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Božidar Radunović1, Christos Gkantsidis1, Peter Key1, Pablo Rodriguez2, and Wenjun Hu3

1 Microsoft Research 2 Telefonica Research 3 Cambridge University
Cambridge, UK Barcelona, Spain Cambridge, UK

{bozidar,chrisgk,peter.key}@microsoft.com pablorr@tid.es wenjun.hu@cl.cam.ac.uk

June 2007

Technical Report
MSR-TR-2007-81

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com



1

Abstract
We consider wireless mesh networks, and exploit the in-
herent broadcast nature of wireless by making use of mul-
tipath routing. We present an optimization framework
that enables us to derive optimal flow control, routing,
scheduling, and rate adaptation schemes, where we use
network coding to ease the routing problem. We prove
optimality and derive a primal-dual algorithm that lays
the basis for a practical protocol. Optimal MAC schedul-
ing is difficult to implement, and we use random schedul-
ing rather than optimal for comparisons. Under random
scheduling, our protocol becomes fully decentralised. We
use simulation to show on realistic topologies that we can
achieve 20-200% throughput improvement compared to
single path routing, and several times compared to a re-
cent related opportunistic protocol (MORE).

1 Introduction
One of the main challenges in building wireless mesh
networks ([1, 2, 3]) is to guarantee high performance.
The difficulty is mainly caused by the unpredictable and
highly-variable nature of the wireless channel. However,
the use of wireless channels presents some unique op-
portunities that can be used to improve the performance.
For example, the broadcast nature of the medium can be
used to provide opportunistic transmissions as suggested
in [4]. Also, in wireless mesh networks, there are typ-
ically multiple paths connecting each source destination
pair; using some of these paths in parallel can improve
performance [5, 6]. The optimal use of multiple paths and
of opportunistic transmissions is the main focus of this
work. We use network coding [7] to simplify the problem
of scheduling packet transmissions across multiple paths,
similarly to [5, 6, 8]. We propose a network optimization
framework that optimizes the rate of packet transmissions
between source and destination pairs.

In order to use the resources of the wireless mesh net-
work efficiently, the system needs to take into account:
(a) the existence of multiple paths, (b) the unreliable na-
ture of the links, (c) the existence of multiple transmis-
sion powers and rates (which in turn affects the probabil-
ity of correct packet reception), (d) the broadcast nature
of the channel, (e) the competition among many flows,

(f) fairness and efficiency. Observe that optimizing across
all these parameters results in optimizing across multiple
layers of the networking stack; for example, the choice of
transmission power and rate is typically done at the phys-
ical layer, whereas coordination among different flows is
typically done at the network layer. As we shall see, it is
important to optimize all these parameters simultaneously
to achieve optimal performance.

We use an optimization framework to design a dis-
tributed maximization algorithm. We account for trans-
port layer controls and address questions of fairness by
maximizing the aggregate utility of the end-to-end flows,
where we associate a utility function U(·) with a flow.
Because we use network coding, our optimization frame-
work borrows heavily from [9, 8]. Our algorithm is a
primal-dual algorithm [10]. The primal formulation ex-
presses the optimization problem as a function of the rates
of the various flows in the network; the dual formula-
tion uses as variables the queue lengths (per flow and per
node). The main advantage of using the dual formulation
of the optimization problem is that the dual variables (also
referred as shadow prices) relate to queue lengths and can
be directly used by back-pressure algorithms for flow con-
trol [11, 12]. As a simple example, a large number of
queued packets for a particular flow at an internal node
can be interpreted that the path going through that node is
congested and should be avoided. The main advantage of
using the primal-dual formulation is that it adapts the pri-
mal variables (i.e. flow rates) more slowly, hence, allows
TCP-like window-based rate control modeling (as orig-
inally mentioned by Erylimaz et al. [11]). We propose
a novel algorithm for cross-layer optimization and prove,
using Lyapunov functions, that it converges to the optimal
rate allocation.

The proposed optimization framework is difficult to im-
plement; indeed, the joint scheduling, rate and power con-
trol problem is NP-hard [13]. Additionally, current wire-
less MAC protocols use uncontrolled randomized chan-
nel scheduling. We propose a distributed heuristic based
on the optimal algorithm. We show that, even in the ab-
sence of optimal channel scheduling, the other aspects of
the optimization problem (i.e. flow selection and trans-
mission rate selection) still give performance advantages.
Hence, our heuristic can be implemented in practical sys-
tems. The fundamental idea of our algorithm (and, of the
distributed implementation) is to assign credits to nodes,
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transfer credits between nodes, and schedule on the basis
of credits (see Sec. 3 for more details).

The main contributions of our paper are as follows:

• We propose a network wide optimization algorithm that
maximizes rate-based global network performance, and
extends previous work by incorporating broadcast (op-
portunistic routing), multi-path routing, and fairness/rate
control (Sections 2 and 3). We introduce a notion of vir-
tual packets, called credits, that enable us to decouple
routing and flow control from actual packet transmissions.
We prove the optimality of the algorithm.

• Based on the optimization algorithm, we give a dis-
tributed implementation of routing, rate adaptation, and
flow control for networks with random scheduling (Sec-
tion 3.3) that outperforms existing algorithms. We prove
that our algorithms extends and outperforms MORE [5].
The distributed algorithm can be used with the current
802.11 MAC, and indeed is MAC independent. We also
show how it can be used with practical network coding
schemes with finite generation sizes (Section 4.1).

• We demonstrate that rate selection is important for op-
timizing performance in 802.11a networks (Section 4.2).
We confirm the findings from [5] that such optimizations
are not necessary for 802.11b networks.

• Using simulation on realistic topologies, we show we
can achieve 20-100% throughput improvement with our
distributed implementation compared to single path rout-
ing, and 20-300% compared to MORE [5] (Section 5).1

2 Model
In this section we introduce the notation used in the pa-
per. We extend the model of wireless erasure network
developed in [14] to include multiple flows. Vectors are
denoted in bold.

2.1 PHY and MAC Characteristics
We consider a network comprising of a set of nodes N ,
N = |N |. Whenever a node transmits a packet, several

1Observe that MORE optimizes the number of transmitted packets
for flows in isolation, and may perform worse than single path, w.r.t.
rates, when multiple flows are active.
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Figure 1: A network with 4 nodes is given on the left.
For example, an activation profile {(1, 2), (3, 4)} depicts
a profile where nodes 1 and 3 are transmitting, nodes 2 is
receiving a packet from node 1, while node 4 is receiving
from node 3. Profile {(1, {2, 3})} depicts node 1 trans-
mitting and nodes 2 and 3 receiving (the same) packet
from node 1. Feasible rate region for (y12, y13) is given
on the right, describe by inequalities:

∑
j∈J y1j ≤ C1J

for all J ⊆ {2, 3}.

nodes may receive it. We model packet transmission from
node i to a set of nodes J ⊆ N with a hyperarc (i, J).
We define an activation profile S = {Sl} to be a set of
hyperarcs active at the same time. There may be several
constraints on feasible activation profiles. For example,
a node may be limited to receive from but one node, or
transmit to only one node at a time. The only condition
we shall impose is that a node can be the source of only
one hyperarc in one activation profile. We denote by S
the set of feasible activation profiles and let SRC(S) =
{i ∈ N | ∃J ⊆ N , (i, J) ∈ S} be the set of transmitters
in activation profile S.

