
Failure Detectors and Extended Paxos for k-Set Agreement

Wei Chen† Jialin Zhang‡ Yu Chen† Xuezheng Liu†

†Microsoft Research Asia
{weic,ychen,xueliu}@microsoft.com

‡Tsinghua University
zhanggl02@mails.tsinghua.edu.cn

Abstract

Failure detector class Ωk has been defined in [17] as an extension to failure detector Ω, and an
algorithm has been given in [15] to solve k-set agreement using Ωk in asynchronous message-passing
systems. In this paper, we extend these previous works in two directions. First, we define two new classes
of failure detectors Ω′

k and Ω′′

k , which are new ways of extending Ω, and show that they are equivalent
to Ωk. Class Ω′

k is more flexible than Ωk in that it does not require the outputs to stabilize eventually,
while class Ω′′

k does not refer to other processes in its outputs and thus serves as a good basis for the
partitioned failure detectors we introduce in [6]. Second, we present a new algorithm that solves k-set
agreement using Ω′′

k when a majority of processes do not crash. The algorithm is a faithful extension
of the Paxos algorithm [11], and thus it inherits the efficiency, flexibility, and robustness of the Paxos
algorithm. In particular, it has better message complexity than the algorithm in [15]. Both the new
failure detectors and the new algorithm enrich our understanding of the k-set agreement problem. In
particular, they serve as the basis of our study on partitioned failure detectors for k-set agreement [6].

MSR-TR-2007-48

MSR-TR-2007-48 1

1 Introduction

Failure detectors are introduced in [4] to circum-
vent the impossibility result of solving asynchronous
consensus [8]. Their abstractions encapsulate the
synchrony conditions of the systems needed to solve
asynchronous consensus and other problems in dis-
tributed computing. In [4] a rotating-coordinator
algorithm is shown to solve consensus in asyn-
chronous systems with a failure detector in class 3S
when a majority of processes are correct (i.e., they
do not crash). In [3], failure detector class Ω, which
is equivalent to 3S [7], is shown to be the weakest
failure detector class solving consensus. Class Ω is
often referred to as leader electors. It requires that
each process outputs one process, and eventually all
processes output the same correct process.

Around the same time period, Lamport designed
the Paxos algorithm that also solves consensus in
systems with a majority of correct processes [11].
Although implicit, the Paxos algorithm essentially
uses leader electors Ω. The core of the Paxos algo-
rithm is similar to the rotating-coordinator algorithm
in [4], but the Paxos algorithm has a number of at-
tractive features in its efficiency, flexibility, and ro-
bustness. Due to these features, the Paxos algorithm
has been implemented as a core service in a number
of distributed systems (e.g. [13, 2]).

The problem of k-set agreement is introduced in
[5] as a generalization of the consensus problem. In
k-set agreement, each process from a set of n > k
processes proposes a value, and makes an irrevoca-
ble decision on one value. It needs to satisfy the
following three properties: (1) Validity: If a process
decides v, then v has been proposed by some pro-
cess. (2) Uniform k-Agreement: There are at most k
different decision values. (3) Termination: Eventu-
ally some correct process decides.1

It has been shown that k-set agreement cannot be
solved if k processes may crash in the system [1, 10,

1In asynchronous systems with reliable channels, a correct
process that decides can send out its decision value to all pro-
cesses so that all correct processes eventually decide. There-
fore, our Termination property implies a different version that
requires all correct processes eventually decide.

18], and a number of studies have introduced various
failure detectors to circumvent this impossibility re-
sult [19, 16, 9, 14, 15]. In [15], Mostefaoui et.al.
summarizes the relationship among these failure de-
tectors and show that class Ωk is the weakest among
them. A failure detector in Ωk outputs a set of at
most k processes and eventually the outputs on all
correct processes converge to the same set of pro-
cesses that contains at least one correct process. It
is an extension of Ω, and is originally introduced in
[17] for studying wait-free hierarchy in shared mem-
ory systems. In [15] an algorithm is also presented
to solve k-set agreement using Ωk in systems with a
majority of correct processes.

In this paper, we extend both the study on Ωk

and the study on the algorithm for k-set agreement.
We define two new classes of failure detectors Ω′

k

and Ω′′
k as different ways to extend Ω, and show

that they are equivalent to Ωk by transformations
between them in asynchronous systems. Each new
class has its own feature. Failure detectors in Ω′

k

output a single process, which is required to be a
correct process eventually (same as Ω), while the to-
tal number of processes appearing in the outputs in-
finitely often is at most k. Ω′

k is more flexible than
Ωk in that it does not require that the outputs of the
failure detector on all processes eventually stabilize.
Failure detectors in Ω′′

k output a Boolean value in-
dicating whether the process itself is a leader, and
eventually the outputs stabilize and the number of
leaders is at least one and at most k. Ω′′

k differs
from Ωk and Ω′

k in that its outputs do not refer to
other processes in the system. This feature is par-
ticularly convenient when we introduce partitioned
failure detectors in [6], since we do not need to con-
cern about whether the failure detector outputs refer
to processes in the same partitioned component or
not. Therefore, Ω′′

k serves as the basis for our study
of partitioned failure detectors in [6].

To show the equivalence of these failure detector
classes in the amount of information they provide,
we show that they can be transformed into one an-
other. Moreover, we demand that the transformation
algorithms be parameter-free, which means they do
not contain any parameters such as the value of k. In

MSR-TR-2007-48 2

other words, the information about the parameter k
is contained within the failure detector outputs, not
provided by the transformation algorithms. Hence,
the transformations are generic ones working for any
parameter k. This also leads to an additional output
lbound in Ω′

k and Ω′′
k to replace the fixed parame-

ter k. The lbound outputs are numbers of at most k,
and they eventually stabilize to a single value, which
is the upper bound on the number of leaders even-
tually appearing in the system. This lbound output
makes the transformations between Ωk, Ω′

k and Ω′′
k

parameter-free.
In the paper, we show the circular transforma-

tions from Ωk to Ω′′
k, then from Ω′′

k to Ω′
k, and finally

from Ω′
k to Ωk. The first two transformations are

very simple, while the third one is significantly more
complicated. The simplicity of the first two trans-
formations relates to the eventually stable outputs of
the failure detectors in Ωk and Ω′′

k. On the contrary,
failure detectors in Ω′

k do not have eventually stable
outputs, and thus it requires more communication
and processing effort to construct a failure detector
with stable outputs in Ωk. In a precise sense, the
transformation from Ω′

k to Ωk shows the difference
in the information complexity between these classes.
The implication from this difference is that, it may
be more convenient using Ωk and Ω′′

k to solve prob-
lems such as k-set agreement, while it may be more
convenient to use Ω′

k to show it is implementable in
certain systems or transformable from other failure
detectors.

Next, we show how to extend the Paxos algo-
rithm using Ω to a new algorithm using Ω′′

k to solves
k-set agreement, in systems with a majority of cor-
rect processes. The key idea of the extension is that,
while in the Paxos algorithm each acceptor can only
accept one round and thus commit to support only
one proposer at a time, our algorithm allows each
acceptor to accept up to k rounds and thus commit
to support up to k proposers simultaneously. The re-
alization of this idea is not entirely straightforward,
and it leads to our full algorithm that handles all pos-
sible scenarios.

Our algorithm has several features. First, the al-
gorithm is parameter-free, the set agreement number

k that it solves is purely determined by the outputs
of failure detectors in Ω′′

k. This makes the algorithm
generic for solving set agreement with any number
k, and makes it as our basis to study the algorithm
for k-set agreement with partitioned failure detectors
in [6]. The algorithm in [15] is also parameter-free,
so we match its generality in this sense.

Second, and more impotantly, our algorithm is
a faithful extension to the original Paxos algorithm,
and so it inherits the efficiency, flexibility and ro-
bustness of the Paxos algorithm. For efficiency, in
normal runs where all n processes are correct and
the ` leaders elected by Ω′′

k are stable from the be-
ginning, our algorithm only cost O(`n) messages,
better than the O(n2) messages needed by the al-
gorithm in [15]. Moreover, same as the Paxos al-
gorithm, our algorithm allows the efficent batching
of many instances of k-set agreement together, so
the amortized time complexity of completing one
instance of k-set agreement is one round-trip time,
which matches that of the algorithm in [15]. For
flexibility, our algorithm allows assigning different
processes to different roles. In particular, only the
proposers need access to failure detectors while ac-
ceptors could be purely reactive processes. For ro-
bustness, our algorithm can also be made to tolerate
transient failure by keeping several key state vari-
ables in stable storage as in Paxos. Therefore, we
successfully extend the Paxos algorithm and inherits
its features to the context of k-set agreement.

Overall, our contributions are both on the study
of new failure detectors for k-set agreement, and on
the study of extending the Paxos algorithm to solve
k-set agreement. We believe that our study enriches
the understanding of the k-set agreement and its as-
sociated failure detectors. In particular, it serves as
the basis for our next-step study on partitioned fail-
ure detectors for k-set agreement.

