying small to medium sized C
benchmarks. HAVOC is a tool for checking properties of heap-
manipulating C programs. The memory model in HAVOC accounts
for additional complications of low-level C programs, including
pointer arithmetic, internal pointers, nested structures, unions and
arrays. The main differences over the memory model presented
in this paper are: (i) each expression evaluates to a pointertype
ptr : (Obj, int) consisting of an object and an offset; and (ii)
there is a single mapMem : ptr → ptr for the entire memory. This
low-level model is required to maintain soundness across pointer
arithmetic and internal pointers in C. HAVOC also uses a alternate
variant of the reachability predicate presented in this paper, called
well-foundedreachability predicate (Lahiri and Qadeer 2006; Chat-
terjee et al. 2007).1 The rules presented in the paper were suitably
extended to account for this memory model and reachability predi-
cate.

Figure 16 presents a set of C benchmarks that manipulate
singly and doubly-linked lists. These benchmarks use pointer
arithmetic, internal pointers into objects and cast operations in
addition to linked data structures. The examplesiterate and
iterate acyclic respectively initialize the data elements of a
cyclic and acyclic lists respectively;slist add adds a node to a
singly linked list;reverse acyclic is a routine for in-place rever-
sal of an acyclic list. The exampleslist sorted insert inserts
a node into a sorted (by the data field) linked list.dlist add and
dlist remove are the insertion and deletion routines for cyclic
doubly-linked lists.allocator is a low-level custom storage allo-
cator; it maintains a list of freed regions in an object and returns
a region whose size satisfies the clients request.list appl is a
simple application with multiple doubly-linked lists, parent point-
ers, and uses the primitive doubly-linked list operations.muh free
is a simplified version of themuh example presented in Section 2.
The examples range from 10 to 150 lines of C code. For all these
examples, we check a set of partial correctness properties including

1 The well-founded reachability predicate also enjoys most of the properties

of x
f
−→ y

f
−→ z, such as closure under weakest-precondition, and a

rewriting-based decision procedure for the ground fragment. The results
are present in a recent technical report (Lahiri and Qadeer 2007).

(but not limited to) the implicit memory-safety requirements. For
instance, we check that the output list ofslist sorted insert
is sorted; forreverse acyclic, we verify that the input and the
output lists have the same nodes; forallocator, we verify that
the region returned by the application was already present in the
free list and meets the size requirement; forlist appl, we verify
that the disjoint lists satisfies certain data invariants; finally for muh
we check the absence of double-free property.

In an earlier work (Chatterjee et al. 2007), we verified a subset
of the examples in Figure 16 using an incomplete axiomatization
of the reachability predicate, with universally quantifiedinvariants.
For most of the examples, we had to write down the triggers
for the quantified invariants carefully; the theorem provers were
quickly overwhelmed without such restrictions. The secondcolumn
in Figure 16 denotes the runtime using our previous approach,
using the SIMPLIFY theorem prover (reported from (Chatterjee
et al. 2007)). The third and the fourth column denotes the runtime
using the algorithm described in this paper (using SIMPLIFY and
Z3 as the SMT provers respectively); for these cases, the triggers
for the quantified invariants (with a couple of exceptions below)
were generated automatically, using the scheme of Figure 15.

The results clearly indicate that the new algorithm outper-
forms the older axiomatization in terms of efficiency. We can
now solve several new examples (list appl, muh free) that
were not amenable to be solved by our previous approach. For
the allocator example, the time reported inside the parenthesis
(901.8 seconds) denotes the time taken to verify the examplewith
our previous approach, using additional triggers and manual de-
composition of the proof into two VCs — without these changes
the example did not verify within the time limit. It illustrates the
brittleness of our previous approach. The improved resultswith
Z3 (over SIMPLIFY) also indicate that the recent advances in SMT
solvers are crucial to scale better. However, the recent advances
alone are not sufficient to solve these problems (as we learned from
our failed attempts with Z3 with our old axiomatization). Inmost
of these cases, the theorem provers quickly ran out of memory
due to large number of (often useless) instantiations of thequanti-
fiers. However, the real gain (not evident from the results) was in
the predictability of the new approach. In our experience, most of
the failed proofs in our verification effort with the new framework
points at insufficient assertions or bugs in the program.