Each transmission has two associated parameters,
power P ∈ P and rate R ∈ R, where P is the set of
allowed transmission powers (e.g. P ∈ [0, PM ], where
PM is given by regulations) and R is sets of available
PHY transmission rates, defined by supported spreading,
coding, and modulations.

Consider an activation profile S in which node i trans-
mits to set of nodes J , and suppose node i is transmit-
ting with power Pi and rate Ri. We can associate power
vector P = (Pi)i∈N rate vector P = (Pi)i∈N to these
transmissions. Let Tij = 1 if a packet is successfully
transmitted from i to j ∈ J . We define pij(P, Ri, S) =
Prob(Tij(P, Ri, S) = 1) to be the probability that node
j ∈ J will successfully receive the packet from i, given
the above conditions. We also assume that Tij and Tlk

are independent for i 6= l or j 6= k, which is justified
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by measurements (c.f. [15]). By convention, we assume
pij(P, Ri, S) = 0 if j 6∈ J , for (i, J) ∈ S.

We can now calculate CiK(P, Ri, S) the average num-
ber of packets per unit time conveyed from node i to any
of the nodes in K ⊆ N . We have

CiK(P, Ri, S) = Ri

1−
∏
j∈K

(1− pij(P, Ri, S))

 .

(1)
Note that CiK(P, Ri, S) = 0 if K∪J = ∅, for (i, J) ∈ S.

2.2 Traffic, Routing and Flow Scheduling
There is a set of unicast end-to-end flows C in the network,
and each flow c ∈ C has a source and a destination node
Src(c),Dst(c) ∈ N respectively. Each flows may take an
arbitrary route from a source to a destination, subject to
constraints imposed by the set of activation profiles. We
denote by fc the rate of flow c ∈ C. One flow may take
multiple routes to the destination. We assume routing is
done at each hop. Each relay will decide how much traffic
from a flow it will forward to other nodes. This decision
is made through credit assignment, as described next in
Section 2.4.

Whenever a node is active, it needs to decide which
flow it will transmit. This is defined through a flow-
scheduling profile matrix A. If node i transmits a packet
from flow c we set Aic = 1, otherwise Aic = 0. We say
that a flow scheduling profile is valid if for each i ∈ N
there exists only one c ∈ C such that Aic = 1. Let A be
the set of all valid flow scheduling profiles.

To illustrate the use of flow scheduling profile, con-
sider the example in Figure 1 having two flows C =
{1, 2}, both from 1 to 4. The number of packets for
flow c sent by node 1 and received by node 2 equals
A1c(C12(P, Ri, S) + C1{2,3}(P, Ri, S)) and it depends
not only on how often (1, 2) is scheduled, but also on
how often (1, {2, 3}) is scheduled. This is why the flow
scheduling decision is assigned to a node, instead to a link
as in [16, 17, 11].

2.3 Network Coding
We assume network coding per flow is used [14, 5].
The main benefit of network coding is that it facilitates

scheduling. If the same packet is received by several
nodes, a mechanism is needed to prevent two or more
nodes forward the same packets [4]. To eliminate this
problem, each relay forwards a random linear combina-
tion of all previously received packets from the same flow.

Ideally, network coding should be performed at the
scale of the whole flow. However, this is not practical. In-
stead, packets are divided in generations and only pack-
ets from the same generation are combined. For more
details see [14, 5]. In Section 3 we analyze networks with
very large generation sizes (as in [14]) and we address the
finite generation sizes in Section 4.

2.4 Credits
Whenever a packet is transmitted, it may be received by
several nodes, and it is important to decide which should
forward packets, to avoid redundant transmissions (as ex-
plained in [18, 5]). We will use a concept of credits, which
is similar to the control decision variable of Neely [18].

Credits are created for each packet at the source node,
and identified with a generation, not a specific packet.
They are interpreted as the number of packets of a specific
flow to be transferred by the node. Credits are conserved
until they arrive at the flow’s destination.

The main advantage of the credit scheme is that it sim-
plifies scheduling. Credits are declarations of intent. The
actual packet transmissions may occur at arbitrary time
instants. Due to the use of network coding, we only need
to ensure that the total number of packets per generation
transmitted between each two nodes corresponds to the
number of credits. Thus, scheduling is done at a genera-
tion level and not at the packet level, incuring significantly
smaller overhead (especially when the generation size is
large).

In practice, credits can be piggybacked with packet
transmissions. The receiving node only updates its credits
when a successful packet transmission actually occurs. In
this work we assume there is an ideal (no loss and no de-
lay) signaling plane that transmits credits and feedbacks.
Our results can be extended to consider imperfect signal-
ing (cf. [12]).

As each credit delegates one packet to a node, we may
express all the rates in the system in terms of credits. For
example, yc

ij is the rate of credits of flow c passed from
node i to node j. Theorem 1 shows that the rate of in-
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dependent packets received at a destination of each flow
will correspond to the number of credits delivered, when
the generation size is large.

2.5 Dynamics and Stability

We further assume the system is slotted in time. In each
slot t = 0, 1, . . . a medium access protocol assigns an ac-
tivation profile S(t) and a flow-scheduling profile A(t),
and to each transmitter i ∈ SRC(S(t)) we assign trans-
mit power Pi(t) and rate Ri(t). We further denote by
yc

ij(t) the number of credits for flow c transmitted from
node i to node j during slot t, and with xc

iJ(t) the number
of packets of flow c actually transmitted from i to any of
the nodes in J during slot t. Let fc(t) be the number of
fresh packets/credits generated at the source of flow c.

Note that, because each packet transmission is always
associated to a credit transmissions, we look at credit
queues. Let qc

i (t) be the amount of credits of flow c
queued at node i. The system is stable if every queue
size is bounded. We will define stability more formally in
Section 3.4.

3 Optimal Flow Control For Fair-
ness

In this Section we introduce the optimization problem
(Sec. 3.2), propose an algorithm for solving it (Sec. 3.3),
and prove that the algorithm converges (Sec. 3.4). Sec.3.1
introduces some further notation that is needed for the de-
scription of the optimization problem. Finally, in Sec. 3.5
we compare it theoretically with the MORE algorithm
proposed in [5].

