
Fogshop: Real-Time Design and Rendering of

Inhomogeneous, Single-Scattering Media

Kun Zhou Qiming Hou∗ Minmin Gong John Snyder† Baining Guo Heung-Yeung Shum

Microsoft Research Asia ∗Tsinghua University † Microsoft Research

(a) clear day (b) homogeneous media [Sun et al. 2005] (c) inhomogeneous media, simple blending (d) our result

Figure 1: Rendering of scattering media. A point light source is located at the gargoyle’s mouth. Notice the shadowing and haloing effects in (d).

Abstract

We describe a new, analytic approximation to the airlight integral
from scattering media whose density is modeled as a sum of Gaus-
sians. The approximation supports real-time rendering of inhomo-
geneous media including their shadowing and scattering effects.
For each Gaussian, this approximation samples the scattering in-
tegrand at the projection of its center along the view ray but models
attenuation and shadowing with respect to the other Gaussians by
integrating density along the fixed path from light source to 3D cen-
ter to view point. Our approach handles isotropic, single-scattering
media illuminated by point light sources or low-frequency environ-
mental lighting. We also generalize models for reflectance of sur-
faces from constant-density to inhomogeneous media, using sim-
ple optical depth averaging in the direction of the light source or
all around the receiver point. Our real-time rendering approach is
incorporated into a system for real-time design and preview of re-
alistic, animated fog, steam, or smoke.

Keywords: airlight, Gaussian, radial basis function (RBF).

1 Introduction

Scattering due to light transport in air or water is the source of
many important visual effects which determine appearance of the
directly-viewed media as well as the surfaces immersed within it.
Such effects are critical for realism. Without self-shadowing, dense
media such as clouds or smoke appear to emit rather than just re-
flect light, producing an overall implausible and cartoon-like effect.
Lack of scattering ignores phenomena such as halos around lights

∗This work was done while Qiming Hou was an intern at Microsoft Re-

search Asia.

which also substantially soften the shading on immersed surfaces.

In real-time applications such as 3D games, these scattering effects
have been either completely neglected or approximated using re-
strictive “fog” models which assume the medium is entirely homo-
geneous or trivially layered. Such models exclude non-constant fog
as well as more complex clouds and smoke whose optical density
varies greatly over space and time. Traditional volume-rendering
approaches support attenuation through inhomogeneous media by
accumulating optical density in depth-sorted order over the dis-
cretized volume, but neglect scattering/shadowing effects. Full
Monte Carlo scattering simulation yields an accurate rendering, but
is far too expensive for the real-time demands of designers and end-
users.

Our goal is to capture the shadowing and scattering effects of in-
homogeneous media in real time. In this work we focus on single
scattering: an effect which physically dominates when rendering
fairly transparent media but remains useful to visually convey dense
media as well. We represent the spatially-varying optical density as
a sum of radial basis functions (RBFs), each a Gaussian centered
around a 3D point. We then derive an analytic formula to approxi-
mate single scattering of this RBF model. It is evaluated by direct
accumulation over only a few relevant RBFs per pixel and avoids
expensive scattering simulation and integration over many samples
along each light path.

The RBF model also facilitates real-time design of inhomogeneous
media via user interactions such as brush strokes, copy/paste, and
erase. Our rendering algorithm supports preview of all scattering
effects as the model is edited. Simple particle-based simulation can
then animate a model initially specified with our UI. In addition,
existing simulations of smoke or clouds can be fit with RBFs and
then rendered in our system, allowing real-time change to the light-
ing and view as the simulation plays back. While our results are
not competitive with offline simulations used in feature films, our
system provides compelling new content for 3D games, and a new
design/preview tool for production-quality content.

Ours is the first analytic model of single scattering in inhomoge-
neous media, modeled as a sum of Gaussians. Our approximation
assumes that variation in the 1D scattering integrand along each

view ray is due to variation in the RBF density, and neglects bright-
ness variation due to close proximity of RBFs to light sources or
light rays shining through abrupt density breaks. In the case of
smooth media, our results accurately match an offline scattering
simulation. In all cases, they are consistent, plausible, and visually
capture light glows and self-shadowing effects. Most important, we
render these effects in real-time, providing the feedback necessary
for interactive design/verification and end-user applications.

2 Previous Work

There has been much previous work on rendering of scattering me-
dia dating back to [Blinn 1982]. See [Cerezo et al. 2005] for a
detailed review.

Early approaches were based on ray tracing [Kajiya and Herzen
1984; Max 1994; Jensen and Christensen 1998] or radiosity [Rush-
meier and Torrance 1987]. They produce a photorealistic im-
age includng both single and multiple scattering effects in non-
homogeneous media at the cost of hours of computation. Later
techniques reduce computation by focusing on single scattering
[Ebert and Parent 1990; Nakamae et al. 1990; Sakas 2004; Nishita
et al. 1996]. Recent hardware-accelerated techniques [Harris and
Lastra 2001; Dobashi et al. 2002; Riley et al. 2004] decrease run-
ning times still further by fixing the medium properties and scene
specification, but performance remains unsuitable for real-time ap-
plications.

Several analytical models for scattering media have been used in
computer graphics. [Blinn 1982] introduced the first of these for
rendering homogeneous, single-scattering media, assuming an in-
finitely distant light source and viewer. [Willis 1987] presented a
simple formula for fog consisting of homogeneous layers. Lighting
is “baked in” the model, which assumes that each point in the me-
dia isotropically emits a constant radiance. [Preetham et al. 1999]
described an airlight model for directional light sources to approxi-
mate the effects of atmosphere. [Max 1986; Narasimhan and Nayar
2003; Sun et al. 2005; Biri et al. 2006] present analytic expressions
for the glows around point light sources. The model in [Sun et al.
2005] also handles the effects of airlight on surface shading (includ-
ing arbitrary BRDFs), environmental lighting, and precomputed ra-
diance transfer in the presence of homogeneous scattering media. It
forms the basis for our work, which generalizes the analytic model
to deal with inhomogeneous media.