For these examples, the main source of formulas that do not fit
the sort-restrictedfragment ofLISBQ comes from specification
of the doubly-linked list invariant. For the following doubly-linked
list assertion mentioned in Section 2:

∀u ∈ Btwn(next, dlist.head, null) \ {null}.
u = dlist.head ∨ next(prev(u)) = u

our solution has been to add a trigger{prev(u)} to ensure that
this assertion never generates a new termprev(t) after instantiat-
ing u with t. Note that even though a new termnext(prev(t))
could still be generated after instantiation, asserting this literal
next(prev(t)) = t in the context would cause this term to be
equated with an existing termt. This restriction ensures that the
instantiations terminates even in the presence of such formulas.

7. Related work
In this work, we have augmented first-order SMT solvers with use-
ful theories for precise verification of heap-manipulatingprograms.
We discuss the various works that are similar in spirit to ourgoal
of automatically verifying such programs.

Nelson (1983) presents a ground logic with the ternary predi-

catex
f
−→
z
y, and an axiomatization for the logic. No claim is made

about the completeness of the axiomatization, but the paperpro-

vides the weakest precondition for the predicate. Rakamarić et al.
(2007) provide a rewriting-based decision procedure for the ground

fragment of our logic withx
f
−→ y

f
−→ z. However, they do not pro-

vide the weakest precondition for the predicate, and are imprecise
across updates to the linking fields. In addition, the rewrite rules in
our decision procedure are fewer and simpler resulting in a simpler
proof of completeness. Balaban et al. (2005) present a logicthat
allows reachability over singly-linked lists to be expressed. Their
decision procedure is based on a small-model property of thelogic.
In all these cases, the logics are strictly less expressive than ours
since they do not have any support for quantifiers — as a result
they cannot express most of the properties that we discuss inthis
paper.

Ranise and Zarba (2006) present a decidable ground logic that
combines reachability constraints with arithmetic. But they provide
no implementation to evaluate the feasibility of their approach.
Moreover, the logic can’t express many properties of collections
(such as sortedness of lists), since it does not provide support for
quantifiers. Kuncak and Rinard (2005) provide a logic with sets for
reasoning about data structures. Unlike our logic, their logic does
not allow sets to be constructed from the reachability predicate.

There have been several other attempts at first-order axiomatiza-
tion of reachability (Lev-Ami et al. 2005; Lahiri and Qadeer2006),
which are incomplete. McPeak and Necula (2005) use decidable
fragment of first-order logic augmented with arithmetic on scalar
field to specify properties of data structures. However, they do not
provide any theories for recursive predicates like reachability, and
rely on user providedghostvariables to express properties of data
structures — the updates to these ghost variables have to be inserted
manually by the user to generate the verification conditions. How-
ever, they demonstrate completeness of quantifier instantiation for
certain syntactic class of formulas that could help extend our deci-
sion procedure for doubly-linked list assertions.

Unlike the papers discussed so far that have essentially used
first-order logic for reasoning about linked data structures, other
approaches have used higher-order logic for the same purpose. The
pointer assertion logic engine (PALE) (Møller and Schwartzbach
2001) uses monadic second-order logic to express properties in-
volving reachability. Although the logic can express more complex
shape properties than that allowed by our logic, the logic precludes
the use of integer valued functions and the decision procedure for
the logic has high complexity. The work of Yorsh et al. (2006)on
the logic of reachable patterns is in a similar direction. They pro-
vide a logic for expressing complex shape properties, show how
to generate precise verification conditions and provide a decision
procedure by translation to monadic second-order logic.

Separation logic (Reynolds 2002) has been proposed to reason
about heap-manipulating programs. Berdine et al. (2004) describe a
rewrite-based decision procedure for a fragment of separation logic
with linked lists. Among other things, it is not clear how to harness
efficient arithmetic theory reasoning in this framework.