3.1 Feasible Rate Set

Assume an assignment of end-to-end rates fc, for each
flow c, and denote the rate vector by f = (fc)c∈C . The
vector of rates is valid under the following three condi-
tions. First, by conservation of the flow of credits at each
node i 6= Dst(c):∑

j 6=i

yc
ji + fc1i=Src(c) ≤

∑
j 6=i

yc
ij (2)

Also, yij ≥ 0. Second, due to the constraints of the broad-
cast regions (see also Fig. 1):∑

j∈J

yc
ij ≤ xc

iJ (3)

Assume now that variables αS,R,P,A define a sched-
ule and denote a fraction of time network uses schedul-
ing profile S, routing profile A and power and rate
allocations R,P. By definition, αS,R,P,A ≥ 0 and∑

S,R,P,A αS,R,P,A ≤ 1. The third condition comes
from scheduling constraints:

xc
iJ ≤

∑
S,A,R,P

αS,R,P,AAicCiJ(P, Ri, S) (4)

Note that (as explained in Section 2.2), although (4) im-
plies {

∑
c xc

iJ}i,J belongs to Hull({CiJ(P, Ri, S)}i,J),
the converse is not true.

We will use the following characterization of feasible
rates from [8]:

Definition 1. Vector f is said to be feasible if each flow
c can transport information from Src(c) to Dst(c) at rate
fc.

Theorem 1. Let F be the set of end-to-end rate
vector f = (fc)c∈C such that there exists vectors
y = (yc

ij)i,j∈N ,c∈C , x = (xc
iJ)i∈N ,J⊆N ,c∈C , and

α = (αS,R,P,A)S∈S,R∈RN ,P∈PN ,A∈A that satisfy
(2), (3), and (4) subject to αS,R,P,A ≥ 0 and∑

S,R,P,A αS,R,P,A ≤ 1. The vector f is feasible when
coding generation size goes to infinity if and only if it be-
longs to F . Moreover, the set of feasible end-to-end rates
F is convex.

Proof. Follows directly from [8].

3.2 Utility Maximization
For each flow c ∈ C we define a utility function Uc(·)
to be a strictly concave, increasing function of end-to-end
flow rate fc. The utility of flow c is then Uc(fc). For
example, Uc(fc) = log(fc) represents proportional fair-
ness [19] and Uc(fc) ∝ −1/fc approximates TCP’s util-
ity [10]. The goal of utility maximization is to achieve
trade-off between efficiency and fairness. A typical ex-
ample of such approach is proportional fairness [19].
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We can write the network-wide optimization problem
as

max
∑

c∈C Uc(fc)
s.t. f ∈ F .

(5)

Since set F is convex and the objective is strictly con-
cave, there exists a unique solution f∗ to the maximiza-
tion problem. Corresponding y∗,x∗ also exist but are not
necessarily unique.

Let us denote with µc
i and ξc

iJ the Lagrangian multipli-
ers associated with inequalities (2) and (3), respectively.
To simplify the notation we will also define µc

Dst(c) = 0.
We can write the KKT conditions at the optimal point

µc∗
i

∑
j 6=i

yc∗
ij −

∑
j 6=i

yc∗
ji − f∗c 1i=Src(c)

 = 0, (6)

ξc∗
iJ

xc∗
iJ −

∑
j∈J

yc∗
ij

 = 0, (7)

f∗c

(
U ′

c(f
∗
c )− µc∗

Src(c)

)
= 0, (8)

We see that µc∗
i can be positive only if more traffic of flow

c comes into node i than leaves it. Hence intuitively we
can relate µc∗

i to qc
i (t), the number of credits for flow c

queued at i. Similarly we can relate ξc∗
iJ to the number of

packets queued for broadcasting at i. In Section 3.3 we
will express this relationship more formally. We will also
use (8) to develop a flow control algorithm.

As a consequence of KKT, using some elementary al-
gebra one can derive

0 ≥ µc∗
i − µc∗

j −
∑

J⊆N | j∈J

ξc∗
iJ , (9)

C∗
iJ = argmax

CiJ∈{CiJ (P,Ri,S)}

∑
i

max
c

∑
J

ξc∗
iJCiJ(10)

Notably we will use (10) in Section 3.3 to derive the opti-
mal scheduling.

3.3 Maximization Algorithm
We next present an algorithm that converges to the opti-
mal value of (5). In the following we assume that the feed-
back is ideal, hence that the acknowledgments and credits
are transmitted instantaneously and without errors. We

leave the analysis of signaling with losses and delays for
future work.

Node and Transport Credits : Recall that qc
i (t) is the

amount of credits of commodity c queued at node i. We
call these credits node credits. In addition, let wc

iJ(t) be
the number of credits of commodity c queued at i and
corresponding to the packets that have to be delivered to
any of the nodes in J (as previously decided by the credit
transmission scheme). We call these credit transport cred-
its. When a credit for flow c is passed from node i to node
j, we decrease qc

i , we increase qc
j , and we increase wc

iJ

for all J 3 j (all of them by one unit). We decrease wc
iJ

when a packet from flow c is actually transmitted from i
to any of the nodes in J .

Routing protocol: Node credits represent intentions of
packet transmissions and a routing protocol describes
when and how are node credits transferred. Let yc

ij(t)
be the number of node credits for flow c transferred from
node i to node j at time t and let us define wc

ij(t) =∑
X⊆N | j∈X wc

iX(t). A back-pressure between nodes i
and j is defined as

zc
ij(t) = qc

i (t)− wc
ij(t)− qc

j(t),

the difference between the excess credits queued of flow
c at node i not destined for node j (qc

i −wc
ij) and the node

credits at node j (qc
j ). A credit is routed from i to j only

if the back-pressure is positive:

yc
ij(t) = M 1{zc

ij(t)>0}, (11)

where 1{x>0} is 1 if x > 0 or 0 otherwise. In Section 3.4
we will derive conditions on M to guarantee convergence
of the algorithm.