For static scenes, techniques based on precomputation can be ap-
plied. Precomputed radiance transfer was originally applied to vol-
umetric models as well as surfaces [Sloan et al. 2002]. [Premoze
et al. 2004] presented an analytic expression for multiple scattering
based on point spread functions precomputed from the media prop-
erties. Recently, [Szirmay-Kalos et al. 2005] described a multiple
scattering method for cloud rendering based on a precomputed illu-
mination network. None of these methods is suitable for rendering
dynamic scenes or interactively designing the media, due to their
huge precomputation and storage costs.

Using RBFs to model scattering media, such as clouds [Nishita
et al. 1996; Dobashi et al. 2002], fog [Perlin 2006] and smoke [Stam
1995a], is not new. RBFs have proven a useful representation for
rendering [Stam 1995b] as well as animation [Pighin et al. 2004].
As does our approach, [Stam 1995b] exploits analytic integration
through a Gaussian density blob (see appendix), but simulates mul-
tiple scattering by an offline PDE solution. It first computes single-
scattered radiance at blob centers using slow ray tracing. Our major
contribution is an analytic model of single scattering which enables
visually accurate rendering in real-time. We also provide a set of
easy-to-use tools, such as airbrush and eraser, for interactive design
of inhomogeneous media.

Viewer,

Surface

Point,

Point Source,

v

h

()xvT ,

()xsT ,

sx α

x

s

p

γ

Figure 2: Airlight.

A technique for real-time rendering of smoke under low-frequency
environmental lighting is proposed in [Zhou et al. 2007]. That tech-
nique accounts for multiple scattering as well as single scattering. It
is not an analytic model but a technique for high-quality visualiza-
tion of a given smoke animation sequence based on ray marching,
which heavily depends on the volume sizes of the media. The tech-
nique also cannot handle local lighting and does not address the im-
portant issues of surface reflectance in inhomogeneous media and
design of scattering media.

3 Airlight in Inhomogeneous Media

Airlight refers to the appearance of the illuminated scattering
medium when viewed directly. The next section will use the prin-
ciples developed here to render reflective surfaces immersed in the
medium. Refer to Figure 2 in the following explanation.

Airlight is governed by optical density (or more precisely, the den-
sity times the scattering coefficient) denoted β (x) where x is the 3D
spatial parameter. Along a view ray r parameterized by a distance
parameter t, we have

x(t) = v+ t r̂ = v+ t (p− v)/dr (1)

where v is the view point, p is the first surface point hit by the view
ray, dr = dvp = ||p−v|| is the distance along the view ray to p, and
r̂ = r̂vp = (p− v)/dvp is the unit-length view direction. Airlight
La due to a point light source of intensity I0 at location s which is
scattered in the direction of r is given by the following 1D integral:

La =
∫ dr

0
β (x)k (α(x))

I0

d2(x)
exp(−T (v,x)−T (x,s)) dt. (2)

The function d(x) is the distance of the light source s to x, given by

d(x) = dsx = ||x− s||=
√

(x− xs)2 +h2

where xs is the point along the view ray closest to s, and h = ||s−xs||
is the distance of the source to the view ray. k(α) is the scat-
tering phase function where the scattering angle α is defined by
cos(α(x)) = (x− xs)/d(x). As in [Sun et al. 2005], we assume

isotropic scattering for which k(α) = 1
4π , but our approximation

can be applied to anisotropic scattering as well. Since x is a func-
tion of the ray parameter t, so are d and α .

The optical depth between two 3D points a and b, T (a,b), is given
by the 1D integral of optical density between a and b:

T (a,b) =
∫ dab

0
β (a+ t r̂ab)dt (3)

where dab = ||a− b|| and r̂ab = (b− a)/dab. Direct attenuation of
light along the path from a to b is then given by exp(−T (a,b)).

To simplify the notation, we define

f (x) = k (α(x))
I0

d2(x)
exp(−T (v,x)−T (x,s)) , (4)

Viewer,

Point Source,

View Ray, r̂

()r
i
bsT ,

1

()r
i
bvT ,

1

()
i
bsT ,

()
i
bvT ,

i
b

r

i
b

s

v

Figure 3: Light paths for scattering integration. The red path is used for the

Gaussian i itself, represented as the pink sphere. The blue path, which is

independent of the view ray r̂, is used to integrate the rest of the Gaussians

j 6= i, drawn as blue spheres.

so that

La =
∫ dr

0
β (x) f (x)dt. (5)

We model the inhomogeneous medium as a sum of RBFs:

β (x) =
n

∑
i=1

βi(x)+β0 (6)

where

βi(x) = ci exp
(

−a2
i ||x−bi||2

)

. (7)

ai represents the Gaussian’s scale, bi its center, and ci its amplitude.

Then expanding β (x) in (5), we obtain

La =
n

∑
i=1

∫ dr

0
βi(x) f (x)dt +β0

∫ dr

0
f (x)dt =

n

∑
i=1

Li +L0. (8)

Gaussian Terms To evaluate the Gaussian terms

Li =
∫ dr

0
βi(x) f (x)dt, (9)

we assume the variation in f (x) is small with respect to the variation
in the RBFs βi(x). According to the mean-value theorem for inte-

gration, there exists a 0≤ tm ≤ dr such that Li = f (xm)
∫ dr

0 βi(x)dt
where xm = x(tm). Since βi(x) is a Gaussian, most of its energy

concentrates at the projection of its center to the view ray:1

br
i = v+((bi− v) · r̂) r̂. (10)

So as an approximation, we take xm = br
i , yielding

Li ≈ f (br
i)

∫ dr

0
βi(x)dt (11)

Equation (31) in the appendix shows how a Gaussian can be ana-
lytically integrated along the view ray, allowing evaluation of the

second factor
∫ dr

0 βi(x)dt.