The rest of the paper is organized as follows.
Section 2 describes our system model. Section 3 de-
fines the new failure detectors and shows their equiv-
alence. Section 4 presents the extended Paxos algo-
rithm and discusses its features. Section 5 concludes
the paper. The correctness proof of the extend Paxos
algorithm is provided in the appendix.

MSR-TR-2007-48 3

2 System Model

We consider asynchronous message passing dis-
tributed systems augmented with failure detectors.
Our formal model is the same as the model in [3],
and we explain the main points in this section.

We consider a system with n (n > k) processes
P = {p1, p2, . . . , pn}. Let T be the set of time val-
ues, which are non-negative integers. Processes do
not have access to the global time. A failure pat-
tern F is a function from T to 2P , such that F (t) is
the set of processes that have failed by time t. Let
correct(F) denote the set of correct processes, those
that do not crash in F . A failure detector history H
is a function from P ×T to an output rangeR, such
that H(p, t) is the output of the failure detector mod-
ule of process p ∈ P at time t ∈ T . A failure detec-
tor D is a function from each failure pattern to a set
of failure detector histories, representing the possi-
ble failure detector outputs under failure pattern F .

Processes communicate with each other by send-
ing and receiving messages over communication
channels, which are available between every pair of
processes. Channels are reliable in that it does not
create or duplicate messages, and any message sent
to any correct process is eventually received.

A deterministic algorithm A using a failure de-
tector D executes by taking steps. In each step, a
process p first receives a message (could be a null
message), queries its failure detector module, then
changes its local state and sends out a finite number
of messages to other processes. Each step is com-
pleted at one time point t, but the process may crash
in the middle of taking its step. All steps have to
be legitimate, which means under failure pattern F
and a failure detector history H ∈ D(F), if p takes
a step at time t and receives a message m from q,
then p 6∈ F (t), p’s failure detector query output is
H(p, t), and there must be a step before t such that
q sends m to p in that step. A run of algorithm
A with failure detector D is an infinite sequence of
such steps such that (a) every correct process takes
an infinite number of steps, and (b) every message
sent to a correct process is eventually received.

We consider the asynchronous system model,

which means there is no bound on the delay of mes-
sages and the delay between steps that a process
takes.

We say that a failure detector class C1 is weaker
than a failure detector class C2, if there is a trans-
formation algorithm T such that using any failure
detector in C2, algorithm T implements a failure de-
tector in C1. In this case, we denote it as C1 � C2
and also refer to it as C2 can be transformed into C1.
We say that C1 and C2 are equivalent if C1 � C2 and
C2 � C1.

3 Ωk-like failure detectors

In this section, we provide the formal specifications
of the two new classes of failure detectors Ω′

k and
Ω′′

k, and then show that they are equivalent to Ωk.
We provide the formal specification of Ωk first.

Failure detectors in Ωk outputs a set Leaders,
which is a set of processes to be considered as lead-
ers. A failure detector D is in the class Ωk, if for
any failure pattern F and any failure detector history
H ∈ D(F), we have:

(Ω1) For any output, its size is at most k. Formally,
∀t ∈ T ,∀p 6∈ F (t), |H(p, t)| ≤ k.

(Ω2) Eventually, all failure detector modules out-
put the same set of processes. Formally,
∃t0 ∈ T ,∀t1, t2 ≥ t0,∀p1 6∈ F (t1),∀p2 6∈
F (t2),H(p1, t1) = H(p2, t2).

(Ω3) Eventually, at least one process in any output
is correct. Formally, ∃t0 ∈ T ,∀t ≥ t0,∀p 6∈
F (t),∃q ∈ correct(F), q ∈ H(p, t).

3.1 Specification of Ω
′
k

As described in the introduction, for Ω′
k, we aim at

failure detectors in which each process only select
one process as a leader, not a set of processes as in
Ωk. Moreover, we would like to have more flexible
failure detectors whose outputs are not required to
eventually stabilize as in Ωk.

More precisely, the output of Ω′
k is

(leader, lbound), where leader is a process

MSR-TR-2007-48 4

that p believes to be the leader at the moment, and
lbound is a non-negative number that p believes
to be the upper bound of the number of possible
leaders in the system. We denote H(p, t).leader and
H(p, t).lbound the leader part and the lbound part
of outputs respectively for a failure detector history
H .

A failure detector D is in the class Ω′
k if for

any failure pattern F and any failure detector history
H ∈ D(F), we have:

(Ω′1) The lbound outputs never exceed k. Formally,
∀t ∈ T ,∀p 6∈ F (t),H(p, t).lbound ≤ k.

(Ω′2) Eventually, the lbound outputs of all pro-
cesses do not change and are the same. For-
mally, ∃t0 ∈ T ,∀t1, t2 ≥ t0,∀p1 6∈
F (t1),∀p2 6∈ F (t2),H(p1, t1).lbound =
H(p2, t2).lbound.

(Ω′3) Eventually, the leader output on every process
is always a correct process. Formally, ∃t0 ∈
T ,∀t ≥ t0,∀p 6∈ F (t),H(p, t).leader ∈
correct(F).

(Ω′4) Eventually, the number of leaders is bounded
by lbound. Formally, ∃t0 ∈ T ,∀t ≥
t0,∀p 6∈ F (t), |{H(q, t′).leader | t′ > t0, q 6∈
F (t′)}| ≤ H(p, t).lbound.

Several remarks are in order for the above def-
inition. First, one may see that properties (Ω′1)
and (Ω′2) can be trivially satisfied by hard-coding
lbound to k. This, however, means that one has to
pre-determine the parameter k. This is not the case
for Ωk, because according to (Ω1), the parameter k
could be any value that is at least the maximum size
of the Leaders outputs in a run. The implication is
that, if we hard-code lbound to k, any transformation
from Ωk to Ω′

k has to know the value of k in advance
and it cannot derive k from the outputs of Ωk. In this
case, the transformation is not parameter-free, and
Ω′

k is not as general as Ωk.
Second, one may see that even if we keep lbound

outputs and property (Ω′1), property (Ω′2) can be
satisfied by processes exchanging their lbound val-
ues and taking the maximum value they see as

their own lbound outputs. The reason we keep this
property is again to match the generality of Ωk, in
which the size of the Leaders outputs may decrease.
Thus, we prefer that lbound values, which essen-
tially match to the sizes of Leaders outputs in Ωk,
to be able to decrease.

Third, properties (Ω′3) and (Ω′4) do not require
that eventually the leader outputs stabilize. Pro-
cesses may keep changing their leader outputs, as
long as they point to at most ` correct processes,
where ` is the eventual lbound value in the run. This
is different from Ωk, which requires that the outputs
of a failure detector eventually stabilize. From the
complexity of the transformation from Ω′

k to Ωk pro-
vided in the next section, we can see that generating
stable outputs required by Ωk indeed demands more
work. Therefore Ω′

k provides a different way of ex-
tending the original Ω failure detector, and it is more
flexible in that it does not require the outputs to sta-
bilize eventually.

3.2 Specification of Ω
′′
k

We now introduce the third class of failure de-
tectors Ω′′

k. Failure detectors in Ω′′
k outputs

(isLeader, lbound), where isLeader is a Boolean
variable indicating whether this process is a leader
or not, and lbound is a non-negative integer with the
same meaning as in Ω′

k. We say that a process p is
an eventual leader (in a failure detector history) in
Ω′′

k if p is correct and there is a time after which p’s
isLeader outputs are always True.

A failure detector D is in the class Ω′′
k if for

any failure pattern F and any failure detector history
H ∈ D(F), we have:

(Ω′′1) The lbound outputs never exceed k. For-
mally, ∀t ∈ T ,∀p 6∈ F (t),H(p, t).lbound ≤
k.

(Ω′′2) Eventually, the lbound outputs of all pro-
cesses do not change and are the same. For-
mally, ∃t0 ∈ T ,∀t1, t2 ≥ t0,∀p1 6∈
F (t1),∀p2 6∈ F (t2),H(p1, t1).lbound =
H(p2, t2).lbound.

MSR-TR-2007-48 5

(Ω′′3) Eventually the isLeader outputs on any
correct process do not change. For-
mally, ∃t ∈ T ,∀p ∈ correct(F),∀t′ >
t,H(p, t).isLeader = H(p, t′).isLeader.

(Ω′′4) There is at least one eventual leader. For-
mally, |{p ∈ correct(F) | ∃t,∀t′ >
t,H(p, t′).isLeader = True}| ≥ 1.

(Ω′′5) The number of eventual leaders is eventu-
ally bounded by the lbound outputs. For-
mally, ∃t0 ∈ T ,∀t1 ≥ t0, |{p ∈
correct(F) | ∃t,∀t′ > t,H(p, t′).isLeader =
True}| ≤ H(p, t1).lbound.

In the specification, the properties about lbound
outputs are the same. For the isLeader outputs,
(Ω′′3) requires that the isLeader output eventually
stabilize, while (Ω′′4) and (Ω′′5) require the num-
ber of eventual leaders to be at least one and at most
the eventual value of lbound.