Scheduling, rate and power control: The optimal
scheduling, rate and power control algorithm is the tu-
ple (S(t), P (t), R(t), A(t)) that solves the following op-
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timization problem

w̄i(t,P, Ri, S) = max
c

∑
J

wc
iJ(t)CiJ(P, Ri, S),(12)

(S(t),P(t),R(t)) = argmax
S,P,R

∑
i∈N

w̄i(t,P, Ri, S),(13)

CiJ(t) = CiJ(P(t), Ri(t), S(t)), (14)

c∗i (t) = argmax
c

∑
K

wc
iK(t)CiK(t),(15)

Aic(t) = 1{c=c∗i (t)}, (16)
xc

iJ(t) = AicCiJ(t) (17)

Equations (12)-(17) represent a joint scheduling, rate,
and power control problem. We find the optimal schedul-
ing, power and rate control (S(t), P (t), R(t)) by solving
(13). Then, equation (15) is used to select which flow
will be transmitted by each node in slot t. Note that, as
explained in Section 2.2, we cannot decouple the flow
selection process A(t) and routing/scheduling/rate/power
control as it was done in similar approaches that do not
use opportunistic routing (e.g. [16, 17, 11]). Also, unlike
in [16, 17, 11, 18], we do not explicitly use back-pressure
information for scheduling in (12)-(17); instead we use
transmission credits wc

iJ(t).
Observe that all equations except (13) use local infor-

mation only. Hence, with the exception of (13) (assuming
that we could somehow compute the values CiJ(t)), the
problem could have been solved with a distributed algo-
rithm. Recall from Sec. 2.1 that CiJ(t) relate to channel
scheduling. If channel scheduling was determined by the
MAC protocol, as is typical in most current wireless tech-
nologies (where nodes randomly compete for the wireless
channel), then the quantities CiJ(t) are explicitly known
and the rest of the optimization problem can be comput-
ing using local computations. Of course, with random
scheduling it is not possible to achieve optimal perfor-
mance, but, on the other hand, we can implement the opti-
mization framework with a distributed algorithm and still
observe performance benefits (as we shall see in Sec. 5).

Flow control: The optimal flow rate at the source, fc(t)
can be calculated using a primal-dual approach, as in [11]

fc(t + 1) =
[
fc(t) + γ

(
U ′

c(fc(t))− qc
Src(c)(t)

)]+
,

(18)

where [x]+ = max{x, 0}. Each flow adapts its rate
based on the previous rate and current number of cred-
its queing for transmission at the source node for that
flow (qSrc(c)). The primal-dual approach well describes
additive-increase multiplicative-decrease transport proto-
cols, like TCP [10].

3.4 Convergence Of The Algorithm
We now consider a fluid model of the system, and show
that it converges to the optimal point. Analysis of a
discrete-time model can be derived from our fluid-model
analysis, using a similar approach to [11].

We assume that time is continuous and that queue evo-
lutions are governed by following differential equations

q̇c
i (t) =

fc(t)1i=Src(c) +
∑

j

yc
ji(t)−

∑
j

yc
ij(t)


qc

i (t)≥0

(19)

ẇc
iJ(t) =

∑
j∈J

yc
ij(t)− xc

iJ(t)


wc

iJ (t)≥0

(20)

where (x)y>z equals x is y > z or 0 otherwise. Similarly,
flow rate evolution in the fluid-model is given by

ḟc(t) = γ
(
U ′

c(fc(t))− qSrc(c)c

)
fc(t)≥0

. (21)

We next prove that the algorithm presented in Sec-
tion 3.3 stabilizes the system with flow rates that maxi-
mize the optimization problem (5). Let us first define an
active link

Definition 2. We say that link (i, j) is active for flow c
if there exist a finite number T such that for each t that
satisfies yc

ij(t) > 0, there exists t′, t < t′ < t + T such
that yc

ij(t
′) > 0.

Intuitively, if a node is completely disconnected from
the rest of the network, or in any way not used by a flow,
credits will neither arrive to nor will leave the node. Thus
technically, we cannot guarantee that an arbitrary initial
number of credits at this node will converge to any par-
ticular value. Instead, we consider only active links (and
the corresponding nodes) whose average traffic is at least
M/T . We then have:
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Theorem 2. If M > maxc f∗c then, starting from any vec-
tors f(0),q(0),w(0), the rate vector f(t) converges to f∗

as t goes to infinity. Furthermore, queue sizes qc
i (t), q

c
j(t)

and wc
ij(t) on all active links (i, j) for flow c are bounded,

and converge to the shadow prices µc∗
i , µc∗

j and ξc∗
iJ re-

spectively .

Proof. The proof uses a Lyapunov function with stability
defined on the set of active link, and we show that on all
active links that carry a positive amount of traffic, the de-
lays are bounded hence the system is stable. The details
are given in the appendix.

3.5 Comparison with MORE
In this section we compare the performance of our algo-
rithm with the MORE algorithm presented in [5, 20]. Our
algorithm converges to the optimal solution of the opti-
mization problem (5) (as shown in Theorem 2), hence
MORE at best is as good as our algorithm. We first show
under what conditions MORE is guaranteed to give the
optimal solution. We then also illustrate by two examples
that MORE can yield strictly suboptimal rate allocations.

Theorem 3. If there is only one flow in the system, if
transmission rates and powers of all nodes are fixed and if
only one node can transmit at a time (that is |SRC(S)| =
1 for all S ∈ S),MORE and our algorithm give the same
performance.

Proof. Since only one node can transmit at a time, we
have S = N . Furthermore, transmission powers and rates
are fixed, hence (3) and (4) reads as

∑
j∈J yij ≤ αiCiJ .

We also omit c as there is only one flow in the system.
We start with the MORE optimization problem, as

given in [20], and we introduce f = 1/
(∑

i∈N zi

)
,

yij = f xij and αi = f zi. The optimization from [20,
Eq.(1)-(4)] is then equivalent to

min 1/f (22)

s.t.
∑
j∈N

yij −
∑
j∈N

yji = f1{i=Src} (23)

αiCiJ ≥
∑
j∈J

yij , (24)

∑
i∈N

αi = 1, (25)
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Figure 2: A network with 6 nodes. Due to a wall
in between, nodes 2 and 4 do not interfere with
nodes 3 and 5. The set of activation profiles is S =
{{(1, {2, 3})}, {(2, 3)}, {(3, 5)}, {(4, 6)}, {(5, 6)}, {(2, 4), (3, 5)},
{(2, 4), (5, 6)}, {(3, 5), (4, 6)}}. There are two flows in
the system, flow f1 = y1 + y2 which is assigned 2 routes
(y1 = y1−2−4−6 and y2 = y1−3−5−6) and flow f2 = y3

which is assigned a single route (y3 = y2−4).

which is exactly the optimization problem (5).

We next give two examples where the performance
of MORE is strictly suboptimal. Consider a hexago-
nal network depicted in Figure 2. Let us first consider
a case with a single flow f1, (f2 = 0), and in which
p12 = p24 = p46 = 0.8 and p13 = p35 = p56 = 0.2.
Since not all links interfere, the conditions of Theorem 3
are clearly not satisfied. The optimal rate allocation that
maximizes (5) is f = 0.313 with y1−2−4−6 = 0.251 and
y1−3−5−6 = 0.063. However, MORE will transmit all
packets over the path 1 − 2 − 4 − 6, hence the total rate
will be fMORE = 0.267, some 15% less than the opti-
mal. Intuitively, the reason why MORE is suboptimal is
that it does not consider possibility that links 3 − 5 and
5 − 6 transmit in parallel with 4 − 6 and 2 − 4. (Recall
that MORE’s goal is to minimize the number of trans-
missions and not to maximize the flow rate.) It will then
conclude that forwarding any packet to 3 is largely sub-
optimal, since links 3 − 5 and 5 − 6 are of a bad qual-
ity. Thus, if p35 and p56 are sufficiently smaller than p12,
p24 and p46, as in this example, MORE will not use route
1− 3− 5− 6 at all.