According to (4), evaluating f (br
i) involves computing the optical

depths T (v,br
i) and T (s,br

i) from br
i to the view point v and light

point s. But it is impractical to compute these by summing over
all n RBFs for each view ray. We instead use the correct light path

1The projection should be restricted to the segment on the view ray from

v to p.

s→ br
i → v for the Gaussian i itself, but simplify it to s→ bi → v

for the rest of the Gaussians j 6= i (see Figure 3). The second light
path is simpler because it no longer depends on the view ray. This
yields the approximate factorization f (br

i)≈ f 0(br
i) f 1(bi) where

f 0(br
i) =

1

4π

I0

||br
i − xs||2 +h2

e−Ti(s,b
r
i)−Ti(v,b

r
i)+Ti(s,bi)+Ti(v,bi) (12)

and
f 1(bi) = exp(−T (s,bi)−T (v,bi)) . (13)

Indexed optical depth Ti(a,b) is defined as in (3), but with respect

to the i-th Gaussian βi(x) alone; i.e. Ti(a,b) =
∫ dab

0 βi(a + t r̂ab)dt.

The addition of the Ti(s,bi) + Ti(v,bi) term in the exponent of f 0

compensates for using optical depth T with respect to all Gaussians
in f 1, when f 0 has already accounted for Gaussian i via the correct
light path.

The advantage of this factorization is that f 1 does not vary per view
ray, and f 0 can be now computed using four Gaussian line integrals
rather than n. Furthermore, only two of these four line intergals
vary per view ray; the other two are computed in a separate pass as
described in Section 5.1. When the points bi and br

i are close, this
factorization is clearly accurate. It is also accurate when they are
distant since both Li and our approximation to it then approach 0.

Homogeneous Term To evaluate the homogeneous term

L0 = β0

∫ dr

0
f (x)dt, (14)

we apply a similar factorization trick based on approximate light
paths. We split L0 into two factors by separately considering the
light path s → x → v with respect to the homogeneous medium
modeled by β0, and the simpler light path s→ v for the RBF sum
modeling the medium inhomogeneity. This yields

f (x) ≈ 1

4π

I0

d2(x)
e−β0 (||v−x||+||s−x||) e−T (s,v)+β0||s−v||

= Csv
1

4π

I0

d2(x)
exp(−β0 (||v− x||+ ||s− x||)) (15)

where
Csv = exp(−T (s,v)+β0 ||s− v||). (16)

With this approximate f (x), the integration in (14) can now be done
analytically [Sun et al. 2005], since the only dependence on x in the
integrand is with respect to a constant density β0. Summarizing that
method briefly here, homogeneous airlight due to a constant density

β , denoted Lh
a(γ,dsv,dvp,β), is given by

Lh
a = A0

[

F

(

A1,
π

4
+

1

2
arctan

(

Tvp−Tsv cosγ

Tsv sinγ

))

−F
(

A1,
γ

2

)

]

where Tsv = β dsv, Tvp = β dvp, A0 = β 2 I0 e−Tsv cosγ

2π Tsv sinγ , A1 = Tsv sinγ ,

and F(u,v) =
∫ v

0 exp(−u tanξ)dξ . γ is the angle formed by the
view direction r̂ and the direct path from view point to light point;
i.e. cosγ = r̂ · r̂sv. Using this formula, the homogeneous term in
(14) is then given by

L0 ≈Csv Lh
a(γ,dsv,dvp,β0). (17)

Approximation Comparison In most cases, our approximation
accurately matches a full, Monte-Carlo simulation of single scatter-
ing, as shown in Fig. 4. Figure 7 shows cases in which this match
is less accurate. See Section 7 for further discussion.

(a) our result (b) ray tracing

Figure 4: Comparison: our result vs. ray traced simulation.

4 Surface Reflectance in Inhomog. Media

We denote by Lp the reflected radiance of the surface at point p
emitted back to the viewpoint v when illuminated by airlight. Lp

can be computed using the point spread function or PSF, governing
how radiance is blurred and attenuated by the scattering medium
before illuminating the surface. Using PSFs will allow our model
to be extended to environmental lighting, arbitrary BRDFs, and pre-
computed radiance transfer (PRT) [Sloan et al. 2002].

As shown in [Sun et al. 2005] for homogeneous media, single-
scattered radiance Lin−ss

p (ω) incident at a surface point p in all di-
rections ω can be accurately approximated by the following spher-
ical convolution

Lin−ss
p (ω) = (Lin

p ∗PSF)(ω), PSF(γ) = Tsp e−Tsp NPSF(γ), (18)

where Lin
p (ω) is the radiance incident at p neglecting the scattering

medium, γ is the angle between the original and scattered lighting
directions, and Tsp = β dsp is the optical depth of the medium from
s to p. Spherical convolution is denoted by f ∗g where f and g are
spherical functions and g is circularly symmetric about the (canon-
ical) z axis. NPSF(γ) is a spherical function that depends only on
the scattering phase function but is independent of the scattering
medium:

NPSF(γ) =
F(sinγ, π

2)−F(sinγ, γ
2)

2π sinγ · e(cosγ−1)
.

In other words, the scattering effect of the medium on incident ra-
diance can be approximated by a constant convolution with NPSF
followed by a multiplication with the scalar Tsp e−Tsp .

