Quantifying the Effectiveness of Testing via Efficient
Residual Path Profiling

Trishul M. Chilimbi* trishulc@microsoft.com
Aditya V. Norif adityan@microsoft.com
Kapil Vaswani? kapil@csa.iisc.ernet.in

*Microsoft Research Redmond TMicrosoft Research India 1ISc Bangalore

May 2007
Technical Report
MSR-TR-2007-62

Writing correct programs is hard. Proving that they are correct
is even harder. Consequently, testing is extensively used for un-
covering bugs in large, complex software. Since testing software
exhaustively is infeasible, well designed regression test suites aim
to anticipate all reasonable software usage scenarios and generate
test cases that exercise those behaviors. Unfortunately, testers to-
day have no way of knowing how much of real-world software usage
was untested by their regression suite. While collecting path profiles
of deployed software would provide this information, profiling over-
heads preclude this. This often results in released software shipping
with bugs that could have been detected with a better test suite.
Recent advances in low-overhead path profiling provide the oppor-
tunity to rectify this deficiency and perform residual path profiling
on deployed software. Residual path profiling identifies all paths
executed by deployed software that were untested during software
development. We extend prior research to perform low-overhead in-
terprocedural path profiling. We demonstrate experimentally that
low-overhead path profiling, both intraprocedural and interproce-
dural, provides valuable quantitative information on testing effec-
tiveness. We also show that residual edge profiling is inadequate
as a significant number of untested paths include no new untested
edges.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://wuw.research.microsoft.com

1 Introduction

We are surrounded by software that runs on several different devices and per-
forms a variety of tasks. Our growing reliance on software has increased the need
to make software dependable. Unfortunately, writing correct programs is hard.
Modern software development, which often involves a large team of potentially
geographically separated programmers with varying abilities, compounds this
problem.

Static analysis tools attempt to address this problem by checking that a
program satisfies a set of specifications on all possible execution paths. As part
of the verification process these tools produce execution traces that contain
errors, if any exist. However, despite much recent progress in static verification,
these have several limitations that preclude exclusive reliance on such techniques
for large, complex software.

Consequently, static program checking is invariably complemented with test-
ing, which runs a program on a suite of test cases and checks for errors. Unlike
static checking tools that explore all program paths, testing can only detect er-
rors along the set of paths that were executed. Since exhaustively testing large
software is infeasible, well designed regression test suites aim to anticipate all
reasonable software usage scenarios and generate test cases/inputs that exercise
those behaviors. However, anticipating software usage is extremely hard espe-
cially when the same piece of software can run on a variety of devices. Ideally,
one would like to profile actual software usage, perhaps during beta software
testing, to detect untested software behaviors.

Program paths are a succint and pragmatic abstraction of a program’s dy-
namic control flow behavior. They capture much more control flow information
than basic block or edge profiles and are much smaller than complete instruction
traces. Consequently, We would like to detect program paths executed during
actual software usage that were untested, and use this information to improve
the test suite, and consequently, testing effectiveness.

Unfortunately, collecting path profiles using the standard Ball-Larus tech-
nique incurs 50% overhead on average and upto 200% in the worst case [7].
Researchers have proposed a variety of techniques to lower this overhead fur-
ther, but these techniques are only effective when the number of paths that must
be profiled is small, as in the case of hot path profiles for optimization [4, 7].
Recently, researchers have proposed a technique called preferential path profil-
ing that reduces the overhead of path profiling even when the number of profiled
paths is large [17]. We show that preferential path profiling can be used to per-
form low-overhead residual path profiling, which identifies all paths executed by
deployed software that were untested during software development [14]. Since
preferential path profiling captures intraprocedural program paths, it is well
suited for unit testing, which validates that individual modules are working
properly by writing test cases for each function. However, it cannot be used for
performing residual profiling of integration testing [3], which combines individ-
ual modules and tests them as a group, as this requires profiling interprocedural
paths.

BLID Counter

0| O freqo

1 1 freqs

2| 5 freqs
Path Array

(c)

Figure 1: Motivating example for PPP. (a) A DAG G with 6 paths with edges
numbered using the Ball-Larus algorithm. (b) G with edges having only PPP
assigned numbers for three interesting paths I = {sacdt, sact, sbct}. (c) G with
edges assigned two numbers, (PPP —number, BL—number). The path array is
accessed using the PPP number.

To address this limitation, we have extended preferential path profiling to
perform low-overhead interprocedural path profiling. We have evaluated our
residual path profiling scheme on several SPEC 2000 benchmarks, using the
train inputs to model a test suite and the ref inputs to model field inputs. The
results indicate that residual interprocedural path profiling incurs low overhead
and detects a large number of untested paths. In addition, we show that residual
edge profiling is inadequate as a significant number of untested paths include
no new untested edges

The three main contributions of this paper are:

e Design and implementation of a low-overhead interprocedural path profil-
ing scheme based on preferential path profiling (Section 3).

e Implementation of low-overhead residual path profiling for both intrapro-
cedural and interprocedural program paths (Section 4).

e Evaluation results that demonstrate that residual path profiling provides
valuable quantitative information on testing effectiveness. In addition, we
show that residual edge profiling is inadequate as a significant number of
untested paths include no new untested edges (Section 5).

