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Abstract

In k-set agreement problem, every process proposes a value and eventually at most k different values
can be decided. When k > 1, different subset of processes may decide on different values, and thus it
naturally exhibits partition among processes based on their decision values.

In this paper, we propose the partition approach to define failure detectors that capture the partition
nature of k-set agreement. The power of the partition approach is to further weaken failure detectors that
are already very weak in solving k-set agreement, and thus invalid the failure detectors as candidates for
the weakest failure detectors for k-set agreement. Using the approach, we propose two new classes of
failure detectors, statically partitioned failure detectors Πk and splittable partitioned failure detectors
ΠS

k
, both are strong enough to solve k-set agreement in the message passing model. However, we show

that Πk is strictly weaker than Ωk, the weakest failure detectors known so far for k-set agreement,
and ΠS

k
is even weaker than Πk. The partition approach provides a new dimension to weaken failure

detectors related to k-set agreement. It is an effective way to check whether a failure detector is the
weakest one solving k-set agreement or not. Together with [4], we show that so far all candidates for the
weakest failure detectors including Ωk and Υ in both the message-passing model and the shared-memory
model have failed our partition test.

MSR-TR-2007-49
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1 Introduction

The problem of k-set agreement is introduced in [3]
as a generalization of the consensus problem (the
case of k = 1). In k-set agreement, each process
from a set of n > k processes proposes a value, and
makes an irrevocable decision on one value. It needs
to satisfy the following three properties: (1) Validity:
If a process decides v, then v has been proposed by
some process. (2) Uniform k-Agreement: There are
at most k different decision values. (3) Termination:
Eventually some correct process (process that does
not crash in the run) decides.1

It has been shown that k-set agreement cannot
be solved in asynchronous systems when k or more
processes may crash [1, 10, 18]. Several studies have
introduced various failure detector classes to cir-
cumvent the impossibility result [19, 15, 9, 13, 14].
In particular, in [14] Mostefaoui et.al. study the re-
lationship among these failure detector classes and
show that class Ωk is the weakest among them to
solve k-set agreement. Ωk is an extension to leader
elector Ω, which has been shown to be the weakest
failure detector solving consensus [2]. A failure de-
tector in Ωk outputs a set of at most k processes, and
eventually all correct processes output the same set
of processes that contains at least one correct pro-
cess. However, it is shown in [14] that a majority of
correct processes is needed to solve k-set agreement
using Ωk.

In [7], Delporte-Gallet et.al. show that the above
majority requirement can be generalized to a quo-
rum failure detector Σ, which outputs a set of pro-
cesses called quorum such that: (Σ1) any two quo-
rums intersect; and (Σ2) eventually all quorums
contain only correct processes. Combining the re-
sult in [2], they show that Ω×Σ is the weakest class
of failure detectors solving consensus in any envi-
ronment.

Therefore, among the known failure detectors,

1In asynchronous systems with reliable channels, a correct
process that decides can send out its decision value to all pro-
cesses so that all correct processes eventually decide. There-
fore, our Termination property implies a different version that
requires all correct processes eventually decide.

Ωk×Σ is the weakest class of failure detectors solv-
ing k-set agreement in the message-passing model
when k > 1. Ωk was further conjectured in [17] to
be the weakest failure detector for k-set agreement
among all possible failure detectors in the shared-
memory model.

In k-set agreement when k > 1, since differ-
ent processes may decide on different values, it nat-
urally exhibits partition among processes based on
their decision values. In this paper, we propose a
new approach call the partition approach that effec-
tively weakens existing failure detectors by captur-
ing the partition nature of k-set agreement. Roughly
speaking, in the partition approach, failure detec-
tors partition the processes into multiple compo-
nents and only processes in one of the component
(called a live component) are required to satisfy all
safety and liveness properties, while processes in
other components only need to satisfy safety prop-
erties. The safety properties guarantee that collec-
tively all components decide on at most k differ-
ent values, while the liveness properties guarantee
that eventually some decision is made in the live
component. Since those processes in non-live com-
ponents may generate quite arbitrary failure detec-
tor outputs, intuitively the partitioned failure detec-
tors are weaker than existing ones that require both
safety and liveness on all processes.

By applying the partition approach to Ωk×Σ, we
propose two partitioned failure detectors Πk and ΠS

k

in asynchronous message passing systems, and show
that they are strong enough to solve k-set agreement
but are strictly weaker than Ωk × Σ.

To start, we select the failure detector class
Ω′′

k × Σ instead of Ωk × Σ as the basis of non-
partitioned failure detectors. In [5] we define Ω′′

k and
show that it is equivalent to Ωk. Failure detectors in
Ω′′

k outputs (isLeader, lbound), where isLeader is a
Boolean variable indicating whether a process itself
is a leader, and lbound is a number that estimates
the upper bound of the number of leaders in the sys-
tem (see Section 2 for its definition). The reason we
choose Ω′′

k instead of Ωk is because the outputs of
Ω′′

k do not refer to other processes as the case of Ωk,
so it is cleaner to extend it to the partitioned envi-
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Figure 1: Relationship lattices of paritioned failure detectors. All failure detector classes in the lattices can
be used to solve k-set agreement in their corresponding models.

ronment without worrying whether a failure detec-
tor output refers to processes in the same partitioned
component.

Our first step is to apply static partitions to
Ω′′

k × Σ, which leads to the definition of statically
partitioned failure detectors Πk (Section 3.1). Infor-
mally, processes are statically partitioned into multi-
ple components at the beginning of the run. Each
component Pi has a failure detector with all the
safety properties of Ω′′

ki
× Σ resticted to Pi. In par-

ticular, all quorum outputs are contained within Pi.
The sum of ki’s is at most k. Moreover, at least one
component Pj also satisfies all liveness properties
of Ω′′

kj
× Σ. The intuition behind is that with Πk

each component may decide at most ki values by
the safety requirement so together there are at most
k decisions, while at least one component can even-
tually decide by the liveness requirement.

Next we further weaken Πk by allowing dy-
namic splitting of components during the run. This
leads to the definition of ΠS

k , which we call split-
table partitioned failure detectors (Section 3.2). Its
definition is not entirely straightforward due to its
flexibility.

With the new families of failure detectors
{Πz}1≤z≤k, and {ΠS

z }1≤z≤k, we compare their
strengths with {Ω′′

z×Σ}1≤z≤k (Section 4). Based on
a siginificant amount of proof work, we summarize
their relationship in purely asynchronous model A

with a nice lattice structure shown in Figure 1 (a). In
the lattice, each arrow from class C1 to C2 represents
that C1 has enough information to be transformed
into C2 (i.e., C1 is at least as strong as C2), and if class
C1 has no directed path to class C2, there is no trans-
formation from C1 to C2. Several important results
are summarized by the lattice. First, as we expected
Πk weakens Ω′′

k × Σ while ΠS
k further weakens Πk.

Second, even failure detectors in Π2 with just two
components is not strong enough to be transformed
into Ω′′

k × Σ, and even failure detectors in ΠS
2 with

only one dynamic split is not strong enough to be
transformed into Πk. This shows that partitioning
and dynamic splitting are indeed efficient techniques
that weaken failure detectors. Third, for all z ≥ 2,
none of the classes Ω′′

z×Σ, Πz , and ΠS
z can be trans-

formed into Ω′′
z−1×Σ, Πz−1, or ΠS

z−1. In fact, using
a result in [14] we further show that Ω′′

z×Σ, Πz , and
ΠS

z are not strong enough to solve (z− 1)-set agree-
ment.

Furthermore, we look into stronger system mod-
els A[Σ], which are the asynchronous model A aug-
mented with quorum failure detector Σ. We would
like to see if adding a global quorum system Σ
would collapse the lattice structure. Surprisingly
we find out that when n ≥ 4k + 2, the same lat-
tice structure still holds (Figure 1 (b)) for A[Σ] (and
even the stronger A[Maj] in which a majority of pro-
cesses are correct). This means that static partition-
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ing and dynamic splitting still weaken the strength
of failure detectors in A[Σ] and A[Maj]. Our ex-
planation is that partitioning not only weakens the
global quorum systems but also weakens the leader
election part Ω′′

k. This is confirmed with additional
results in our paper not covered by the relationship
lattices. The direct implication is that, even in A[Σ]
or A[Maj], Ω′′

k (or Ωk) is not the weakest failure de-
tector class solving k-set agreement.

Finally, we show that all failure detector classes
in the relationship lattices can be used to solve k-set
agreement (Section 5). To do so, we provide an algo-
rithm using the weakest failure detector class ΠS

k in
the lattices and prove that it solves k-set agreement
in model A. The algorithm is a further extension to
the algorithm we presented in [5], which is an ex-
tension to the Paxos algorithm [11] to solve k-set
agreement with Ω′′

k in model A[Maj].
To summarize, our contributions are: (a) we pro-

pose the use of the partition approach to weaken fail-
ure detectors for k-set agreement, and define two
classes of failure detectors Πk and ΠS

k using this ap-
proach; (b) we fully characterize the relationship be-
tween Πk, ΠS

k and Ωk and prove that Πk is strictly
weaker than Ωk while ΠS

k is strictly weaker than
Πk, and we show that the same relationship holds
even in stronger models A[Σ] and A[Maj]; and (c)
we present an algorithm that solves k-set agreement
using the weakest failure detector class ΠS

k we de-
fined. Our results deepen the understanding of the
k-set agreement problem and its associated failure
detectors, and they contribute to the pursuit of the
weakest failure detectors for k-set agreement.

The partition approach is applicable to other fail-
ure detectors in other system model. In fact, in [4]
we apply the partition approach to discover a series
of new failure detectors in the shared memory model
that are even weaker than Υ, a recently proposed
failure detector in [8] that is the weakest one ever
found to solve any impossible decision task in the
shared-memory model before our work. We believe
that the partition approach opens a new dimension
to weaken failure detectors for k-set agreement, and
it is an effective test to check whether or not a fail-
ure detector is a weakest one for k-set agreement.

So far all candidates for the weakest failure detec-
tors including Ωk and Υ in both the message-passing
model and the shared-memory model have failed our
partition test.

Moreover, partitioned failure detectors match
the system environments that allow partitions and
thus can lead to potential implementations in real
systems. In Section 6, we discuss some of the fu-
ture directions of this work as our conclusion.

The main text of this report focuses on the def-
initions and explanations of the main results. All
detailed proofs of the results are included in the ap-
pendix.

2 Model

We consider asynchronous message passing dis-
tributed systems augmented with failure detectors.
Our formal model is the same as the model in [2].
We only provide informal description due to space
contraints.

We consider a system with n (n > k) processes
P = {p1, p2, . . . , pn}. Let T be the set of time val-
ues, which are non-negative integers. Processes do
not have access to the global time. A failure pat-
tern F is a function from T to 2P , such that F (t) is
the set of processes that have failed by time t. Let
correct(F ) denote the set of correct processes, those
that do not crash in F . A failure detector history H
is a function from P ×T to an output rangeR, such
that H(p, t) is the output of the failure detector mod-
ule of process p ∈ P at time t ∈ T . A failure detec-
tor D is a function from each failure pattern to a set
of failure detector histories, representing the possi-
ble failure detector outputs under failure pattern F .

We now define Ω′′
k, whose output is

(isLeader, lbound). We say that a process p is
an eventual leader if p is correct and there is a
time after which p’s isLeader outputs are always
True.2 Failure detectors in Ω′′

k satisfy the following
properties: (Ω′′1) the lbound outputs never exceed
k; (Ω′′2) eventually, the lbound outputs of all

2The definition of eventual leader also applies to the failure
detector classes Πk and Π

S
k defined later.
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processes do not change and are the same; (Ω′′3)
eventually the isLeader outputs on any correct
process do not change; (Ω′′4) there is at least one
eventual leader; and (Ω′′5) the number of eventual
leaders is eventually bounded by the lbound outputs.

Processes communicate with each other by send-
ing and receiving messages over communication
channels, which are available between every pair of
processes. Channels are reliable in that it does not
create or duplicate messages, and any message sent
to any correct process is eventually received.

A deterministic algorithm A using a failure de-
tector D executes by taking steps. In each step, a
process p first receives a message (it could be a null
message), queries its failure detector module, then
changes its local state and sends out a finite number
of messages to other processes. Each step is com-
pleted at one time point t, but the process may crash
in the middle of taking its step. A run of algorithm
A with failure detector D is an infinite sequence of
steps such that (a) every correct process takes an in-
finite number of steps, and (b) every message sent to
a correct process is eventually received.

We say that a failure detector class C1 is weaker
than a failure detector class C2 in a model M, if
there is a transformation algorithm T in model M
such that using any failure detector in C2, algorithm
T implements a failure detector in C1. In this case,
we denote it as C1 � C2 and also refer to it as C2
can be transformed into C1. We say that C1 is strictly
weaker than C2 if C1 � C2 and C2 6� C1. We say that
C1 and C2 are equivalent if C1 � C2 and C2 � C1.

We consider three asynchronous system models.
In the purely asynchronous model A, there is no
bound on the delay of messages and the delay be-
tween steps that a process takes. Model A[Σ] is A
added with Σ, and model A[Maj] is A with the re-
quirement that a majority of processes are correct. It
is straightforward to see that A[Maj] is stronger than
A[Σ] in that Σ can be implemented in A[Maj].

3 Specification of Partitioned Fail-
ure Detectors

In this section, we present the formal specifications
of two new classes of failure detectors Πk and ΠS

k ,
both of which are based on the idea of process par-
tition. We also explain the intuitions behind their
definitions.

3.1 Statically partitioned failure detectors
Πk

The statically partitioned failure detectors Πk for-
malize the idea of static partitions. The output of
a failure detector D in Πk for process p is a tu-
ple (isLeader, lbound, Quorum), where isLeader is
a Boolean value indicating whether this process is
a leader, lbound is a non-negative integer indicating
the upper bound on the number of possible leaders
in p’s partitioned component, and Quorum ⊆ P .

A partition of P is {P1, . . . , Ps}, where s ≥
1 and Pi’s are non-empty subsets of P such that
they do not intersect with one another and their
union is P . For a process p, we use P [p] to
denote the partitioned component that contains p.
For a component Pj ⊆ P , a failure pattern
F and a failure detector history H , we define
lbound(Pj , F,H) = max{H(p, t).lbound | t ∈
T , p ∈ Pj \ F (t)},3 and Leaders(Pj , F,H) = {p ∈
Pj ∩ correct(F ) | ∃t,∀t′ > t,H(p, t′).isLeader =
True}. We usually use lbound(Pj) and Leaders(Pj)
and omit F and H since they are clear from the
context. The value lbound(Pj) is the maximum
lbound value among processes in component Pj ,
while Leaders(Pj) is the set of eventual leaders in
Pj .

A failure detector D is in the class Πk if for
any failure pattern F and any failure detector his-
tory H ∈ D(F ), there exists a partition of P ,
{P1, . . . , Ps}, such that H satisfies the following set
of safety and liveness properties. The safety proper-
ties are:

(ΠΣ1) The quorum output of a process p is al-

3As a convention, max ∅ = 0.



MSR-TR-2007-49 5

ways contained within p’s partitioned com-
ponent. Formally, ∀t ∈ T ,∀p 6∈
F (t),H(p, t).Quorum ⊆ P [p].

(ΠΣ2) The quorum outputs in the same
partitioned component always inter-
sect. Formally, ∀t1, t2 ∈ T ,∀p1 6∈
F (t1),∀p2 6∈ F (t2), P [p1] = P [p2] ⇒
H(p1, t1).Quorum ∩H(p2, t2).Quorum 6= ∅.

(ΠΩ1) The sum of the maximum lbound outputs in
all partitioned components does not exceed k.
Formally,

∑s
j=1 lbound(Pj) ≤ k.

The liveness part specifies that there exists one par-
titioned component Pj such that:

(ΠΣ3) Eventually the quorum outputs by all pro-
cesses in Pj contain only correct processes.
Formally ∃t0 ∈ T ,∀t ≥ t0,∀p ∈ Pj \
F (t),H(p, t).Quorum ⊆ correct(F ).

(ΠΩ2) Eventually lbound outputs by all processes
in Pj are the same. Formally, ∃t0 ∈
T ,∀t1, t2 ≥ t0,∀p1 ∈ Pj \ F (t1),∀p2 ∈ Pj \
F (t2),H(p1, t1).lbound = H(p2, t2).lbound.