The total illumination incident at p then sums the singly scattered
plus directly attenuated incident illumination:

Lin−tot
p (ω) = Lin−ss

p (ω)+Lin−att
p (ω) (19)

= Tsp e−Tsp (Lin
p ∗NPSF)(ω)+ e−Tsp Lin

p (ω).

Illuminating the surface using this PSF-based approximation, the
outgoing radiance at p in the view direction is given by the scalar

Lp =
〈

Lin−tot
p |Vp|Bpv

〉

, (20)

where the triple product is defined by the spherical integral

〈 f1| f2| f3〉=
∫

ω∈S
f1(ω) f2(ω) f3(ω)dω.

The spherical function Vp represents visibility of the distant en-
vironment at p (due to the presence of scene occluders, not the
medium), and Bpv represents the BRDF assuming p is being viewed

from v [Ng et al. 2004].2

We use spherical harmonic (SH) vectors of order 4-6 for lighting,
BRDF, and visibility/PRT. Low order vectors represent only low-
frequency directional dependence, which is appropriate for fairly
matte surfaces or smooth lighting.

SH Review Let f (ω) be a spherical function, represented by the

SH vector fff lm. An order-n expansion requires n2 vector compo-
nents. Let g(ω) by a function circularly symmetric about z, which
can be represented by the SH vector gggl (its symmetry implies its
only nonzero coefficients have m=0). Convolving fff by ggg yields:

(fff ∗ggg)lm =

√

4π

2l +1
fff lm gggl . (21)

Evaluating fff at the spherical point ω is computed via

fff (ω) =
n−1

∑
l=0

+l

∑
m=−l

fff lm yyylm(ω). (22)

where yyylm are the SH basis functions. Rotating ggg from its canonical
center at z to an arbitrary one z′ is computed via

rot(ggg,z→ z′)lm =

√

4π

2l +1
gggl yyylm(z′). (23)

An SH delta function, δδδ , is the “peakiest” or most directional func-
tion that can be produced by a given SH order. If it is canonically
centered around z, its coefficients are given by

δδδ l = yyyl0(z). (24)

For convenience, we list the first 6 SH coefficients of NPSF (as
with any circularly symmetric function about z, only the m=0 com-
ponents are nonzero): 0.332818, 0.332488, 0.302428, 0.275773,
0.254051, 0.236333. These form the gggl coefficients used in the
convolution formula (21).

4.1 Point Lighting

For a point light source:

LLLin
p =

I0

d2
ps

δδδ ps,

where δδδ ps is the delta function in the direction from p to s. Its SH
coefficients can be computed using formulas (24) and (23).

To calculate (19), we make the approximation that the optical den-
sity equals the average density from s to p. This simply replaces the
optical depth Tsp = β dsp, in that formula assuming a homogeneous
density β , with the integrated version, T (s, p), with respect to the
inhomogeneous medium along the path from s to p as defined in
(3). We thus obtain the SH vector

LLLin−tot
p =

I0e−T (s,p)

d2
ps

(

T (s, p)δδδ ps ∗NPSF+δδδ ps

)

. (25)

2Actually, the separation of object visibility Vp from incident radiance

Lin−tot
p implied by this triple product formula is an approximation: the two

should properly be integrated together along each light path. This approxi-

mation assumes that the shadowing scene objects are nearby with respect to

the medium’s extent.

This approximation works well because the incident illumination is
a delta function in the direction r̂ps. Thus, singly-scattered airlight
drops to 0 rapidly as the angle γ with respect to r̂sp gets larger.
The approximation therefore captures the inhomgeneous medium’s
variation with direction well, by integrating over the actual medium
in the single direction r̂ps. Optical depth T (s, p) is computed using
an RBF splatting method which will be described in the next sec-
tion.

4.2 Environmental Lighting

We model distant environmental lighting using a spatially invariant

SH vector LLLin. To model how this light is scattered before hitting a
receiver point p, we make the approximation that the optical depth
equals the average depth in all directions around p, defined by

T̄ (p) =
1

4π

∫

ω∈S
T (p+dω ω, p)dω. (26)

where S = {ω|ω2
x + ω2

y + ω2
z = 1}. Then we simply replace the

optical depth Tsp in (19) with this average depth T̄ (p), yielding

LLLin−tot
p = T̄p e−T̄p (LLLin ∗NPSF)+ e−T̄p LLLin. (27)

To compute T̄ (p), we have

T̄ (p) = 1
4π

∫

ω∈S

∫ D
0 β (p+ tω)dt dω

= β0 D+∑n
i=1

(

1
4π

∫

ω∈S

∫ D
0 βi(p+ tω)dt dω

)

= β0 D+∑n
i=1 T̄i(p),

where D > dω bounds the distance of p to the environment. We
use a fixed and large value for all points and all directions, which
assumes the size of the object is small compared to the distance to
the environment map.

T̄i(p) is the average optical depth from the i-th Gaussian βi. To
calculate it, we first tabulate the average optical depth of a special
Gaussian with a = c = 1 and b = 0 as a 1D table:

T (‖u‖) =
1

4π

∫

ω∈S

∫ ∞

0
exp

(

‖u+ tω‖2
)

dt dω,

where u is a point on the z axis. Since D is large, we obtain

T̄i(p) =
ci T (ai‖p−bi‖)

ai
.

T̄ (p) is then computed by summing each Gaussian’s contribution
T̄i(p).

4.3 Shading with PSF-Scattered Radiance

Given the total scattered radiance incident at p, LLLin−tot
p defined in

(25) or (27), we can shade by applying (20). Efficient methods for
computing the SH triple product are described in [Snyder 2006].