2 Background: Preferential Path Profiling (PPP)

This section provides a brief overview of preferential path profiling [17]. The
Ball-Larus profiling scheme, which forms the basis of many path profilers, as-
signs weights to edges of a control flow graph (CFG) such that all paths are

allocated unique identifiers (i.e., the sum of the weights of the edges along every
path is unique) [2]. During program execution, the profiler accumulates weights
along the edges and updates an array entry that corresponds to this path iden-
tifier. Unfortunately, for functions with a large number of paths, allocating an
array for all program paths is prohibitively expensive, if not infeasible. Conse-
quently, path profiler implementations are forced to use a hash table to record
path information for such functions. Although using a hash table is space effi-
cient as programs typically execute only a small subset of all possible paths, it
incurs significantly higher execution time overhead as compared to updating an
array entry. Previous work has shown that hash tables account for a significant
fraction of the overhead attributable to path profiling [7].

Preferential path profiling (PPP), efficiently profiles arbitrary path subsets,
which are referred to as interesting paths. As mentioned earlier, the Ball-Larus
algorithm assigns weights to the edges of a given CFG such that the sum of
the weights of the edges along each path through the CFG is unique. PPP
generalizes this notion to a subset of paths; it assigns weights to the edges such
that the sum of the weights along the edges of the interesting paths is unique.
Furthermore, PPP attempts to achieve a minimal and compact encoding of the
interesting paths; such an encoding significantly reduces the overheads of path
profiling by eliminating expensive hash operations during profiling. In addition,
PPP separates interesting paths from other paths, and this enables residual path
profiling as we show in Section 4.

We use an example from [17], shown in Figure 1 to illustrate how PPP works.
The DAG G in Figure 1(a) is obtained from the CFG of the function. The figure
shows the weights assigned by the Ball-Larus algorithm to the edges of G. Note
that the sum of the weights of edges along every path from the start node s to
the final node ¢ is unique, and all paths are allocated identifiers from 0 to N—1,
where N is the total number of paths from s to ¢t. If N is reasonably small
(less than some threshold value), the profiler can allocate an array of counters
of size N, and track path frequencies by indexing into the array using the path
identifier and incrementing the corresponding counter. However, the number
of potential paths in a procedure can be arbitrarily large (exponential in the
number of nodes in the graph) and allocating a counter for each path can be
prohibitively expensive, even infeasible in many cases. In the current example,
if the threshold value is set to 4, the Ball-Larus profiler would use a hash table
since there are 6 paths from s to .

Let us assume that we are interested in profiling only a subset I = {sacdt, sact, sbct}
of paths. The Ball-Larus identifiers for the paths sacdt, sact and sbct are 0, 1
and 5 respectively. This means that one would have to allocate a hash table
even though there are only 3 paths of interest. In such a scenario, it would be
ideal if we could compute an edge assignment that allocates identifiers 0, 1 and
2 to these paths, and identifiers greater than 2 to the other paths.

Unfortunately, such an assignment is not always feasible [17]. Therefore,
PPP attempts to label the edges in G such that the paths in the set I have path
identifiers in {0,1,2} even if such a numbering causes other (non-interesting)
paths (for e.g., sbedt) to share the same path identifiers. Figure 1(b) shows the

foo()

call bar()

/N

—_—

Figure 2: IPPP example. (a) Interesting interprocedural path originating
infoo(), passes through the function bar(), before returning to foo(). (b) After
function inlining, this path becomes an intraprocedural path in the supergraph

foo-s().

PPP assignment of weights to edges that achieves this. This allows PPP to incur
lower overheads since it can use an array to track frequencies instead of a hash
table. Note that while the interesting paths sacdt, sact, sbct have been assigned
unique identifiers from 0 to 2, the uninteresting paths sabct and sbedt alias with
the interesting paths sacdt and sact respectively. PPP resolves these aliases
using Ball-Larus path identifiers, which are unique for all paths. In PPP, edges
are annotated with a second weight computed using the Ball-Larus algorithm
(these weights are shown in parentheses in Figure 1(c)). The profiler also stores
the Ball-Larus identifiers of all interesting paths along with their counters. The
occurrence of an interesting path can be detected by comparing the Ball-Larus
identifier computed during the traversal with the Ball-Larus identifier stored
in the array a match indicates that an interesting path was just traversed and
vice versa. For example, when the uninteresting path sbedt (PPP identifier is
2 and Ball-Larus identifier is 4) occurs, before incrementing the count at index
2 in the path array, the Ball-Larus identifier at index 2 is compared with the
Ball-Larus identifier of sbedt. Since they are different, the profiler infers that
this path is not interesting and takes necessary action.

3 Interprocedural Preferential Path Profiling (IPPP)

Modern software development has embraced modular programming, which in-
creases the number of procedures in a program. As a result, many interest-
ing program behaviors span across procedure boundaries and intraprocedural
testing and profiling techniques may not suffice. Unfortunately, although in-
terprocedural analysis, profiling and testing techniques are desirable, they have

traditionally been associated with high runtime overhead. For instance, inter-
procedural path profiling is extremely expensive [11, 15]. These high overheads
have limited the use of interprocedural techniques even in laboratory testing
environments where cost is usually not a prime concern. We propose to perform
a simplified version of interprocedural path profiling that has low overhead. Our
formulation is well suited to residual path profiling.

3.1 Preliminary Definitions
We define a few terms to facilitate the exposition of our technique.

Subpath: A subpath is an acyclic, intraprocedural path that terminates at
procedure calls, in addition to loop back edges and function returns.