(ΠΩ3) Eventually the isLeader outputs on any cor-
rect process in Pj do not change. For-
mally, ∃t0 ∈ T ,∀t > t0,∀p ∈ Pj \
F (t),H(p, t).isLeader = H(p, t0).isLeader.

(ΠΩ4) There is at least one eventual leader. For-
mally, |Leaders(Pj)| ≥ 1.

(ΠΩ5) The number of eventual leaders is eventu-
ally bounded by the lbound outputs. For-
mally, ∃t0 ∈ T ,∀t ≥ t0, |Leaders(Pj)| ≤
H(p, t).lbound.

We call a component that satisfies the liveness
properties (ΠΣ3, ΠΩ2–5) a live component, and
other components non-live components. A live com-
ponent must have at least one correct process by
(ΠΩ4), but a non-live component may not have any
correct processes.

We now provide some intuition behind the def-
inition by explaining (a) why intuitively failure de-
tectors in Πk can help solving k-set agreement; and
(b) why Πk may be strictly weaker than Ω′′

k × Σ.
First, from properties (ΠΣ1) and (ΠΣ2), pro-

cesses in one component can easily isolate them-
selves from other components by checking if their

Quorum outputs intersect. Second, if we look at one
live component Pj , the properties on this component
match the definition of Ω′′

kj
×Σ restricted to Pj , with

kj = lbound(Pj). One implication is that if we have
only one component, Πk is reduced to Ω′′

k × Σ. A
more general implication is that if we are able to run
a set agreement algorithm in isolation in component
Pj , eventually some correct process will decide and
the liveness of k-set agreement is guaranteed. Third,
every component Pi satisfies safety properties that
match to Ω′′

ki
×Σ with ki = lbound(Pi). Thus if we

are able to run a set agreement algorithm in isolation
on Pi, it should not have more than ki decisions. Fi-
nally, by property (ΠΩ1), we know that if we run
the algorithm in parallel on all components, then we
have at most k decisions, and thus the safety prop-
erty of k-set agreement is guaranteed.

Class Πk is strictly weaker than Ω′′
k×Σ with the

following intuitive reasons. First, because of its par-
tition properties (ΠΣ1–2) it does not have enough
information to construct a global quorum system re-
quired by Σ. Second, those non-live components
are free to have more eventual leaders than their
lbound values. Therefore, Πk does not have enough
information either to construct a failure detector in
Ω′′

k, which requires that the total number of eventual
leaders among all processes be at most k.

One additional remark is that the lbound values
of an entire component could always be 0, which im-
plies that the component is passive and cannot make
any decision by itself.

3.2 Splittable partitioned failure detectors
ΠS

k

For a statically partitioned failure detector in Πk, a
partition is always fixed throughout a run. In this
section, we relax this restriction and define a class
of splittable partitioned failure detectors ΠS

k . Gener-
ally, ΠS

k allows a partition to be split further during a
run, which both weakens Πk and makes it more real-
istic for practical scenarios. We first define partition
tree and partition split history, which represent the
partition splitting process, and then provide the full
specification of ΠS

k .
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A tree is a common data structure, with its as-
sociated concepts such as root, nodes, parent nodes,
child nodes, ancestors, descendants, leaf nodes, in-
ternal nodes, etc. A partition tree Γ of processes P
is a tree structure that satisfies the following proper-
ties: (a) each node of Γ is a non-empty subset of P ;
(b) root of Γ is P ; (c) for any node N and its children
N1, . . . , Ns with s ≥ 1, {N1, . . . , Ns} is a partition
of N . Whenever it is clear, we do not distinguish the
node of tree Γ and the partitioned component asso-
ciated with the node. Let N(Γ) be the set of nodes
and L(Γ) be the set of leaf nodes in Γ.

A partition split history based on a partition tree
Γ is a function S : P × T → N(Γ). Informally,
S(p, t) denote the tree node that p belongs to at time
t. Formally, function S satisfies (a) for all p ∈ P
and all t ∈ T , p ∈ S(p, t); (b) for all p ∈ P and
t, t′ ∈ T with t < t′, either S(p, t) = S(p, t′) or
S(p, t) is an ancester of S(p, t′); (c) for all p ∈ P ,
there exists a time t such that for all t′ > t, S(p, t′)
is a leaf node. Note that we allow p to skip some of
the internal nodes in the partition split history. This
allows our definition to include static partitions as a
special case.

The output of a failure detector in class ΠS
k

is a tuple (isLeader, lbound, Quorum, cid). Among
them, the isLeader, lbound and Quorum outputs
have the same value ranges and same informal
meanings as the corresponding outputs in Πk. The
new output cid is an identifier representing the cur-
rent component of a process. Instead of using unique
numerical IDs for different components in the parti-
tion tree, we generalize it as follows so that we can
generate node IDs for statically partitioned failure
detectors. The values of cid are drawn from a node
ID set N . Set N is associated with a relation ≡.
Informally, we require that in any run, cid together
with the ≡ relation can distinguish components in
the partition tree of the run. For any component
Pj in the partition tree Γ, we define lbound(Pj) and
Leaders(Pj) in the same way as in Section 3.1.

A failure detector D is in the class ΠS
k if for

any failure pattern F and any failure detector history
H ∈ D(F ), there exists a partition tree Γ and a parti-
tion split history S based on Γ, such that H satisfies

the following set of safety and liveness properties.
The safety properties are:

(ΠSΣ1) The quorum output of a process p is
always contained within p’s current com-
ponent. Formally, ∀t ∈ T ,∀p 6∈
F (t),H(p, t).Quorum ⊆ S(p, t).

(ΠSΣ2) The quorum outputs of two processes in-
tersect if their current components intersect.
Formally, ∀t1, t2 ∈ T ,∀p1 6∈ F (t1),∀p2 6∈
F (t2), S(p1, t1) ∩ S(p2, t2) 6= ∅ ⇒
H(p1, t1).Quorum ∩H(p2, t2).Quorum 6= ∅.

(ΠSΩ1) The sum (taken among all leaf nodes) of
the maximum lbound outputs (taken among
processes in one leaf node) does not exceed
k. Formally,

∑
Pi∈L(Γ) lbound(Pi) ≤ k.

(ΠSC1) The cid outputs together with the ≡ rela-
tion can distinguish different components in
the tree Γ. Formally, ∀t1, t2 ∈ T ,∀p1 6∈
F (t1),∀p2 6∈ F (t2),H(p1, t1).cid ≡
H(p2, t2).cid⇔ S(p1, t1) = S(p2, t2).

The liveness part specifies that there exists one leaf
node component Pj such that:

(ΠSΣ3) Eventually the quorum outputs by all pro-
cesses in Pj contain only correct processes.
Formally, ∃t0 ∈ T ,∀t ≥ t0,∀p ∈ Pj \
F (t),H(p, t).Quorum ⊆ correct(F ).

(ΠSΩ2) Eventually lbound outputs by all processes
in Pj are the same. Formally, ∃t0 ∈
T ,∀t1, t2 ≥ t0,∀p1 ∈ Pj \ F (t1),∀p2 ∈ Pj \
F (t2),H(p1, t1).lbound = H(p2, t2).lbound.

(ΠSΩ3) Eventually the isLeader outputs on any
correct process in Pj do not change. For-
mally, ∃t0 ∈ T ,∀t > t0,∀p ∈ Pj \
F (t),H(p, t).isLeader = H(p, t0).isLeader.

(ΠSΩ4) There is at least one eventual leader. For-
mally, |Leaders(Pj)| ≥ 1.

(ΠSΩ5) The number of eventual leaders is even-
tually bounded by the lbound outputs. For-
mally, ∃t0 ∈ T ,∀t ≥ t0,∀p ∈ Pj \
F (t), |Leaders(Pj)| ≤ H(p, t).lbound.

The leaf node components that satisfy all the
liveness properties are called live components. We
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say that failure detector output H(p, t) appears in
a node N if S(p, t) = N . Note that the liveness
properties have exactly the same statement as those
for the statically partitioned failure detectors. The
safety properties have some differences that are fur-
ther explained below.

First, for property (ΠSΣ2), it requires that any
Quorum output appearing in node N intersect with
all Quorum outputs appearing in N ’s ancestors. This
property is important to k-set agreement algorithms
to ensure a kind of inheritance of decision values
from ancestor nodes. In Section 6 we sketch a pro-
posal on how to achieve this property.

Second, for property (ΠSΩ1), we want to em-
phasize that the maximum lbound value for a leaf
component Pi is taken among all lbound values in
the entire history of all processes in Pi, not just
among the lbound values appearing in leaf node Pi.
This is another important property to guarantee that
the number of possible decisions of a k-set agree-
ment algorithm does not exceed k.

Finally, for property (ΠSC1), it says that the
component ID cid contains enough information to
distinguish two components, but cid may not pro-
vide other information about components, such as
whether one component is an ancestor of the other
component.

It is much less intuitive why ΠS
k still ensures the

solvability of k-set agreement. Indeed, the algorithm
provided in Section 5 has several subtle points and
its proof is much more complicated because of the
dynamic splitting of partitions. As for the strength of
ΠS

k comparing to Πk, intuitively ΠS
k is more flexible

so it should be strictly weaker.

4 Relationship Lattices of Parti-
tioned Failure Detectors

In this section, we characterize the strength of the
partitioned failure detectors. In particular, we put the
three families of failure detectors, {Ω′′

z × Σ}1≤z≤k,
{Πz}1≤z≤k, {ΠS

z }1≤z≤k, into two relationship lat-
tices depicted in Figure 1: one for model A, and the
other for models A[Σ] and A[Maj]. We show two

types of results: (a) all arrows in the lattice diagrams
indeed correspond to possible transformations; and
(b) all directed paths not existing in the lattice dia-
grams indeed correspond to impossible transforma-
tions. The results, especially the proofs, which for
some theorems are quite technically involved, pro-
vide precise explanations and insights on why the
lattice structures hold, and they match the intuitions
explained in the previous section.

4.1 Possible transformations

All possible transformations in the relationship lat-
tices are relatively easy to show, and are covered by
the following theorem.

Theorem 1 The following results hold in models A,
A[Σ] and A[Maj]:
(1) For all k ≥ 2, Ω′′

k×Σ � Ω′′
k−1×Σ, Πk � Πk−1,

and ΠS
k � ΠS

k−1.
(2) For all k ≥ 1, Πk � Ω′′

k × Σ.
(3) For all k ≥ 1, ΠS

k � Πk.
(4) Ω′′

1 × Σ, Π1 and ΠS
1 are equivalent.

Part (1) is true by mere definition. Part (2) is
true because Ω′′

k × Σ can be viewed as Πk with P
as a single component in a static partition. Part (3)
is true because when we use the quorum outputs of
Πk as the cid outputs in ΠS

k and define relation ≡
as two quorums intersecting, a static partition can be
shown as a special case of splittable partition. Fi-
nally, for part (4), in Π1 or ΠS

1 , only one component
has lbound = 1 (so it is a live component) and all
other components must have lbound = 0, and thus
processes can use the outputs of the only live com-
ponent as the outputs in Ω′′

1 × Σ.
For models A[Σ] and A[Maj], we need to know

the strength of the models. In particular, we would
like to know whether Σ can be used to implement
Ω′′

k, and in what situation it can be done. This is cov-
ered by the following theorem, which is an extension
to a result in [6] that covers the case of k = 1.

Theorem 2 When n ≤ 2k, Σ can be transformed
into Ω′′

k, or equivalently, Ω′′
k can be implemented in

A[Σ] and A[Maj].
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When n > 2k, Σ cannot be transformed into Ω′′
k,

Πk or ΠS
k . This is a consequence of Theorem 7 (1).

4.2 Impossible transformations in model A

For the impossible transformations in model A, we
need to show that there is no transformation from
class C1 to class C2 if there is no directed path from
C1 to C2 in the lattice diagram of Figure 1 (a). Show-
ing all these impossible transformations would be
tedious, but fortunately with Theorem 1, all impos-
sible transformations are covered by the following
critical impossible transformations: (a) Π2 cannot
be transformed into Ω′′

k ×Σ, i.e., Π2 6� Ω′′
k × Σ; (b)

ΠS
2 6� Πk; and (c) Ω′′

k × Σ 6� ΠS
k−1 for k ≥ 2.

The reason is based on the following important
fact: If C1 6� C2, C1 � C3, and C4 � C2, then C3 6�
C4. So, for example if we know Π2 6� Ω′′

k × Σ, then
we know that for any Πy and ΠS

y with y ≥ 2 and
any Ω′′

z × Σ with z ≤ k, we have Πy 6� Ω′′
z × Σ

and ΠS
y 6� Ω′′

z × Σ, because Π2 � Πy � ΠS
y and

Ω′′
z × Σ � Ω′′

k ×Σ. Our results in this section focus
on these critical impossible transformations.

We first study the relation between Π2 and Ω′′
k×

Σ. The following theorem shows that Π2 cannot be
transformed into Σ.

Theorem 3 Π2 cannot be transformed into Σ in
model A.

The proof of this theorem is relatively easy. The
main idea is that, assuming the existence of a trans-
formation from Π2 to Σ, we can have two partitioned
components by the definition of Π2, and we isolate
the two components long enough to force processes
in each component to generate Quorum outputs of
Σ that are contained within each component. This
contradicts the property of Σ that requires any two
Quorum outputs intersect. It reflects the intuition
that partitioning (even with only two components)
weakens the global quorum requirement.

Theorem 3 is enough to show that Π2 cannot be
transformed into Ω′′

k × Σ. However, to understand
the strength of Πk, we are still interested in knowing
if Πk (or ΠS

k ) can be transformed into Ω′′
k′ in model

A. The following theorem completely characterizes

the transformability from Πk or ΠS
k to Ω′′

k′ in model
A.

Theorem 4 In model A, for any k ≥ 2, Πk (or ΠS
k )

can be transformed into Ω′′
k′ if and only if k′ ≥ k

and n ≤ 2k′ − k + 1.

This is an important theorem showing that parti-
tioning not only weakens the global quorum require-
ment of Σ, but in most cases it also weakens the
leader election part of Ω′′

k. To prove the only-in part,
we construct a failure detector in Πk with k parti-
tioned components, such that k − 1 of them are sin-
gleton and live components while the only big com-
ponent is non-live. If a transformation exists when
k′ < k or n > 2k′−k+1, by isolating each compo-
nent, we can force the k − 1 singleton components
to generate k − 1 eventual leaders in Ω′′

k′ , then we
can manipulate the big non-live component to force
it to generate at least k′ − k + 2 eventual leaders,
which violates the requirement of at most k ′ even-
tual leaders of Ω′′

k′ . The proof of the if part uses the
transformation technique in Theorem 2.

We now compare the strength of splittable par-
titioned failure detectors to the statically partitioned
failure detectors. The following theorem shows the
critical impossible transformation from ΠS

2 to Πk,
which indicates that even one dynamic splitting is
enough to weaken the failure detectors.

Theorem 5 ΠS
2 cannot be transformed into Πk in

model A.

The idea of the proof is that, assuming the exis-
tence of a transformation algorithm T , for the fail-
ure detector in ΠS

2 , we do not partition first but let T
run and check the Quorum outputs of Πk to see how
it partitions. If there is a component with multiple
processes, then in ΠS

2 we split that component into
two and isolate them so that their Quorum outputs of
Πk do not intersect, which contradicts to (ΠΣ2) of
Πk. For the other case when all components of Πk

contain only one process, we can suppress each live
component one by one to force the outputs of Πk to
have at least k + 1 components with lbound ≥ 1,
which contradicts to (ΠΩ1).
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We now compare the strength of Ω′′
k × Σ, Πk,

and ΠS
k to Ω′′

k−1 × Σ, Πk−1, and ΠS
k−1. The follow-

ing theorem compares their strength by their abil-
ity of solving (k − 1)-set agreement, based on a re-
sult in [14], which shows that in model A[Maj] with
n > 2k, if class Ωz can be used to solve k-set agree-
ment, then z ≤ k.

Theorem 6 For any k ≥ 2 and any n ≥ 2k − 1,
failure detector classes Ω′′

k ×Σ, Πk, and ΠS
k cannot

be used to solve (k − 1)-set agreement in model A.
Together with Theorem 11, this implies that classes
Ω′′

k × Σ, Πk, and ΠS
k cannot be transformed into

classes Ω′′
k−1 × Σ, Πk−1, and ΠS

k−1.