We can also specialize (20) in two important cases: when shad-
ing with an arbitrary BRDF but without PRT shadowing, or with
a diffuse receiver with PRT. We denote the SH vector representing
the BRDF weighting assuming a view point v as BBBpv. A PRT vector
represents how the object shadows and inter-reflects light onto itself
at receiver point p with respect to a low-frequency, distant lighting
basis and is represented by the SH vector PPPp. Then the resulting

shading in either case is obtained simply by dotting LLLin−tot
p with ei-

ther BBBpv or PPPp. This requires only a simple dot product rather than
an expensive SH triple product.

(a) diffuse, point light source

(b) Phong model (exponent=5), point light source

(c) fitted BRDF from measured data, environmental lighting

Figure 5: Surface reflectance in inhomogeneous media.

If the view ray does not hit any surface point, we would still like
to see glows around bright sources in the environment. The PSF-
based approximation (18) can be used to calculate the environmen-
tal airlight via

La(r̂) = T (v, p)e−T (v,p) (Lin ∗NPSF)(r̂), (28)

where T (v, p) is the screen optical depth computed as described
in Section 5.2. In this case, the integration depth dr → ∞ since
no surface is hit. We precompute the convolution of the lighting
environment with NPSF and store this as a cube map.

Note that the PSF method can easily be specialized to diffuse or
Phong BRDF models. On the other hand, it is also possible to
generalize the model in [Sun et al. 2005] (equations 17,18) for re-
flectance of a Lambertian plus specular Phong surface in airlight,
using the same approach of replacing its Tsp = β dsp (which as-
sumes constant optical depth) with the inhomogeneous depth inte-
grated along the path, T (s, p). While this method is restricted to the
diffuse+Phong surface reflectance model, it is theoretically more
accurate in that case. We find the results of the two methods almost
indistinguishable for diffuse surfaces.

Fig. 5 illustrates scattering effects on surface reflectance. Steam
emitted from the teapot on the left scatters light which affects the
appearance of the teapot on the right. Notice the softening in the
shading and specular highlights, and the steam’s shadow.

5 Rendering Pipeline

As in [Sun et al. 2005], the total radiance arriving at the view ray r,
denoted L, is modeled via

L = La + exp(−T (v, p)) Lp. (29)

This equation supports attenuation through the medium but neglects
scattering effects once the light leaves the surface point p. Since
surfaces are typically much dimmer than light sources, capturing
just this first-order effect is a reasonable approximation.

5.1 Computing T (v,bi) and T (s,bi)

Computing airlight La requires the factor f 1(bi), which in turn re-
quires exponentiating T (v,bi) and T (s,bi) at each of the n Gaussian
centers bi. We describe an algorithm for computing T (v,bi); substi-
tuting the light source position s for v as the ray origin then allows
computation of T (s,bi).

A plane sweep is performed on the CPU to find the subset of RBFs
that contribute along each of the n rays from v to bi. Each ray di-

rection is represented by the spherical point b̂i = (bi− v)/||bi− v||
which is converted to 2D spherical coordinates, (θi,φi). We then
bound each RBF using an interval over 2D spherical coordinates
such that the line integration result for any ray with origin v is suf-
ficiently small outside this bound. From (31), it can be seen that
the line integral declines exponentially as a function of distance

||bi− v|| and the sine of the angle ξ between r̂ and b̂i, due to the
factor

ci e−a2
i ||r̂×(bi−v)||2 = ci e−a2

i ||bi−v||2 sin2 ξ .

Thus, we base the bounding box on the threshold

sinξ ≤
√

lnci− lnε

ai ‖bi− v‖ = sinξi (30)

where ε = e−9. This represents a cone around the central direction

b̂i.

A segment search tree algorithm [O’Rourke 1998] is then used
to query the subset of RBFs whose 2D intervals cover each
spherical point (θi,φi), producing a list of ni ≤ n RBFs denoted
βi1 ,βi2 , . . . ,βini

which have a contribution on the ray from v to bi.

The complexity of the algorithm is O(n logn + k) where n is the
number of RBFs and k is the number of intervals reported. The list
for each i is then sent to the GPU, which performs the 1D Gaus-
sian integration using equation (31) for each of the βi j

, yielding

Ti j
(v,bi). Finally, the results over all ni Gaussians are summed to

obtain T (v,bi).

5.2 Integrating Optical Depth in All Directions

We integrate optical depth around the view point v and each light
point s. This is similar to the computation of the previous section,
except that the integration is done in all directions around each ray
origin instead of to n Gaussian centers bi, and the integration pro-
ceeds from the ray origin until the first intersected surface instead
of stopping at the Gaussian center. Maps of optical depth are com-
puted around the view point for attenuating airlight in and (29), and
around each light point for rendering surface reflectance in (20).

We use an RBF splatting techique on the GPU. The screen is used as
the render target when accumulating optical depth around the view
point; 6 images forming a cube map are used for light sources. For
each Gaussian i, we first compute a bounding sphere with radius
ri = ‖bi− v‖sinξi around its center bi. This threshold from (30)
ensures that ||x− bi|| > ri ⇒ βi(x) < ε . The bounding sphere is

then projected to the near plane of the view frustum and its 2D
bounding box rasterized. A pixel shader is invoked to compute the
1D integral along that pixel’s view ray using (31). All Gaussians
are then accumulated using alpha blending hardware to produce the
per-pixel integrated result.

5.3 Accumulating Airlight

We use the following algorithm to simultaneously accumulate opti-
cal depth around the view point as well as integrate airlight. Here,
La, T , and dvp denote maps over all screen pixels. Map references
are thus implicitly evaluated at each pixel’s view ray.