In the second example we again consider the same
hexagonal network but with both flows active. Since
MORE algorithm does not take into consideration con-
tention among flows, it will again assign all traffic to
the path 1 − 2 − 4 − 6. This traffic will contend with
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the traffic from flow 2, and feasible end-to-end rate al-
locations have to satisfy 3f1 + f2 = p. Note that the
routing scheme is fixed by MORE and does not depend
on flow control applied by transport layer. If for exam-
ple transport layer on the top of MORE is designed to
maximize log utility, the optimal rates will be fMORE

1 =
p12/6 = 0.133, fMORE

2 = p12/2 = 0.4. On the contrary,
our distributed algorithm will adapt routing to contentions
among flows, and it will assign y1 = 0.12, y2 = 0.03,
f1 = 0.15 and f2 = y3 = 0.4. As we can see, our algo-
rithm balanced flow 1 by decreasing y1 and increasing y2.
As a result, the rate of flow f2 stayed the same while the
rate of f1 increased.

4 Practical Issues
In this section we consider two practical issues that con-
cern implementation of the protocol proposed in Section 3
in a mesh network: finite coding generation size and rate
adaptation for randomized scheduling. We leave other
practical issues, such as the effect of delayed feedback,
for future work.

4.1 Finite Generation Size
Previous results assume that generation size used for net-
work coding tends to infinity (see Theorem 1). Practical
reasons, such as complexity and performance of decod-
ing, and header overhead for storing the coefficient vector,
require us to limit the size of the header; some practical
systems limit the size to 32 packets [5, 6]. We next modify
our optimization framework to include finite generation
size.

Let G be the set of generations. Let us define qc
i (t, g)

and wc
iJ(t, g) be the number of credits and transmission

credits for generation g ∈ G of flow c queued at i. Simi-
larly, we define fc(t, g), yc

ij(t, g), xc
iJ(t, g) as before, only

constrained on generation g (thus we have for example
yc

ij(t) =
∑

g∈G yc
ij(t, g), and by analogy for the other

variables). The encoding processes fc(t, g) are defined at
the source. For example, if the size of each generation is
G, we have

∫
t
fc(t, g)dt = G for all g ∈ G.

Extending the distributed maximization algorithm from
Section 3.3 to this setting is not straightforward. For ex-
ample, a naive way to modify scheduling rule (17) would

be to schedule the oldest generation available

g∗i (c, t) = min{g | (∃J)wc
iJ(t, g) > 0}, (26)

that is xc
iJ(t, g) = CiJ(t), if c = c∗i (t) and g =

g∗i (c∗i (t), t). However, this rule may yield poor rates.
To see why, consider the example of a network with

nodes {1, 2, 3} and a single flow, going from 1 to 3 (di-
rectly or via node 2). Furthermore, suppose p12 = p23 =
1 and p13 is close to 0. Due to the nature of the back-
pressure algorithm, queue w13 will be filled with cred-
its, to prevent 1 assigning more credits to y13. Sup-
pose that the oldest generation that has a credit in w13

is generation g13 = min{g |w1
13(t, g) > 0}. Since p13

is close to 0, queue w13 will take long time to get rid
of credits from generation g13. At the same time, since
p12 = 1 queues w12 and w1{2,3} will quickly get rid of
all generations older or equal to g13. Thus, whenever
node 1 is selected to transmit, it will transmit a packet
from generation g∗1(t) = g13, according to (26). Since
w12(t, g13) = w1{2,3}(t, g13) = 0, node 2 doesn’t need
more packets from generation g13 and the packet it re-
ceives will be useless. Indeed, it will almost never be re-
ceived by node 3, yielding end-to-end rate f ≈ 0. Nev-
ertheless, we still want to keep link 1-3 active because a
few packets transmitted over that link still improve overall
performance.

Finding a jointly optimal coding and scheduling strat-
egy that maximizes system utility for finite generation
sizes is a difficult problem. In addition to the previously
mentioned scheduling issue, when the generation size be-
comes finite, the results from [14] do not hold either.
This implies that packets received at the destination will
not necessarily be linearly independent and Theorem 1
does not hold. Instead, we propose a heuristic inspired
by the proof of Theorem 2, which minimizes the drift
Ẇ (f(t),q(t),w(t)). It consists of modifying rules (11)
and (17) to

yc
ij(t, g) =

{
M , qc

i (t, g) ≤ qc
j(t, g) + wc

ij(t, g),
0 , qc

i (t, g) > qc
j(t, g) + wc

ij(t, g) ,(27)

g∗i (c, t) = argmin
g

∑
J

wc
iJ(t)xc

iJ(t) 1{wc
iJ (t,g)<0} (28)

xc
iJ(t, g) =

{
CiJ(t), c = c∗i (t), g = g∗i (c, t),
0, otherwise (29)

An explanation how this policy is derived is given in the
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Appendix. We demonstrate its performance, for finite
generation sizes, by simulations in Section 5.

4.2 Rate Adaptation For 802.11-compatible
Scheduling

As shown in [13], finding the optimal scheduling rule (13)
is an NP-hard centralized optimization problem. Some re-
cent works [21, 13, 22] explore decentralized implemen-
tations of similar problems. Applying these ideas to our
setting is out of scope of this paper, and left for future
work. Instead, we will consider a more realistic, subopti-
mal scheduling process and we will show how our algo-
rithm can be applied as a distributed heuristic.

Like in most existing wireless mesh networks deploy-
ment, we will assume that nodes always transmit packet
at the full power Pi(t) = {0, PMAX}. We call a set of
feasible activation profiles S 802.11-compatible if for all
S ∈ S and for all (i1, J1) ∈ S there is no (i2, J2) ∈ S
such that pi1,i2 > 0, (∃j ∈ J2)pi1,j > 0 or (∃j ∈
J1)pi2,j > 0. Intuitively, this corresponds to 802.11-like
protocol with RTS/CTS mechanism. When node i1 estab-
lishes communication with nodes J1, all nodes involved
in communication send an RTS/CTS. All nodes that hear
the RTS/CTS (p > 0) will be prevented from transmission
or reception during the same slot.

Furthermore, we will assume that the underlying
scheduling process is not under our control. At ev-
ery time t, scheduling process will select a set of non-
interfering nodes I(t) ∈ N to transmit (i.e. for each
i, j ∈ I(t), pij = 0). Each node i ∈ I(t) has a set of
possible destinations Ji(t) = {j ∈ N | pij > 0, (∀k ∈
I(t), k 6= i), pkj = 0}, which in turns define a sched-
ule S(t) = {i, Ji}i∈I(t). A set of activation profiles S =
{{i, Ji}i∈I | I ∈ P(N )} is clearly 802.11-compatible.