Note that the condition n ≥ 2k − 1 is tight,
because when n ≤ 2k − 2, by Theorem 2 Σ it-
self can implement Ω′′

k−1 and thus solves (k − 1)-
set agreement. We also have direct proofs to show
the strength of Ω′′

k ×Σ, Πk, and ΠS
k comparing with

Ω′′
k−1 × Σ, Πk−1, and ΠS

k−1. In particular, we have
new results showing that n ≥ 2k − 1 is not needed
to show that Πk and ΠS

k cannot be transformed into
Πk−1 and ΠS

k−1.

Theorem 7 In model A, when k ≥ 2, we have
(1) for any n ≥ 2k − 1, Ω′′

k × Σ cannot be trans-
formed into ΠS

k−1; and
(2) for any n > k, Πk cannot be transformed into
ΠS

k−1.

The proof of (1) has an important technique used
in later proofs such as that of Theorem 10.

By now, we have obtained a complete character-
ization of the relationship lattice for the partitioned
failure detector in modelA, as shown in Figure 1 (a).
From the theorems and their proofs, we understand
that static partitions (even with just two components)
weaken both Σ and Ω′′

k (in most cases), and dynamic
splitting of partitions (even once) further weakens
failure detectors.

4.3 Impossible transformations in models
A[Σ] and A[Maj]

We now study the relationship of partitioned failure
detectors in models A[Σ] and A[Maj]. As explained

in the introduction, we would like to see if adding Σ
or the majority requirement would reverse the effect
of partitioning and collapse the relationship lattice.
Our results in this section show that it is not the case.

By Theorem 2, we know that in model A[Σ] and
A[Maj], Ω′′

k can be implemented if n ≤ 2k. So, we
only investigate the cases when n > 2k. The follow-
ing theorem compares Ω′′

k, Πk, and ΠS
k with Ω′′

k−1,
Πk−1, and ΠS

k−1, and it is a direct consequence of
Theorem 6 and 7 (1).

Theorem 8 When n ≥ 2k − 1, Ω′′
k, Πk, and ΠS

k

cannot solve (k − 1)-set agreement and cannot be
transformed into Ω′′

k−1, Πk−1, and ΠS
k−1 in models

A[Σ] and A[Maj].

We now compare the strengths of families
{Ω′′

z}2≤z≤k, {Πz}2≤z≤k, and {ΠS
z }2≤z≤k.

Theorem 9 When n ≥ 4k + 2, Π2 cannot be trans-
formed into Ω′′

k in model A[Σ] or A[Maj].

The basic idea to prove this theorem is again
manipulating the non-live component allowed by
Π2 to cause the transformation algorithm generat-
ing more leaders than required by Ω′′

k. The com-
plication comes when we need to comply with the
model A[Σ] or A[Maj]. This is where the condition
n ≥ 4k + 2 is used to allow both the construction
of a global majority quorum and our manipulation
to generate extra leaders.

Theorem 10 When n ≥ 4k+2, ΠS
2 cannot be trans-

formed into Πk in model A[Σ] or A[Maj].

The proof of this theorem is the most compli-
cated among the proofs in this section. It combines
the techniques used in the proofs of several theo-
rems, in particular Theorems 5, 7 (1), and 9.

With the last two theorems, we now have a
complete characterization of the relationship lattice
for partitioned failure detectors in models A[Σ] and
A[Maj] when n ≥ 4k + 2, as shown in Figure 1
(b). One open problem left is what happens when
2k+1 ≤ n ≤ 4k+1. This could be the limited case
when Σ does collapse the relationship lattice.
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On proposer p with unique id i ∈ {1, . . . , n}:

Proposer input and state variables:
1 proposal : the initial proposal value, read-only
2 (isLeader, lbound, Quorum, cid): output of ΠS

k
,

read-only
3 p round: current round number, initially i
4 p Rounds: top n rounds that p sees, initially {i}
5 p cid: current cid, initially 0
6 taskid: unique id for each task, initially 0
7 incflag: flag to increase p round, initially False

Run periodically if not decided yet
8 if isLeader and no task 1 running then
9 taskid← taskid + 1
10 if p round 6∈ top(p Rounds, lbound)

or incflag then
11 p round← p round + t · n such that

p round + t · n > max p Rounds
12 p Rounds← p Rounds∪n {p round}
13 incflag← False; p cid← cid
14 start task 1

Figure 2: Part I of k-set agreement algorithm using
ΠS

k : proposer thread, task driver.

5 Algorithm for k-set agreement us-
ing ΠS

k

In [5] we already presented an extension of the
Paxos algorithm [11] to solve k-set agreement in
model A[Maj] with failure detectors in Ω′′

k. The al-
gorithm presented in Figures 2–4 is a further exten-
sion to use failure detectors in ΠS

k . We use similar
terminologies as in the Paxos algorithm summarized
in [12]. Each process behaves both as a proposer
and an acceptor.4 As with the Paxos algorithm, each
proposer’s round has two phases. In the first phase,
the preparation phase (lines 15–25), the proposer
p sends a PREPARE message to all acceptors, and
collects the responses from a quorum of acceptors.
Based on the responses, it selects a new estimate est
to the decision value. In the second phase, the ac-
ceptance phase (lines 26–35), p sends an ACCEPT

4We can also allow proposers and acceptors to be separate
entities, but in this case we need to adjust our failure detector
definition such that the leader-related properties refer to pro-
posers while the quorum-related properties refer to acceptors.

Task 1: a new round of p

15 send (PREPARE, p round, p Rounds, lbound,
p cid, taskid) to all acceptors

16 repeat periodically
17 p Quorum← Quorum
18 until p Quorum ⊆ {q| received ACK-PREP or

NACK-PREP message with taskid from q}
or p cid 6≡ cid

19 M1 ← {(ACK-PREP, R, TS, v, around, taskid)
received from acceptors in p Quorum}

20 M2 ← {(NACK-PREP, R, taskid) received
from acceptors in p Quorum}

21 p Rounds← p Rounds ∪n (
⋃

m∈M1∪M2
m.R)

22 if (1) M2 6= ∅ or (2) some received R’s in M1

are different or (3) p cid 6≡ cid then
23 stop this task
24 if ∀m ∈M1, m.v = ⊥ then est← proposal

25 else est← m.v with m ∈M1 such that m.TS is
the highest based on �n, and m.around is the
highest among m′ ∈M1 with m′.TS = m.TS

26 send (ACCEPT, est , p round, p Rounds, p cid,
taskid) to all acceptors

27 repeat periodically
28 p Quorum← Quorum
29 until p Quorum ⊆ {q| received ACK-ACC or

NACK-ACC message with taskid from q}
or p cid 6≡ cid

30 if p cid 6≡ cid then incflag← True; stop this task
31 else if received (NACK-ACC, R, taskid) from an

acceptor in p Quorum then
32 if R = ⊥ then incflag← True
33 else p Rounds← p Rounds ∪n R
34 stop this task
35 decide(est)

Figure 3: Part II of k-set agreement algorithm using
ΠS

k : proposer thread, task for one round.

message with the new estimate est to all acceptors.
If p receives ACK-ACC responses from a quorum of
acceptors, then it decides on est; otherwise it will
start a new round.

To solve k-set agreement, we first use the ex-
tension in [5] to allow an acceptor q to accept mul-
tiple rounds instead of a single round. To sup-
port this, we first define top(R,m), ∪m, and �m,
where top(R,m) is a function returning the m high-
est round numbers in R, ∪m is an operator such
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On acceptor q (an acceptor is also a proposer):

Acceptor input and state variables:
36 a cid: cid output of ΠS

k
, read-only

37 a Rounds: top n rounds that q sees, initially ∅
38 a est: estimate of the final value, initially ⊥
39 a TS: top n rounds that q sees when q accepts a

value, initially ∅
40 a round: estimate of the final round number,

initially 0

41 Upon receipt of (PREPARE, r, R, lb, pcid, taskid)
from p

42 if a cid 6≡ pcid then
send (NACK-PREP, ∅, taskid) to p

43 else
44 a Rounds← a Rounds∪n R
45 if r 6∈ top(a Rounds, lb) then send

(NACK-PREP, a Rounds, taskid) to p
46 else send (ACK-PREP, a Rounds, a TS,

a est, a round, taskid) to p

47 Upon receipt of
(ACCEPT, v, pround, R, pcid, taskid) from p

48 if a cid 6≡ pcid then
send (NACK-ACC,⊥, taskid) to p

49 else
50 a Rounds← a Rounds∪n R
51 if R 6= a Rounds then send

(NACK-ACC, a Rounds, taskid) to p
52 else
53 (a est, a TS, a round)← (v, R, pround)
54 send (ACK-ACC, taskid) to p

Figure 4: Part III of k-set agreement algorithm using
ΠS

k : acceptor thread.

that R1 ∪m R2 = top(R1 ∪ R2,m), and �m is a
partial order such that R1 �m R2 if and only if
R1 ∪m R2 = R2. We then have proposers and ac-
ceptors maintain variables p Rounds and a Rounds
respectively, which is a set of at most n round num-
bers. They exchange their p Rounds and a Rounds
values and merge them using ∪n so that their values
eventually converge (lines 21, 33, 44, and 50).

One key point is that acceptor q only accepts
rounds in top(a Rounds, lbound), where lbound is
the failure detector output of a proposer (line 45).
The second key point is that proposer p only se-
lects a new value v as its est value with the high-

est TS value based on the order �n (line 25), where
TS is the a Rounds value when an acceptor accepts
the value v (line 53). We can show that �n among
these TS is a total order because of the quorum in-
tersection guarantee, and thus p can always select
a v with the highest TS in line 25. In [5], these
two points are enough to guarantee the Uniform k-
Agreement property (deciding at most k values) in
model A[Maj] with Ω′′

k. For liveness, eventually
only the leaders may start a new round (line 8), and
they make sure that the new round number p round
is in top(p Rounds, lbound) (lines 10–12). More de-
tails are covered in [5].

To use failure detectors in ΠS
k , we further in-

clude the following additions. First, we use Quorum
outputs of ΠS

k as the stopping condition of each
phase of a proposer instead of the majority condition
(lines 16–18, 27–29). Second, we use the cid output
of ΠS

k to ensure that proposer p and its related ac-
ceptors always work in the same partitioned compo-
nent during one round of the proposer (lines 22, 30,
42, and 48). If the proposer or an acceptor moves
to a new component (because of partition splitting),
the proposer stops its current round. This leads to a
subtle scenario when a proposer may enter two ac-
ceptance phases with the same (p round, p Rounds)
pair because of its cid changes. This scenario may
lead to more than k decision values, so it should be
avoided. We use a Boolean variable incflag to guar-
antee that whenever an acceptance phase is stopped
because of a cid change, the next acceptance phase
must have a higher p round value. Third, in line 25
when proposer p selects a new est value, it needs to
make sure that among the highest TS values, it se-
lects one with the highest around value. This is to
avoid another subtle scenario that might lead to the
violation of the Uniform k-Agreement property.

The following theorem summarizes the correct-
ness of the algorithm with a complete proof in the
appendix.

Theorem 11 The algorithm in Figures 2, 3 and 4
solves the k-set agreement problem with any failure
detector in ΠS

k .

The proof of the Uniform k-Agreement property
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is complicated due to the dynamic splitting of the
failure detectors in ΠS

k . The key idea is as follows.
We consider successful acceptance phases, those ac-
ceptance phases in which the proposer decides. Due
to the checking of cid, each successful acceptance
phase runs in a particular node of the partition tree.
We define critical nodes to be those nodes that have
successful acceptance phases but their ancestors do
not have any successful acceptance phases. By def-
inition, critical nodes do not intersect with one an-
other. Since every decision value occurs in some
successful acceptance phase, which runs in some
node, we can say that every decision value occurs in
a subtree rooted at some critical node. The key proof
is to show that for any critical node Pj , there are at
most lbound(Pj) decision values occur in the sub-
tree rooted at Pj . This proof is by tracing back each
decision value in a similar way as the proof of non-
partitioned algorithm in [5], but is more complicated
due to the dynamic partitioning. Once this result is
established, it is easy to apply property (ΠSΩ1) to
show that there are at most k decision values in the
run.

6 Future Work

There are several directions we plan to take for our
future work. First, we will look into the implemen-
tation of partitioned failure detectors in weak system
environments such as partitionable systems. This
will help us understand the weak conditions that the
k-set agreement requires. One difficult property to
implement is (ΠSΣ2), which requires that any quo-
rum intersect with all quorums that appear in its an-
cestor nodes. For this property, we have the follow-
ing proposal as an example. Suppose n = m2 pro-
cesses are arranged (virtually) into an m×m grid. A
quorum system can be designed such that the union
of any one row and any one column is a quorum.
Then if the split only occurs at the row boundaries,
we can see that the row section of a quorum in a
component after a split always intersects with the
column sections of all quorums of all its ancestors.

Second, there are opportunities to further
weaken the failure detectors. For example, property

(ΠSΣ2) may be weakened, and cid outputs may not
be necessary. Another possibility is to allow compo-
nent merges on top of splitting, but it could be much
more complicated.

The partition approach is a general one that we
have shown in this paper and in [4] to be effective in
weakening a number of failure detectors. One may
also look into defining it as a general operator on
failure detectors and study the properties of partition
operators.
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Appendix

A Proofs of Theorems related to the
Relationship Lattices

Theorem 1 The following results hold in models
A, A[Σ] and A[Maj]:
(1) For all k ≥ 2, Ω′′

k×Σ � Ω′′
k−1×Σ, Πk � Πk−1,

and ΠS
k � ΠS

k−1.
(2) For all k ≥ 1, Πk � Ω′′

k × Σ.
(3) For all k ≥ 1, ΠS

k � Πk.
(4) Ω′′

1 × Σ, Π1 and ΠS
1 are equivalent.

Proof. Obviously showing the results in model A is
enough. Part (1) holds directly by the definitions of
the failure detector classes. Part (2) holds because a
failure detector in Ω′′

k × Σ can be viewed as a fail-
ure detector in Πk with the full process set P as the
single component in the static partition.

For Part (3), we need to construct a transforma-
tion from Πk to ΠS

k . We use the same output of Πk

as the output of ΠS
k , and the only additional output

to take care of is cid in ΠS
k . For this output, we use

the Quorum output values of Πk as the cid output
values. This means the range of cid is 2P , the set
of all subsets of P , and the ≡ relation is defined as
A ≡ B if and only if A ∩ B 6= ∅. For each run of
the algorithm T with a failure detector in Πk, there
is a static partition {P1, . . . , Ps} by the definition of
Πk. We can define a partition tree and a partition
split history to match this static partition: a partition
tree Γ has the root P with its s children P1, . . . , Ps

as the leaf nodes, and the partition split history S is
such that S(p, t) = Pj for all t ∈ T , all p ∈ Pj , and
all j = 1, . . . , s. With the above construction, it is
straightforward to verify that algorithm T generates
outputs of a failure detector that satisfy all properties
of ΠS

k . Therefore, ΠS
k � Πk for all k ≥ 1.

Finally we prove Part (4). From (2) and
(3), we only need to show that ΠS

1 can be trans-
formed into Ω′′

k × Σ by a transformation algo-
rithm T . Let (isLeader, lbound, Quorum, cid) de-
note the output of a failure detector D in ΠS

1 , and
(isLeader′, lbound′, Quorum′) denote the output of a
failure detector D′ in Ω′′

k×Σ generated by algorithm

T . By the definition of ΠS
1 , we know that in any run

R, there exists a leaf component Pj such that even-
tually all correct processes in Pj have lbound = 1,
exactly one correct process pj ∈ Pj is an even-
tual leader, all other processes q 6∈ Pj always have
lbound = 0, any two Quorum outputs by processes
in Pj intersect, and eventually Quorum outputs of
processes in Pj contain only correct processes.