Automatic computation of (shape) invariants for programs with
linked data structures (shape analysis) has also received consider-
able attention in recent years. This work is orthogonal and comple-
mentary to our work and we only discuss it briefly. Most of this
work is based on specialized abstract domains for the heap (Lev-
Ami and Sagiv 2000; Distefano et al. 2006) or use predicate ab-
straction (Graf and Saı̈di 1997) with decision procedures for log-
ics with reachability (Balaban et al. 2005; Rakamarić et al. 2007;
Lahiri and Qadeer 2006). Better decision procedures are crucial
for the latter approaches, but they can also be used to improve the
imprecision of the underlying abstract domain in the formerap-
proaches (Lev-Ami et al. 2005).

8. Conclusions
In this paper, we revisit the problem ofpreciseverification of heap-
manipulating programs using first-order SMT solvers. To solve this
problem, we present theLogic of Interpreted Sets and Bounded
Quantificationfor specifying properties of heap-manipulating pro-
grams and a verifier for proving these properties. The verification
is fully precise within a procedure and loop body, and is scalable
across typical loop-free code fragments found in practice.

We are currently working on extending our work in two direc-
tions: First, we would like to extend our logic to support range of
indices of an array as another interpreted set constructor —this
would allow reasoning about rich properites of the most common
data structures (arrays and lists) in a single framework. Second,
we would like to perform abstraction across loop and procedure
boundaries to reduce the annotation requirement by automatically
inferring many annotations. The recent advances in SMT solvers
and the results of this paper that leverage these advances have cre-
ated a strong foundation for carrying forward this work.

Acknowledgments
We would like to thank Nikolaj Bjorner and Leonardo de Moura
for help with Z3 and Amit Goel and Sava Krstić for suggesting
improvements to our decision procedure.

A. Proofs
A.1 Proof of Lemma 1

LEMMA 1. For all u ∈MD , the following facts hold:

1. (u, u) ∈ Ru.
2. Ru is a reflexive relation overdom(Ru).
3. Ru is transitive.
4. Ru is totally-ordered overdom(Ru).

PROOF.SinceCV is saturated with respect to [REFLEXIVE] and

[ORDER1], we have[|u|]
f
−→ [|u|]

f
−→ [|u|] ∈ CV . Therefore(u, u) ∈

Ru.
Recall thatdom(Ru) = {v | ∃w.(v, w) ∈ Ru}. Suppose

v ∈ dom(Ru). Then there existsw such that(v, w) ∈ Ru and

hence[|u|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV . SinceCV is saturated with respect

to [ORDER2], we know that[|u|]
f
−→ [|v|] ∈ CV . Finally, saturation

with respect to [ORDER1] gives us[|u|]
f
−→ [|v|]

f
−→ [|v|] ∈ CV .

Therefore(v, v) ∈ Ru.
Let (v, w) ∈ Ru and (w,w′) ∈ Ru. In this case, we know

[|u|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV and[|u|]

f
−→ [|w|]

f
−→ [|w′|] ∈ CV . SinceCV

is saturated with respect to [TRANSITIVE2], [|u|]
f
−→ [|v|]

f
−→ [|w′|] ∈

CV , and hence(v, w′) ∈ Ru.
Considerv, w ∈ dom(Ru). SinceRu is a reflexive relation

over dom(Ru), we know [|u|]
f
−→ [|v|]

f
−→ [|v|] ∈ CV and [|u|]

f
−→

[|w|]
f
−→ [|w|] ∈ CV . Saturation with respect to [ORDER2] gives us

[|u|]
f
−→ [|v|] ∈ CV and [|u|]

f
−→ [|w|] ∈ CV . SinceCV is saturated

with respect to [ORDER1], either [|u|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV or

[|u|]
f
−→ [|w|]

f
−→ [|v|] ∈ CV . In the former case,(v, w) ∈ Ru and in

the latter(w, v) ∈ Ru. 2

A.2 Proof of Lemma 2

We now give the proof of the following lemma, first presented in
Section 3.2, which essentially claims completeness for therules in
Figure 13.

LEMMA 2. The modelM defined in Section 3.2 satisfiesM |=
CV .

The proof of Lemma 2 is decomposed into Lemmas 4–8 proved in
this section.