The main feature of Ω′′
k is that its outputs only in-

clude a Boolean value that refers to the leader status
of each process itself, and it does not refer to other
processes as in Ωk and Ω′

k. This is enough for the
original Paxos algorithm and the extended Paxos al-
gorithm in Section 4, since a proposer process only
needs to know if itself is a leader to initiate a new
proposer round. Moreover, this feature fits particu-
larly well for the partitioned failure detectors we in-
troduce in [6]. When processes are partitioned into
multiple components, the isLeader outputs of a pro-
cess p still naturally refer to the leadership status of p
itself, while for the Leaders outputs in Ωk and leader
outputs in Ω′

k of a process p, we have to put extra re-
quirements on whether these referred processes are
in the same component as p’s or not.

3.3 Equivalence of Ωk, Ω
′
k, and Ω

′′
k

To show the equivalence, we show three parameter-
free transformation algorithms: the first one is from
Ωk to Ω′′

k, the second one is from Ω′′
k to Ω′

k, and the
last one is from Ω′

k to Ωk.
The transformation from Ωk to Ω′′

k is almost triv-
ial: each process p sets its lbound output of Ω′′

k to be

the size of the Leaders outputs of Ωk, and sets its
isLeader output to true if any only if p itself appears
in the Leaders output of Ωk. This transformation
does not involve any messages and is parameter-free.
It is straightforward to verify its correctness.

Lemma 1 Failure detector class Ωk can be trans-
formed into Ω′′

k, for any k ≥ 1.

Transforming failure detector class Ω′′
k to Ω′

k is
also straightforward. The lbound of Ω′′

k is directly
transferred to lbound of Ω′

k without change. Each
process p periodically checks its isLeader value in
Ω′′

k, and if it is true, send a heartbeat message to all
processes. Whenever a process q receives a heart-
beat message from p, q sets its leader output of Ω′

k to
p. Obviously, this transformation is parameter-free,
and it is very simple to verify that the transformation
is correct. Thus we have:

Lemma 2 Failure detector class Ω′′
k can be trans-

formed into Ω′
k, for any k ≥ 1.

We now focus on the transformation from Ω′
k to

Ωk, which are significantly more complicated than
the previous two. The complication comes from the
requirement of stabilizing the Leaders outputs of Ωk

and make sure one of processes in Leaders is correct.
Figure 1 shows this transformation.

The basic idea is for each process pi to periodi-
cally send their leader outputs of Ω′

k to all processes
(line 9), and for each pj , pi counts the number of
times pi sees pj as a leader in a message (line 12).
Then pi sorts all processes into an array A[1..n]
based on the counter values, and use process ID to
break the tie (line 13).

Let L be the set of processes that appear in-
finitely often in the messages of a run of the tran-
formation algorithm. Let ` = |L|. Let setof(A[i..j])
denote the set {A[x] | i ≤ x ≤ j}. Then we have
the following property for array A[].

Proposition 3 Eventually, on all correct processes
we have setof(A[1..`]) = L and A[1] is a correct
process.

MSR-TR-2007-48 6

Proof. This is because eventually, only the coun-
ters of processes in L increase. For each process
p in L, since it appears infinitely often in the mes-
sages, it must appear infinitely often in the messages
sent by some correct process, say q. Then, each cor-
rect process receives infinite messages from q, so
that their counters of p will increase infinitely of-
ten. For each process p′ not in L, its counter on
any correct process can only be incremented a fi-
nite number of times. So, eventually, all correct pro-
cesses have setof(A[1..`]) = L. Since Ω′

k always
outputs a leader, ` ≥ 1. By (Ω′3) we know that
L ⊆ correct(F). So A[1] must be a correct process
eventually. 2

With the above property, if all processes could
output setof(A[1..`]) as their Leaders outputs, the
properties of Ωk would be satisfied. However,
processes do not know `, so instead they output
setof(A[1..s]) for some index pointer s (line 10),
and try to stabilize s and setof(A[1..s]). To do so,
each process exchanges its array A[] with other pro-
cesses (line 9), increases its s value from 1 until it
finds a matching setof(A[1..s]) with the received A[]
(lines 17 and 19), and if s goes beyond its lbound
output, it is wrapped around to 1 and a wrap-around
counter w is incremented (lines 16 and 18). The re-
sult is shown by the following proposition.

Proposition 4 The values of (w, s) eventually stabi-
lize to the same value on all correct processes, and
all setof(A[1..s])’s are the same.

Proof. For each process p, p either increases s and
keeps w (according lines 17 and 19), or increases
w when a wrap-around occurs (lines 16 and 18), or
takes the higher values it sees (line 15) when ex-
changing its (w, s) values. Therefore, (w, s) mono-
tonically increases on each process.

Let (maxw(t),maxs(t)) be the highest (w, s)
value among all correct processes at time t. Values
of (maxw(t),maxs(t)) are also nondecreasing. We
need to show (maxw(t),maxs(t)) eventually stops
increasing.

By (Ω′2) eventually the lbound outputs on all
processes stabilize to a single value. Let b denote
this value. By Proposition 3, all correct processes

On node pi:

1 Global variables:
2 (leader, lbound): output of Ω′

k, read-only
3 Leaders: output of Ωk, initially {pi}
4 c[p1..pn]: counters for all processes, initially 0
5 A[1..n]: permutation of (p1, . . . , pn), such

that for all 1 ≤ x < y ≤ n,
(c[A[x]], A[x]) > (c[A[y]], A[y])

6 s: an index pointer for array A[], initially 1
7 w: counter for the number of wrap-arounds

of s, initially 0

8 Repeat periodically:
9 for each pj ∈ P ,

send (leader, lbound, A[1..lbound], s, w) to pj

10 Leaders← setof(A[1..s])

11 Upon receipt of (leaderj , lboundj , Aj [1..lboundj],
sj , wj) from a node pj :

12 c[leaderj]← c[leaderj] + 1
13 rearrange A[1..n] based on its sorting order
14 if lboundj 6= lbound then return
15 (w, s)← max((w, s), (wj , sj))
16 if s > lboundj then (w, s)← (w + 1, 1) return
17 T ← {s′ | s ≤ s′ ≤ lboundj ,

setof(A[1..s′]) = setof(Aj [1..s′])}
18 if T = ∅ then (w, s)← (w + 1, 1) return
19 s← smallest s′ in T

Figure 1: Transformation from Ω′
k to Ωk.

eventually have setof(A[1..`]). By (Ω′4), ` ≤ b.
Let t0 be the time such that all of the above prop-
erties occur and only correct processes are left. Let
t1 > t0 be the time such that no message sent before
t0 will be received at or after t1. Time t1 exists be-
cause there are only a finite number of messages sent
before t0. Let (w1, s1) = (maxw(t1),maxs(t1)).
We claim that (maxw(t),maxs(t)) will not exceed
(w1 + 1, `).

We prove this claim by contradiction. Sup-
pose that (maxw(t),maxs(t)) eventually exceeds
(w1 + 1, `). Let t2 > t1 be the earliest time
when some correct process pi changes its (w, s) to
a value higher than (w1 + 1, `). Process pi up-
dates its (w, s) only when pi receives a message
msg = (leaderj , lboundj, Aj [1..lboundj], sj , wj)
from a process pj . By the definition of t1, we

MSR-TR-2007-48 7

know that this message is sent after t0, and thus pj

must be a correct process, setof(Aj [1..`]) = L and
lboundj = b.

There are four lines in the algorithm where pi

may update its (w, s) value, and we now examine
each of them and show that none of the lines can
be executed by pi when it receives msg at time t2.
In line 15, pi sets its (w, s) to the maximum of its
local (w, s) value and the received (wj, sj). This
cannot be the line that increases pi’s (w, s) beyond
(w1 + 1, `), because pi is the first process to do
so. In line 16, pi sets its (w, s) to (w + 1, 1) when
s > lboundj . If this is the line that increases pi’s
(w, s) beyond (w1 + 1, `), then we have that before
executing this line variable w is w1+1. Since before
executing this line, we have (w, s) ≤ (w1 + 1, `),
we have s ≤ `. Since we already know that ` ≤ b
and lboundj = b, condition s > lboundj does not
hold, and thus pi will not update (w, s) in line 16.
Suppose that line 18 is the one that increases pi’s
(w, s) beyond (w1 + 1, `). We also have that be-
fore executing this line w = w1 + 1 and s ≤ `.
Since we know that ` ≤ b, lboundj = b, and
setof(A[1..`]) = setof(Aj [1..`]) = L, ` must be
in the set T computed in line 17. Thus, T 6= ∅ and
pi will not update (w, s) in line 18. Finally suppose
that line 19 is the one that increases pi’s (w, s) be-
yond (w1 +1, `). Since in the line only s is changed,
we still have that w = w1+1 and s ≤ `. By the same
argument as above, we have ` ∈ T . Therefore, the
smallest s′ in T must be at most `, and thus after the
update we still have s ≤ `. So the update in this line
will not increase (w, s) beyond (w1 + 1, `).