Whole Program Path (WPP): The whole program path is the entire sequence
of subpaths generated during a given execution of a program. The WPP
precisely characterizes the entire control flow behavior of the program [8].

Interprocedural Path Segment (IPS): An interprocedural path segment is a se-
quence of subpaths that can be generated using the following grammar

P = (P|(P)|PP|({fp)

where ‘(" denotes a function call, ‘) represents a return, and (f,p) repre-
sents the execution of a subpath p in the function f. Intuitively, an IPS
is similar to the traditional notion of interprocedurally valid paths [11],
except that it does not necessarily start with a call to the main function.

3.2 Specifying Interesting IPSs

To perform interprocedural preferential path profiling, we first need to spec-
ify interesting interprocedural path segments (IPSs). While the whole program
path (WPP) is a valid (though very large) IPS, for efficiency reasons we con-
strain the set of IPSs that can be specified. We define a depth k IPS as one that
spans at most k procedure calls. For a given value of k (programmer specified),
the set of IPSs exercised can be easily extracted from the WPP. For instance,
consider the follow substring of a WPP:

((FL,p1)((f2,p2)((f3, p3) ((f4, p4)(f4, p5)(f4, p6))(f3, PT)
((f5,p8))(f3,p9))(f2,p10))

Here, the paths pl, p2, p3 and p7 terminate on procedure calls. For k = 1,
the set of valid IPSs is

L (f1,p1)((f2,p2)
2. (f2,p2)((f3,p3)
3. (f3,p3)((f4,p4)

4. (f3,p7)((f5,p8))(f3,p9)

Note that IPS 4 includes the subpath executed after returning from procedure
5. Also, IPS 3 does not extend to the subpath (f4,p5) because the path p4
ends at a loop back edge and our current implementation does not profile paths
that span across loop boundaries.

3.3 Profiling Interesting IPSs

Much like PPP; interprocedural preferential path profiling (IPPP) achieves low
overhead by exploiting knowledge about interesting paths. Given a set of in-
terprocedural paths for which profiling information is required, we proceed in
two stages. First, assuming that the number of interprocedural path segments
(IPSs) that most consumers of profiles are interested in is small, we transform
the interprocedural path segment profiling problem into an intraprocedural path
profiling problem using function inlining. This results in a set of supergraphs
that are used for analysis and instrumentation. Second, since these supergraphs
are likely to contain a large number of acyclic intraprocedural paths, we use PPP
to compactly number interesting paths in the supergraphs, which correspond to
interesting IPSs in the original graphs. This compact numbering avoids the
use of hash tables required by traditional path profiling techniques, and conse-
quently reduces the overhead of IPS profiling. We provide an overview of IPPP
with an example shown in Figure 2. Consider two functions foo() and bar() as
shown in Figure 2(a). Assume we are interested in profiling a single IPS that
originates in function foo() and passes through bar(). In this simple scenario,
the function bar() is inlined into foo() as shown in Figure 2(b). The inlining
transformation leads to the creation of a supergraph foo_s(), in which the IPS
has an intraprocedural equivalent. Standard intraprocedural path profiling tech-
niques can now be applied to such supergraphs to profile these paths. However,
the supergraphs created using this function inlining transformation are likely
to contain a significantly larger number of intraprocedural paths. This leads to
two problems.

e First, in several cases where an array would have been sufficient for book-
keeping, path profiling will be forced to use a hash table, resulting in
increased runtime overheads.

e Second, in situations where the number of paths increases beyond a thresh-
old (for example, 232), certain paths in the graphs must be truncated
leading to a loss of precision [2].

We address both of these problems. First, we use PPP to compactly number
interesting paths in the supergraph. Since the number of interesting IPSs is
likely to be a small subset of all possible IPSs, PPP, which provides strong
guarantees about compact numbering [17], will almost always be able to use an
array instead of a hash table for tracking paths. Second, we address the problem
of loss of precision due to truncation by avoiding truncating edges traversed

CFG Set
IPS Set

Transformed
Identify inlining program with Ball-Larus
sites mlme supergraphs Algorithm
Interestlng Ball-
PPP Profiler | Larus identifiers

PPP instrumented program
Actual Usage with IPS set marked as Untested IPS
N

interesting paths execute _
(g _a — - — B (g /' \\

Figure 3: Overview of the interprocedural preferential path profiling scheme.

by interesting IPSs. Consequently, interesting IPSs are profiled precisely and
efficiently.

3.4

IPPP Algorithm

This section informally describes our algorithm for profiling interesting interpro-
cedural path segments (IPSs). Figure 3 provides an overview of the technique.

1.
2.

Input: A set of CFGs and a set S of interesting depth k-limited IPSs.

Identify inlining sites: Based on the paths in set S, identify the set of
call sites for inlining. For each IPS (f1,p1)({f2,p2),..., consider all the
subpaths that terminate at a procedure call. All such procedure call sites
are identified and marked.

Mark all edges traversed by IPSs: Assign a globally unique identifier to
all IPSs. Traverse all edges along each IPS and mark the edges with the
corresponding IPS identifier. Edges that participate in multiple IPSs will
have multiple IPS identifiers associated with them. This labelling serves
two purposes. First, it helps create a mapping between an IPS in the orig-
inal collection of CFGs and its corresponding intraprocedural equivalent
in the transformed supergraph (see step 6). Second, it marks these edges
as non-candidates for truncation, if truncation is necessary (see step 5).