Consider a functionf of sortD → D. Letu be an equivalence
class inMD. Suppose there is now in MD such thatf([|u|]) =
[|w|] ∈ CV . Then, we use the relationRu to definef(u) in the
modelM to be some equivalence classv. We will add the constraint
f([|u|]) = [|v|] to CV (together with constraintsf([|u|]) = t for all
termst such thatt = [|v|] ∈ CV and constraintsf([|u|]) 6= t for
all termst such thatt 6= [|v|] ∈ CV) and argue thatCV remains
consistent and saturated. The termf([|u|]) was absent fromCV

before the addition of this constraint. Moreover, this constraint is
introduced only once for each equivalence classu. These two facts
ensure thatCV is saturated with respect to congruence closure. We
now show thatCV remains saturated with respect to the rules in
Figure 12–14. Consequently,CV remains consistent as well.

The only rule in Figure 12 that might become applicable by the
introduction of the termf([|u|]) is [EQ]. Let t be an arbitrary term
of sortD in CV . SinceCV was saturated with respect to [EQ] to
begin with, eithert = [|v|] ∈ CV or t 6= [|v|] ∈ CV . In the first
case, we have addedf([|u|]) = t to CV . In the second case, we
have addedf([|u|]) 6= t to CV . Therefore,CV remains saturated
with respect to [EQ].

The only rules in Figure 13 that might become applicable by the
introduction of the termf([|u|]) are [STEP], [REACH], and [CYCLE].
We now split cases onRu = {(u, u)}.

1. If Ru = {(u, u)}, thenv = u. By [REFLEXIVE], [|u|]
f
−→ [|u|] ∈

CV and therefore [STEP] is saturated. SinceRu = {(u, u)},

we know that if[|u|]
f
−→ [|v|] ∈ CV thenu = v. Therefore, both

[REACH] and [CYCLE] are saturated.

2. IfRu 6= {(u, u)}, thenv is the least element ofdom(Ru)\{u}
with respect toRu. Sincev ∈ dom(Ru), by Lemma 1(v, v) ∈

Ru from which we conclude that[|u|]
f
−→ [|v|]

f
−→ [|v|] ∈ CV .

Therefore [STEP] is saturated. Let us consider the rule [REACH].
Suppose[|u|]

f
−→ [|w|] ∈ CV . If u = w then [REACH] is already

saturated. Otherwisew ∈ dom(Ru) \ {u}. Sincev is the

least element ofdom(Ru) \ {u}, we conclude that[|u|]
f
−→

[|v|]
f
−→ [|w|] ∈ CV . Therefore [REACH] is saturated. Since

v ∈ dom(Ru) \ {u}, we havev 6= u and[|v|] 6= [|u|]. Therefore
f([|u|]) = [|v|] 6= [|u|]. Consequently, the rule [CYCLE] is
inapplicable and saturated.

Consider the rules in Figure 14. The rule [INV] remains satu-
rated with respect toCV because we have only added constraints
for functionsf of sortD → D whereD ∈ D. The rule [BTWN]
remains saturated with respect toCV because we did not add any

constraintt1
f
−→ t

f
−→ t2 toCV .

Consider a functiong of sortD → E, whereD 6= E. Let u
be an equivalence class inMD . Suppose there is now in ME such
thatg([|u|]) = [|w|] ∈ CV . Then, we defineg(u) = {⊥E}. We add
the constraintg([|u|]) =⊥E (together with constraintsg([|u|]) = t
for all termst such thatt =⊥E∈ CV andg([|u|]) 6= t for all termst
such thatt 6=⊥E∈ CV) toCV and argue thatCV remains saturated
with respect to all rules in Figure 12–14.

The only rule in Figure 12 that might become applicable by the
introduction of the termg([|u|]) is [EQ]. Let t be an arbitrary term
of sortE in CV . SinceCV was saturated with respect to [EQ] to
begin with, eithert =⊥E∈ CV or t 6=⊥E∈ CV . In the first case,
we have addedg([|u|]) = t to CV . In the second case, we have
addedg([|u|]) 6= t to CV . Therefore,CV remains saturated with
respect to [EQ].