Algorithm T works as follows. For the lbound ′

output of D′, T always sets it to 1, which satisfies
properties (Ω′′1) and (Ω′′2) of Ω′′

1 (see page 3 for
property definitions). For the isLeader′ output of D′

on a process p, T sets it to False if the lbound out-
put on p is 0, otherwise T sets it to isLeader. So all
processes not in Pj always have isLeader′ = False.
Since eventually lbound values and isLeader val-
ues of processes in Pj do not change, we know
that eventually isLeader′ outputs will not change, so
(Ω′′3) is satisfied. Since no process outside Pj could
be an eventual leader (w.r.t. isLeader′), eventually
isLeader′ outputs of processes in Pj are the same
as isLeader outputs. We know that there is exactly
one eventual leader (w.r.t. isLeader′), so (Ω′′4) and
(Ω′′5) of Ω′′

1 hold. Therefore, T generates a failure
detector in Ω′′

k.
Finally, we need to generate Quorum′ outputs of

D′ such that they satisfy the requirements of Σ. Ini-
tially, Quorum′ is set to the full set P . On a process
p, if its lbound output is 1, then p sends its current
Quorum output to all processes; if its lbound out-
put is 0, then it does not send any message. When
a process receives a message with quorum Q in it,
it sets its Quorum′ output to Q. This transforma-
tion guarantees that only processes in Pj can broad-
cast their quorum outputs. Since quorum outputs in
Pj always intersect, all Quorum′ outputs intersect.
Since the quorum output in Pj eventually contains
only correct processes, the Quorum′ outputs eventu-
ally also contain only correct processes. Therefore,
the Quorum′ outputs of D′ satisfy the requirements
of Σ. 2

Theorem 2 When n ≤ 2k, Σ can be transformed
into Ω′′

k, or equivalently, Ω′′
k can be implemented in

A[Σ] and A[Maj].
Proof. We choose a total order “≤” among the sub-
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sets of P such that |A| ≤ |B| implies A ≤ B.
We design the transformation algorithm T from Σ
to Ωk as follows. Each process p maintains a lo-
cal variable Leaders, which contains a subset of pro-
cesses. Process p periodically sets its lbound output
to |Leaders| and isLeader output to True if and only
if p ∈ Leaders.5

Initially p sets Leaders to be max{A ⊆
P | |A| ≤ k} according to the total order ≤. Pro-
cess p periodically checks if its Quorum output sat-
isfies Quorum ≤ Leaders; if so, p sets its Leaders
to the Quorum output. Process p also periodically
sends out its Leaders value to all processes. When
p receives a Leadersq message from a process q,
if Leadersq ≤ Leaders, then p sets its Leaders to
Leadersq.

We now show that algorithm T is a correct trans-
formation. First, the Leaders output on a process p
can only decrease according to the total order ≤, so
we know that the size of Leaders is always at most k,
and thus (Ω′′1) holds. Second, there are only a finite
number of subsets of P , so eventually on a process
p its Leaders output stops changing. Moreover, pro-
cesses exchange their Leaders output and if they see
a message contains a smaller Leaders set, they set
it to their own Leaders output. Thus, eventually all
processes have the same Leaders output. So eventu-
ally isLeader outputs do not change (Ω′′3), lbound
outputs do not change and are the same (Ω′′2), and
the number of eventual leaders is at most the even-
tual lbound value (Ω′′5).

Let L be the final Leaders output all processes
converge to. To show (Ω′′4), it is enough to show
that L has at least one correct process, since that
correct process will eventually set its isLeader to
True. There are two cases to consider. In the first
case, L is not the initial value of Leaders. This
means that L equals to a Quorum output. By the
definition of Σ, it is easy to see that any Quorum
output contains at least one correct process. There-
fore L has at least one correct process. In the sec-
ond case, L is the initial value of Leaders, thus

5Actually, Leaders outputs form a failure detector in Ωk [16,
14], and the way we set isLeader and lbound from Leaders is
the transformation from Ωk to Ω

′′

k in [5].

L = max{A ⊆ P | |A| ≤ k}. This means that the
query results of Quorum on all processes are ≥ L.
If there is a query output of Quorum with size k, it
must be Quorum = L. Using the same argument
in the first case, L must contain at least one correct
process. Otherwise all Quorum outputs processes
get have sizes larger than k. By the property of Σ,
we know that eventually the Quorum output contains
only one correct process. Therefore, we know that
there are at least k + 1 correct processes in the run.
Since |L| = k and n ≤ 2k, we know that L inter-
sects with the set of correct processes. Hence, the
transformation algorithm T is correct. 2

Theorem 3 Π2 cannot be transformed into Σ in
model A.
Proof. Suppose, for a contradiction, that Π2 � Σ.
Let T be the transformation algorithm that trans-
forms any failure detector D in Π2 into a failure de-
tector D′ in Σ. Let (isLeader, lbound, Quorum) be
the output of of D ∈ Π2 and Quorum′ be the output
of D′ ∈ Σ. We consider a static partition {P1, P2}
of P . Let pi be a process in Pi for i = 1, 2.

We construct two runs R1 and R2 of T with fail-
ure detector D ∈ Π2 as follows. In run Ri, all pro-
cesses in P \ Pi crash at the beginning of the run
and all processes in Pi are correct. The outputs of
D on a process p ∈ Pi in run Ri are set as follows:
(a) if p = pi then isLeader is always True, otherwise,
isLeader is always False; (b) lbound is always 1; and
(c) Quorum is always Pi. It is easy to verify that such
outputs satisfy the definition of Π2. Therefore, algo-
rithm T generates a failure detector history Hi of D′

that satisfies the requirement of Σ. By the definition
of Σ, there is a time ti at which the Quorum′ output
of D′ on pi only contains correct processes, that is,
Hi(pi, ti) ⊆ Pi.

Let t = max(t1, t2). We now construct a new
run R, in which all processes are correct, and the
output of D on a process p ∈ Pi is exactly the same
as the output of D on p in run Ri at all times. Again
it is easy to verify that all properties of Π2 are still
satisifed. Therefore, algorithm T in this run gener-
ates a failure detector history H of D ′ that satisfies
the requirement of Σ. In run R all messages within
the same component Pi sent before t are delivered
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exactly at the same time as in run Ri, and all mes-
sages across different components are delayed until
after time t. Therefore, all processes in Pi behave
exactly the same as in run Ri by time t. Thus, at time
ti ≤ t, T generates a Quorum′ output value Qi ⊆ Pi

at pi . This means in run R we find two Quorum′

outputs Q1 and Q2 that do not intersect with each
other. This contradicts to property (Σ1) of Σ failure
detectors. 2

Theorem 4 In model A, for any k ≥ 2, Πk (or ΠS
k )

can be transformed into Ω′′
k′ if and only if k′ ≥ k

and n ≤ 2k′ − k + 1.
We divide this theorem into the next two lemmas

and prove them separately.

Lemma 1 In modelA, for any k ≥ 2, Πk cannot be
transformed into Ω′′

k′ if k > k′ or n ≥ 2k′ − k + 2.

Proof. Suppose, for a contradiction, that we have
an algorithm T that transforms any failure detec-
tor D in Πk to a failure detector D′ in Ω′′

k′ . Let
(isLeader, lbound, Quorum) denote the output of D,
and (isLeader′, lbound′) denote the output of D′

generated by algorithm T .
We construct a partition of P ,

{P0, P1, . . . , Pk−1}, such that Pi contains ex-
actly one process pi for all i = 1, . . . , k − 1,
and P0 contains the rest n − k + 1 processes.
Since k ≥ 2, we have at least one component in
P1, . . . , Pk−1. We consider a failure pattern in
which all processes are correct. We construct a
failure detector history H of D such that (a) lbound
outputs of all processes are always 1; (b) for pi ∈ Pi

with i = 1, . . . , k − 1, pi’s isLeader outputs are
always True, and pi’s Quorum outputs are always
{pi}; and (c) for q ∈ P0, if k > k′, then always
set Quorum outputs to P0; otherwise (k ≤ k′ and
n ≥ 2k′ − k + 2), set the Quorum outputs of q such
that they always contain n − k′ processes in P0.
Therefore, all components P1, . . . , Pk−1 are live
components. For component P0, any two Quorum
outputs intersect by item (c). This is obvious if
k > k′. When k ≤ k′ and n ≥ 2k′ − k + 2, this is
because |P0| = n− k + 1, and for any two Quorum
outputs Q1 and Q2, we have |Q1| + |Q2| − |P0| =

2(n− k′)− (n− k + 1) = n− (2k′ − k + 1) ≥ 1.
Thus failure detector outputs in component P0

satisfy the safety properties of Πk. So all failure
detector histories conforming with the conditions
above satisfy all properties of Πk. Therefore, we
can choose to set isLeader and Quorum outputs for
component P0 in order to reach a contradiction. The
exact way of setting these outputs are given shortly.

We use history H to construct a run R of T . Our
objective is to force all pi’s with i = 1, . . . , k − 1 to
be eventual leaders (w.r.t. isLeader′ outputs).

To achieve the objective, we construct R as fol-
lows. We take round-robin turns among processes
p1, . . . , pk−1. When in turn for pi, we force the
algorithm T to output isLeader′ = True at least
once on pi. To do so, we delay all messages sent
to pi. It is easy to argue that it is indistinguish-
able on pi from a run in which all other processes
crash at the beginning of pi’s turn. In the latter
case, component Pi is the only one that has a correct
process. By the properties of Ω′′

k, the only process
pi in Pi must eventually output isLeader′ = True.
After pi output isLeader′ = True once, we can
deliver all delayed messages to pi in R, and then
start the next turn for the next process in the round-
robin order. By continuously doing the above among
all processes in {p1, . . . , pk−1}, we construct run
R in which all processes in {p1, . . . , pk−1} output
isLeader′ = True infinitely often. Since algorithm
T correctly generates isLeader′ outputs, by property
(Ω′′3) of Ω′′

k, isLeader′ outputs do not change on ev-
ery process eventually. Therefore, we know that all
processes {p1, . . . , pk−1} must be eventual leaders
(w.r.t. isLeader′ outputs) in run R.

Now if k′ < k − 1, we already have a contra-
diction because Ω′′

k′ can only have at most k′ even-
tual leaders. Suppose k′ = k − 1. We can select
one process in P0 and set its isLeader to True, and
set isLeader of all other processes in P0 to False,
and we delay all messages sent from P \ P0 to P0.
For processes in P0, it cannot distinguish this run
with another run in which all processes in P \ P0

have crashed, and P0 is the only live component, so
eventually some process in P0 sets isLeader′ to True.
After this occurs, we can deliver the delayed mes-
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sages. This procedure can be repeated infinitely of-
ten, so there must be at least one process in P0 where
isLeader′ = True infinitely often. That is, there is at
least one eventual leader in P0 (w.r.t. isLeader′ out-
puts). Then totally we have at least k > k ′ eventual
leaders (w.r.t. isLeader′ outputs), contradicting the
specification of Ω′′

k′ . Therefore, we have proven the
case of k > k′.

Next, suppose that k ≤ k′ and n ≥ 2k′ − k +
2. We further manipulate the run R such that there
have to be at least k′ − k + 2 eventual leaders (w.r.t.
isLeader′ outputs) among processes in P0.

Let S1, S2, . . . , Sm be all possible subsets of P0

with exactly k′ − k + 1 leaders. We take another
round-robin turn among S1 to Sm. When in turn
for Si, we set the Quorum outputs of all processes
in P0 to P0 \ Si, and set isLeader outputs on one
process in P0 \ Si to True, and isLeader outputs on
all other processes to False. Note that |P0 \ Si| =
n−k+1− (k′−k+1) = n−k′, so it satisfies con-
dition (c) specified earlier. Also please be reminded
that we can set Quorum and isLeader outputs in P0

as we wish since it is a non-live component in run
R. We delay all messages sent to P0 \ Si. For pro-
cesses in P0 \ Si, they cannot distinguish this run
with another run in which all other processes have
crashed at the beginning of Si’s turn. For the latter
run, P0\Si is the only live component, so eventually
the isLeader′ output of some process in P0 \Si must
be set to True by the transformation algorithm. Once
this occurs, we can deliver all delayed messages and
start the next turn.

Note that we can interleave the above round-
robin turns with the earlier round-robin turns based
on processes p1, . . . , pk, so the overall run R can still
be constructed.

Now in run R, we argue that there are at least
k′−k +2 eventual leaders (w.r.t. isLeader′ outputs)
in P0. If not, then the set of eventual leaders in P0

can be completely covered by some subset Sj in the
round-robin sequence. By our construction above,
for every Sj’s turn, there is one process in P0\Sj that
sets its isLeader′ to True. Since there are an infinite
number of turns for Sj , we conclude that there must
be at least one eventual leader in P0 \Sj . Hence, we

cannot have only at most k′−k +1 eventual leaders
in P0.

However, when we count the total number of
eventual leaders (w.r.t. isLeader′ outputs) in run R,
we have at least k′+1 eventual leaders, since each pi

with 1 ≤ i ≤ k − 1 is an eventual leader and P0 has
at least k′−k +2 eventual leaders. This violates the
property of Ω′′

k′ (in particular properties (Ω′′1) and
(Ω′′5)). 2

Lemma 2 In model A, for any k ≥ 2, any k′ ≥ k,
and any n ≤ 2k′ − k + 1, ΠS

k can be transformed
into Ω′′

k′ .

Proof. Let (isLeader, lbound, Quorum, cid) be the
output of a failure detector D in ΠS

k . We describe
a transformation algorithm T that produce the out-
put (isLeader′, lbound′) satisfying the constraints
of Ω′′

k′ . In T , we set lbound′ = k′ for all pro-
cesses, which satisfies properties (Ω′′1) and (Ω′′2)
of Ω′′

k′ (see page 3 for property definition). For the
isLeader′ output of D′ on a process p, T sets it to
False if the lbound output on p is 0, otherwise it sets
it as the following.

Intuitively, we try to use a transformation algo-
rithm similar to the one in Theorem 2 to construct
Ω′′
d|Pi|/2e in every leaf component Pi in the partition

tree Γ. But the problem is the processes do not know
which processes are in the same leaf component in
advance. So T needs to estimate the membership of
each component first. To do so, each process p main-
tains a set Pp representing p’s view of processes in
its partitioned component. Initially, Pp = {p}. Pro-
cess p periodically broadcasts its Quorum, Pp and
cid to all other processes in the system. Suppose
q receives a message (p.Quorum, Pp, cid) from pro-
cess p. If p.cid 6≡ q.cid, the message is discarded
since p and q are in different components. Other-
wise, q updates Pq as Pq = Pq ∪ p.Quorum ∪ Pp.
When the cid output of ΠS

k on p changes, the com-
ponent containing p splits. In this case, we reset the
content of Pp to be {p} to re-estimate the compo-
nent membership. Suppose Pi is the leaf compo-
nent containing p, i.e. p.cid ≡ Pi eventually. After
p.cid stabilized, p only adds processes into Pp and
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never adds processes in other components, Pp can
only grow but never exceed Pi. Hence, Pp will stabi-
lize eventually. Also, because p broadcasts its Pp to
everyone else in Pi, eventually all correct processes
in Pi will have the same view as Pp. Therefore, all
correct processes in the same partitioned component
will have the same view on their component. Such
a view must contain all correct processes, because
they send messages to each other repeated. The view
can contain some (possibly not all) faulty processes
in the component as well.

Now we choose a total order “≤” among the
subsets of P such that |A| ≤ |B| implies A ≤ B,
and then use Quorum in the output of D to calcu-
late the Leaders set. Since Pp changes over time, we
cannot set the initial value for Leaders as in Theo-
rem 2. So we introduce a new variable minQ, which
records the smallest Quorum (regarding the total or-
der “≤”) p has ever seen during the period its cid
stay unchanged.

Initially, p.minQ = H(p, 0).Quorum. Process p
periodically checks its Quorum and cid output. If cid
changes or Quorum ≤ minQ, p sets its minQ to the
Quorum output. Process p also periodically broad-
casts its minQ (instead of Leaders) and cid value
to all other processes. When receiving a message
m, process p discards the messages from the pro-
cess in other partitioned components by checking
whether m.cid ≡ p.cid. If m.cid ≡ p.cid, p com-
pares m.minQ with p.minQ. If m.minQ ≤ p.minQ,
p sets p.minQ to m.minQ. Let Bp = max{A ⊆
Pp | |A| ≤ d|Pp|/2e}, where Pp is p’s current view
of its partitioned component. And we always set
p.Leaders = min(p.minQ, Bp), i.e. p.Leaders is the
alias of min(p.minQ, Bp). Then, p.isLeader′ is set
to True if and only if p ∈ p.Leaders.