Supergraph construction: Create supergraphs as shown in Figure 2(b) by
combining the CFGs of individual procedures as determined in step 2.

Ball-Larus numbering: Assign Ball-Larus numbers to all paths in each su-
pergraph. Ensure that edges traversed by IPSs as marked in step 3 are
not truncated. After this step, each path in a supergraph is assigned a
unique identifier.

Identify interesting IPSs: From the Ball-Larus numbering and the IPS edge
information computed in step 3, obtain the Ball-Larus identifiers of inter-
esting IPSs.

foo1()

call
bar_dup(b,
0, cnt2);

calf
bar_dup(a,
cnfl, 0);

bar_dup(x, cnt1, cnt2)

ﬂnn‘ +=2
@ 6

cnt? +=

After duplication

Figure 4: An example that illustrates an IPPP approach based on function
replication that avoids increase in code size due to inlining-based IPPP.

7. Drive PPP: Use the Ball-Larus identifier of interesting IPSs computed in
Step 6 as input to the PPP algorithm.

3.5 Avoiding Inlining through Code Duplication

IPPP uses procedure inlining to convert an interprocedural path profiling prob-
lem to an intraprocedural one. In IPPP, each procedure is effectively duplicated
as many times as the number of unique contexts it occurs in the set of input
IPSs. However, this approach may not scale if the number and/or depth of
IPSs in the input specification is large or the IPS passes through procedures
with large bodies. While our current implementation uses selective inlining, an
alternative is to duplicate the code.

We now describe the approach based on procedure duplication using an
example. Consider the program in Figure 4. The program consists of three
functions, fool(), foo2() and bar(x). Both fool() and foo2() have calls to
bar(z). Assume that the input to IPPP consists of two interprocedural path

segments that pass through both call sites. As per the approach described in
the previous section, we would inline a copy of bar(z) in fool() and in foo2()
(the original copy of bar(x) remains). If the resulting increase in code size
is not acceptable, IPPP creates a second copy of the procedure bar(z) (say
bar_dup(z)) and shares it across multiple contexts as shown in Figure 4. Here,
we only inline the procedure bar into fool() and foo2() for the purpose of
analysis and compute an assignment of weights to the edges of bar_dup(z) in-
dependently in each context. We then map these weights back to the origi-
nal edges of bar_dup(z). Each edge of bar_dup(x) is now associated with as
many weights as the number of unique contexts (say N). Next, we add N
counter variables as arguments to the procedure bar_dup(x), one for each con-
text, to obtain bar_dup(z,cntl, ent2, ..., entN). We also modify the respective
call sites in each context to pass the current value of the Ball-Larus and/or
PPP counter as an argument to the duplicated procedure, as shown in Figure 4.
The edges of bar_dup(x, cntl, cnt2) are instrumented to increment all counter
variables as and when required. These increment operations are usually inex-
pensive and are unlikely to have an adverse effect on performance, at least for
a moderate number of contexts. Finally, before returning from the procedure
bar_dup(z,centl, cnt2, ... entN), we save the state of all counter variables so
that they can be retrieved by the respective callers. In this way, both the Ball-
Larus and PPP algorithms can be extended to the interprocedural case without
an excessive increase in code size.

3.6 Discussion

The key enabling insight that allows inlining/code duplication to avoid expo-
nential blowup issues is they are based off concrete Ball-Larus path-profiles from
a regression test suite that typically exercises only a small fraction of all possi-
ble interprocedural-paths. Our experiments (Section 5) show that the code size
increase for IPPP is only 22% higher on average than standard intra-procedural
Ball-Larus PP. Recursion is handled as we are only interested in IPSs of limited
depth. Function pointers are handled by doing context-sensitive inlining from
concrete Ball-Larus path profiles and using runtime-checks for validation.

4 Residual Path Profiling (RPP)

Residual path profiling identifies the set of paths executed by deployed software
that were not tested during software development [14]. This section describes
how we perform residual profiling for intraprocedural and interprocedural paths.

4.1 Intraprocedural Residual Path Profiling

RPP for intraprocedural paths is fairly straightforward and proceeds in two
stages. First, a program is instrumented for path profiling with the Ball-Larus

technique and run with its test suite inputs. The Ball-Larus identifiers of in-
traprocedural paths that were executed are recorded. Next, the same program
is instrumented with PPP with the recorded Ball-Larus paths marked as inter-
esting paths and this version of the program is deployed to gather real usage
profiles, perhaps as part of a beta testing phase. When an untested path is
executed, either its PPP identifier will exceed the size of the array used to track
paths or its Ball-Larus identifier will not match the one recorded in the array
entry (see Figure 1(c)). In this way, untested paths are detected and recorded
during actual usage of deployed software.

4.2 Interprocedural Residual Path Profiling

We can use the interprocedural preferential path profiling (IPPP) technique
described in Section 3 to perform residual profiling of interprocedural paths.
First, we need to specify the set of interesting IPSs that should be profiled to
the IPPP algorithm. This is done by performing whole program path (WPP)
profiling on the test suite inputs. Given a user specified value for k, we can
identify all exercised depth-k constrained IPSs from the WPP. These depth-k
IPSs are used as input to the IPPP algorithm. This generates a new binary ready
for deployment. Running this binary produces a list of paths that are exercised
in the current run but were not exercised by the test suite. The Ball-Larus

identifiers of these untested paths can be used to generate the set of untested
IPSs [2].