We have examined all lines that update (w, s)
and conclude that our claim is correct, that is
(maxw(t),maxs(t)) will not exceed (w1 + 1, `).

Let (wm, sm) be the final maximum value ob-
tained on any correct process. Since the channels
between the correct processes are reliable, each cor-
rect processes eventually receive all messages from
other correct processes. Since eventually all cor-
rect processes have the same lbound value by (Ω′2),
the condition in line 14 will be false and the cor-
rect processes always execute line 15. Then we
know all correct processes eventually have the same

(wm, sm) value. Therefore, no process updates its
(w, s) in lines 16 and 18 any more, and whenever
a process executes line 19, the smallest s′ in T is
always the same as s, which means s ∈ T and
setof(A[1..s]) = setof(Aj [1..s]). 2

Note that the final value of s could be either less
than ` or greater than `, so the eventual Leaders out-
put may not be L and may contain non-correct pro-
cesses. Lemma 5 proves the correctness of the trans-
formation.

Lemma 5 The algorithm in Figure 1 transforms any
failure detector in Ω′

k into a failure detector in Ωk.

Proof. We fix an arbitrary failure pattern F , an arbi-
trary failure detector history H of Ω′

k under F , and
an arbitrary run of the algorithm in Figure 1 with the
failure pattern F and the failure detector history H .

First, according to line 10, |Leaders| is bounded
by the index s, which can be either set to 1 or in-
creased in line 19. By line 17, whenever s is in-
creased in line 19, s is bounded by some lbound
value. By property (Ω′1), we thus see that s is at
most k at all times. Therefore, the Leaders output
contains at most k processes, and thus (Ω1) holds.

By Proposition 3, eventually on any correct pro-
cess A[1] must be a correct process. Therefore, (Ω3)
holds.

By Proposition 4 we know that the values of
(w, s) eventually stabilize to the same value on all
correct processes, and all setof(A[1..s])’s are the
same. Since the Leaders output for Ωk is taken as
setof(A[1..s]) (line 10), we know that eventually the
Leaders output does not change, and they are the
same among all correct processes. Therefore prop-
erty (Ω2) holds. 2

From the algorithm and its proof, we see that a
significant amount of information exchange and ma-
nipulation is needed to construct Ωk out of Ω′

k. This
indicates that the requirement of Ωk is rigid and less
flexible. Thus, when we study how to implement
failure detectors in Ωk or how to show another class
of failure detectors can be transformed into Ωk, it
could be more complicated and require more work.
However, with Ω′

k as a more flexible alternative, the
above tasks could be simplified.

MSR-TR-2007-48 8

Moreover, notice that the transformation algo-
rithm is parameter-free, so it is generic for any pa-
rameter k, which means Ω′

k contains all the infor-
mation and the algorithm does not provide any more
information to construct Ωk.

3.4 Summary of Ωk, Ω
′
k, and Ω

′′
k

With Lemmata 1, 2, and 5, we can now state the
following theorem.

Theorem 1 The failure detector classes Ωk, Ω′
k,

and Ω′′
k are equivalent for any k ≥ 1.

Thus, we provide two new classes of failure de-
tectors that are equivalent to Ωk, and they enrich our
understanding of the different aspects that Ωk may
bring. Class Ω′

k shows that Ωk-like leader electors
can be made to be single leader output as the original
Ω, and can be flexible without eventual stabilization
requirements. The complexity of the transforma-
tion from Ω′

k to Ωk shows in a precise way that the
cost one may save if one does not need the eventual
stabilization requirements and only needs the more
flexible Ω′

k. Class Ω′′
k shows that one can also use

Boolean outputs to avoid refering to other processes
in the system, and is suitable for partitioned failure
detectors in [6].

Our study aims at parameter-free transforma-
tions, so it reflects the true equivalence among the
classes of failure detectors. For example, the lbound
outputs introduced in Ω′

k and Ω′′
k are to match the

flexible information that Ωk provides and to allow
parameter-free transformations. If we were to re-
place lbound with a fixed value k, then we would
lose this flexibility, and it would be difficult to gen-
eralize Ω′′

k to the partitioned failure detectors in [6].

4 Extended Paxos algorithm

In this section, we present an algorithm that solves
k-set agreement problem using Ω′′

k in systems with
a majority of correct processes. The algorithm is
an extension to the Paxos algorithm [11] for solving
consensus.

4.1 Algorithm and its description

Figures 2 and 3 present the extended Paxos algo-
rithm for k-set agreement using failure detectors
in Ω′′

k in a system where a majority of processes
are correct. We use similar terminologies as in the
Paxos algorithm summarized in [12]. Each process
behaves both as a proposer and an acceptor (see
Section 4.2 for the extension of this point). Pro-
posers are active participants driving the progress in
a round-by-round fashion, while acceptors are pas-
sive participants responding to proposers’ requests.
A proposer p periodically checks its failure detector
output to see if it is currently a leader, and if so and
it is not already in a round, it starts a new round with
round number p round (lines 6–11). Each round of
proposer p has two phases: the preparation phase
and the acceptance phase. In the preparation phase
(lines 12–19), p sends a PREPARE message to all
acceptors, waits for responses from the acceptors,
and either quits this round or selects a new est value
as the candidate for its decision. In the accep-
tance phase, (lines 20–24), p sends its est value in
an ACCEPT message to all acceptors, waits for re-
sponses from the acceptors, and either decides on est
when it receives a majority of ACK-ACC messages,
or quits this round otherwise. This basic structure is
the same as the Paxos algorithm. We now focus on
the new extensions to the algorithm.

In the Paxos algorithm, each acceptor can only
accept one round at any time, and thus support only
one proposer at any time. This works well with Ω
failure detectors that elect a single leader eventually
to achieve consensus. For k-set agreement with Ω′′

k

failure detectors, the key extension is that each ac-
ceptor can accept multiple rounds at the same time,
and thus it may support multiple proposers who be-
lieve they are leaders according to Ω′′

k. The acceptors
need to control the number of rounds it can accept si-
multaneously. This leads to the introduction of state
variables p Rounds, a Rounds and a TS, which we
explain below.

Given a set of rounds R and a positive inte-
ger m, We define top(R,m), ∪m, and �m, such
that top(R,m) is a function returning the m high-

MSR-TR-2007-48 9

On proposer p with unique id i ∈ {1, . . . , n}:

Proposer variables:
1 proposal : the initial proposal value, read-only
2 (isLeader, lbound): Ω′′

k output, read-only
3 p round: current round number, initially process id i
4 p Rounds: top n rounds that p sees, initially {i}
5 taskid: unique id for each task started, initially 0

Run periodically if not decided yet
6 if isLeader = True and no task 1 running then
7 taskid← taskid + 1;
8 if p round 6∈ top(p Rounds, lbound) then
9 p round← p round + t · n such that

p round + t · n > max p Rounds
10 p Rounds← p Rounds∪n {p round}
11 start task 1

Task 1: one round of p

12 send (PREPARE, p round, p Rounds, lbound, taskid)
to all acceptors

13 wait until [(1) received (NACK-PREP, R, taskid)
from an acceptor; or (2) received (ACK-PREP, R,
TS, v, taskid) from more than n/2 acceptors]

14 M1 ← {(ACK-PREP, R, TS, v, taskid) received
from acceptors}

15 M2 ← {(NACK-PREP, R, taskid) received
from acceptors}

16 p Rounds← p Rounds ∪n (
⋃

m∈M1∪M2
m.R)

17 if (1) M2 6= ∅ or (2) some received R’s in M1

are different then stop this task
18 if ∀m ∈M1, m.v = ⊥ then est← proposal

19 else est← m.v with m ∈M1 and the highest
m.TS (based on �n order)

20 send (ACCEPT, est , p Rounds, taskid) to all acceptors
21 wait until [(1) received (NACK-ACC, R, taskid)

from an acceptor; or (2) received (ACK-ACC,
taskid) from more than n/2 acceptors]

22 if (1) then
23 p Rounds← p Rounds ∪n R; stop this task
24 decide(est)

Figure 2: Extended Paxos algorithm for k-set agree-
ment using Ω′′

k. Part I: proposer thread.

est round numbers in R, ∪m is an operator such
that R1 ∪m R2 = top(R1 ∪ R2,m), and �m is a
partial order such that R1 �m R2 if and only if
R1 ∪m R2 = R2.