(La,T)← (0,0)

For each pixel
T += β0 dvp

For each point light source
Compute the homogeneous term of airlight, L0, via (17)
La += L0

For each Gaussian i
For each pixel covered by its bounding box

Compute line integral along view ray, Ti(v, p), via (31)
Li← 0
For each point light source

Li += f 0(br
i) f 1(bi)Ti(v, p)

(La,T) += (Li,Ti) // accumulate to airlight target

For each pixel covered by the environment map

La += (Lin ∗NPSF)(r̂) T exp(−T)

5.4 Rendering Summary

The following steps summarize our entire rendering pipeline:

1. Render view distance and light distance maps, dvp and dsp.

2. Accumulate the optical depth map around each light source,
T (s, p), using the RBF splatting described in Section 5.2.

3. If there is a environment map, accumulate the average optical
depth for each vertex, T̄ (p).

4. Render the scene (i.e. compute the vertex shading Lp) us-
ing incident lighting from (25) or (27). as described in Sec-
tion 4.3.

5. Compute T (v,bi), T (s,v) and T (s,bi) using the plane sweep
algorithm described in Section 5.1.

6. Accumulate airlight using the algorithm in Section 5.3, yield-
ing the airlight La and screen optical depth T (v, p) targets. In
our implementation, 4 lights are packed together and treated
in a single pass.

7. Attenuate the scene target using the optical depth target and
add the airlight target, via (29).

Step 3 forms the bottleneck in our computation. To speed things
up, instead of computing T̄ for each vertex, we compute it only
at the centroid of each object. All the object’s vertices then share
the same T̄ . A more sophisticated method could use VQ clustering
[Linde et al. 1980] to generate a small set of uniformly-distributed
representatives which are blended at each vertex. We deem this as
future work.

Step 6 is also computationally expensive. We compute the airlight
and screen optical depth targets at lower (e.g. 1/4) resolution. The
distance map dvp is first down-sampled. After the airlight and
screen optical depth are computed (at reduced resolution), we up-

(a) without noise (b) with noise

Figure 6: Teapot in a box: adding noise makes the steam look more realistic.

sample them back to the screen resolution. For pixels whose full-
resolution neighborhood spans too great a range in the depth map,
we use the low-resolution result having the smallest difference with
the desired high-resolution depth value. The rest of the pixels are
bilinearly interpolated.

5.5 Adding Noise

Our rendering system can add noise to convey the irregularity of
real fog and smoke without unduly increasing the number of RBFs
(see Figure 6). This is done by perturbing T (v, p) from Section 5.3.
More precisely, when computing Ti(v, p) for each pixel covered by a
Gaussian i, we perturb the view ray using a tileable 3D Perlin noise
texture and compute the line integral along this perturbed direction.
The integration distance dr is left unchanged.

The noise texture is indexed by the 3D point br
i . The result is then

scaled by ri/||v−bi||, transformed to view space by multiplying by
the current view matrix, and finally added to the original direction.
Adding noise in world space ensures consistency when the camera
changes. The scale of the perturbation is user-adjustable. We also
add a constant displacement to the br

i noise texture index which can
be animated.

6 Creating Inhomogeneous Media

Making use of the RBF representation, we develop a set of easy-
to-use tools to create inhomogeneous media, including paintbrush,
airbrush, eraser, and particle system simulator [Reeves 1983]. Ex-
isting animation data of smoke or clouds generated using advected
RBFs [Pighin et al. 2004] or a commercial animation system (e.g.
Maya) can also be imported and rendered in our system.

Copy/Paste Our system allows the user to select RBFs in the
scene, and copy or move them elsewhere. The user simply draws a
rectangle on the screen to select RBFs whose center projects inside
the rectangle.

Paintbrush The paintbrush places Gaussians along a stroke drawn
by the user. The stroke is projected onto a 3D, user-specified plane.
Both the amplitude c and scale a of the Gaussians can be adjusted.
The distance between two adjacent Gaussians along the stroke can
also be changed (0.75/a by default). We move the Gaussian centers
by a random vector lying in the plane perpendicular to the stroke.
The length of the offset vector is less than 1/a.

Eraser The eraser tool reduces the density of those Gaussians it
covers. Once a Gaussian’s density reaches zero, it is deleted. The
radius of the eraser can be adjusted.

Particle Emitter The user can place an emitter at any point in the
scene, which then spawns particles. The particle’s trajectory is a
simple, constant-acceleration (parabolic) path. The spawning rate,
acceleration, initial velocity, color, and lifetime of the particles can
be adjusted. Gaussians are placed at the centers of the particles.

Scene # Vertices # Gaussians # Lights FPS

gargoyle (Fig. 1) 78,054 34 3 101

box (Fig. 6) 8,901 3008 1 34

terrain (Fig. 8) 65,047 292 env. map 92

city (Fig. 8) 77,226 353 env. map 162

motorcycle (Fig. 8) 44,430 1223 env. map 31

Table 1: Statistics and timings.

(a) our result (b) ray tracing

Figure 7: Failure cases of our airlight approximation.

The scale and amplitude of a Gaussian are determined by the parti-
cle’s lifetime: the longer the particle lives, the smaller its scale and
amplitude.

Airbrush The airbrush is similar to the particle emitter, except that
its particles have infinite lifetime and bounce off surfaces in the
scene. The particles eventually diffuse out randomly, but confined
within open regions of the scene bounded by surfaces. When the
airbrush is stopped, all of its particles are frozen. Users can employ
this tool to generate a foggy area, or fill a 3D model with particles
to create a foggy version of the same shape.