Assuming previously defined schedule S(t), the (12) -
(17) simplifies to

(c∗i (t), R
∗
i (t)) = argmax

c,Ri

∑
K⊆Ji

wc
iK(t)CiK(Ri), (30)

which can be easily solved in a distributed manner, sepa-
rately at each node.

We note that, for an arbitrary scheduling process
{S(t)}t, the distributed routing (11) and rate adaptation

Single−path Multi−path MORE
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Figure 3: End-to-end rate allocation example: eight flows
among randomly selected source-destination pairs. On
the y axis we give rates. Small bars denote rates per flow.
Large bars denote total rate. Black line gives utilities with
an arbitrary scaling (to fit the figure).
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Figure 5: Cumulative performance improvement of
our algorithm over MORE: (a) Improvement in utility
(
∑

c log(fm
c ) −

∑
c log(fs

c )); (b) Improvement in total
rate (

∑
c fm

c /
∑

c fs
c ). In all cases we run 100 experi-

ments and we sort them by performance improvement.

(30) algorithm does not necessarily minimize the opti-
mization problem (5). The optimal algorithm will de-
pend on the characteristics of {S(t)}t and it is difficult
to characterize. We present (11) and (30) as a heuristic
that can be used as a practical implementations of op-
portunistic multi-path routing in networks with 802.11-
compatible scheduling. We illustrate by simulations in
Section 5 that in the case of random, 802.11-compatible
scheduling, the heuristic (30) outperforms a conventional,
single-path routing approach.
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Figure 4: Cumulative performance improvement of multi-path over single-path: (a) Absolute improvement in utility
(
∑

c log(fm
c )−

∑
c log(fs

c )); (b) Relative improvement in total rate (
∑

c fm
c /
∑

c fs
c ); (c) Relative efficiency for total

rate (
∑

c ffinite
c /
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c f infinite

c ) for multi-path routing due to finite generation size of G = 32. In all cases we run
100 experiments and we sort them by performance improvement. In many cases, for single-path routing, some flow
had zero rates for the duration of the simulation, due to slow convergence. Since this would yield to inifinite utility
difference, we don’t plot these runs.

0

0.2

0.4

0.6

0.8

1

Nodes

F
ra

ct
io

n 
of

 ti
m

e

 

 

54.00Mbps
18.00Mbps
12.00Mbps
9.00Mbps
6.00Mbps

Figure 6: Optimal distribution of PHY rates for roofnet
network with 802.11a cards, for one random selection of 8
source-destination pairs. In case of 802.11b cards, almost
all nodes are assigned the highest, 11 Mbps rate.

5 Simulation Results

We now present simulation results which quantify the
performance advantages of the opportunistic routing,
scheduling and flow control algorithms defined in the
previous sections. We are primarily interested in prac-
tical algorithms that can be applied in 802.11-like mesh
networks, where scheduling algorithm is not under our
control. Hence in our simulations we used an 802.11-
compatible schedule {S(t)}t, as defined in Section 4.2,
assuming I(t) is randomly selected among backlogged

nodes.
We compared our algorithm with a conventional, sin-

gle path routing algorithm, and with the MORE algo-
rithm [5]. To make the comparison fair, we assumed that
the single-path routing algorithm used the same kind of
jointly-optimal routing and flow-control approach as our
scheme, which boils down to [11].

In contrast, MORE does not integrate flow control or
flow scheduling with the routing algorithm. When sim-
ulating the MORE algorithm, defined in [5, 20], we as-
sumed that each source had a large backlog of packets to
transmit, and that each relay performed FIFO scheduling
among packets from different flows.

We used the roofnet network topology based on
802.11b cards, given in [4], for our simulations. Trans-
mission probabilities between each pair of nodes for dif-
ferent transmission rates are given in [1]. We used
Uc(·) = log(·), hence the rate allocation that maximizes
(5) is the proportionally fair rate allocation [19].

We looked at two performance metrics. The first one is
the improvement in total utility

∑
c U(fc) −

∑
c U(f ′c).

Allocation f is better than f ′ if the sum is positive. The
proportional fair rate maximizes the optimization prob-
lem (5) hence has the highest utility.2 The second metric

2Since in the simulations we use random and not the optimal schedul-
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is the total rate improvement
∑

c fc/
∑

c f ′c. Allocation f
is better than f ′ if the quotient is larger than 1. The pro-
portionally fair allocation does not always have highest
total rate.

We developed a discrete-event simulator that imple-
ments the three routing, flow and rate control algorithms.
We ran simulations to obtain end-to-end rate alloca-
tions. Figure 3 illustrates the optimal rate allocations, ob-
tained by our algorithm, for 8 randomly selected source-
destination pairs on one example. In this case, we can see
both utility and total rate increase if we use multiple paths
instead of a single one, where we benefit from broadcast
and multi-path diversity.

We then ran the previous experiment with 100 random
traffic matrices and compared the performances of the
different algorithms with respect to the two performance
metrics.

Single vs. Multiple Paths We start by illustrating the
benefits of the multi-path routing over the single-path
routing in Figure 4. We first look at the network util-
ity. The rate allocation obtained by the optimal algorithm
(Section 3.3) always maximizes the utility. However, this
is not the case for the distributed heuristic (Section 4.2).
In our simulations we saw that in about 90% of the runs,
the distributed heuristic for multi-path routing achieves
higher utility than does single-path routing. In only about
10% of cases is the utility for single-path routing higher.

Also, in more than 80% of runs, our decentralized
heuristic achieved higher total rate than the conventional,
single-path algorithm. In more than half of the runs, the
total rate has increased by 20%, and in some cases by over
100%. From these results we see that there is a significant
advantage in using our multi-path routing algorithm over
the single-path one. We see that the advantage is signifi-
cant even in number of flows is large (see next paragraph
for explanation).

Decentralized Heuristic vs. MORE We next compare
our decentralized heuristics with MORE. The results are
depicted in Figure 5. Network utility is increased in about
90% of the runs. Total rate is increased in almost all of
the runs, sometimes up to a factor of 4.

ing, the resulting rate allocation does not necessarily have the highest
utility.

From these results we can see that in many cases
MORE behaves worse then the single-path routing. This
resonates with the findings of [5] where the benefits of
multi-path decrease as the number of flows increase (for
an explanation, see Section 3.5). In addition, MORE is
only a routing protocol whereas our single-path routing
algorithm also includes more intelligent flow control and
flow scheduling.