The rules in Figure 12 and the rule [BTWN] remain saturated
because they are related to functions of sortD → D. The rule
[INV] remains disabled because the equivalence class containing

⊥E is a singleton. Consequently, for any quantified formula∀x ∈
g−1(t).α in CV , the literalt 6=⊥E∈ CV .

LEMMA 4. If [|u|]
f
−→ [|v|] ∈ CV , then[|u|]

f
−→ [|u|]

f
−→ [|v|] ∈ CV .

PROOF.By saturation under [REFLEXIVE], we have[|u|]
f
−→ [|u|] ∈

CV . By saturation under [ORDER1], either[|u|]
f
−→ [|u|]

f
−→ [|v|] ∈ CV

or [|u|]
f
−→ [|v|]

f
−→ [|u|] ∈ CV . In the first case, we are already done.

In the second case, we are done once we apply saturation underthe
[SANDWICH] rule. 2

LEMMA 5. If there are distinctu0, u1, . . . , un such that[|ui+1|] =

[|f(ui)|] ∈ CV for all i ∈ [0, n), then[|u0|]
f
−→ [|un|] ∈ CV .

PROOF.The proof is by induction onn. For the base case, we have

n = 0 and [|u|]
f
−→ [|u|] ∈ CV follows by saturation with respect

to [REFLEXIVE]. For the inductive case, suppose there are distinct
u0, u1, . . . , un, un+1 such that[|ui+1|] = [|f(ui)|] ∈ CV for all

i ∈ [0, n + 1). Then [|u0|]
f
−→ [|u1|] ∈ CV follows by saturation

with respect to [STEP] and [|u1|]
f
−→ [|un+1|] ∈ CV follows by the

inductive hypothesis. Therefore[|u0|]
f
−→ [|un+1|] ∈ CV follows by

saturation with respect to [TRANSITIVE1]. 2

LEMMA 6. Suppose there are distinctu0, u1, . . . , un such that

[|ui+1|] = [|f(ui)|] ∈ CV for all i ∈ [0, n). Then[|u0|]
f
−→ [|ui|]

f
−→

[|un|] ∈ CV for all i ∈ [0, n].

PROOF.The proof is by induction onn. For the base case, we have

n = 0 and [|u|]
f
−→ [|u|]

f
−→ [|u|] ∈ CV follows by saturation with

respect to [REFLEXIVE]. For the inductive case, suppose there are
distinctu0, u1, . . . , un, un+1 such thatui+1 = f(ui) ∈ CV for

all i ∈ [0, n+ 1). By Lemma 5, we have[|u0|]
f
−→ [|un+1|] ∈ CV . If

i = 0, then[|u0|]
f
−→ [|u0|]

f
−→ [|un+1|] ∈ CV by Lemma 4. Ifi 6= 0,

theni ∈ [1, n+1]. Then[|u0|]
f
−→ [|u1|]

f
−→ [|un+1|] ∈ CV follows by

saturation with respect to [REACH]. By the inductive hypothesis, we

have[|u1|]
f
−→ [|ui|]

f
−→ [|un+1|] ∈ CV and[|u0|]

f
−→ [|ui|]

f
−→ [|un+1|] ∈

CV follows by saturation with respect to [TRANSITIVE2]. 2

LetS(u,w) = {v | [|u|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV }.

LEMMA 7. For all variables u and w, the following facts hold
aboutS(u,w).

1. S(u, u) = {u}
2. S(u,w) = ∅ ∨ {u, w} ⊆ S(u,w).
3. u = w ∨ u 6∈ S(f(u), w).
4. S(u,w) = ∅ ∨ u = w ∨ S(f(u), w) ⊂ S(u,w).

PROOF.Let v ∈ S(u, u). Then[|u|]
f
−→ [|v|]

f
−→ [|u|] ∈ CV . SinceCV

is saturated with respect to [SANDWICH] rule, v = u.

Let S(u,w) 6= ∅. Therefore there exists av such that[|u|]
f
−→

[|v|]
f
−→ [|w|] ∈ CV . SinceCV is saturated with respect to [ORDER2]

and [TRANSITIVE1], [|u|]
f
−→ [|w|] ∈ CV , and hencew ∈ S(u,w).