7 Results

We have implemented our system on a 3.7Ghz PC with 2GB of
memory and an NVidia 8800GTX graphics card. Image generation
was done at 800× 600 resolution. Table 1 summarizes statistics
for the various examples. Please see the video results for animated
versions of the figures and other live demos, recorded in real time.

Dynamic smoke in Fig. 1 is generated by the particle emitter. The
teapot-in-a-box scene in Fig. 6 is filled with fog using the airbrush
tool. Note that our noise scheme disturbs the optical depth consis-
tently in world space and makes the media appear more irregular
and realistic. We also import an off-line simulation of steam rising
from the teapot’s spout. The user is able to visualize simulation re-
sults in real time, including interactive lighting and camera change.

The fog in the terrain and city scenes shown in Fig. 8 is created
using our paintbrush tool (see the video). The motorcycle scene
uses the particle emitter. All three scenes demonstrate how inho-
mogeneous media enhances realism. We obtain several realistic
effects, including soft shadows, glowing of the environmental light-
ing, and softening of highlights and surface reflectance, all in real
time. Combined with PRT, our approach provides an attractive so-
lution for rendering dynamic, inhomogeneous media in applications
like 3D games.

(a) clear day (b) homogeneous media (c) inhomogeneous media

Figure 8: Results combining our scattering model with PRT.

Discussion of Approximation Limitations Although our approxi-
mation of the airlight integral achieves visually realistic results, it is
inaccurate in a few cases. Since our approximation samples the in-
tegrand at the projection of each Gaussian onto the view ray, it may
miss samples where the the view rays’ distance d(x) to the light
source gets small. This can cause an inaccurate brightness profile
for halos around bright lights close to RBFs (top row of Fig. 7).
Also, our model fails to obtain the well-known effect of light shafts
emanating from a break in dense media (bottom row of Fig. 7, con-
taining a tube-shaped “cloud” pierced by a small hole). Such light
shafts can cause an arbitrarily sharp transition in brightness along
the view ray which is missed by our approach. The phenomenon re-
quires abrupt changes in the medium’s density and disappears when
the medium is smooth.

Our use of optical depth averaging can also cause inaccuracies. For
example, if a dense cloud is on the opposite side of a receiver point
from the light source, then averaging optical depth in all directions
(equation 27) will attenuate the radiance more than it should. Good
results are obtained in smooth media, such as a patchy fog. Aver-
aging optical depth in a single direction (for point light sources) is
an even more robust approximation.

8 Conclusion

Representing complex spatial variation in scattering media is crit-
ical for realistic smoke and fog; ours is the first analytic approach
capable of rendering such media in real-time. Our new approxima-

tion captures many scattering effects, including glows around light
sources and shadowing of the media onto itself as well as softening
of shading and shadows on surfaces immersed within the media.
Results accurately match a full scattering simulation for smooth
media, and are consistent and plausible in all cases.

Several ideas make this approximation fast enough for real-time
rendering while preserving visual accuracy. We assume that varia-
tion of the scattering integrand along the view ray is primarily due
to variation in the medium density. This leads us to separate con-
tributions from each Gaussian by modeling a light path through its
nearest point along the view ray while modeling the attenuation and
shadowing effect of all other Gaussians using a light path indepen-
dent of the view ray. We also average optical depth in the direction
to point light sources or in all directions around a receiver point for
environmental sources, to apply constant-fog models of surface re-
flectance to inhomogeneous media. Our rendering method makes
available new, realistic content for real-time applications like 3D
games, and also supports interactive preview and design of scatter-
ing media.

In future work, we are interested in capturing even more scattering
effects, including light shafts and multiple-scattering. Our current
solution also assumes that surface shadowing effects are local, so
that PRT vectors can be dotted with the airlight radiance at each
receiver point as a final step. In fact, the shadowing effect of im-
mersed surfaces is more complicated and must be considered in
proper depth order along with the media. This remains a challeng-

ing and unsolved problem for real-time rendering.

References

BIRI, V., ARQUES, D., AND MICHELIN, S. 2006. Real time rendering of atmospheric

scattering and volumetric shadows. Journal of WSCG 14.

BLINN, J. F. 1982. Light reflection functions for simulation of clouds and dusty

surfaces. In Proceedings of SIGGRAPH 82, 21–29.

CEREZO, E., PÉREZ, F., PUEYO, X., SERÓN, F. J., AND SILLION, F. X. 2005. A

survey on participating media rendering techniques. The Visual Computer 21, 5,

303–328.

DOBASHI, Y., YAMAMOTO, T., AND NISHITA, T. 2002. Interactive rendering of

atmospheric scattering effects using graphics hardware. In Graphics Hardware

Workshop 02, 99–107.

EBERT, D. S., AND PARENT, R. E. 1990. Rendering and animation of gaseous

phenomena by combining fast volume and scanline a-buffer techniques. In Pro-

ceedings of SIGGRAPH 90, 357–366.

HARRIS, M. J., AND LASTRA, A. 2001. Real-time cloud rendering. In Eurographics

2001 Proceedings, 76–84.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simulation of light trans-

port in scences with participating media using photon maps. In Proceedings of

SIGGRAPH 98, 311–320.

KAJIYA, J. T., AND HERZEN, B. P. V. 1984. Ray tracing volume densities. In

Proceedings of SIGGRAPH 84, 165–174.

LINDE, Y., BUZO, A., AND GRAY, R. M. 1980. An algorithm for vector quantizer

desig. IEEE Transactions on Communications, 1, 84–95.

MAX, N. L. 1986. Atmospheric illumination and shadows. In Proceedings of SIG-

GRAPH 86, 117–124.

MAX, N. L. 1994. Efficient light propagation for multiple anisotropic volume scatter-

ing. In Eurographics Workshop on Rendering, 87–104.