Effects of Finite Generation Size Figure 4, (c) illus-
trates the impact of a finite generation size. The perfor-
mance drop is due to imperfect scheduling (Section 4.1)
and occasional linear dependency of received packets. We
can see that in most of the cases the efficiency loss is less
than 5%. 3

The Optimal PHY Rate Selection Finally, we consider
the optimal PHY rate selection at different nodes. We an-
alyze how frequently each node uses each PHY rate. In
the case of roofnet topology with 802.11b cards we find
that in almost all cases it is optimal to use the highest
rate of 11 Mbps, which confirms the findings from [5].
Furthermore, we use the SNR data from roofnet topology
and measurements from [23] to analyze the approxima-
tively optimal performance in the same network topology
with 802.11a cards. The results are depicted in Figure 6.
As expected, the optimal PHY rate selection is no longer
uniform, due to the large number of available rates. This
demonstrates a need for an intelligent PHY rate selection
algorithm in this framework.

6 Related Work
One of the first uses of opportunistic routing for unicast
sessions in wireless mesh networks is presented in [4]. It
has been extended in [5] to include network coding to fa-
cilitate scheduling. However, in [5] the authors do not
explicitly consider multiple flows, fairness, nor schedul-
ing, and in fact show that the performance benefit drops
as number of flows increases. An optimization framework
for opportunistic routing that minimizes power consump-
tion is presented in [18], and shows significant benefits

3Note that an additional performance drop for finite generation size
may occur due to imperfect signaling, but we do not consider it in our
model.
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over [4]. Nevertheless, [18] does not consider network
coding, rate maximization, nor the TCP-like primal-dual
rate adaptation. Cross-layer design for network coding
with unicast or multi-cast sessions is considered in [8];
however, [8] considers only stability and not any form of
rate maximization.

Several theoretical analysis of linear network coding al-
gorithms for unicast sessions have been performed [14, 9].
Network coding for unicast sessions is used also in COPE
[24]. Compared to COPE, we perform encoding opera-
tions only between packets of the same flow; in that re-
spect our approach is orthogonal to COPE.

Our work is an example of cross-layer optimization.
Cross-layer design in wireless is a widely research topics
(see [12, 25] and references therein). Optimizing network
performance in terms of network utility is originally pro-
posed in [19]; see [10] for an overview. Our primal-dual
approach is similar to [10], where it is shown that it can
capture different versions of TCP.

7 Conclusions
This paper proposes an optimization framework for ad-
dressing questions of multi-path routing in wireless mesh
networks. We have extended previous work by incorpo-
rating the broadcast nature of wireless and simultaneously
addressing fairness issues. Implicit in our approach is the
use of network coding, which enables us to define no-
tions of credits that are associated with number of packets
in a generation, rather than specific packets. Using our
framework we show that our algorithm significantly out-
performs single-path routing and MORE [5].

In the case when scheduling is determined by a MAC,
such as by random scheduling or 802.11-like schedul-
ing, we have shown how our approach leads to a dis-
tributed heuristic, which still outperforms existing ap-
proaches. Using a simulation results on a realistic topol-
ogy, we found for our examples that for 802.11b, using
maximal rate is optimal, but for 802.11a this was not the
case. We have addressed some of the practical issues as-
sociated with having a finite generation size for network
codes.

Our primal-dual rate adaptation can be used to model
window-based flow control schemes, such as TCP. The
performance of applications that run on top of our sys-

tem and use TCP is an interesting open problem. Another
interesting direction is to analyze the performance of our
protocol with more realistic signaling schemes.
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Appendix
Before proving Theorem 2 we first introduce the follow-
ing lemma

Lemma 1. The following equalities and inequalities hold∑
i,j∈N

∑
c∈C

yc∗
ij (µc∗

i − µc∗
j ) =

∑
c∈C

f∗c µc∗
i , (31)

ξc∗
iJxc∗

iJ = ξc∗
iJ

∑
j∈J

yc∗
ij , (32)

∑
i∈N ,J∈P(N )

∑
c∈C

ξc∗
iJxc

iJ ≤
∑

i∈N ,J∈P(N )

∑
c∈C

ξc∗
iJxc∗

iJ ,(33)

∑
i∈N ,J∈P(N )

∑
c∈C

ξc∗
iJxc

iJ ≤
∑

i,j∈N ,c∈C
ξc∗
ij yc∗

ij , (34)

∑
i,j∈N ,c∈C

yc∗
ij (qc

i (t)− qc
j(t)) =

∑
c∈C

f∗c qc
Src(c), (35)

∑
i∈N ,J∈P(N )

wc
iJ

∑
j∈J

yc
ij =

∑
i,j∈N

wc
ijy

c
ij , (36)

∑
i∈N ,J∈P(N )

∑
c∈C

wc
iJ(t)xc

iJ(t) ≥
∑

i,j∈N ,c∈C
wc

ij(t)y
c∗
ij (37)
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Proof. Equalities (31) and (32) follow directly from (6)
and (7). From (4) we further have

∑
c∈C xc

iJ = CiJ . To-
gether with (10) we can derive

∑
i,J,c

ξc∗
iJxc

iJ ≤
∑
i,J,c

(∑
J

ξc∗
iJCiJ

)

≤
∑
i,J,c

(∑
J

ξc∗
iJC∗

iJ

)
=

∑
i,J,c

ξc∗
iJxc∗

iJ

which proves (33). From (32) and (33) we derive (34).
Since by definition qc

Dst(c)(t) = 0 we have

∑
i,j∈N ,c∈C

yc∗
ij (t)(qc

i (t)− qc
j(t)) =

∑
c∈C,j∈N

yc∗
Src(c)jq

c
Src(c)

from which we derive (35). Equality (36) follows from
the definition of wc

ij . Also, by definition of scheduling
(12)-(17), we have

∑
i,J,c

wc
iJ(t)xc

iJ(t) ≥
∑

i

max
c

∑
J

wc
iJ(t)CiJ(∀CiJ)(38)

≥
∑
i,J,c

wc
iJ(t)xc∗

iJ (39)

which yields (37).

Proof of Theorem 2: We will follow the idea of the
proof of Theorem 2 from [11]. First, let us define Lya-
punov function

W (f ,q,w) =
1
2γ

∑
c∈C

(fc − f∗c )2 +
1
2

∑
i∈N ,c∈C

(qc
i − µc∗

i )2

+
1
2

∑
i∈N ,J∈P(N )

∑
c∈C

(wc
iJ − ξc∗

iJ )2. (40)

We want to show that the derivative Ẇ ≤ 0. For brevity,
we define fc

i (t) = fc(t)1{i=Src(c)}. The derivative of W

is

Ẇ (f(t),q(t),w(t)) (41)

=
∑

c

(fc(t)− f∗c )(U ′
c(fc(t))− qc

Src(c)(t))fc(t)≥0

+
∑
i,c

(qc
i (t)− µc∗

i )

fc
i (t) +

∑
j

yc
ji(t)−

∑
k

yc
ik(t)


qc

i (t)≥0

+
∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)


wc

iJ (t)≥0

.