On acceptor q:

Acceptor variables:
25 a Rounds: top n rounds that q sees, initially ∅
26 a est: estimate of the final value, initially ⊥;
27 a TS: top n rounds that q sees when q accepts a

value, initially ∅

28 Upon receipt of (PREPARE, r, R, lb, taskid) from p
29 a Rounds← a Rounds∪n R
30 if r 6∈ top(a Rounds, lb) then

send (NACK-PREP, a Rounds, taskid) to p
31 else send (ACK-PREP, a Rounds, a TS,

a est, taskid) to p

32 Upon receipt of (ACCEPT, v, R, taskid) from p
33 a Rounds← a Rounds∪n R
34 if R 6= a Rounds then

send (NACK-ACC, a Rounds, taskid) to p
35 else
36 (a est, a TS)← (v, R)
37 send (ACK-ACC, taskid) to p

Figure 3: Extended Paxos algorithm for k-set agree-
ment using Ω′′

k. Part II: acceptor thread.

Variables p Rounds and a Rounds keep two sets
of at most n rounds that proposer p and acceptor q
may work with, respectively. Proposers and accep-
tors exchange their p Rounds and a Rounds values
and merge the value received into their own value
using operator ∪n (lines 16, 23, 29, 33). The result
is that p Rounds values on proposer p keeps increas-
ing (based on order �n), so do the a Rounds values
on acceptor q. Essentially, p Rounds and a Rounds
record the top n rounds that p and q see so far, re-
spectively.

Based on the value of a Rounds, acceptor q only
accepts a PREPARE message from a proposer p if p’s
current round number p round is in the top lb rounds
that q sees, where lb is the lbound output when p
sends the message (line 30). If q accepts the round,
q sends an ACK-PREP message with its current a est
value and a kind of timestamp a TS (to be explained
shortly) to p; otherwise q sends a NACK-PREP mes-
sage to p.

If p receives a NACK-PREP message in its prepa-
ration phase, it stops waiting for other messages

MSR-TR-2007-48 10

(line 13), updates its p Rounds value (line 16), and
quits the round (line 17). When the next time p starts
a task for a new round, it checks to make sure its
p round is in top(p Rounds, lbound), and if not so,
it selects a new p round that is higher than any round
numbers in p Rounds and merge it into p Rounds
(lines 6–11). This is to guarantee that p’s round will
eventually be accepted by acceptors.

Another case where p may quit its preparation
phase is that among the ACK-PREP messages it has
received, the a Rounds values from the acceptors are
not the same. (line 17, condition (2)). This to ensure
that the majority of acceptors are all accepting the
same set of rounds for the safety of k-set agreement.
For liveness, eventually all p Rounds and a Rounds
will converge so proposers will not always quit their
preparation phases due to this condition.

If p receives ACK-PREP messages from a ma-
jority of acceptors with the same a Rounds values,
p can complete its preparation phase by selecting a
new candidate value est for its decision. If p does not
see any value from the acceptors, it uses its own pro-
posal value (line 18). If p sees some values from the
acceptors, it selects the value with the highest times-
tamp TS among the messages it received, based on
the partial order �n (line 19). To ensure that this
selection can be done, we need to show that all TS
values form a total order based on�n. This is due to
the majority intersection property and the condition
(2) in line 17, and is shown in the proof as Corol-
lary 14.

After p selects a new est value, it enters the ac-
ceptance phase by sending an ACCEPT message with
the est value to all acceptors (line 20). The purpose
is to let at least a majority of acceptors to record
this value and support it. When acceptor q receives
this message, it first updates its a Rounds (line 33),
and then check if the received p Rounds is the same
as the updated a Rounds value, and if it is not the
same, it rejects the acceptance phase by sending a
NACK-ACC message with its a Rounds value back
to p (line 34). This is to guarantee that if proposer
p successfully decides in its acceptance phase, its
p Rounds value must remain the same during the
phase, which is important to our proof of the Uni-

form k-Agreement property. If q passes the check
in line 34, it accepts the new est value by record
it locally to its a est variable, and also records the
a Rounds value (same as the p Rounds value of p)
into its timestamp variable a TS (line 36). Thus,
another interpretation of p Rounds and a Rounds is
that they are a kind of progressing times in the sys-
tem. Variable a TS records the time in this sense
when acceptor q accepts the est value from a pro-
poser, and these timestamp values are used for pro-
posers on their preparation phases to select a value
with the highest timestamp, as we already explained.
With this time interpretation, our algorithm is closer
to the original Paxos algorithm, whose timestamp is
just a single round number.

After q accepts the value from p and records it
locally, it sends an ACK-ACC message to p (line 37).
When p collects a majority of ACK-ACC messages,
it knows that its est value has been “locked” into the
system, and it can decide on this value (line 24).

The following theorem summarizes the correct-
ness of the algorithm, with the proof included in the
appendix.

Theorem 2 The algorithm in Figures 2 and 3 solves
k-set agreement problem with any failure detector in
Ω′′

k.

4.2 Features of the algorithm

The algorithm has a number of features that we now
explain. First, the algorithm is parameter-free, that
is, it does not have any information related to the
parameter k. The fact that it solves k-set agree-
ment is purely because it uses a failure detector in
Ω′′

k. If the algorithm is allowed to use parameter
k, then it could be simplified such that (a) it does
not need the lbound outputs of Ω′′

k; (b) the variables
p Rounds, a Rounds, and a TS only keep the top k
rounds; (c) the operator ∪n is replaced with ∪k; (d)
�n is replaced with �k; and (e) top() is not needed
in lines 8 and 30. However, parameter-free algo-
rithms are more flexible. If in one run of the algo-
rithm the failure detector in Ω′′

k actually behaves like
a failure detector in Ω′′

k′ with k′ < k, our algorithm

MSR-TR-2007-48 11

will let processes reach a better k′-set agreement in-
stead of k-set agreement. This cannot be achieved
if we hard-code k into the algorithm. Moreover,
in [6] we extend this algorithm to work with parti-
tioned failure detectors, and in that context the algo-
rithm running in one partitioned component does not
know the value of k for the set agreement it is solv-
ing. Therefore, a parameter-free algorithm is more
generic, and it works with any failure detector in the
entire family of {Ω′′

z}1≤z<n to solve set agreement
problems. The algorithm of [15] is also parameter-
free, so our algorithm matches the flexibility of the
algorithm in [15].

Second, and more importantly, the algorithm
is a faithful extension of the original Paxos algo-
rithm and inherits its efficiency, flexibility and ro-
bustness. Same as the Paxos algorithm, our algo-
rithm has communication only between the leader
proposers and the acceptors. In the normal cases
when processes do not crash and the failure detec-
tor elect ` ≤ k leaders correctly according to the
specification of Ω′′

k, each leader proposer spends 4n
messages with the acceptors to reach a decision, so
totally it takes 4`n messages to terminate the al-
gorithm. The algorithm in [15] on the other hand
requires communication between any pair of pro-
cesses, so under the same normal cases, it takes 2n2

messages. Therefore, when ` < n/2, our algorithm
has better message complexity, and if ` << n, the
difference is O(n) verses O(n2). Due to the ex-
change of p Rounds and a Rounds, our message size
is O(n). This is further reduced to O(k) in Sec-
tion 4.3. Therefore, our message size matches the
algorithm in [15].

Also same as in the Paxos algorithm, when pro-
posers need to execute multiple instances of k-set
agreement, each leader proposer can batch multiple
preparation phases and execute it once, even before
it knows its own proposal for all instances. This
is because the proposer does not need to know its
own proposal until the beginning of its acceptance
phase. As a result, for multiple instances of k-set
agreement, our algorithm can further reduce time
complexity to one round trip time in normal cases,
which matches the Paxos algorithm and the algo-

rithm in [15].
As for flexibility, our algorithm is easily adapted

so that proposers and acceptors could be separate
processes. Let n be the number of acceptors and
m be the number of proposers. All we need to do is
to make sure that failure detectors in Ω′′

k are among
the m proposers, and in line 9 n is replaced with m
(or use other ways to generate unique and increas-
ing round numbers among the proposers). Note that
the acceptors in our algorithm do not query failure
detectors. So we can have a fixed number of n ac-
ceptors passively responding to proposer messages
and do not need to access failure detectors, while we
have a flexible number of proposers with access to
failure detectors to initiate k-set agreement process.
Therefore, our algorithm matches the flexibility of
the Paxos algorithm.

Finally, as in Paxos, our algorithm can also be
made robust to transient failures of proposers and
acceptors. As long as the proposers and the accep-
tors keep their key state variables proposal , p round,
p Rounds, taskid, a Rounds, a est, a TS in stable
storage that survives transient failures, and pro-
posers restart new rounds after the transient failures,
our algorithm is still correct inspite of the loss of
other state information such as messages received.

4.3 Improvement to the Algorithm

The algorithm in Figures 2 and 3 has one shortcom-
ing on its message size, which is O(n) because the
p Rounds and a Rounds values included in the mes-
sages could be of size n. We now show how to
change the algorithm such that the sets of rounds in-
cluded in the messages have size of at most maxb,
the maximum value of lbound in a run. This means
the size is O(k) since maxb ≤ k.