4.2.1 Alternative scheme for Interprocedural Residual Path Profil-
ing

An alternative technique that does not require the use of WPP profiles is il-
lustrated in Figure 5. Our experimental results reported in Section 5 use this
technique for interprocedural residual path profiling. The scheme proceeds in
three stages.

Stage I: The program is profiled on its test suite inputs to identify all acyclic,
intraprocedural paths that were exercised (Figure 5(a)). The Ball-Larus
technique is used to perform path profiling.

Stage II: The path profile from Stage | is used to identify all call sites that can
occur on a depth-k IPS. Note that this is an overapproximation of the set
of call sites that would have been identified given a WPP profile. These
call sites are inlined and a new binary, instrumented to collect Ball-Larus
path profiles, is generated. As a result of inlining, all depth-k IPSs ex-
ercised by the test suite inputs appear as intraprocedural paths in the
new binary. This binary is then instrumented to collect Ball-Larus path
profiles and rerun on the test suite inputs. The path profile generated ef-
fectively assigns unique Ball-Larus identifiers to all depth-k IPSs exercised.
Figure 5(b) illustrates this process.

10

Ball-Larus
Program Ball-Larus instrumented
a) | J— Profiler progigrﬂ iy execute
— — A
. Ball-Larus path
Test suite inputs profile #1
. 1/// p— — /’/A\\
Transformed
Program Sn_elec_tlv_e_ program with BaII-L_arus
o function inlining supergraphs Profiler
b) Ball-Larus
Ball-Larus path L .
" Test suite inputs instrumented
profile #1 F
T - program
~ =, \7//,/ — T -
execute¢
Ball-Larus path
profile #2
Transformed IPPP
program with \PPP Profiler instrumented
supergraphs program execute
c) 1
Ball-Larus path IPPP profile +
profile #2 J Actual Usage Humested paths
B L _ I Y

Figure 5: Residual path profiling for IPPPs. (a) Profile executed paths on
test suite inputs using the Ball-Larus scheme. (b) Inline functions to convert
executed IPSs to intraprocedural paths and re-execute on test inputs. (¢) Use
path profile from (b) to drive PPP and run program with field inputs to detect
untested paths.

Stage Ill: The path profile generated in the previous step along with the trans-
formed binary serve as inputs to the PPP algorithm as shown in Fig-
ure 5(c). This generates a new binary suitable for deployment, where all
depth-k IPSs that were exercised by the test suite inputs are marked as in-
teresting paths. When this binary is executed on field inputs the untested
paths reported correspond to depth-k IPSs (and intraprocedural paths)
not exercised by the test suite.

4.3 Discussion

Testing large software is a resource constrained activity. Consequently, the
priority is to test most frequently exercised behaviors across all users (not a
single user). RPP accomplishes this by recording all untested paths exercised.
This information can be aggregated across users to determine priorities. A
scheme that only records frequent untested paths would miss rare untested paths
that all/most users execute.

11

#untested paths [%untested paths

Ftuntested | %untested 9efreq of | #funcs with F#untested ##funcs with in funcs in funcs
Benchmark untested | untested untested . .
paths paths edges with no with no
paths paths edges untested edges | untested edges
164.gzip 80 7.2 0.0 6 3 2 7 96.3
175.vpr 274 20.9 0.0 29 147 22 13 4.7
179.art 132 50.0 47.2 12 130 10 6 4.5
181.mcf 3 1.2 0.0 3 8 1 2 66.7
183.equake 1 0.5 0.0 1 0 0 1 100
188.ammp 117 22.5 0.0 4 2 1 114 97.4
197.parser 612 13.0 0.0 61 211 29 273 44.6
256.bzip2 398 45.1 0.0 13 81 10 26 6.5
300.twolf 295 11.3 0.0 36 43 18 117 39.7
PCgame-1 970 19.8 15 139 248 81 502 51.8
PCgame-2 3531 16.5 0.6 248 384 143 898 25.4
[[Average [583 [189 [45 | 502 | 1143 | 288 | 184.5 | 48.9]

Table 1: Untested intra-procedural path information obtained from residual path
profiling.

5 Experiments

We have implemented our techniques (intra and interprocedural PPP) using the
Scale compiler infrastructure [10]. In addition, we have implemented intrapro-
cedural PPP using Microsoft’s Phoenix compiler and are currently working on
a Phoenix implementation of interprocedural PPP. We use benchmarks from
the SPEC CPU2000 suite for evaluation as well as a couple of large (1-2 mil-
lion LOC), resource-intensive PC games. The PC games were compiled using
Microsoft’s Phoenix compiler. The SPEC benchmarks were run to completion
on an Alpha 21264 processor running Digital OSF 4.0 and the PC games were
run on a 2 GHz Intel x86 processor running Microsoft Vista. All timing numbers
reported use the hardware cycle counter. We report overhead numbers for the
games using frames per second as the performance metric.

1400

1200 +

1000 +

800 -

IPPP Interval Size
X
X

200 - x -

o ; ; ;

a 100 200 300 400 500

Number of interesting paths

Figure 6: Compact numbering achieved by IPPP for several functions from
programs in the SPEC CPU2000 suite.

12

200.00

W Ball-Larus

160.00 EREP

120.00

&0.00

Overheads{%)

40.00

0.00 -

Figure 7: Runtime overheads of interprocedural path profiling.