As in (10)-(13) from [11] we have that, when qc
i (t) < 0

the derivative q̇c
i (t) is by definition positive; also µc∗

i ≥ 0.
The same holds for wc

iJ(t) and fc(t) and we can upper-
bound

Ẇ (f(t),q(t),w(t)) ≤
∑

c

(fc(t)− f∗c )(U ′
c(fc(t))− qc

Src(c)(t))

+
∑
i,c

(qc
i (t)− µc∗

i )

fc
i (t) +

∑
j

yc
ji(t)−

∑
k

yc
ik(t)


+

∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)

 (42)

Let us further add and substract U ′
c(f

∗
c ) = µc∗

Src(c), as in
[11], to obtain

Ẇ (f(t),q(t),w(t)) ≤
∑

c

(fc(t)− f∗c )(U ′
c(fc(t))− U ′

c(f
∗
c ))

+
∑
i,c

µc∗
i

∑
k

yc
ik(t)−

∑
j

yc
ji(t)− fc∗

i


+

∑
i,c

qc
i (t)

∑
j

yc
ji(t)−

∑
k

yc
ik(t) + fc∗

i


+

∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)

 .

Due to concavity of Uc we have (fc(t)−f∗c )(U ′
c(fc(t))−

U ′
c(f

∗
c )) ≤ 0. Next, let us pick any set of link rates

{yc∗
ij }i,j,c that correspond to the optimal flow allocation
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{f∗c }c. We expand f∗c using (31) and (35) to obtain

Ẇ (f(t),q(t),w(t)) ≤
∑
i,j,c

(µc∗
i − µc∗

j )(yc
ij(t)− yc∗

ij )

+
∑
i,j,c

(qc
i − qc∗

j )(yc∗
ij − yc

ij(t))

+
∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)


Let us denote with zc∗

ij = µc∗
i − µc∗

j − ξc∗
ij . Then, from

(34), (36) and (37) we have

Ẇ (f(t),q(t),w(t)) ≤
∑
i,j,c

(yc
ij(t)− yc∗

ij )× (43)[
(µc∗

i − µc∗
j − ξc∗

ij )− (qc
i (t)− qc

j(t)− wc
ij(t))

]
(44)

=
∑
i,j,c

(yc
ij(t)− yc∗

ij )(zc∗
ij − zc

ij(t)) (45)

(a)
=

∑
i,j,c

yc
ij(t)z

c∗
ij − (yc

ij(t)− yc∗
ij )zc

ij(t) (46)

(b)

≤ −
∑
i,j,c

(yc
ij(t)− yc∗

ij )zc
ij(t)

(c)

≤ 0. (47)

where (a) follows from KKT and the fact that yc∗
ij zc∗

ij = 0,
(b) from (9) and (c) from the fact that when zc

ij(t) > 0
then yc

ij(t) = M > maxc f∗c ≥ maxi,j,c yc∗
ij .

Hence we have that Ẇ (f(t),q(t),w(t)) ≤ 0 for all
f(t) > 0,q(t) ≥ 0,w(t) ≥ 0. Let us define

Q(t) =

(q,w) |
∑
i,j,c

(yc
ij(t)− yc∗

ij )(zc∗
ij − zc

ij(t))


(48)

Let us define E = {(f ,q,w) | Ẇ (f ,q,w) = 0}. It is
easy to see from (45) that E ⊆ Q. We can further apply
LaSalle’s invariance principle as in [11] to show that f(t)
converges to f∗ and (q(t),w(t)) converges to Q(t).

However, set Q(t) is not bounded in general. If link
(i, j) is active for flow c then for every t, yc

ij(t) > 0 we
have qc

j(t) + wc
ij(t) = qc

i (t)− zc∗
ij . If the maximum node

degree in a network is D, we have that qc
j(t) + wc

ij(t) ≤
qc
i (t)− zc∗

ij +2DT . Since qc
Src(c) converges to U ′

c(f
∗
c ) we

see that queues qc
i (t), q

c
j(t) and wc

ij(t) are bounded for all
active links (i, j) of each flow c.

Derivation of (27)-(29): Let us write mod-
ified queue evolution equations q̇c

i (t, g) =(
fc

i (t, g) +
∑

j yc
ji(t, g)−

∑
j yc

ij(t, g)
)

qc
i (t,g)≥0

and ẇc
iJ(t, g) =

(∑
j∈J yc

ij(t, g)− xc
iJ(t, g)

)
wc

iJ (t,g)≥0
.

Note that (19) and (20) do not hold anymore. Conse-
quently, we cannot claim that (42) follows from (41) and
the proof of Theorem 2 cannot be applied.

We first consider q̇c
i (t, g). We see from (27) that

yc
ik(t, g) > 0 only if qc

i (t, g) > 0. Thus, the exact queue
evolution described with q̇c

i (t, g) = fc
i (t, g)+

∑
j yc

ji(t)−∑
k yc

ik(t). Next, let us look at the evolution of wc
iJ(t, g).

We have that ẇc
iJ(t, g) = 0 only if wc

iJ(t, g) = 0 and
xc

iJ(t, g) > 0, thus if g = g∗(c, t). Therefore, we can
write

ẇc
iJ(t, g) ≥

∑
j∈J

yc
ij(t)− xc

iJ(t, g) 1{wc
iJ (t,g)≥0},

ẇc
iJ(t) ≥

∑
j∈J

yc
ij(t)− xc

iJ(t) 1{wc
iJ (t,g∗(c,t))≥0}.

and from (41) we can write

Ẇ (f(t),q(t),w(t)) ≤ (49)

≤
∑

c

(fc(t)− f∗c )(U ′
c(fc(t))− qc

Src(c)(t)) (50)

+
∑
i,c

(qc
i (t)− µc∗

i )

fc
i (t) +

∑
j

yc
ji(t)−

∑
k

yc
ik(t)

(51)

+
∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)

 (52)

+
∑
i,J,c

wc
iJ(t)xc

iJ(t) 1{wc
iJ (t,g∗(c,t))<0}. (53)

Intuitively (53) means that if we decide to transmit gener-
ation g∗(c, t), we will not remove any credit from queues
for which there is no such generation queued (that is
wc

iJ(t, g∗(c, t)) < 0). Note that this cannot happen with
infinite generation sizes as wc

iJ(t, g∗(c, t)) < 0 implies
wc

iJ(t) < 0. Since we have already proven in Theorem 2
that (50) + (51) + (52) ≤ 0, we want to minimize (53),
which is indeed done in (28) and (29). It is also easy to
see from (53) that the naive policy (26) may yield an un-
bounded drift.