Now, we prove the correctness of T .
First, we prove that in leaf component Pi, there

are at most d|Pi|/2e eventual leaders (the leaders’
isLeader′ remains True eventually). For all process
p ∈ Pi, Pp eventually stablizes and converges to
the same value. Let this final view be Qi. Hence,
Bp also stabilizes and converge to the same value,
say Bi. On the other hand, the broadcast and calcu-
lation of minQ ensures that p.minQ also stablizeds

and converges to the same value, say minQi. There-
fore, p.Leaders stablizes and converge to a value,
say Leadersi. Because we reset the value of Pp

and minQ every time cid changes, and also all the
messages from other leaf components are filtered
out, we have Qi j Pi and minQ j Pi. Since
Leadersi ≤ Bi, it must be true that |Leadersi| ≤
|Bi| = d|Qi|/2e ≤ d|Pi|/2e. So at most d|Pi|/2e
processes in Pi set their isLeader′ to True. Also,
(Ω′′3) of Ω′′

k′ (see page 3 for property definition)
holds due to the stability of set Leaders.

Then, we prove that at least one correct process
will be one of the eventual leaders (w.r.t. isLeader ′

outputs). Note that the above argument cannot guar-
antee this property, because the Quorum output of
D in leaf components does not have the liveness
property of Σ, making the set Leaders composed
of purely faulty processes. But ΠS

k ensures the ex-
istance of a live leaf component Pj , in which the
Quorum output satisfies all of the specification of Σ
localized in Pj . If Leadersj = minQj , a correct pro-
cess is in Leadersj because minQj intersects with
the final Quorum output containing only correct pro-
cesses and hence there is at least one correct process
in minQj . If, on the other hand, Leadersj 6= minQj ,
we have Leadersj = Bj . Because Qj contains all
the correct process, we know Quorum j Qj even-
tually. Since Bj < minQj < Quorum and |Bj | =
d|Qi|/2e, |Quorum| ≥ d|Qi|/2e. So Bj∩Quorum 6=
∅ for all Quorum output containing correct processes
only. As a result, there is still a correct process in
Leadersj . So, (Ω′′4) of Ω′′

k′ (see page 3 for property
definition) holds.

Finally, we prove the number of eventual lead-
ers elected by our algorithm is not larger than k ′,
that is, (Ω′′5) of Ω′′

k′ holds. Suppose the leaf com-
ponents of failure detector D are P1, · · · , Pl while
mi = |Pi|(

∑
i mi = n). We can omit the compo-

nents in which lbound is always 0, because there are
no leaders elected in such components. So we can
suppose l ≤ k. Then the number of eventual leaders
≤ dm1/2e+ · · ·+ dml/2e ≤

m1+1
2 + · · ·+ ml+1

2 =
n+l
2 ≤ n+k

2 . So, if 2k′ ≥ n + k, we are done.
If 2k′ = n + k − 1, n and k must have differ-
ent parity. So, either l < k, or there exists at
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least one even mi. Then the number of leaders
≤ dm1/2e + · · · + dml/2e ≤

n+k−1
2 = k′. So,

for 2k′ ≥ n+ k− 1, we have (Ω′′5) of Ω′′
k′ holds. 2

Theorem 5 ΠS
2 cannot be transformed into Πk in

model A.
Proof. Suppose, for a contradiction, that there
exists a transformation algorithm T from ΠS

2

to Πk. Let (isLeader, lbound, Quorum, cid) be
the output of a failure detector D in ΠS

2 , and
(isLeader′, lbound′, Quorum′) be the output of a
failure detector D′ in Πk. For the cid output, we
choose to use integer values, and ≡ is defined to be
normal = relation among integers.

We construct a run R of T with failure detector
D, in which all processes are correct, and all lbound
outputs are always 1. Initially, we set Quorum of
all processes to the full set P , and set cid to 0. We
choose one process p1 and set its isLeader to True,
and set isLeader outputs of all other processes to
False. We run algorithm T with the above failure
detector outputs from D. Since the above outputs
of D satisfy the properties of ΠS

k when the partition
tree has only one root node (i.e., no partition at all),
the run of T should produce legitimate outputs of D ′

satisfying the properties of Πk.
Let Q1, . . . , Qn be the outputs of Quorum′ on

processes p1, . . . , pn respectively, generated by T at
some arbitrary time t0 during the run. There are two
possible cases. In the first case, there exists Qj and
pi such that pi 6= pj and pi ∈ Qj . In this case, we
split P into two sets P1 and P2 such that pi ∈ P1

and pj ∈ P2. This corresponds to a partition tree Γ
with P as the root and P1, P2 as the children of P ,
and the split history S such that S(p, t) = P for all p
and all t ≤ t0 and S(p, t) = Pi for all p ∈ Pi and all
t > t0. After time t0, we adjust the output of D as
follows. For process pi, we set its isLeader to True,
its Quorum to {pi}, and its cid to 1. For all other
processes in P1, we set their isLeader to False, their
Quorum to P1, and their cid to 1. For process pj , we
set its isLeader to True, its Quorum to {pj}, and its
cid to 2. For all other processes in P2, we set their
isLeader to False, their Quorum to P2, and their cid
to 2.

Note that we only split once with two compo-

nents after the split. Each component has one even-
tual leader, which is within its eventual lbound value
1, and the sum of the maximum lbound values of
two components is 2. Other properties of ΠS

2 are
also easy to verify, so we know that the outputs of
D satisfy all properties of ΠS

2 . We delay all mes-
sages sent to pi and all messages sent to pj and run
algorithm T . Process pi cannot distinguish this run
with another run in which all other processes crash
at time t0 + 1. In that run {pi} is the only live com-
ponent, so eventually the Quorum′ output of pi must
be {pi}. Similarly, we can argue that eventually the
Quorum′ output of pj must be {pj}.Once we obtain
these Quorum′ outputs, we can deliver all messages
that have been delayed.

In run R, since the outputs of D satisfy all
properties of ΠS

k , the outputs of D′ generated by
T should satisfy all properties of Πk. Since in R
we obtain two Quorum′ outputs {pi} and {pj}, it
implies that pi and pj cannot be in the same stati-
cally partitioned component. However, in run R we
also have a Quorum′ output Qj on process pj that
contains pi, which means pi and pj must be in the
same statically partitioned component. Therefore,
we have reached a contradiction in this case.

We now consider the second case, in which
Qj = {pj} for all j = 1, . . . , n. This im-
plies that the static partition for failure detector D ′

must be a partition with all singleton components:
{{p1}, . . . , {pn}}. In this case, we construct run R
such that we see at least k+1 processes having their
lbound′ set to at least 1 at some point in time. Since
the partition is singleton, this means that the sum of
maximum lbound′ outputs in all partitioned compo-
nents is at least k + 1, violating property (ΠΩ1) of
Πk.

We now construct run R after time t0. We let the
algorithm T run until we see some process q1 with
lbound′ output being at least 1 at some time t1 > t0.
This must happen because as we described earlier
the outputs of D is legitimate with a partition tree
that has only one root node, and thus there must be
a live component (w.r.t. D′) in which the lbound′

outputs eventually stabilize to a value of at least 1.
Let S1 = P \ {q1}. After time t1, we change
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the outputs of failure detector D as follows. The
Quorum output of all processes are changed to S1,
and we choose one process in S1 to set its isLeader
to True, and we set the isLeader of all other pro-
cesses in P to False. The outputs of lbound remain
to be 1 and the outputs of cid remain to be 0. We
delay all messages sent to processes in S1 from q1

and let T run. Processes in S1 cannot distinguish
this run with another run in which q1 crashes at time
t1 + 1. In the latter run, the single component P is
still a live component (w.r.t. D) so eventually algo-
rithm T should set lbound′ of some process q2 ∈ S1

to at least 1 at time t2.
We then let S2 = S1 \ {q2} and repeat the above

procedure on S2. We can repeat the procedure until
we find sets S1, . . . , Sk, processes q1, . . . , qk, qk+1,
and time points t1, . . . , tk, tk+1, such that qj+1 ∈
Sj , Sj+1 = Sj \ {qj+1} and the lbound′ output of
qj at time tj is set to at least 1. After time tk+1, we
have no more change to the outputs of D.

It is easy to verify that the outputs of D in run
R satisfy all properties of ΠS

2 with a single compo-
nent P (as an example, all Quorum outputs intersect
on processes in Sk). Therefore, algorithm T should
generate outputs that satisfy Πk. However, by the
above construction, we find at least k + 1 processes
with lbound′ values of at least 1 at some point in
time, and since we already know that the partitioned
components for D′ are all singleton, we know that
the sum of the maximum lbound′ values of all parti-
tioned components are at least k + 1. This violates
property (ΠΩ1) of Πk.

Therefore, in both cases we reach contradic-
tions. The theorem thus holds. 2

Theorem 6 For any k ≥ 2 and any n ≥ 2k − 1,
failure detector classes Ω′′

k ×Σ, Πk, and ΠS
k cannot

be used to solve (k − 1)-set agreement in model A.
Together with Theorem 11, this implies that classes
Ω′′

k × Σ, Πk, and ΠS
k cannot be transformed into

classes Ω′′
k−1 × Σ, Πk−1, and ΠS

k−1.
Proof. Theorem 1 of [14] shows that in model
A[Maj] with n > 2k, if class Ωz can be used to solve
k-set agreement, then z ≤ k. In our case, if Ω′′

z × Σ
can be used to solve (k−1)-set agreement, we know
that Ω′′

z can be used to solve (k−1)-set agreement in

A[Maj] (because A[Maj] is stronger than A[Σ]). By
our result in [5], Ω′′

z is equivalent to Ωz. Therefore,
we know that z ≤ k− 1. This means Ω′′

k×Σ cannot
solve (k − 1)-set agreement in A with n ≥ 2k − 1.
Since Ω′′

k ×Σ is stronger than Πk and ΠS
k , we know

that Πk and ΠS
k cannot solve (k − 1)-set agreement

either. 2

Theorem 7 In model A, when k ≥ 2, we have
(1) for any n ≥ 2k − 1, Ω′′

k × Σ cannot be trans-
formed into ΠS

k−1; and
(2) for any n > k, Πk cannot be transformed into
ΠS

k−1.
We prove this theorem in the following two lem-

mas.

Lemma 3 In model A, for any k ≥ 2 and any n ≥
2k − 1, Ω′′

k × Σ cannot be transformed into ΠS
k−1.

Proof. Suppose, for a contradiction, that there
exists an algorithm T that transforms any failure
detector D in Ω′′

k × Σ to a failure detector D′

in ΠS
k−1. Let (isLeader, lbound, Quorum) be the

output of a failure detector D in Ω′′
k × Σ and

(isLeader′, lbound′, Quorum′, cid′) be the output of
a failure detector D′ in ΠS

k−1 generated by algorithm
T .

Let F be a failure pattern, H ′ be the failure
detector history of D′ generated by T under fail-
ure pattern F , Γ be the partition tree for H ′, and
S be the partition split history of Γ for H ′. Let
{P1, · · · , Pm} be a partition of P . We define
Pi.lbound(t) = max{H ′(p, t′).lbound | t′ ≤ t, p ∈
Pi \ F (t′)}. We define A(Pi, t) = {p ∈ Pi \
F (t) |H ′(p, t).isLeader′ = True}. We say that com-
ponent Pi is quasi-live at time t if |A(Pi, t)| ≤
Pi.lbound(t). Note that for a live component Pi,
there exists a time after which Pi is always quasi-
live. We define A(t) to be the union of A(Pi, t)’s
where Pi is a quasi-live component.

If the partition {P1, · · · , Pm} is a partition of P
that occurs in H ′ for D′, i.e., it is {S(p, t) | p ∈
P} for some t, it is straightforward to see that
Pi.lbound(t) ≤

∑
Qi⊆Pi,Qi∈L(Γ) lbound(Qi) for

any time t, where L(Γ) is the set of leaf nodes in Γ.
Then by property (ΠSΩ1) of ΠS

k−1, we know that
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for any time t,
∑

i Pi.lbound(t) ≤ k − 1. Thus we
have |A(t)| ≤ k − 1. So |P \ A(t)| ≥ n− k + 1 ≥
(n + 1)/2. That is, P \ A(t) contains a majority
of processes. Therefore, if we always set Quorum
outputs to such sets, it is guaranteed that all Quorum
outputs intersect.

We now construct an infinite sequence of runs
R0, R1, . . . by the following inductive process. In
all these runs, we always set lbound = k on all pro-
cesses, and set a fixed k processes p1, . . . , pk with
isLeader = True. All other processes have isLeader
set to False.

Run R0: In this run, no processes are crashed.
So we set Quorum = P . We run the algorithm
T with the above outputs of D. Then, find a time
t0 such that for each pair of processes p and q,
H ′(p, t0).Quorum ∩H ′(q, t0).Quorum 6= ∅ implies
H ′(p, t0).cid′ ≡ H ′(q, t0).cid′. In other words, all
processes have a consistent view of system partition.

Run R1: R1 runs exactly the same as in R0 until
time t0. At time t0, we can define a partition scheme
by the cid output on all processes. Because we do
not crash any processes yet, F (t) = ∅ for all t ≤ t0.
Let A(t0) be as defined above in run R1. At time
t0 + 1, we crash all processes in A(t0) and then set
Quorum = P \A(t0) for all the other processes. So
for all t ≥ t0 + 1, F (t) ≡ A(t0). We then continue
the run of algorithm T to find a time t1 > t0 + 1,
by which every correct process has taken at least
one step after time t0 + 1, all messages sent by time
t0 have been delivered in R1, and the system parti-
tion views on all correct processes are consistent. If
there are some undelivered messages for processes
in A(t0), they are not dropped because we may need
to deliver them in the subsequent run R2, which is
built based on R1.

In general, we try to construct Ri based on Ri−1

for all i ≥ 2. In Ri−1, there are two critical time
points ti−2 and ti−1. The failure pattern in Ri−1 is
F (t) = ∅,∀t ≤ ti−2 and F (t) = A(ti−2),∀t ≥
ti−2 + 1. Every process not in A(ti−2) has taken at
least one step between ti−2 + 1 and ti−1, all mes-
sages sent before ti−2 are are delivered by ti−1, and
all processes not in A(ti−2) have consistent partition
views at time ti−1. Ri is constructed as the follow-

ing.
Run Ri: Ri runs exactly the same as in Ri−1

until time ti−2. From ti−2 + 1 to ti−1, instead of
crashing the processes in A(ti−2), we hold these
processes and do not let them take any steps in Ri.
All the other processes simulate their execution as in
Ri−1 until ti−1. Now we have a simulated “Ri−1” at
the beginning of Ri, with a different failure pattern:
F (t) = ∅,∀t ≤ ti−1. Since the algorithm is deter-
ministic, at time ti−1 process and channel states are
exactly the same as in run Ri−1.

During the execution between ti−2 +1 and ti−1,
it is possible for the partitioned components to split
further. If there are component splits, i.e. ∃p ∈ P \
A(ti−2),H

′(p, ti−2).cid′ 6≡ H ′(p, ti−1).cid′, we let
all the processes in P execute after ti−1. If there are
no splits, i.e. ∀p ∈ P \ A(ti−2),H

′(p, ti−2).cid′ ≡
H ′(p, ti−1).cid′, we calculate A(ti−1) in a similar
manner as described in R1. Then we crash the pro-
cesses in A(ti−1) at ti−1 +1, set Quorum outputs of
the rest of the processes to P \ A(ti−1), and let the
processes not crashed run. So the failure pattern af-
ter ti−1 +1 is F (t) = A(ti−1),∀t ≥ ti−1 +1. Let ti
be the time by which every correct process in Ri has
taken at least one step after ti−1 + 1, all messages
sent by time ti−1 have been delivered, all correct
processes have consistent view on system partition.

Since there are a finite number of processes in
P , D′ is allowed to split partitioned components for
a finite number of times. So there exists u, in all
runs Rl for l ≥ u, no component splits happen after
tu−2. Therefore, all the processes in P fall into the
leaf nodes of the partition tree ofD ′ in all of the runs
Rl after tu−2 for l ≥ u.

So far we have constructed a series of runs
R0, R1, R2, . . . Let R∞ = limi→∞ Ri. That is, for
any i, let the messages, the failure detector history,
and the sequence of steps of run R∞ be identical to
the run Ri until time ti−1. And the partition tree Γ
and partition split history S of run R∞ is the same
as run Rl for l ≥ u. We need to show that R∞ is
still a legitimate run of algorithm T with some fail-
ure detector in Ω′′

k × Σ.
We start by defining the failure pattern F of R∞

in the following way. For every process p, there are
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two possible cases. In the first case, there exists j
such that for all i ≥ j, p crashes in run Ri. Let jp be
the smallest such value. Then we define that in run
R∞, p crashes at time tjp−1 + 1. For all processes
that do not belong to the first case, they are correct
in run R∞.