Now [|u|]
f
−→ [|u|] ∈ CV by [REFLEXIVE]. From [|u|]

f
−→ [|u|] and

[|u|]
f
−→ [|w|], it follows (from [ORDER1]) either [|u|]

f
−→ [|u|]

f
−→

[|w|] ∈ CV or [|u|]
f
−→ [|w|]

f
−→ [|u|] ∈ CV . However, the latter

implies u = w using [SANDWICH]. Therefore, in either case,

[|u|]
f
−→ [|u|]

f
−→ [|w|] ∈ CV and hence{u, w} ⊆ S(u,w).

Let u 6= w. This fact implies that[|u|] 6= [|w|]. Let us assume

[|f(u)|]
f
−→ [|u|]

f
−→ [|w|] ∈ CV . From rule [ORDER2], we get

[|u|]
f
−→ [|w|] ∈ CV . From rule [REACH], either [|u|] = [|w|] or

[|u|]
f
−→f([|u|])

f
−→ [|w|]. The first case leads to a contradiction so we

consider the second case. The rule [TRANSITIVE2] gives us[|u|]
f
−→

f([|u|])
f
−→ [|u|] and by rule [SANDWICH] we get f([|u|]) = [|u|].

Finally, the rule [CYCLE] gives us[|u|] = [|w|] which leads to a
contradiction.

LetS(u,w) 6= ∅ andu 6= w. We know that{u, w} ⊆ S(u, w),
and thereforeS(u,w) 6= ∅. If S(f(u), w) = ∅, we are done.
AssumeS(f(u), w) 6= ∅. Consider av ∈ S(f(u), w). This means

that [|f(u)|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV . From saturation with respect to

[ORDER2], we get[|f(u)|]
f
−→ [|w|] ∈ CV . By [STEP], we get[|u|]

f
−→

[|f(u)|] ∈ CV . From [TRANSITIVE1], we get[|u|]
f
−→ [|w|] ∈ CV .

Sincef(u) is present in the context, by the saturation of [REACH],

we know eitheru = w ∈ CV or [|u|]
f
−→ [|f(u)|]

f
−→ [|w|] ∈ CV .

Since we assumedu 6= w, we get[|u|]
f
−→ [|f(u)|]

f
−→ [|w|] ∈ CV .

This when combined with[|f(u)|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV gives us

the fact that[|u|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV by [TRANSITIVE2] rule.

Moreover, we already knowu ∈ S(u,w) but u 6∈ S(f(u), w).
HenceS(f(u), w) ⊂ S(u,w). 2

LEMMA 8. Suppose[|u|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV . Then there are

distinct u0, u1, . . . , un such thatui+1 = f(ui) ∈ CV for all
i ∈ [0, n), u = u0, w = un, and there existsi ∈ [0, n] such
thatv = ui.

PROOF.Since[|u|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV , we haveS(u,w) 6= ∅.

We prove by induction on the cardinality ofS(u,w). For the base
case, let|S(u, w)| = 1. By Lemma 7, we have{u, w} ⊆ S(u,w)
from which we conclude thatu = w. From saturation with respect
to [SANDWICH], we obtainu = v = w and we are done. For the
inductive case, let|S(u, w)| > 1. Then Lemma 7 guarantees that
u 6= w andS(f(u), w) ⊂ S(u,w). We perform a case split on
u = v.

If u = v, then saturation with respect to [ORDER2] implies

that [|u|]
f
−→ [|w|] ∈ CV . Saturation with respect to [REACH] and

u 6= w implies that[|u|]
f
−→ [|f(u)|]

f
−→ [|w|] ∈ CV . Saturation with

respect to [ORDER2] implies that[|f(u)|]
f
−→ [|w|] ∈ CV and by

Lemma 4, we conclude[|f(u)|]
f
−→ [|f(u)|]

f
−→ [|w|] ∈ CV . By the

inductive hypothesis, there are distinctu0, u1, . . . , un such that
[|ui+1|] = [|f(ui)|] ∈ CV for all i ∈ [0, n), f(u) = u0 and
w = un. If u = ui for somei ∈ [0, n], then by Lemma 6 we

have [|f(u)|]
f
−→ [|u|]

f
−→ [|w|] ∈ CV . However, by Lemma 7, we

haveu 6∈ S(f(u), w). Thereforeu 6= ui for any i ∈ [0, n] and
u, u0, u1, . . . , un is the desired sequence.