5.1 Interprocedural Preferential Path Profiling (IPPP)

To evaluate our IPPP scheme, we labeled all depth 1 interprocedural path seg-
ments (i.e., all IPSs that span a single procedure call boundary) exercised by
the SPEC train inputs as interesting IPSs and produced an instrumented binary
that profiles these interprocedural paths. This binary was then run on the ref
inputs. Since we perform selective inlining to convert IPSs into intraprocedural
paths, we can also profile these paths with the Ball-Larus technique.

Figure 7 shows the overhead of these techniques on some of the SPEC bench-
marks (the Scale compiler does not successfully compile all SPEC benchmarks,
even without our path profiling). The Ball-Larus scheme incurs high overheads
that range from 70% to 180% with an average of 125%. With the exception
of 256.bzip2, which incurs an overhead of 52%, IPPP achieves reasonably low
overhead with an average of 26%. For four of the six benchmarks the overhead is
less than 20%. This overhead may be low enough to permit residual profiling of
IPSs during beta software testing of many interactive desktop applications, such
as web browers, email clients, and productivity software, where the slowdown is
possibly below human perception threshold on fast modern machines.

IPPP is able to achieve significantly lower overheads as compared to inter-
procedural Ball-Larus because it is able to compactly number interesting IPSs
and avoid using a hash table for recording path information. Figure 6, which
plots the size of the interval allocated to interesting paths versus the number
of interesting paths for functions in the SPEC benchmarks, substantiates this
claim. For almost all procedures this ratio is very close to 1, indicating almost
perfect compaction.

5.2 Intraprocedural Residual Path Profiling

We used the train and ref inputs provided with the SPEC benchmarks to ap-
proximate a residual profiling scenario. For the PC games, we played the games

13

140.00

W Ball-Larus

120.00 -

O RPP
100.00
£ go.00
1%}
gk
2 60.00
<
¢ a0.00
o
20.00
0.00
-20.00
EEZ2 g8 9YYEgE iR
ngBEgEEm"PE,jL
= 53 2 g 25 6 6 a3 R §o:
o6 g B~ 8 3 3 - = %
= - Nogomoy g 0

Figure 8: Comparison of runtime overheads of Ball-Larus and intraprocedural
RPP.

for different lengths of time (5 minutes and 10 minutes). As the frame rate
reduction during intraprocedural RPP was small as indicated in Figure 8, we
were able to play both games as we would if they were not being profiled. First,
the Ball-Larus path profiler was used to collect profiles of the benchmarks on
their train inputs. The paths profiled become the interesting paths that are in-
put to the preferential path profiler (PPP). PPP generated a new instrumented
binary which was then run on the benchmarks reference input. Paths that were
exercised only by the ref input are reported as untested paths. We also per-
formed residual edge profiling and compare the results against RPP. The results
are shown in Table 1. Many of the SPEC benchmark ref inputs are merely
larger size versions of the train inputs. Despite this, the data indicates that
the ref inputs exercise many more paths. The execution frequency contribution
of these paths show that, with the exception of 179.art, which exercised new
hot paths, these untested paths are rarely executed. The comparison between
untested paths and untested edges is striking. For these benchmarks, a signif-
icant number of untested paths occurred in functions which reported no new
untested edges. These paths would go undetected with residual edge profiling
and demonstrate the advantage of RPP. Even for untested paths that exercise
new edges, inferring the path from the edge profile is not always possible. The
PC games, which are significantly larger than the SPEC benchmarks, show
similar results. For both games, the longer scenario exercises a large number of
rarely executed untested (by the shorter scenario) paths. Many of these paths
do not include any new edges.

Figure 8 reports the overhead of performing intraprocedural RPP for the
scenario described above relative to Ball-Larus profiling.The overhead numbers
for the PC games represent percentage reduction in frame rate as a result of

14

0,
Benchmark #untested | Y%untested Lﬁftr:;qt:df
paths paths
paths
175.vpr 300 21.1 0.0
179.art 199 77.4 57.5
181.mcf 3 1.1 0.0
183.crafty | 3262 63.5 0.0
188.ammp 123 21.5 1.4
256.bzip2 949 58.3 0.1
| Average [3148 | 359 | 118 |

Table 2: Untested IPS information obtained from interprocedural residual path
profiling.

profiling. The overhead numbers (average of 13%) are in line with those reported
in [17] (average of 20%). The numbers are lower due to a more optimized
implementation and because we use train inputs to generate interesting paths
while their experiments used the ref inputs for this purpose. In addition, the
new benchmarks (PC games) incur lower overhead (7-9%). The numbers for the
PC games are especially impressive as these are cutting-edge, resource intensive
programs and indicate that RPP can be used in deployed software, at least
during beta software testing.

5.3 Interprocedural Residual Path Profiling

We performed a similar experiment to that described in Section 5.2, except
that we labelled all depth-1 interprocedural path segments exercised by the
SPEC train inputs as interesting IPSs and then ran the IPPP generated binary
on the benchmarks ref input. Table 2 reports the results. Comparing entries
from Table 2 with Table 1 for a few of the benchmarks, it can be seen that IPPP
exposes a larger number of untested paths.