Now we show R∞ is a legitimate run of algo-
rithm T under the failure pattern R. First, we need
to show that the the failure pattern F derived above
does not make the output of D violate any prop-
erty of Ω′′

k × Σ. For all faulty processes in R∞,
by their definition above, we know that there must
exists some A(tj) that contain all these faulty pro-
cesses. We already know that |A(tj)| ≤ k − 1, so
at least one process in p1, . . . , pk is correct in R∞.
This process always has its isLeader set to True, so
it is an eventual leader, i.e., (Ω′′4) holds. All other
properties of Ω′′

k holds trivially. For the Quorum out-
puts, they are always in the form of P \A(tj), so by
our earlier argument, they are majority quorums and
thus must intersect with one another. Moreover, if
p is not a correct process, then p crashes at some
time tjp−1 + 1, and by our construction of runs p
will not be in the Quorum outputs of any processes
after tjp−1 + 1. So the Quorum outputs satisfy the
properties of Σ.

Second, we need to verify that in run R∞, all
correct processes take an infinite number of steps
and all messages sent to the correct processes are
eventually delivered. Suppose p is a correct process
in R∞. By its definition, for any time t, there is a
j ≥ 1 such that tj−1 > t and p is a correct process
in run Rj . By the construction of Rj , we know that
p must take at least one step after tj−1 and by time
tj . Then we know that p must take at least a step
in run R∞ after tj−1 and by time tj . This implies
immediately that p takes an infinite number of steps
in R∞. Similarly, suppose m is a message sent to a
correct process p in R∞ at time t. Then there is a
j ≥ 1 such that tj−1 > t and p is a correct process
in run Rj . By the construction of Rj , all messages
sent to correct processes by time tj−1 are delivered
by time tj . Thus we know that in R∞ message m is
delivered to p by time tj .

Therefore, by the above arguments, we know

that R∞ is a legitimate run of algorithm T with a
failure detector D in Ω′′

k × Σ. Then we know that T
should generate correct outputs of D ′ in ΠS

k−1. This
means that eventually there is a leaf component Pj

w.r.t. D′ and correct process p ∈ Pj such that there
is a time t after which Pj is always quasi-live and
isLeader′ of p is always True. Thus, for all runs Rl

such that tl−1 > t and l ≥ u, we know that Pj is
a quasi-live component in Rl, and isLeader′ of p at
tl−1 is True in Rl. Since l ≥ u, A(tl−1) can be cal-
culated and p ∈ A(tj−1). So p will be crashed in Rl.
By our definition of F , p is crashed in R∞ at some
time. Therefore, we reach a contradiction. 2

Lemma 4 In model A, for any k ≥ 2 and any n >
k, Πk cannot be transformed into ΠS

k−1.

Proof. Suppose, for a contradiction, that there ex-
ists an algorithm T that transforms any failure detec-
tor D in Πk into a failure detector D′ in ΠS

k−1. Let
(isLeader, lbound, Quorum) be the output of D and
(isLeader′, lbound′, Quorum′, cid′) be the output of
D′.

We construct a run R of T with failure detector
D as follows. Let {P1, . . . , Pk} be a static partition
of P , and let pi ∈ Pi be some process in component
Pi for every i. In run R all processes are correct.
We set lbound always to 1 on all processes. For each
process in Pi, its Quorum output is always Pi. For
process pi ∈ Pi, its isLeader is always True, while
for all other processes in Pi, their isLeader values
are always False. It is easy to check that with these
output values, D is a valid failure detector in Πk,
with the static partition {P1, . . . , Pk}.

In run R, we delay all messages sent across dif-
ferent partitions first. For processes in component
Pi, they cannot distinguish this run with another run
Ri in which only processes in Pi are correct and all
other processes crash at the beginning of the run. In
run Ri, the outputs of D for all processes in Ri are
the same as in run R. It is easy to check that the
output of D in this run still satisfy the properties of
Πk, with Pi as the only live component. Therefore,
in run Ri, the output of D′ generated by algorithm
T should satisfy the properties of ΠS

k−1. Then there
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exists a leaf node partition of P , such that at least
one leaf component P ′

i in the partition is a live com-
ponent (w.r.t. D′). This implies that there exists a
correct process p′i ∈ P ′

i such that eventually (a) the
lbound′ output on p′i is the same as other correct pro-
cesses; (b) the lbound′ output is at least 1 since there
is at least one eventual leader in the live component
P ′

i ; (c) the Quorum′ output on p′i contains only cor-
rect processes. Since only processes in Pi are correct
in run Ri, we know that p′i ∈ Pi, and we find a time
ti at which the lbound′ output of p′i is at least 1 and
the Quorum′ output of p′i is contained in Pi.

The above argument holds for all i = 1, . . . , k.
Then we complete run R by selecting a time t =
max(t1, . . . , tk) such that after time t, all delayed
messages across different components are delivered,
and we do not further control the run.

Therefore, we have a legitimate run R of algo-
rithm T with failure detector D. In run R, we find
k processes p′1, . . . , p

′
k such that their Quorum′ out-

puts at some time do not intersect with one another
(since at a time Quorum′ output on p′i is contained
in Pi, and {P1, . . . , Pk} is a partition). By property
(ΠΣ2) of Πk−1, processes p′1, . . . , p

′
k must be in dif-

ferent leaf node components in R.Thus, we have at
least k leaf node components in R w.r.t D ′.

The maximum lbound′ value in each of these k
components must be at least 1, since the lbound ′ out-
put of p′i at time ti is at least 1. Then we know that
the sum of maximum lbound′ outputs among all leaf
node components is at least k. This result contra-
dicts to property (ΠΩ1) of ΠS

k−1, which requires that
the sum of maximum lbound′ outputs among all leaf
node components be at most k − 1. 2

Theorem 9 When n ≥ 4k +2, Π2 cannot be trans-
formed into Ω′′

k in model A[Σ] or A[Maj].
Proof. We only need to consider model A[Maj]
since it is stronger than A[Σ]. Suppose, for a
contradiction, that there exists an algorithm T that
transforms any failure detector D in Π2 to a fail-
ure detector D′ in Ω′′

k in model A[Maj]. Let
(isLeader, lbound, Quorum) be the output of D ∈
Π2, and let (isLeader′, lbound′) be the output of
D′ ∈ Ω′′

k.
We partition the set of processes P into two

components P1 and P2, with n1 and n2 processes re-
spectively, such that n = n1 + n2, n1 ≥ 2k + 1 and
n2 ≥ 2k+1. We will construct a run R of algorithm
T with failure detector D, in which all processes are
correct, and at any time, |Quorum| = n1 − k on all
processes in P1, and |Quorum| = n2 − k on all pro-
cesses in P2.

It is easy to verify that any two Quorum outputs
in P1 intersect, and any two Quorum outputs in P2

intersect. Thus the outputs of D satisfy the quorum
related properties of Π2, namely (ΠΣ1), (ΠΣ2), and
(ΠΣ3). We choose an arbitrary process p1 ∈ P1, set
isLeader always to True on p1 and always to False
on all processes in P1 \ {p1}. We set lbound always
to 1 for all processes in the two components.

With the above constraints, it is easy to verify
that the outputs of D in both components satisfy all
the safety properties of Π2, while the outputs of D
in component P1 satisfy all the liveness properties of
Π2, i.e., P1 is the live component (w.r.t. D). There-
fore, the run of algorithm T with the above outputs
of D should produce outputs of D′ that satisfy the
specification of Ω′′

k. This is true no matter how other
values, in particular the actual values of Quorum
outputs, and the isLeader values for processes in
component P2, are set. We manipulate these values
to construct run R, as described below.

For any time t and any time t′ > t, let L(t, t′) =
{p ∈ P | isLeader′ on p be True at some time t′′ with
t < t′′ ≤ t′}. Initially we set the outputs of D to any
values as long as they satisfy the above constraints.
By the specification of Ω′′

k, we know that there exists
a time t such that for all t′ > t |L(t, t′)| ≤ k. Let
the algorithm T run passing time t and to some time
t′ > t. Choose a set B1 ⊆ P1 and a set B2 ⊆ P2

such that B1∩L(t, t′) = ∅, B2∩L(t, t′) = ∅, |B1| =
n1 − k, and |B2| = n2 − k. Since |P1| = n1 and
|P2| = n2 and |L(t, t′)| ≤ k, it is possible to choose
such B1 and B2.

Set Quorum to B1 for all processes in compo-
nent P1 and Quorum to B2 for all processes in com-
ponent P2 after time t′, so Quorum outputs satisfy
the contraints described earlier. Choose an arbitrary
process p2 in B2 and set isLeader = True on p2 and
False on all other processes in component P2. Then
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we delay the messages sent to processes in B1 ∪B2

from processes not in B1 ∪ B2. For any process in
B1 ∪ B2, it cannot distinguish run R from another
run R′ in which all processes in P \ (B1∪B2) crash
at time t′.

Note that B1 ∪ B2 contains a majority of pro-
cesses (because 2|B1∪B2| = 2(n1−k+n2−k) =
2n−4k > n), so run R′ is possible in modelA[Maj].
In run R′, B2 is a live component (w.r.t. D). So,
there exists time t′′ > t′ at which at least one pro-
cess p ∈ B1 ∪ B2 sets its isLeader′ to True. There-
fore, in run R we can find a time t′′ > t′ such that
p ∈ L(t, t′′) \ L(t, t′), which means |L(t, t′′)| >
|L(t, t′)| (note that run R does not crash any pro-
cesses). If |L(t, t′′)| ≤ k, we can repeat the above
procedure to set some processes not in L(t, t′′) as
a leader. Therefore, eventually, we will find a time
t′′ > t such that |L(t, t′′)| > k.

Hence, in run R whenever there are times t and
t′ > t such that |L(t, t′)| ≤ k, we can repeat the
above procedure so that there is a time t′′ > t′ and
|L(t, t′′)| > k. This implies that the number of even-
tual leaders (w.r.t. isLeader′) in run R cannot be at
most k, contradicting the specification of Ω′′

k. 2

Theorem 10 When n ≥ 4k + 2, ΠS
2 cannot be

transformed into Πk in model A[Σ] or A[Maj].
The basic idea of the proof is that, suppose there

is such a transformation T , then let T run to see how
the outputs of Πk partition P . There will be two
possible partition cases:

1. There is at most one component with more
than one process in it.

2. There are multiple components containing
more than one process.

In case 1, we split P into two components with
almost equal size regarding to the constraints of ΠS

2 .
Then we crash some processes and force the algo-
rithm T to actually implement Ω′′

k−m on the rest of
correct processes. At last we stated that the number
of correct processes exceeds the bound mentioned in
Theorem 9, and the contradiction is reached.

In case 2, we choose the smallest component
with more than one process, and divide it into two

sets A and B. We first select a process in A as an
eventual leader w.r.t. ΠS

2 and crash all processes in
B, and use the proof technique in Theorem 7 (1) to
try to construct a run of T that does not generate any
live component w.r.t. Πk. The only case the proof
cannot continue as in the proof of Theorem 7 (1) is
when p is always selected as an eventual leader in a
live component w.r.t. Πk. In this case, p’s Quorum
output of Πk must be contained in set A. Then we
select a process q in set B, crash all processes in set
A, and repeat the argument as in the proof of The-
orem 7 (1). Again, the only case where the proof
cannot continue is when q is always selected as an
eventual leader in a live component w.r.t. Πk. How-
ever, when this happens, q’s Quorum output of Πk

must be contained in set B, but B does not intersect
with A. So we find two processes p and q in the
same static component of Πk but their Quorum out-
puts do not always intersect. Therefore, we reach a
contradiction, and this final contradiction resembles
the proof technique used in Theorem 5.
Proof. We only need to consider model A[Maj].
Suppose, for a contradiction, that there ex-
ists a transformation algorithm T from ΠS

2 to
Πk. Let (isLeader, lbound, Quorum, cid) be the
output of a failure detector D in ΠS

2 , and
(isLeader′, lbound′, Quorum′) be the output of a
failure detector D′ in Πk. For the cid output, we
choose to use integer values, and ≡ is defined to be
normal = relation among integers.

Initially(at time 0), we set Quorum of all pro-
cesses to the full set P , set cid to 0, and set lbound to
1. We choose one process p1 and set its isLeader to
True, and set isLeader outputs of all other processes
to False. We run algorithm T with the above failure
detector outputs from D. Since the above outputs
of D satisfy the properties of ΠS

2 when the partition
tree has only one root node (i.e., no partition at all),
the run of T should produce legitimate outputs of D ′

satisfying the properties of Πk.
By reading the outputs of Quorum′ on processes

p1, . . . , pn respectively, we can know the partition of
D′: P1, · · · , Pl. There are two possible cases.

Case 1 In this case, there exists at most one par-
tition component which contains at least two pro-
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cesses. Suppose the partition is {P1, · · · , Pl, Q}
where Pi = {pi} and |Q| ≥ 1. At time t1 = 1, we
split P into two parts A and B with |A| ≥ 2k+1 and
|B| ≥ 2k + 1. For every process in A, we set D’s
output (Quorum, cid, lbound) to be (A, 1, 1). For the
processes in B, we set the output to be (B, 2, 1). It
is obvious that either Q ∩ A or Q ∩B is not empty.
Without loss of generality, suppose Q ∩ A 6= ∅.
We pick an arbitrary process q ∈ Q ∩ A and set
its isLeader to True. The isLeader of processes in
P \ {q} is set to False. Then we let T to execute.

During the execution, we check the lbound ′ out-
put of D′ on the set of processes {pi}(1 ≤ i ≤ l).
If at a time t > 1, we find H ′(pi, t).lbound′ ≥ 1
we crash process pi, and modify the Quorum output
of D to exclude pi. Suppose we crash m processes
eventually, we will have m < k. If m ≥ k, since
T is correct, one of the correct process, say p′ will
set its lbound′ ≥ 1 at time t′. Now we can construct
another one R′, of which the only difference to R is
that the processes are not crashed, but kept from ex-
ecution. Since the algorithm is determinstic, and the
process and channel state are same in R′ and R, at
time t′ there will be at least k + 1 processes each in
a different component set their lbound to be at least
1. This violates the property (ΠΩ1) of Πk. So we
have m ≤ k.

Now we turn back to R. For each correct pro-
cess p′, if p′ ∈ Pi for some i, 1 ≤ i ≤ l, we
know p′.lbound is set to 0. Therefore, all the Pis not
crashed do not have liveness. So Q must be a live
component. With an argument similar to the one for
m < k, we know the lbound output of processes in
component Q is at most k − m. If T can still pro-
duce correct output for D′, the output can be easily
transformed to a failure detector in Ω′′

k−m. This is
because we can ignore the output of pi and broad-
cast the lbound′ of processes in Q. Let C be the set
of crashed process, A′ = A \ C , and B ′ = B \ C .
We have |A′| ≥ 2k + 1 −m ≥ 2(k −m) + 1 and
|B′| ≥ 2k +1−m ≥ 2(k−m)+1. Using a similar
run construction shown in the proof of Theorem 9,
we know that failure detectors in Ω′′

k−m cannot be
implemented. This is contradictory to the fact that
D′ can be transformed to a failure detector in Ω′′

k−m.

Case 2 In this case, there exists at least two par-
tition components which contains at least two pro-
cesses. Suppose P1 and P2 are two components
with at least two processes and |P1| ≤ |P2|. We
divide P1 into two equal parts P11 and P12 with
||P11| − |P12|| ≤ 1. Note |P11| ≥ 1 and |P12| ≥ 1.
We define A(t) = {p| p ∈ a quasi-live component
at time t and H ′(p, t).isLeader′ = True}. The def-
inition is the same as that of A(t) in the proof of
Lemma 3.