The idea is to keep the local p Rounds and
a Rounds values managed by the operator ∪n,
but when sending messages, use top() to truncate
p Rounds and a Rounds. The parameter used in
top() is the maximum lbound value a process sees
so far. To ensure the correctness of the algorithm,
we need to redefine some ordering among the ac-
ceptance phases. The rest are more details about the

MSR-TR-2007-48 12

changes to the algorithm.
First, each process (proposers and acceptors)

maintain a local variable b, which maintains the
largest lbound value it sees so far. This is done by
proposers periodically updating its b with its lbound
value if lbound value is higher, and processes piggy-
backing their b values in the messages, and if the b
value in a message is higher than the local b value,
updating the local b value with the received b value.
The simple property with variable b is that it is non-
decreasing on every process, and eventually all pro-
cesses stabilize to the same b value, which is at most
k.

Second, whenever a proposer wants to send
its p Rounds value in a message, instead it sends
top(p Rounds, b). Similarly, whenever an acceptor
wants to send its a Rounds value in a message, it
sends top(a Rounds, b) instead.

Effectively, what we are doing is to
use (top(p Rounds, b), b) on proposers, and
(top(a Rounds, b), b) on acceptors as logical times
to order the events, and we call them working sets in
the proof. Processes exchanges their working sets
in the messages, and use their working sets in all
comparisons. The following are the changes to the
algorithm for working set comparisons.

At line 17, we need to require that received
(R, b) to be the same instead of just R, and also
they need to be the same as (top(p Rounds, b), b). At
line 34, instead of checking R 6= a Rounds, check if
(R, b) received is the same as (top(a Rounds, b), b)
maintained locally. Finally, the timestamp variable
a TS is now (R, b), and is set in line 36 to (R, b),
which is the received value and is equal to the local
(top(a Rounds, b), b) value.

To compare timestamps, we define the follow-
ing order. Let (R1, b1) and (R2, b2) be two work-
ing sets. We define (R1, b1) � (R2, b2) as b1 ≤ b2

and R1 �b2 R2. Note that in general we cannot
claim that � is a partial order because the transitiv-
ity property may not hold. For example, ({1}, 1) �
({2}, 1) and ({2}, 1) � ({2, 4}, 3), but we do not
have ({1}, 1) � ({2, 4}, 3). However, the algorithm
avoids such behavior by guaranteeing that the work-
ing sets of all acceptance phases (and all timestamp

a TS values) are totally ordered. The proof of the
correctness of this improvement is included in the
appendix.

5 Conclusion

In this paper, we study new failure detectors that
are equivalent to Ωk and study the extension of the
Paxos algorithm to k-set agreement. The new fail-
ure detectors help us to understand various aspects
that are related to Ωk, while the extended Paxos
algorithm provides us an efficient way to solve k-
set agreement. It would be interesting to further
this research to study how those Ωk-like failure de-
tectors can be implemented with weak synchrony
requirements, and how to apply the efficient k-set
agreement algorithms to solve distributed system
problems that may have weaker consistency require-
ments than consensus and may be modeled in the
k-set agreement context.

References

[1] E. Borowsky and E. Gafni. Generalized
FLP impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the
25th ACM Symposium on Theory of Comput-
ing, pages 91–100. ACM Press, May 1993.

[2] M. Burrows. The Chubby lock service for
loosely-coupled distributed systems. In Pro-
ceedings of the 7th Symposium on Operat-
ing System Design and Implementation, Nov.
2006.

[3] T. D. Chandra, V. Hadzilacos, and S. Toueg.
The weakest failure detector for solving con-
sensus. Journal of the ACM, 43(4):685–722,
July 1996.

[4] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Jour-
nal of the ACM, 43(2):225–267, Mar. 1996.

[5] S. Chaudhuri. More choices allow more
faults: Set consensus problems in totally asyn-

MSR-TR-2007-48 13

chronous systems. Information and Computa-
tion, 105(1):132–158, July 1993.

[6] W. Chen, J. Zhang, Y. Chen, and X. Liu. Par-
tition approach to failure detectors for k-set
agreement. Technical Report MSR-TR-2007-
49, Microsoft Research, May 2007.

[7] F. C. Chu. Reducing Omega to Diamond W.
Inf. Process. Lett., 67(6):289–293, 1998.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374–
382, Apr. 1985.

[9] M. Herlihy and L. D. Penso. Tight bounds
for k-set agreement with limited scope accu-
racy failure detectors. Distributed Computing,
18(2):157–166, 2005.

[10] M. Herlihy and N. Shavit. The topological
structure of asynchronous computability. Jour-
nal of the ACM, 46(6):858–923, 1999.

[11] L. Lamport. The part-time parliament.
ACM Transactions on Computer Systems,
16(2):133–169, 1998.

[12] L. Lamport. Paxos made simple. ACM
SIGACT News, 32(4):51–58, 2001.

[13] J. MacCormick, N. Murphy, M. Najork, C. A.
Thekkath, and L. Zhou. Boxwood: Abstrac-
tions as the foundation for storage infrastruc-
ture. In Proceedings of the 6th Symposium on
Operating System Design and Implementation,
San Francisco, CA, USA, Dec. 2004.

[14] A. Mostefaoui, S. Rajsbaum, and M. Raynal.
The combined power of conditions and failure
detectors to solve asynchronous set agreement.
In Proceedings of the 24th ACM Symposium
on Principles of Distributed Computing, pages
179–188, July 2005.

[15] A. Mostefaoui, S. Rajsbaum, M. Raynal, and
C. Travers. Irreducibility and additivity of
set agreement-oriented failure detector classes.

In Proceedings of the 25th ACM Symposium
on Principles of Distributed Computing, pages
153–162, July 2006. Full version in technical
report 1758, IRISA, 2005.

[16] A. Mostefaoui and M. Raynal. k-set agreement
with limited accuracy failure detectors. In Pro-
ceedings of the 19th ACM Symposium on Prin-
ciples of Distributed Computing, pages 143–
152, July 2000.

[17] G. Neiger. Failure detectors and the wait-free
hierarchy. In Proceedings of the 14th ACM
Symposium on Principles of Distributed Com-
puting, pages 100–109, Aug. 1995.

[18] M. Saks and F. Zaharoglou. Wait-free k-set
agreement is impossible: The topology of pub-
lic knowledge. SIAM Journal on Computing,
29(5):1449–1483, 2000.

[19] J. Yang, G. Neiger, and E. Gafni. Structured
derivations of consensus algorithms for failure
detectors. In Proceedings of the 17th ACM
Symposium on Principles of Distributed Com-
puting, pages 297–306, June 1998.

MSR-TR-2007-48 14

Appendix

A Proofs for the Extended Paxos
Algorithm

A.1 Properties of �m

Proposition 6 Given two sets R1 and R2 contain-
ing round numbers and a positive integer m, R1 �m

R2 if and only if one of the following condition
holds: (a) |R2| < m and R1 ⊆ R2; or (b) |R2| = m
and ∀x ∈ R1 \ R2,∀y ∈ R2, x < y.

Proposition 7 Given two sets R1 and R2 contain-
ing round numbers and a positive integer m, R1 �m

R2 if and only if there exists a set R such that
R1 ∪m R = R2.

Proposition 8 Among all the sets of rounds with at
most m elements, relation �m is a partial order.

A.2 Proof of the safety property

In this section we prove the correctness of the Agree-
ment property (the key safety property) as stated be-
low.

• Uniform k-Agreement: There are at most k
different values decided by proposers (correct
or not) in a run.

All statements in the following proof refer to a
run of the algorithm with a failure pattern F and a
failure detector history H . We start with some ter-
minologies and notations used in the proof. When
a proposer p is in its task 1, we say that it is in a
preparation phase ΦP if it is executing in lines 12–
19; we say that it is in an acceptance phase ΦA if
it is executing in lines 20–24. Proposer p ends its
preparation phase by either stopping its current task
or entering its acceptance phase, and it ends its ac-
ceptance phase by either stopping its current task or
deciding a value in line 24. We call ΦA successful
acceptance phase if it decides a value in line 24.

For any phase Φ (either a preparation phase or
an acceptance phase) of a proposer p and any vari-
able v of p, we denote Φ.v as the value of the vari-
able v when p enters the phase (i.e., when p executes
line 12 for the preparation phase or line 20 for the
acceptance phase).

The algorithm guarantees the following proper-
ties.

Proposition 9 Each acceptance phase ΦA has a
unique tuple (ΦA.p round,ΦA.p Rounds).

Proof. For different proposers p1 and p2, let p1 be in
acceptance phase ΦA

p1
and p2 be in acceptance phase

ΦA
p2

. Then, since ΦA
p1

.p round ≡ p1 (mod n) and
ΦA

p2
.p round ≡ p2 (mod n) by Line 3 and Line 9,

so ΦA
p1

.p round 6= ΦA
p2

.p round.
For a single proposer p, if it decides at line 24,

it will not start task 1 again, that is, it will not en-
ter any other acceptance phases. Otherwise, it must
have received a NACK-ACC message. According
to line 34, we know that ΦA

p .p Rounds �n R and
ΦA

p .p Rounds 6= R. Thus, p’s p Rounds must in-
crease after executing line 23. 2

Proposition 10 On any acceptor, the sequence of
a Rounds values ordered by time form a total order
with respect to �n.