5.4 Residual Path Profiling Simulation

We performed an experiment much like the one described in Section 5.2 for
residual path profiling of intraprocedural path except that we use a larger num-
ber of train and ref inputs to simulate a residual profiling scenario. We use the
MinneSPEC input suite along with the SPEC test and train inputs as represen-
tative of the test suite. The results are shown in Table 3. It is interesting to
note that even though a large number of paths are exercised by the train inputs
for these programs, we are able to detect a significant number of new paths on
the ref inputs which essentially characterize the “deployed” behaviours of these
programs.

15

[
Benchmark #untested | Y%untested fnftr:jt:j
paths paths
paths

176.gcc-200 2670 4.6 0.3
176.gcc-scilab 2635 4.5 0.3
176.gcc-expr 723 1.2 0.0
179.gcc-166 2034 35 0.0
179.gcc-integrate 238 0.4 0.0
256.bzip2-graphic 249 6.1 0.0
256.bzip2-source 520 12.8 0.0
256.bzip2-program 49 1.2 0.0
175.vpr-place 175 1.6 0.0
175.vpr-route 30 0.3 0.0

[Average [932 [36 [01 |

Table 3: Untested intra-procedural path information obtained using a more robust
test suite.

5.5 Code Size Increase

Apart from the runtime overheads of tracking paths, path profiling schemes
(Ball-Larus and PPP) also increase the size of the program binary. The reasons
for the code bloat are two-fold: (a) instrumentation placed along edges of func-
tions and at the end of every path, (b) space allocated to path counter tables and
auxillary structures. Table 4 shows the increase in code size (number of times
relative to the unprofiled binary) caused by both the intra-procedural profiling
schemes for a set of benchmarks programs. On average, the Ball-Larus profiling
scheme increase the code size by a factor of 3.21. The increase in code size due
to PPP is slightly lower at 3.03, primarily because a more compact numbering
reduces the amount of space that must be allocated for the path counter tables.

We also measured the increase in code size caused by the interprocedural
versions of the path profiling schemes. One might have anticipated a significant
increase in code size compared to intraprocedural profiling because of inlining.
As shown in Table 5, this turns out to be true for Ball-Larus interprocedural
profiling scheme, which increases code size by a factor of 5.33. However, the
code bloat due to IPPP is significantly lower because inlining is restricted to
call-sites along a small set of interesting paths. The average increase in code
size is 4.35, which is close to the increase in code size due to intraprocedural
path profiling. These results show that the increase in code size due to IPPP is
much lower than expected and does not limit the applicability of interprocedural
path profiling any more than the intraprocedural profiling schemes.

16

Benchmark [Ball-Larus | PPP |

188.ammp 3.25 3.40
179.art 4.57 471
186.crafty 3.67 2.83
256.bzip2 2.60 2.40
197.parser 2.26 1.71
300.twolf 2.71 2.52
PC Game 1 5.41 5.00
PC Game 2 4.60 4.57
175.vpr 3.38 3.38
164.gzip 3.27 3.22
181.mcf 1.23 1.20
183.equake 1.56 1.44

| Average | 321 [3.03]

Table 4: Increase in code size due to Ball-Larus and PPP intraprocedural profiling.

l Benchmark‘ BaII—Larus‘ IPPP‘
175.vpr 6.91 5.00
179.art 4.83 3.67
181.mcf 4.40 3.80

188.ammp 5.52 4.81

256.bzip2 6.62 5.38

186.crafty 3.71 3.44

| Average | 533 [435]

Table 5: Increase in code size due to Ball-Larus and interprocedural path profiling.

6 Related Work

Melski and Reps extended Ball-Larus profiling to capture interprocedural paths [11].
They create a single supergraph that connects all procedures, and then apply
the Ball-Larus numbering to label paths in this graph. Tallam et al. proposed

a technique to profile overlapping path fragments from which interprocedural
and cyclic paths can be estimated [14]. Both these techniques have consider-
ably higher overhead than the Ball-Larus technique for profiling intraprocedural,
acyclic paths as well as our technique. Our scheme for profiling interprocedural
paths achieves low overhead by exploiting the observation that in many cases
the interprocedural paths of interest are small in number, can be compactly
encoded, and are known in advance.

Researchers have recognized the importance of using field data to improve
testing [6, 13]. To limit profiling overhead they have focused on collecting inex-
pensive function/node/
edge coverage profiles, using sampling, or using dynamic instrumentation. How-
ever, as we have shown, path profiles provide richer information than edge
profiles, at least for residual testing. The Gamma project [13] samples across

17

program instances by splitting monitoring tasks across different instances of
the software. This enables partial information to be collected from different
users with low-overhead and later integrated to gather overall profiles. Liblit
et al. [9] also rely on instrumenting a large number of instances of the same
software. They randomly sample each instance at a low rate to achieve small
overheads and collate information from multiple users to isolate bugs. Residual
path profiling could use these techniques to further reduce overhead. However,
these techniques require a fair amount of infrastructure and the cooperation of a
large numbers of users to be successful. Residual path profiling is able to achieve
low overhead on a single program instance without this requirement. Arnold
and Ryder [1] proposed a sampling scheme based on code duplication scheme
that creates an instrumented and non-instrumented version of each function
and switches between these versions. They achieve low overhead by controlling
the sampling rate and ensuring that the non-instrumented function version is
executed most of the time. This technique is well-suited to performance pro-
filing but would miss rarely executed paths during residual testing. Chilimbi
and Hauswirth [5] extended this scheme with an adaptive sampling technique
that can capture rare events while still incurring low overhead. However, their
granularity of adaptive sampling is a code fragment that starts and ends at a
function entry point or loop backward branch. These code fragments can po-
tentially contain many paths. If any one of the paths is hot, the fragment will
be rarely sampled and infrequently exercised code paths in the same fragment
will go unprofiled.