We then construct two classes of infinitely runs
to reach contradiction. Step 1, at time t1 = 1,
we crash all processes in P11. We set Quorum =
P/P11, set cid to 0, and set lbound to 2 for all
other processes. We choose one process p2 in P12

and set its isLeader to True, and set isLeader out-
puts of all other processes to False. This is run R1

1.
To construct run R1

i , we always crash P11 at time
1 and treat other processes using the same method
in the proof of Lemma 3. If, at time ti, we find
p2 ∈ A(ti), we stop constructing R1

i and go to step
2. If we never go to step 2, we will have an infi-
nite number of runs {R1

i }. Note that p2 /∈ A(ti)
for all i, so in each run R1

i , p2 does not crash. And
Quorum ≥ n−dn/4e− k ≥ dn/2e for n ≥ 4k +2,
that is, Quorum have majority processes. Therefore,
each run R1

i is a legitimate run. We then construct
run R1

∞ based on the class of run R1
i . The way of

the construction and the definition of failure pattern
for this run are the same as that in Lemma 3. Since
p2 /∈ A(ti) for any i, we will not crash p2 in R1

∞.
Using the same argument of Lemma 3, we can prove
that the output of D in R1

∞ satisfy the properties of
ΠS

2 , all correct processes take an infinite number of
steps and all messages sent to the correct processes
are eventually delivered. So R1

∞ is a legitimate run.
But, in run R1

∞, no live-component exists in the out-
put of algorithm T . Contradiction reached.

If in some finite run R1
i , we have p2 ∈ A(ti),

we go to step 2 in which we construct another class
of infinitely run to reach contradiction. Since p2 ∈
A(ti), we have p2 ∈ a quasi-live component. Note
that P11 crash in such run, so the output of algorithm
T will satisfy H ′(p2, ti).Quorum′ j P12. In run R2

1,
we hold processes in P11 and do not let them take
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any steps until time ti. Since the algorithm is deter-
ministic, at time ti, process and channel states are
exactly like in run R1

i . At time s1 = ti +1, we crash
all processes in P12. We set Quorum = P/P12,
set cid to 0, and set lbound to 2. We choose one
process p3 in P11 and set its isLeader to True, and
set isLeader outputs of all other processes to False.
Then, we construct run R2

j using the same method
in step 1. If at any time sj we have p3 /∈ A(sj), we
can also construct infinitely run class {R2

j} and then
construct run R2

∞. By the same argument in step 1,
we can prove that run R2

∞ is a legitimate run and no
live-component exists in the output of algorithm T
in such run. This contradictory.

Otherwise, there must exist j such that p3 ∈
A(sj), so we have the output of algorithm T sat-
isfy H ′(p3, sj).Quorum′ j P11. Now we enter step
3, in which a run R is constructed as the follow-
ing. The beginning of R works the same as run
R2

1 until time ti. Then we hold processes in P12

and do not let them take any steps until time sj .
Since the algorithm is deterministic, at time sj , pro-
cess and channel states are exactly the same as in
run R2

j . Now we have H ′(p3, sj).Quorum′ j P11

and H ′(p2, ti).Quorum′ j P12. But both p2 and
p3 are in component P1 and H(p3, sj).Quorum′ ∩
H(p2, ti).Quorum′ = ∅. Contradiction.

Therefore, in both cases we reach contradic-
tions. The theorem thus holds. 2

B Proof of Corrnectness of k-Set
Agreement Algorithm

We first list a few straightforward propositions about
operator ∪m and relation �m.

Proposition 5 Given two sets R1 and R2 contain-
ing round numbers and a positive integer m, R1 �m

R2 if and only if one of the following conditions
hold: (a) |R2| < m and R1 ⊆ R2; or (b) |R2| = m
and ∀x ∈ R1 \ R2,∀y ∈ R2, x < y.

Proposition 6 Given two sets R1 and R2 contain-
ing round numbers and a positive integer m, R1 �m

R2 if and only if there exists a set R such that
R1 ∪m R = R2.

Proposition 7 Among all the sets of rounds with at
most m elements, relation �m is a partial order.

All statements in the following proof refer to a
run of the algorithm with a failure pattern F , a fail-
ure detector history H , a partition tree Γ and a parti-
tion split history S.

We start with some terminologies and notations
used in the proof. When a proposer p is in its task
1, we say that it is in a preparation phase ΦP if it is
executing in lines 15–25; we say that it is in an ac-
ceptance phase ΦA if it is executing in lines 26–35.
Proposer p ends its preparation phase by either stop-
ping its current task or entering its acceptance phase,
and it ends its acceptance phase by either stopping
its current task or deciding a value in line 35.

For any phase Φ (either a preparation phase or
an acceptance phase) of a proposer p and any vari-
able v of p, we denote Φ.v as the value of the vari-
able v when p enters the phase (i.e., when p executes
line 15 for the preparation phase or line 26 for the ac-
ceptance phase). We denote ΦA.node as the node in
the partition tree that corresponds to ΦA.p cid (the
correspondence between cid outputs of the failure
detector and the nodes in the partition tree is guar-
anteed by the property (ΠSC1) of ΠS

k ). We also use
ΦA.prepQ to represent ΦA.p Quorum.

An acceptance phase of p is successful if p de-
cides at line 35 in the phase. In a successful accep-
tance phase ΦA, we use ΦA.accQ to represent the
value of variable p Quorum when p executes line 35.
Informally, ΦA.prepQ is the quorum of acceptors
from which ΦA.est is determined at the end of pre-
ceding preparation phase, and ΦA.accQ is the quo-
rum of acceptors by which p decides on the value
ΦA.est at the end of the acceptance phase.

For an acceptance phase ΦA, we say that it be-
longs to the node ΦA.node of the partition tree Γ in
the run. A path of the partition tree Γ is a sequence
of nodes from the root of Γ to a leaf node of Γ, where
all nodes in the sequence have ancestor relationships
with one another. We say that ΦA belongs to a path
of the partition tree if ΦA.node is in the path.
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Proposition 8 If a proposer p enters an ac-
ceptance phase ΦA and the preparation
phase before ΦA is ΦP , then ΦA.p round ∈
top(ΦA.p Rounds,ΦP .lbound).

Proof. Since p enters the acceptance phase ΦA,
we know that none of the conditions in line 22
are true. That is, all messages received from
acceptors in ΦA.prepQ are ACK-PREP messages
with the same R value. According to line 45 on
the acceptor thread, we know that ΦA.p round ∈
top(R,ΦP .lbound). Therefore, by line 21, we
have ΦA.p Rounds = R and thus ΦA.p round ∈
top(ΦA.pRounds,ΦP .lbound). 2

Proposition 9 Each acceptance phase ΦA has a
unique tuple (ΦA.p round,ΦA.p Rounds).

Proof. For different proposer processes p and q, p
is in acceptance phase ΦA

p and q is in acceptance
phase ΦA

q . Then, since ΦA
p .p round ≡ p(modn)

and ΦA
q .p round ≡ q(modn) by line 3 and line 11,

so ΦA
p .p round 6= ΦA

q .p round.
For a single proposer process p, suppose it is in

an acceptance phase ΦA. If it decides in line 35, it
will not start task 1 again, that is, it will not be in
another acceptance phase again. Otherwise, it must
stop the task at line 30, line 32 or line 33. If it stops
at line 30 or line 32, its p round will increase in the
next task. Otherwise, it must receive NACK-ACC

from an acceptor q with R 6= ⊥. According to
line 50, we know ΦA

p .p Rounds �n q.a Rounds.
And line 51 ensures ΦA

p .p Rounds 6= q.a Rounds.
This directly leads to ΦA

p .p Rounds ≺n q.a Rounds
right before the execution of line 33. As a re-
sult, p.p Rounds will change after line 33. There-
fore, either p round or p Rounds increases when p
stops task 1 without deciding. So, p cannot enter
two different acceptance phases with the same tuple
(ΦA.p round,ΦA.p Rounds). 2

For any variable v of process p, we denote
v(p, t) as the value of v on p at time t after p exe-
cutes its step at time t (if there is such a step).

Proposition 10 On any acceptor q, the sequence
of a Rounds values ordered by time form a to-
tal order with respect to �n, that is, t ≤ t′ ⇒
a Rounds(q, t) �n a Rounds(q, t′).

Proof. This is guaranteed by the way a Rounds vari-
able is updated in lines 44 and 50, and by Proposi-
tion 6. 2

Proposition 11 For any acceptance phase ΦA of a
proposer p and any acceptor q ∈ ΦA.prepQ, let t
be the time when q sends the ACK-PREP message
to p, which puts q into ΦA.prepQ before p enters
phase ΦA. Then we have S(q, t) = ΦA.node and
a Rounds(q, t) = ΦA.p Rounds.

Proof. Note that all received R’s with ΦA.taskid
are the same (line 22) and p Rounds before line 21
�n a Rounds(q, t) (by line 44). We then have
a Rounds(q, t) = ΦA.p Rounds (by line 21 and
the definition of �n). The fact that S(q, t) =
ΦA.node is guaranteed by line 42, because q sends
an ACK-PREP message, not a NACK-PREP message.6

2

Proposition 12 For any two acceptance phases
ΦA

1 and ΦA
2 belonging to the same path in

the partition tree, their p Rounds are compa-
rable, i.e., ΦA

1 .p Rounds �n ΦA
2 .p Rounds

or ΦA
2 .Rounds �n ΦA

1 .p Rounds. Moreover,
ΦA

2 .node $ ΦA
1 .node ⇒ ΦA

1 .p Rounds �n

ΦA
2 .p Rounds and ΦA

1 .p Rounds �n

ΦA
2 .p Rounds⇒ ΦA

2 .node ⊆ ΦA
1 .node.

Proof. Since ΦA
1 and ΦA

2 belong to the same
path P , ΦA

1 .prepQ ∩ ΦA
2 .prepQ 6= ∅ by the

property (ΠSΣ2) of failure detector ΠS
k . Sup-

pose acceptor q ∈ ΦA
1 .prepQ ∩ ΦA

2 .prepQ. By
Proposition 11, there exists times t1 and t2
such that a Rounds(q, t1) = ΦA

1 .p Rounds and
a Rounds(q, t2) = ΦA

2 .p Rounds. Then, by

6Here (and in a few other proofs) we implicitly rely on
our model assumption that q executes lines 42–46 (and also
lines 48–54) in one step at the same time. Such a reliance is
for convenience and not essential. If q executes these lines at
different times, it is easy to rephrase the statements so that the
proofs are still correct.
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Proposition 10 we know that a Rounds(q, t1) and
a Rounds(q, t2) are comparable with respect to
�n. Moreover, if ΦA

2 .node $ ΦA
1 .node, by

Proposition 11, it means S(q, t2) $ S(q, t1),
which implies t1 < t2. By Proposition 10,
we have a Rounds(q, t1) �n a Rounds(q, t2),
and thus ΦA

1 .p Rounds �n ΦA
2 .p Rounds. Re-

versely, if ΦA
1 .p Rounds �n ΦA

2 .p Rounds, it means
a Rounds(q, t1) �n a Rounds(q, t2). By Propo-
sition 10 we have t1 ≤ t2, and thus S(q, t2) ⊆
S(q, t1), which implies ΦA

2 .node ⊆ ΦA
1 .node. 2

Proposition 12 means that the order of the accep-
tance phases based on their p Rounds values is com-
patible with the ancestor order of the corresponding
nodes in the partition tree.

Lemma 13 For all messages
(ACK-PREP, R, TS, v, around, taskid) in M1

computed in line 19, the TS values in these
messages form a total order according to �n.

Proof. We consider a preparation
phase ΦP of some proposer p, and let
MSG1=(ACK-PREP,R,TS,v, around, taskid)
and MSG2=(ACK-PREP,R′,TS′,v′,around′, taskid′)
be two messages in M1 of this phase. It is sufficient
to prove TS and TS′ are comparable. Suppose the
two messages are received from acceptors q and q ′

respectively. If one of the TS and TS′ is ∅, then the
lemma holds, so we consider the case when both are
not ∅.

Suppose q sends MSG1 at time t and q’
sends MSG2 at time t′. Since both messages are
ACK-PREP messages, we know that ΦP .p cid ≡
a cid(q, t) and ΦP .p cid ≡ a cid(q′, t′) by line 42.
By the property (ΠSC1) of ΠS

k , we know that ≡ is
an equivalence relation for any cid outputs appeared
in one failure detector history H . So a cid(q, t) ≡
a cid(q′, t′). Again by property (ΠSC1), we have
S(q, t) = S(q′, t′).

For any t1 ≤ t and t2 ≤ t′, by the definition
of partition tree and partition split history, we have
S(q, t) ⊆ S(q, t1) and S(q′, t′) ⊆ S(q′, t2). Thus
we know that S(q, t1) and S(q′, t2) are always on
the same path in the partition tree Γ.

We choose time t1 ≤ t to be the time when q
updates its a TS to value TS in line 53 (the time
exists because TS is not ∅). This update is due to
the receipt of an ACCEPT message from some pro-
poser, so it corresponds to some acceptance phase
ΦA

1 . According to line 48 and property (ΠSC1),
we know that ΦA

1 .node = S(q, t1). Similarly, we
choose time t2 ≤ t′ to be the time when q′ up-
dates its a TS to value TS′, and it corresponds to
an acceptance phase ΦA

2 with ΦA
2 .node = S(q′, t2).

Therefore, we know that ΦA
1 and ΦA

2 belongs to the
same path in the partition tree. By Proposition 12,
we know that ΦA

1 .p Rounds and ΦA
2 .p Rounds are

comparable w.r.t. �n. Finally from line 53, we
know that q sets its a TS to ΦA

1 .p Rounds at time
t1 and q′ sets its a TS to ΦA

2 .p Rounds at time t2,
so TS = ΦA

1 .p Rounds and TS′ = ΦA
2 .p Rounds.

Therefore, TS and TS′ are comparable w.r.t. �n. 2

Lemma 13 guarantees that in line 25, it is al-
ways possible to find a timestamp TS with the high-
est value.

For each acceptance phase ΦA, we define its pre-
decessor, denoted as pred(ΦA), to be another accep-
tance phase as the following. Before a proposer p
enters its acceptance phase ΦA, if it sets its est to
its own proposal proposal in line 24, then ΦA has
no predecessor, or pred(ΦA) = ⊥. If p sets its
est to a value v obtained from a message in M1 in
line 25, then there is an acceptor q which sends an
ACK-PREP message with v and ΦA.taskid to p. So
there is an earlier time when q sets its a est to v in
line 53, which occurs when q receives an ACCEPT

message with value v from a proposer p0. Proposer
p0 must have sent this ACCEPT message in an accep-
tance phase ΦA

0 . In this case, we say that ΦA
0 is the

predecessor of ΦA, i.e., pred(ΦA) = ΦA
0 . By defini-

tion, we have ΦA.est = pred(ΦA).est if pred(ΦA) 6=
⊥. Informally, the predecessor list traces the accep-
tance phases back to its origin based on the chain
of est values. We define pred0(ΦA) = ΦA and
predj(ΦA) = pred(predj−1(ΦA)) for j ≥ 1.

Proposition 14 Suppose there are two acceptance
phases ΦA and ΦA

0 such that pred(ΦA) = ΦA
0 .

Then ΦA and ΦA
0 belong to the same path,
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ΦA
0 .p Rounds � ΦA.p Rounds, and ΦA.node ⊆

ΦA
0 .node. Moreover, ΦA

0 .p Rounds is the TS value
associated with value v that proposer p selects in
line 25 before it enters phase ΦA.

Proof. Recall the definition of pred(ΦA); that is,
proposer p has phase ΦA, proposer p0 has phase ΦA

0 ,
and q is the acceptor that relates ΦA with ΦA

0 . Sup-
pose q sends its ACK-PREP message with value v to
p as described in the definition at time t, and q sets
its a est to v at time t0 ≤ t. By Proposition 11,
a Rounds(q, t) = ΦA.p Rounds and ΦA.node =
S(q, t). By Proposition 10, a Rounds(q, t0) �n

a Rounds(q, t). By line 53, a Rounds(q, t0) =
ΦA

0 .p Rounds, and by line 48, ΦA
0 .node = S(q, t0).

Therefore, ΦA
0 .p Rounds �n ΦA.p Rounds. By

the definition of partition split history S, we have
S(q, t) ⊆ S(q, t0). Thus ΦA.node and ΦA

0 .node are
on the same path and ΦA.node ⊆ ΦA

0 .node.
Let TS be the value associated with v that pro-

poser p selects before it enters phase ΦA. Just as
in the definition of pred(ΦA), we can follow the
value v and find an acceptor q that sets its a est to
v and its a TS to TS in line 53. According to line 53
and the definition of pred(ΦA), TS is the same as
pred(ΦA).p Rounds, which is ΦA

0 .p Rounds. 2

In the partition tree Γ, we call a node Pi a critical
node if the following two conditions hold:

1. There exists a successful acceptance phase
ΦA with ΦA.node = Pi;

2. There dose not exist any successful accep-
tance phase ΦA with ΦA.node ' Pi. In other
words, none of the ancestors of Pi satisfies
condition 1.