If u 6= v, then saturation with respect to [REACH] implies that

u
f
−→ [|f(u)|]

f
−→ [|v|] ∈ CV and then saturation with respect to

[TRANSITIVE3] implies [|f(u)|]
f
−→ [|v|]

f
−→ [|w|] ∈ CV . By the

inductive hypothesis, there are distinctu0, u1, . . . , un such that
[|ui+1|] = [|f(ui)|] ∈ CV for all i ∈ [0, n), f(u) = u0, w = un,
and there existsi ∈ [0, n] such thatv = ui. If u = ui for some

i ∈ [0, n], then by Lemma 6 we have[|f(u)|]
f
−→ [|u|]

f
−→ [|w|] ∈ CV .

However, by Lemma 7, we haveu 6∈ S(f(u), w). Therefore
u 6= ui for any i ∈ [0, n] andu, u0, u1, . . . , un is the desired
sequence.2

A.3 Proof of Lemma 3

LEMMA 3. LetX be any collection of facts of the formt1 = t2.

LetY be any collection of facts of the formt1
f
−→t2

f
−→ t3. LetC be

any consistent and saturated context. IfC entails
�

(X ∪ Y), then
one of the following must hold:

1. t1 = t2 ∈ C for somet1 = t2 ∈ X.

2. t1
f
−→t2

f
−→t3 ∈ C for somet1

f
−→ t2

f
−→t3 ∈ Y .

PROOF.Let �X ≡ {t1 6= t2 | t1 = t2 ∈ X} and �Y ≡ {¬t1
f
−→

t2
f
−→ t3 | t1

f
−→t2

f
−→t3 ∈ Y }.

Now, let us assumeC entails
�

(X ∪ Y). This implies that
C ∧ �(�X ∪ �Y) is inconsistent. We know that the rules presented
in Figure 12 and Figure 13 are sound, complete and terminating
for the ground logic — i.e., for any inconsistent formulaϕ in this
logic, the set of inference rules derive a contradiction (orfalse).
The proof of the lemma relies on two observations:

1. There is only one way to derive contradiction in our system:
if both the literalsl and¬l are present in the context, where

literals could either be equality (t1 = t2) or reachability (t1
f
−→

t2
f
−→t3) fact.

2. None of the inference rules in Figure 12, Figure 13 and the
congruence closure (Nelson and Oppen 1980) algorithm for the

theoryUA use a negated literal (eithert1 6= t2 or ¬t1
f
−→ t2

f
−→

t3) in the antedent of the inference rules.

SinceC is saturated and consistent, the only wayC∧�(�X∪ �Y)
can be inconsistent is if there is a literalt1 = t2 ∈ C and
t1 6= t2 ∈ �X or t1

f
−→ t2

f
−→ t3 ∈ C and¬t1

f
−→ t2

f
−→ t3 ∈ �Y .

This is because the additional facts in�X and �Y would not trigger
any of the inference rules.2

References
I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate ab-

straction. InVerification, Model checking, and Abstract Interpretation
(VMCAI ’05), LNCS 3385, pages 164–180, 2005.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. InProgramming Language Design and
Implementation (PLDI ’01), pages 203–213, 2001.

M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured
programs. InProgram Analysis For Software Tools and Engineering
(PASTE ’05), pages 82–87, 2005.

M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: An overview. InConstruction and Analysis of Safe, Secure and
Interoperable Smart Devices, LNCS 3362, pages 49–69, 2005.

J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and
H. Yang. Shape analysis for composite data structures. InComputer
Aided Verification (CAV ’07), LNCS 4590, pages 178–192, 2007.

J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of
separation logic. InFSTTCS ’04: Foundations of Software Technology
and Theoretical Computer Science, LNCS 3328, pages 97–109, 2004.