Tikir and Hollingsworth dynamically insert instrumentation on method in-
vocation for node coverage [16]. A separate thread periodically removes the
instrumentation via a garbage collection process. They report an average over-
head of 36% for C programs. Similarly, the Jazz tool [12] dynamically instru-
ments for node coverage and def-use coverage. They use a test planner to remove
instrumentation when it is no longer needed. They report impressive overheads
of 3% on average for node coverage of Java programs. Their overheads for def-
use coverage are much higher (average of 127%). Unfortunately, such dynamic
instrumentation techniques cannot be applied to reduce the overhead of path
profiling as the path counter updates cannot be removed. To the best of our
knowledge, we are the first to implement and evaluate a practical scheme for
residual path profiling. Prior work on residual testing has focused on node cov-
erage [14]. Node coverage information is much cheaper to collect, but contains
less information than edge profiles, which we show are inferior to path profiles.

7 Conclusions

Software testing is extensively used for uncovering bugs in large, complex soft-
ware. However, test suites are typically designed with little information about
actual software usage. We have shown how recent advances in profiling program
paths with low-overhead has provided the opportunity to perform residual path
profiling on deployed software. This identifies all paths executed by deployed

18

software that were untested during software development. This information
can be used to improve regression test suites used for unit testing, where in-
dividual software modules are tested in isolation. We have extended our low-
overhead path profiling technique to capture interprocedural paths. Residual
interprocedural path profiles are useful for improving integration testing, where
groups of modules are tested together. Our experimental results show that
low-overhead path profiling, both intraprocedural and interprocedural, provides
valuable quantitative information on testing effectiveness. We show that resid-
ual edge profiling is inadequate as a significant number of untested paths include
no new untested edges.

In addition, our low-overhead path profiling techniques can be applied to
perform more informed compiler optimization driven by real-usage path-profiles.
These profiles can be used to check hotness assumptions made by in-house
optimization. They could also be used for security applications where certain
program behaviors need to be restricted based on runtime criteria.

References

[1] M. Arnold and B. G. Ryder. A framework for reducing the cost of instru-
mented code. In Proceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation (PLDI), pages 168-179,
2001.

[2] T. Ball and J. R. Larus. Efficient path profiling. In International Sympo-
sium on Microarchitecture (MICRO), pages 46-57, 1996.

[3] B. Beiser. Software testing techniques. Van Nostram Reinhold Inc., N. Y.,
1990.

[4] M. D. Bond and K. S. McKinley. Practical path profiling for dynamic opti-
mizers. In International Symposium on Code Generation and Optimization
(CGO), pages 205-216, 2005.

[5] T. M. Chilimbi and M. Hauswirth. Low-overhead memory leak detection
using adaptive statistical profiling. In Proceedings of the 11th international

conference on Architectural support for programming languages and oper-
ating systems (ASPLOS), pages 156-164, 2004.

[6] M. Diep. Profiling deployed software: Assessing strategies and testing op-
portunities. IEEE Transactions on Software Engineering., 31(4):312-327,
2005.

[7] R. Joshi, M. D. Bond, and C. B. Zilles. Targeted path profiling: Lower
overhead path profiling for staged dynamic optimization systems. In Inter-
national Symposium on Code Generation and Optimization (CGO), pages
239-250, 2004.

19

8]

[13]

J. R. Larus. Whole program paths. In ACM SIGPLAN Symposium on
Programming Language Design and Implementation (PLDI), pages 259
269, 1999.

B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via
remote program sampling. In Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation (PLDI),
pages 141-154, 2003.

K. S. McKinley, J. Burrill, M. D. Bond, D. Burger, B. Cahoon, J. Gibson,
J. E. B. Moss, A. Smith, Z.Wang, and C. Weems. The Scale compiler.
http://ali-www.cs.umass.edu/Scale, 2005.

D. Melski and T. W. Reps. Interprocedural path profiling. In Proceedings
of the 8th International Conference on Compiler Construction (CC), pages
47-62, 1999.

J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and M. L. Soffa.
Demand-driven structural testing with dynamic instrumentation. In Pro-
ceedings of the 27th international conference on Software engineering
(ICSE), pages 156-165, 2005.

A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging field data
for impact analysis and regression testing. In Proceedings of the 11th ACM
SIGSOFT international symposium on Foundations of software engineering
(FSE), pages 128-137, 2003.

C. Pavlopoulou and M. Young. Residual test coverage monitoring. In
Proceedings of the 21st international conference on Software engineering
(ICSE), pages 277-284, 1999.

S. Tallam, X. Zhang, and R. Gupta. Extending path profiling across loop
backedges and procedure boundaries. In International Symposium on Code
Generation and Optimization (CGO), pages 251-264, 2004.

M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for code
coverage testing. In Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis (ISSTA), pages 86-96, 2002.

K. Vaswani, A. V. Nori, and T. M. Chilimbi. Preferential path profiling:
Compactly numbering interesting paths. In ACM SIGPLAN Conference
on Principles of Programming Languages (POPL), pages 351-362, 2007.

20