NAKAMAE, E., KANEDA, K., OKAMOTO, T., AND NISHITA, T. 1990. A lighting

model aiming at drive simulators. In Proceedings of SIGGRAPH 90, 395–404.

NARASIMHAN, S. G., AND NAYAR, S. K. 2003. Shedding light on the weather. In

Proceedings of CVPR, 665–672.

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple product integrals

for all-frequency relighting. ACM Trans. Gr. 23, 3, 477–487.

NISHITA, T., DOBASHI, Y., AND NAKAMAE, E. 1996. Display of clouds taking

into account multiple anisotropic scattering and sky light. In Proceedings of SIG-

GRAPH 96, 379–386.

O’ROURKE, J. 1998. Computational Geometry in C, Second Edition. Cambridge

University Press, Cambridge, England.

PERLIN, K. 2006. Using Gabor functions to make atmosphere in computer graphics.

research note, NYU. http://mrl.nyu.edu/˜perlin/experiments/gabor/.

PIGHIN, F., COHEN, J., AND SHAH, M. 2004. Modeling and editing flows using

advected radial basis functions. In ACM SIGGRAPH / Eurographics Symposium

on Computer Animation, 223–232.

PREETHAM, A. J., SHIRLEY, P., AND SMITS, B. 1999. A practical analytic model

for daylight. In Proceedings of SIGGRAPH 99, 91–100.

PREMOZE, S., ASHIKHMIN, M., RAMAMOORTHI, R., AND NAYAR, S. 2004. Practi-

cal rendering of multiple scattering effects in participating media. In Eurographics

Symposium on Rendering, 363–374.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLANNERY, B. 1992. Nu-

merical Recipes in C, Second Edition. Cambridge University Press, Cambridge,

England.

REEVES, W. T. 1983. Particle systems - a technique for modeling a class of fuzzy

objects. ACM Trans. Gr. 2, 2, 91–108.

RILEY, K., EBERT, D. S., KRAUS, M., TESSENDORF, J., AND HANSEN, C. 2004.

Efficient rendering of atmospheric phenomena. In Eurographics Symposium on

Rendering, 375–386.

RUSHMEIER, H. E., AND TORRANCE, K. E. 1987. The zonal method for calculat-

ing light intensities in the presence of a participating medium. In Proceedings of

SIGGRAPH 87, 293–302.

SAKAS, G. 2004. Fast rendering of arbitrary distributed volume densities. In Euro-

graphics 90, 519–530.

SLOAN, P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance transfer for

real-time rendering in dynamic, low-frequency lighting environments. ACM Trans.

Gr. 21, 3, 527–536.

SNYDER, J. 2006. Code generation and factoring for fast evaluation of low-order

spherical harmonic products and squares. Tech. Rep. MSR-TR-2006-53, Microsoft

Corporation.

STAM, J. 1995. Multi-Scale Stochastic Modelling of Complex Natural Phenomena.

PhD thesis, Dept. of Computer Science, University of Toronto.

STAM, J. 1995. Multiple scattering as a diffusion process. In Eurographics Rendering

Workshop, 41–50.

SUN, B., RAMAMOORTHI, R., NARASIMHAN, S., AND NAYAR, S. 2005. A practical

analytic single scattering model for real time rendering. ACM Trans. Gr. 24, 3,

1040–1049.

SZIRMAY-KALOS, L., SBERT, M., AND UMMENHOFFER, T. 2005. Real-time mul-

tiple scattering in participating media with illumination networks. In Rendering

Techniques, 277–282.

WILLIS, P. 1987. Visual simulation of atmospheric haze. Computer Graphics Forum

6, 1, 35–42.

ZHOU, K., REN, Z., LIN, S., BAO, H., GUO, B., AND SHUM, H.-Y. 2007. Real-

time rendering of smoke using compensated ray marching. accepted with major

revisions to ACM Trans. Graph..

A Line Integration of a Gaussian

v

rdv
r
ˆ+

b

b′

r̂

ξ

ξsin|||| b′

ξcos|||| b′

Figure 9: Line integration of a Gaussian.

We describe how to integrate a Gaussian

G(x) = ce−a2 ||x−b||2

over the ray r in eq. (1). This yields the 1D integral over t given by

y =
∫ dr

0
ce−a2 ||x(t)−b||2 dt .

Letting b′ = b− v and b̂′ = b′/||b′|| where v is the view point, we have

y =
∫ dr

0
c exp(−a2||t r̂−b′||2)dt

=
∫ dr

0
c exp

(

−a2
(

(t−||b′||cosξ)2 + ||b′||2 sin2 ξ
))

dt

= ce−a2 ||b′ ||2 sin2 ξ
∫ dr

0
exp

(

−a2(t−||b′||cosξ)2
)

dt

= ce−a2 ||b′ ||2 sin2 ξ

√
π

2a
(erf(a(dr−||b′||cosξ))− erf(a(−||b′||cosξ))) (31)

where ξ is the angle between r̂ and b̂′, cosξ = r̂ · b̂′, and sinξ = ||r̂× b̂′||.

The error function, denoted erf(x), is a standard mathematical function whose numer-

ical evaluation can be found in many published works, e.g. [Press et al. 1992]. We use

a fast Chebyshev approximation given by

erf(x)≈























sgn(x), |x|> 2.629639








0.0145688z6−0.0348595z5

+0.0503913z4−0.0897001z3

+0.156097z2−0.249431z

+0.533201









x, |x| ≤ 2.629639

where z = 0.289226x2− 1. This approximation has absolute error less than 2× 10−4

for all x.

A similar method for line integration through a Gaussian is described in [Stam 1995a],

though it uses a less accurate, piecewise-linear approximation for erf(x).