Proof. This is guaranteed by the way a Rounds vari-
able is updated in lines 29 and 33, and by Proposi-
tion 7. 2

Proposition 11 Before executing line 16, the value
of p Rounds on a proposer is less than or equal
to (with respect to �n) any R received in any
ACK-PREP or NACK-PREP messages with the cur-
rent taskid. If all the messages contain the same R,
then p Rounds = R after line 16 is executed.

Proof. On reception of a PREPARE message, every
acceptor updates their a Rounds varible at line 29,
and then embeds the new a Rounds value as R into
the ACK-PREP or NACK-PREP message. By Proposi-
tion 7, we know p Rounds �n R. Suppose the value
of p Rounds = R1 before line 16, and p Rounds =

MSR-TR-2007-48 15

R2 after line 16. When all the messages contain the
same R , we have R2 = R1 ∪n R. According to
line 29, there exists a R′ such that R = R′ ∪n R1, in
which R′ is the value of the a Rounds variable on an
acceptor. So R2 = R1∪n (R′∪n R1) = R′∪n R1 =
R. 2

The above two propositions are the results of the
∪m operator. These two propositions are important
to guarantee that the algorithm correctly operates on
sets of rounds. Proposition 11 guarantees that if
a proposer receives a majority of ACK-PREP mes-
sages and their R’s are the same, then after execut-
ing line 16, the p Rounds must be the same as the
R value, which is the value of all a Rounds. Then
together with Proposition 10, it is guaranteed that all
acceptance phases form a total order (Lemma 13),
which is the key for the safety property. Moreover,
Proposition 11 guarantees that if a proposer receives
a majority of ACK-PREP messages but their R’s are
different, then after executing line 16, the p Rounds
must increase to a value higher than all received R’s
and the previous p Rounds. This in turn guaran-
tees that eventually the proposer will have the high-
est p Rounds so that it make all acceptors have the
same a Rounds values. This is the key to the live-
ness property.

Proposition 12 For any acceptance phase ΦA,
ΦA.p round ∈ ΦA.p Rounds.

Proof. Consider the preparation phase ΦP preced-
ing the acceptance phase ΦA, for a proposer p. Since
p enters the acceptance phase in the same task, we
know that none of the conditions in line 17 is true.
Therefore, all messages received are ACK-PREP with
the same R value. According to line 30 on the ac-
ceptor thread, we know that ΦA.p round ∈ R. By
Proposition 11, we have ΦA.p Rounds = R and thus
ΦA.p round ∈ ΦA.p Rounds. 2

Lemma 13 For any two acceptance phases ΦA
1 and

ΦA
2 , ΦA

1 .p Rounds and ΦA
2 .p Rounds are compara-

ble.

Proof. Suppose proposer p1 enters ΦA
1 and proposer

p2 enters ΦA
2 . To enter an acceptance phase, both

p1 and p2 must receive ACK-PREP from a majority
of acceptors. So there must be an acceptor q in the
intersection of the two majority sets.

According to the condition in line 17, when p1

and p2 executes line 19, all R’s received are the
same. Suppose p1 receives R1 and p2 receives R2.
According to line 29, R1 is the value of a Rounds of
q at time t1 and R2 is the one at time t2. By Propo-
sition 10, R1 and R2 are comparable. By proposi-
tion 11, ΦA

1 .p Rounds = R1 and ΦA
2 .p Rounds =

R2. So ΦA
1 .p Rounds and ΦA

2 .p Rounds are compa-
rable. 2

A direct consequence is the following:

Corollary 14 At line 19, all TS values form a total
order.

This is because TS is always assigned to a
ΦA.p Rounds (line 36). Therefore, at line 19, it is
always possible to find the highest TS.

Another result is that, we can arrange all accep-
tance phases into a sequence AS = {ΦA

1 ,ΦA
2 , . . .},

s.t. ∀i < j, ΦA
i .p Rounds �n ΦA

j .p Rounds. Con-
sider the successful acceptance phase with minimum
sequence number in AS , namely ΦA

u (u is the se-
quence number). We show that all other successful
acceptance phase can only use the est value belong-
ing to {ΦA

i .est|ΦA
i .p Rounds = ΦA

u .p Rounds}.

Lemma 15 For any acceptance phase ΦA
i with i >

u and ΦA
u .p Rounds 6= ΦA

i .p Rounds, there must ex-
ist ΦA

j such that ΦA
i .est = ΦA

j .est, ΦA
j .p Rounds �n

ΦA
i .p Rounds and ΦA

u .p Rounds �n ΦA
j .p Rounds.

Proof. Suppose it was proposer p which
enters ΦA

i . Consider the preparation phase
ΦP

i preceding ΦA
i . Proposer p must receive

(ACK-PREP, R, TS, v, taskid) messages from a ma-
jority of the acceptors in ΦP

i . On the other hand,
proposer pu also receive ACK-ACC messages from
a majority of the acceptors in ΦA

u . Assume accep-
tor q is in the intersection of the two majority sets.
So at time t1 q sents ACK-ACC message to pu for
ΦA

u , and at time t2 q sents ACK-PREP message to
p for ΦA

i . Let R1 be the value of a Rounds of
q at t1 and R2 be the value at t2. According to

MSR-TR-2007-48 16

line 34, R1 = ΦA
u .p Rounds. By Proposition 11,

R2 = ΦA
i .p Rounds.

Since ΦA
u .p Rounds �n ΦA

i .p Rounds, we have
t1 < t2 by Proposition 10. Because ΦA

u is a suc-
cessful acceptance phase, q.a est 6= ⊥ at t1, thus
q.a est 6= ⊥ at t2. Therefore, proposer p receives a
(ACK-PREP,ΦA

i .p Rounds, TS1, v1, taskid) message
from q with v 6= ⊥ and TS � ΦA

u .p Rounds. Ac-
cording to line 19, proposer p cannot use its own
proposal value in phase ΦA

i . Suppose ΦA
i .est is

taken from a value sent by an acceptor q ′. And the
v2 in the (ACK-PREP,ΦA

i .p Rounds, TS2, v2, taskid)
message sent by q′ comes from an acceptance phase
ΦA

j . We know ΦA
j .p Rounds = TS2. Because

TS2 is the a Rounds value of q′ some time before,
ΦA

j .p Rounds �n ΦA
i .p Rounds. Since p selects

v2 as its est, it must be the case that TS1 �n TS2.
Therefore, we have ΦA

u .Rounds �n TS1 �n TS2 =
ΦA

j .p Rounds. 2

Proposition 16 Given any set R of round numbers,
there are at most k different acceptance phases ΦA

with ΦA.p Rounds = R.

Proof. By Proposition 9, different acceptance
phases ΦA with ΦA.p Rounds = R must have
different ΦA.p round. By Proposition 12, these
p round must be in R. According to the algorithm,
R is the value of a Rounds when acceptors execute
line 31 and send to a proposer the ACK-PREP mes-
sage. Because of the condition in line 30, p round ∈
top(R, b), where b is the lbound value of some pro-
posers. By Ω′′1, the lbound values never exceeds k.
Therefore, there are at most k different acceptance
phases ΦA with ΦA.p Rounds = R. 2

Now we can prove the following lemma for
safety property.

Lemma 17 (Uniform k-Agreement) There are at
most k different values that have been decided by
the algorithm.

Proof. Let ΦA
u be the first successful ac-

ceptance phase in sequence AS . Let R =
ΦA

u .p Rounds, and the decision value set D =
{ΦA

j .est | ΦA
j .p Rounds = R}.

Now consider a proposer p that decides on ac-
ceptance phase ΦA

i . If ΦA
i .p Rounds = R, we

know the decision value belongs to D. Otherwise,
R �n ΦA

i .p Rounds since ΦA
u is the first successful

acceptance phase. From Lemma 15, p uses a value
from another round, namely ΦA

i(1), where R �m

ΦA
i(1).p Rounds �m ΦA

i .p Rounds. Moreover, the
event that a proposer enters acceptance phase ΦA

i(1)
must be causally before the events that proposer p
enters acceptance phase ΦA

i . If ΦA
i(1).p Rounds =

R, we know ΦA
i .est = ΦA

i(1).est ∈ D. Othe-
wise, we apply Lemma 15 on ΦA

i(1) to find ΦA
i(2).

In this way, we can get a sequence of accep-
tance phases ΦA

i(1),Φ
A
i(2), . . ., such that R �n

· · · �n ΦA
i(2).p Rounds �n ΦA

i(1).p Rounds �n

ΦA
i .p Rounds, and the events of a proposer enter-

ing ΦA
i(j+1) are causally before the events of ΦA

i(j).
Since the number of acceptance phases causally be-
fore ΦA

i is finite, the sequence cannot be infinitely
long, and it should stop at an acceptance phase ΦA

v

with ΦA
v .p Rounds = R. Because all phases in the

sequence have the same est value, we have ΦA
i .est =

ΦA
v .est ∈ D. Therefore, the est values of all success-

ful acceptance phases belong to the set D.
By Proposition 16, there are at most k different

acceptance phase with p Rounds = R. By Propo-
sition 9, each proposer only enters one acceptance
phase once, and thus cannot decide more than one
value in one acceptance phase. Therefore, there are
at most k different values. 2

A.3 Proof of the liveness property

We need to prove the following.