For a critical node Pi, we define TS(Pi) to be the
smallest ΦA.p Rounds (w.r.t. order �n) such that
ΦA.node = Pi and ΦA is a successful acceptance
phase.

Proposition 15 Let Pi and Pj be two different crit-
ical nodes, then Pi ∩ Pj = ∅.

Proof. If Pi ∩ Pj 6= ∅, it must be true that Pi is
Pj’s ancestor or Pj is Pi’s ancestor. According to
condition 2, both cases are impossible. 2

Proposition 16 For any successful acceptance
phase ΦA, we can find an unique critical node Pi

such that ΦA.node j Pi. We call cnode(ΦA) = Pi.

Proof. Let ΦA
0 = ΦA and Pj0 = ΦA

0 .node. If
Pj0 is critical, the critical node is found. Otherwise,
there must exists an acceptance phase ΦA

1 such that
ΦA

1 .node ' Pj0 . Therefore, Pj1 = ΦA
1 .node is an

ancestor of Pj0 . If Pj1 is critical, the critical node is
found. Otherwise, we can find Pj2 , Pj3 , and so on
in the similar way. Because nodes Pjk

(k = 1, 2, . . .)
are distinct ancestors of Pj0 and the number of Pj0’s
ancestors are finite, there must be a node Pjk

which
is a critical node. So there must exists at least one
critical node Pi such that ΦA.node j Pi.

If there are two critical nodes Pi and Pj with
ΦA.node j Pi and ΦA.node j Pj . We have ∅ 6=
ΦA.node j Pi ∩ Pj . According to Proposition 15,
this is impossible. Therefore, the critical node Pi is
unique. 2

For a component Pi in the partition tree Γ with
a failure detector history H , recall that we define
lbound(Pi) = max{H(p, t).lbound | p ∈ Pi and
t ∈ T }.

Lemma 17 For any successful acceptance
phase ΦA, there must be an acceptance phase
ΦA

0 and some non-negative integer j such
that ΦA

0 = predj(ΦA), ΦA
0 .p Rounds =

TS(cnode(ΦA)) and ΦA
0 .p round ∈

top(TS(cnode(ΦA)), lbound(cnode(ΦA))).

Proof. Let p be the process that enters ΦA, and the
preparation phase p enters just before ΦA is ΦP .

If ΦA.p Rounds = TS(cnode(ΦA)),
by Proposition 8 we have ΦA.p round ∈
top(TS(cnode(ΦA)),ΦP .lbound). Because ΦA

is a successful acceptance phase, it must be true
that ΦA.node ⊆ cnode(ΦA), which leads to
p ∈ cnode(ΦA). According to the definition of
lbound(cnode(ΦA)), we know ΦP .lbound ≤
lbound(cnode(ΦA)). So ΦA.p round ∈
top(TS(cnode(ΦA)), lbound(cnode(ΦA))) and
the lemma holds with ΦA

0 = pred0(ΦA).
Otherwise, we have TS(cnode(ΦA)) �n

ΦA.p Rounds. Let ΦA
u be an successful accep-
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tance phase belonging to node cnode(ΦA) with
ΦA

u .p Rounds = TS(cnode(ΦA)), and pu be the
process that enters ΦA

u . Since ΦA and ΦA
u are on

the same path P , by Proposition 12 ΦA.node ⊆
ΦA

u .node.
Let t be the time when p completes the repeat-

until loop in lines 16–18 before it enters the accep-
tance phase ΦA. Thus, the last p Quorum value p
reads is the failure detector output at time t, i.e., the
value H(p, t).Quorum. By definition ΦA.prepQ =
H(p, t).Quorum. Also, by the condition (3) in
line 22, if at time t the cid output of the failure de-
tector were not the same as p cid obtained at the be-
ginning of the preparation phase (w.r.t. relation ≡),
p would not enter the acceptance phase ΦA. There-
fore we have S(p, t) = ΦA.node by the definition of
ΦA.node and the property (ΠSC1) of ΠS

k .
Let tu be the time when pu completes the repeat-

until loop in lines 27–29 in pu’s acceptance phase
ΦA

u . By a similar argument, we have ΦA
u .accQ =

H(pu, tu).Quorum. Moreover, line 30 guarantees
that S(pu, tu) = ΦA

u .node. Therefore, S(p, t) ⊆
S(pu, tu).

Now we can apply property (ΠSΣ2) of ΠS
k and

conclude that ΦA.prepQ ∩ ΦA
u .accQ 6= ∅. Let q

be the acceptor in ΦA.prepQ ∩ ΦA
u .accQ. So at

some time t0 q sends message (ACK-ACC, taskid′)
to pu, and at another time t1 q sends mes-
sage (ACK-PREP, a Rounds(q, t1), TS, v, taskid) to
p. According to lines 53 and 51, we have
a TS(q, t0) = a Rounds(q, t0) = ΦA

u .p Rounds. By
Proposition 11, a Rounds(q, t1) = ΦA.p Rounds.

Since ΦA
u .p Rounds �n ΦA.p Rounds but

they are not equal, we have t0 < t1. Thus
a est(q, t0) 6= ⊥ implies that a est(q, t1) 6=
⊥, which means the value v in the message
(ACK-PREP,ΦA.p Rounds, TS, v, taskid) q sends to
p is not ⊥. According to line 24, p cannot use its
own proposal value in phase ΦA. Therefore ΦA has
a predecessor.

Let ΦA
1 = pred(ΦA). We now prove that

ΦA
u .p Rounds �n ΦA

1 .p Rounds. Since by lines 53
and 51 a TS values of acceptor q always take
a Rounds values of q, by Proposition 10 a TS values
on q are also totally ordered with time. So we have

a TS(q, t0) �n a TS(q, t1). According to line 25,
p will choose v with the highest timestamp TS be-
fore it enters ΦA, so we have TS �n a TS(q, t1) �n

a TS(q, t0) = ΦA
u .p Rounds. By Proposition 14,

TS = pred(ΦA).p Rounds = ΦA
1 .p Rounds. There-

fore, we have ΦA
1 .p Rounds �n ΦA

u .p Rounds.
Again by Proposition 14, ΦA

1 is also on path P .

We can now repeat the above argument again on
phase ΦA

1 . Note that we do not need the condition
that ΦA

1 is a successful acceptance phase, because
we already have ΦA

u .p Rounds �n ΦA
1 .p Rounds.

Finally, by the definition of pred(ΦA), each time we
find a predecessor we must have followed the causal
chain of messages backward in time. Therefore,
the above argument cannot be repeated infinitely
often, and it will stop at some acceptance phase
ΦA

v , and it must be the case that ΦA
v .p Rounds =

TS(cnode(ΦA)).

Now we consider two phases ΦA
0 and ΦA

1

from the acceptance phase chain created in
the above manner, such that pred(ΦA

1 ) =
ΦA

0 ), ΦA
0 .p Rounds = TS(cnode(ΦA)), and

ΦA
1 .p Rounds � ΦA

0 .p Rounds. This is possi-
ble because ΦA.p Rounds � TS(cnode(ΦA)) and
ΦA

v .p Rounds = TS(cnode(ΦA)).

Since ΦA
1 and ΦA

u are both in path P , we have
ΦA

1 .prepQ ∩ ΦA
u .accQ 6= ∅. Let p1 be the process

which enters ΦA
1 and q be an acceptor in ΦA

1 .prepQ∩
ΦA

u .accQ. There exists a time t such that q sends
ACK-ACC for ΦA

u . The event that q sends ACK-PREP

message to p1 for ΦA
1 must happen at a time t′ >

t, because ΦA
1 .p Rounds = a Rounds(q, t′) �n

a Rounds(q, t) = ΦA
u .p Rounds. Suppose the a est,

a TS, and a round in the message come from an ac-
ceptance phase ΦA

x . It must be true that ΦA
x writes

its values on q at or after time t. Therefore, we have
ΦA

u .p Rounds �n ΦA
x .p Rounds and ΦA

u .node k

ΦA
x .node.

On the other hand, since p1 picks the a est, a TS,
and a round values written by ΦA

0 . According to
our algorithm, one of the following two conditions
must be true: ΦA

x .p Rounds ≺n ΦA
0 .p Rounds; or

ΦA
x .p Rounds = ΦA

0 .p Rounds and ΦA
x .p round ≤

ΦA
0 .p round.
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ΦA
u .p Rounds = ΦA

0 .p Rounds and
ΦA

u .p Rounds �n ΦA
x .p Rounds �n ΦA

0 .p Rounds
leads to ΦA

x .p Rounds = ΦA
0 .p Rounds. So

we have ΦA
x .p round ≤ ΦA

0 .p round. Because
ΦA

x .node j ΦA
u .node, we know ΦA

x .p round ∈
top(TS(cnode(ΦA)), lbound(cnode(ΦA))).
Then ΦA

0 .p round ∈
top(TS(cnode(ΦA)), lbound(cnode(ΦA))) can
be derived from ΦA

x .p round ≤ ΦA
0 .p round. 2

Lemma 18 For any critical node Pi, let V(Pi) =
{ΦA.est| ΦA is successful acceptance phase and
cnode(ΦA) = Pi}. Then |V(Pi)| ≤ lbound(Pi).

Proof. According to Lemma 17, for any success-
ful acceptance phase ΦA

x with cnode(ΦA) = Pi,
there exists an acceptance phase ΦA

x0
and a non-

negative integer j such that ΦA
x0

= predj(ΦA
x ),

ΦA
x0

.p Rounds = TS(Pi), and ΦA
x0

.p round ∈
top(TS(Pi), lbound(Pi)).

According to Proposition 9, every ΦA
x0

has a
unique tuple (ΦA

x0
.p Rounds,ΦA

x0
.p round). Be-

cause for all ΦA
0 ΦA

0 .p Rounds = TS(Pi) and
ΦA

0 .p round ∈ top(TS(Pi), lbound(Pi)), the set
{ΦA

x0
} contains at most lbound(Pi) distinct ele-

ments. Since ΦA
x .est = ΦA

x0
.est, |V(Pi)| ≤

|{ΦA
x0
}| ≤ lbound(Pi). 2

Lemma 19 (Uniform k-Agreement) There are at
most k different decision values.

Proof. Let C = {Pi|Pi is a critical node} and
L(Γ) = {P |P is a leaf node in Γ}.

Since only successful acceptance phase can de-
cide values, by Lemma 18, we just need to prove the
following ∑

Pi∈C

lbound(Pi) ≤ k

By the definition of lbound, we have
lbound(Pi) = max{lbound(Q)|Q j Pi ∧ Q ∈
L(Γ)}. So

lbound(Pi) ≤
∑

Q∈L(Γ)∧QjPi

lbound(Q)

By Proposition 15, for any leaf Q, there are at
most one critical node Pi satisfying Q j Pi. So, we
have

∑

Pi∈C

lbound(Pi) ≤
∑

Q∈L(Γ)

lbound(Q) ≤ k

The last inequity is because of the specification
of ΠS . 2

Lemma 20 (Termination) At least one proposer
will eventually decide one value.

Proof. It is sufficient to only consider the algorithm
execution after a time t and the processes in a “live”
component Pi. After time t, the output of ΠS

k on pro-
cesses in component Pi satisfies the following con-
ditions:

1. lbound of all proposers are the same and sta-
ble. We use lb to represent it.

2. isLeader is stable. We call the proposer with
isLeader = True leader proposer. Note that
there is at least one leader proposer and at
most lb leader proposers.

3. Quorum only contains correct acceptors.

4. cid and a cid are stable on proposers and ac-
ceptors. That is, the partition will stop split-
ting eventually.

According to the definition ΠS
k , such component Pi

and time t exists.
We first claim that there exists a time t0, for all

time t1, t2 > t0 and for any proposer p ∈ Pi and
acceptor q ∈ Pi, p Rounds(p, t1) = p Rounds(p, t2)
and a Rounds(q, t1) = a Rounds(q, t2).

Suppose, for a contradiction, that there ex-
ists some processes whose p Rounds or a Rounds
changes infinitely often. This means at least one
proposer p keeps increasing its p round value. Ac-
cording to lines 8–11 in our algorithm, p.p round
increases if and only if 1) p is not decided yet;
2) p.isLeader is True; and 3) p.incflag = True or
p.p round 6∈ top(p.p Rounds, p.lbound). Accord-
ing to lines 30, 32, and 48, incflag is set to True
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only if p.cid changes or on an acceptor q q.a cid 6≡
p.cid. But after time t, p.cid ≡ q.a cid ≡ P for
any proposers p and acceptor q in P . Therefore,
p.isLeader eventually stays at the value of False.
So p.p round 6∈ top(p.p Rounds, p.lbound) must be
True infinitely often. Let Pl be the set of proposers
with isLeader set to True after t. Proposers in Pi \Pl

will stop increase their p round variables eventually,
since only the leader proposers are allowed to in-
crease their p round variables. Let Pinc ⊆ Pl be
the set of processes that continuously increase their
p round value. There must be a time t0 > t such that
p round(p1, t

′) > p round(p2, t
′) for all p1 ∈ Pinc,

p2 ∈ P \ Pinc, and t′ > t0. Because |Pinc| ≤
|Pl| ≤ lb after t, we have {p round(p, t′)|p ∈
Pinc} ⊆ top({p round(p, t′)|p ∈ P}, lb). Now
on every proposer p ∈ Pinc, p.p round 6∈
top(p.p Rounds, p.lbound) becomes False because
every p round number in p.p Rounds is smaller
than or equal to its corresponding process’s current
p round value. Therefore, no proposers can change
their p round variables at and after t0. This contra-
dicts to the direct result of the assumption that a pro-
cess’s p Rounds or a Rounds keep changing.

Suppose no proposer decides. Let proposer p
be a leader proposer after t, p will repeatedly ex-
ecutes Task 1. Consider the first time p runs into
Task 1 after time t0. p must not chooses a new
p round, because the new p round value will change
the p Rounds according to lines 10– 12.

Since p Quorum contains only correct pro-
cesses, so p will not be stuck at the waiting loops
of lines 16–18 and lines 27–29. After t p.cid stops
change, so the third condition at line 22 and the
condition at line 30 are unsatisfied. Also, because
p.cid ≡ q.a cid for all acceptor q after t, q will
not send NACK-PREP and NACK-ACC at line 42 and
line 48, respectively. Because of lines 21, 33, 44,
and 50, p.p Rounds = q.p Rounds for all accep-
tor q after time t0. So the second condition at
line 22 is unsatisfied. Also, acceptors will not send
NACK-ACC messages at line 51. Moreover, since
p.p round ∈ top(p.p Rounds, lb) and p.p Rounds =
q.p Rounds, acceptors will not send any NACK-PREP

messages at line 45. Therefore, the first condition at

line 22 and the condition at line 31 are not satisfied.
As a consequence, p shall decide in line 35. This is
contradictory. So the lemma is proved. 2

Lemma 21 (Validity) If a proposer decides v, then
v has been proposed by some process.

Proof. According to our algorithm, if ΦA is a suc-
cessful acceptance phase of proposer p, p decides
ΦA.est. ΦA.est either equals to pred(ΦA).est, or
equals to p.proposal when pred(ΦA) = ⊥. If it
is the latter case, the lemma holds. Otherwise, the
same argument can be applied on pred(ΦA) no mat-
ter whether it is a successful acceptance phase or
not. Therefore, we can create a chain of accep-
tance phases. Since there are only a finite number
of acceptance phases before ΦA (w.r.t. (≺n,≤) on
(ΦA.p Rounds,ΦA.p round)), the chain must stop
on a phase ΦA

0 such that pred(ΦA
0 ) = ⊥. And we

know ΦA
0 .est = p0.proposal, given that the process

enters ΦA
0 is p0. Therefore, ΦA.est = p0.proposal

and the lemma holds. 2

Theorem 11 The algorithm in Figures 2, 3 and 4
solves the k-set agreement problem with any failure
detector in ΠS

k .
Proof. The theorem follows directly from
Lemma 19–21. 2