E. Börger, E. Grädel, and Y. Gurevich.The Classical Decision Problem.
Springer-Verlag, 1997.

S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A reachability
predicate for analyzing low-level software. InTools and Algorithms for
the Construction and Analysis of Systems (TACAS ’07), LNCS 4424,
pages 19–33, 2007.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. InComputer Aided Verification (CAV
’00), LNCS 1855, pages 154–169, 2000.

L. de Moura and N. Bjorner. Efficient Incremental E-matchingfor SMT
Solvers. InConference on Automated Deduction (CADE ’07), LNCS
4603, pages 183–198, 2007.

R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for
checking object-oriented programs. Technical Report MSR-TR-2005-
70, Microsoft Research, 2005.

D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for
program checking.J. ACM, 52(3):365–473, 2005.

E.W. Dijkstra.A Discipline of Programming. Prentice-Hall, 1976.

D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based
on separation logic. InTools and Algorithms for the Construction and
Analysis of Systems (TACAS ’06), LNCS 3920, pages 287–302, 2006.

B. Dutertre and L. M. de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). In Computer Aided Verification (CAV ’06), LNCS 4144, pages
81–94, 2006.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata. Extended static checking for Java. InProgramming Language
Design and Implementation (PLDI’02), pages 234–245, 2002.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. InProgramming Language Design and Implementation (PLDI
’05), pages 213–223. ACM, 2005.

S. Graf and H. Saı̈di. Construction of abstract state graphswith PVS. In
Computer-Aided Verification (CAV ’97), LNCS 1254, pages 72–83, June
1997.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Principles of Programming Languages (POPL ’02), pages 58–70, 2002.

V. Kuncak and M. C. Rinard. Decision procedures for set-valued fields.
Electr. Notes Theor. Comput. Sci., 131:51–62, 2005.

R. P. Kurshan. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press, 1995.

S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists.
In Principles of Programming Languages (POPL ’06), pages 115–126,
2006.

S. K. Lahiri and S. Qadeer. A decision procedure for well-founded reacha-
bility. Technical Report MSR-TR-2007-43, Microsoft Research, 2007.

T. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srivastava,and
G. Yorsh. Simulating reachability using first-order logic with applica-
tions to verification of linked data structures. InConference on Auto-
mated Deduction (CADE ’05), LNCS 3632, pages 99–115, 2005.

T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static analy-
ses. InStatic Analysis Symposium (SAS ’00), LNCS 1824, pages 280–
301, 2000.

S. McPeak and G. C. Necula. Data structure specifications vialocal equality
axioms. InComputer-Aided Verification (CAV ’05), LNCS 3576, pages
476–490, 2005.

Anders Møller and Michael I. Schwartzbach. The pointer assertion logic
engine. InProgramming Language Design and Implementation (PLDI
’01), pages 221–231, 2001.

Muh. Available athttp://muh.sourceforge.net/.

G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures.ACM Transactions on Programming Languages and Systems
(TOPLAS), 2(1):245–257, 1979.

G. Nelson and D. C. Oppen. Fast decision procedures based on the congru-
ence closure.Journal of the ACM, 27(2):356–364, 1980.

Greg Nelson. Verifying reachability invariants of linked structures. In
Principles of Programming Languages (POPL ’83), pages 38–47, 1983.

Z. Rakamarić, J. Bingham, and A. J. Hu. An inference-rule-based decision
procedure for verification of heap-manipulating programs with mutable
data and cyclic data structures. InVerification, Model Checking, and Ab-
stract Interpretation (VMCAI ’06), LNCS 4349, pages 106–121, 2007.

S. Ranise and C. G. Zarba. A theory of singly-linked lists andits extensible
decision procedure. InSoftware Engineering and Formal Methods
(SEFM ’06), pages 206–215, 2006.

J. C. Reynolds. Separation logic: A logic for shared mutabledata structures.
In Logic in Computer Science (LICS ’02), pages 55–74, 2002.

Satisfiability Modulo Theories Library (SMT-LIB). Available at
http://goedel.cs.uiowa.edu/smtlib/.

G. Yorsh, A. M. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A
logic of reachable patterns in linked data-structures. InFoundations
of Software Science and Computation Structures (FoSSaCS ’06), LNCS
3921, pages 94–110, 2006.