Lemma 18 (Termination) Eventually some cor-
rect proposer decides.

Proof. Assume that no correct proposer decides.
Because a majority of the processes are correct, the
proposers will not be stuck on the “wait-until” state-
ments at line 13 and line 21.

Let L be the set of eventual correct leaders ac-
cording to failure detector Ω′′

k. Let b be the eventual
stable value of lbound. Let t be the time after which

MSR-TR-2007-48 17

both isLeader and lbound do not change on all pro-
cesses. We know that 1 ≤ |L| ≤ b by Ω′′

k’ properties.
According to the algorithm, proposers not in L will
not be running task 1 after a time t0 > t.

When a proposer p starts task 1, the task could
be stopped without deciding because of one of the
following conditions: 1) p receives a NACK-PREP

message in prepare phase; 2) p does not receive
any NACK-PREP messages in prepare phase, but
some Rs in the messages are different; 3) p re-
ceives a NACK-ACC message in the acceptance
phase. For case 1, after t we have p.p round /∈
top(q.a Rounds, b) on some acceptor q according
to line 30. When p starts task 1 next time, since
p round /∈ top(p Rounds, b), p round will be in-
creased. For case 2, by Proposition 11, its p Rounds
increases after it executes line 16. For case 3, ei-
ther its p round changes or its p Rounds changes
(by Proposition 11). Therefore, after time t, every
time proposer p starts task 1, either its p round or its
p Rounds increases. If its p round stops changing at
some time, its p Rounds should also stops changing.
Otherwise, p Rounds has to increase w.r.t �n. Af-
ter a finite number of times, p round will be out of
top(p Rounds, b). Therefore, if p cannot decide, its
p round has to change infinitely often.

After t0 proposers not in L stop increasing their
p round. So there must exists a time t1 at and af-
ter which p1.p round > p2.p round for all p1 ∈ L
and p2 ∈ P \ L. If p2 crashes, we use its p round
value just before it crashes. Suppose p has the largest
p round value at t1 among all the proposers. Its
p round value will stay in top(p.p Rounds, b) from
now on. This is because our algorithm ensures
that a new p round is chosen only when p′.p round
does not in top(p′.p Rounds, b). So for all p′ ∈
L \ {p}, p′ only needs to pick the smallest p round
value larger than p.p round to make p′.p round ∈
top(p′.p Rounds, b). Since |L \ {p}| ≤ b − 1,
there are at most b − 1 round numbers larger than
p.p round. Therefore, p.p round stops change after
t1. This is contradictory. 2

Theorem 2 The algorithm in Figures 2 and 3 solves
k-set agreement problem with any failure detector in

Ω′′
k.

Proof. For every acceptance phase ΦA, ΦA.est
either comes from the process’s proposal or from
another acceptance phase. Therefore, the validity
property is ensured. Together with Lemma 17 and
Lemma 18, our protocol k-set agreement problem.
2

B Changes to the Proof for the Im-
provement

First, we need to define the working set. At any
point in time, the working set on a proposer is its
current value of (top(p Rounds, b), b); the working
set on an acceptor is its current (top(a Rounds, b), b)
value. Recall that b is the local variable which main-
tains the largest lbound value the proposer sees so
far. By the algorithm, we still have ΦA.p round ∈
ΦA.working set (of course, “∈” here means in the
set part of the working set). We use notations ΦA.set
and ΦA.bound to represent the top(p Rounds, b) and
b parts of the working set of ΦA. Clearly, we have
|ΦA.set| ≤ ΦA.bound. With the above definition,
we can also say that the proposers exchange their
working sets in the messages. The working set is
now becoming the timestamp to order the events.

The order between working sets have been de-
fined in Section 4.3. We need the following proper-
ties for the correctness of the algorithm.

Proposition 19 Given two sets of rounds R1 and R2

and two positive integers m and b such that 1 ≤ b ≤
m and R1 �m R2, for any subset R3 ⊆ R1 such
that |R3| ≤ b, we have R3 �b top(R2, b).

Proof. If |R2| < b, then |R2| < m and R1 ⊆ R2.
Therefore, R3 ⊆ R1 ⊆ R2, which implies R3 �b

R2 = top(R2, b). If |R2| ≥ b, then |top(R2, b)| =
b. If R3 ⊆ top(R2, b), then it is fine. Otherwise,
for any x ∈ R3 \ top(R2, b), we have x ∈ R1 \
top(R2, b). If x ∈ R1 \ R2, then x < minR2 since
R1 �m R2, and thus x < min top(R2, b). If x ∈
R2 \ top(R2, b), we also have x < min top(R2, b).
Therefore, R3 �b top(R2, b). 2

MSR-TR-2007-48 18

Proposition 20 Let m be a positive integer. Sup-
pose A0 = ∅. Suppose that for any i = 1, 2, . . . (a)
positive integers bi such that bi ≤ bi+1 and bi ≤ m;
(b) sets of rounds Ri such that |Ri| ≤ bi; and (c) sets
of rounds Ai such that Ai = Ai−1 ∪n Ri (n ≥ m),
then we have for any i and j such that 1 ≤ i < j,
(top(Ai, bi), bi) � (top(Aj , bj), bj).

Proof. We already know that bi ≤ bj , so we only
need to show that top(Ai, bi) �bj

top(Aj , bj). By
the property of �n and ∪n (Propositions 7 and 8),
we know that Ai �n Aj . Since bi ≤ bj , we have
top(Ai, bi) �bj

top(Aj , bj). directly from Proposi-
tion 19. 2

Since n ≥ k, the variables a Rounds and b on
an acceptor evolve exactly like Ai’s and bi’s in the
above proposition. So we have

Corollary 21 The working sets on an acceptor in-
crease and form a total order. (Compare to Proposi-
tion 10)

Lemma 22 The working sets of all acceptance
phases form a total order, and thus all timestamp
a TS values form a total order.

Proof. This is because the working set of an ac-
ceptance phase must be the same as the working set
of some acceptors (due to the condition in line 17
with the modifications), and two working sets of two
acceptance phases must be two working sets on a
single acceptor (due to the majority requirement on
ACK-PREP responses). As for a TS value, it is al-
ways the same as the working set of some accep-
tance phase (due to condition in line 34 with the
modification specified above). 2

The above lemma is the key one to ensure that
the new algorithm still satisfies the safety property.
The rest of the proof of the Uniform k-Agreement
property is the same as the proof of Lemma 17, ex-
cept we need to use our current definition of the
working set instead of p Rounds.

The following properties are to ensure the live-
ness property.

Proposition 23 Let R1, R2 be two sets of rounds
and b1 and b2 are two positive integers such that

|R1|, |R2|, b1, b2 ≤ m. Let R3 = R2 ∪n top(R1, b1)
(n ≥ m) and b3 = max(b1, b2). Then we have
(top(R1, b1), b1) � (top(R3, b3), b3).

Proof. Since R3 = R2 ∪n top(R1, b1), we have
top(R1, b1) �n R3. Then (top(R1, b1), b1) �
(top(R3, b3), b3) is a direct result of Proposition 19.
2

Corollary 24 Let (R1, b1) be the working set that
an acceptor sends to a proposer (in an ACK-PREP,
NACK-PREP, or NACK-ACC message). Let R2

and b2 be the values of variables p Rounds and
b after a proposer receives the message but be-
fore updating its local p Rounds and b vari-
able. Then (top(R2, b2), b2) � (R1, b1). Let
R3 = R2 ∪n R1 and b3 = max(b2, b1).
Then (R1, b1) � (top(R3, b3), b3). More-
over, if (R1, b1) 6= (top(R3, b3), b3), then
(top(R2, b2), b2) ≺ (top(R3, b3), b3) (here ≺ means
� and 6=).

Proposition 25 If no proposer decides, then even-
tually every time a proposer starts task 1, either its
working set (top(p Rounds, b), b) increases, or its
p round increases.

Proof. There are three reasons to stop task 1
and restart it later: (a) it receives a NACK-PREP

message; (b) it receives a majority of ACK-PREP

but some of them are different or they are differ-
ent to top(p Rounds, b) after the proposer updates
its local variable; and (c) it receives a NACK-ACC

message. For case (a), eventually lbound stabi-
lizes, so an NACK-PREP message means p round 6∈
top(p Rounds, lbound), and thus the proposer will
increase p round. For case (b) and (c), by Corol-
lary 24, p Rounds strictly increases. 2

With the above proposition, the rest of liveness
proof should be the same as the proof of Lemma 18.

