
On the Work Function Algorithm for two state task

systems

Yossi Azar ∗ Uriel Feige † Suman Nath ‡

February 21, 2007

Abstract

We revisit the known work function online algorithm WFA for met-
rical task systems in the special case when there are only two states.
We offer a slightly modified version of this algorithm, and show that
our version exactly mimics the migration pattern of the best possible
offline algorithm, though the timing of the migration events is some-
what different in these two algorithms. We use this to bound the cost
of WFA in terms of the cost of the optimal offline algorithm. We show
that our version of WFA not only has competitive ratio at most 3 in
the worse case (which is best possible in the worst case), but addition-
ally enjoys better competitive ratios on “typical” input sequences. We
also present experimental evidence to support our theoretical analysis.

1 Introduction

Overview: We consider a task system with two states. Our study is moti-
vated by a specific scheme that involves two different states (mechanisms) for
accessing data in external memory. One state is optimized for reading data
quickly, whereas the other is optimized for writing data quickly. There is a
cost involved in switching between states. If a sequence of requests (either
read or write) arrives, the optimal way of serving it may involve switching
between states multiple times, depending on whether the sequence has al-
ternating long subsequences of (mostly) read and (mostly) write operations.

∗t-azar@microsoft.com. Microsoft Research, Redmond
†uriel.feige@microsoft.com. Microsoft Research, Redmond.
‡sumann@microsoft.com. Microsoft Research, Redmond.

1

Related work: Technically, the problem that we study is a generalization
of file migration on two states and a special case of metrical task systems,
and we build upon earlier work on those topics. There is a 2n−1 competitive
algorithm for metrical task system on n states [3]. For file migration there
is a 3 competitive algorithm for complete graphs and trees [1]. Both these
earlier algorithms imply a competitive ratio of 3 for our problem. This
problem has a simple well known lower bound of 3 on the competitive ratio.
(The notion of competitive ratio that we use will be defined shortly.)

Our results: All our work and results refer only to task systems with two
states. We present a simplified and slightly modified version of the known
work function algorithm WFA for metrical task systems. (For previous work
on the work function algorithm and its “standard” version, see [2] for exam-
ple). We provide a new proof that WFA is 3-competitive in the worst case.
Our analysis is especially informative, as it shows that the competitive ratio
is much better than 3 on many natural distributions of request sequences,
and provides an easy methodology of computing the competitive ratio of the
algorithm in these cases.

Paper structure: The paper is organized as follows. Section 2 includes
formal definitions and notations. The optimal (offline) solution is character-
ized in section 3. Our version of the work function algorithm and its analysis
are presented in Section 4. Some extensions are discussed in Section 5.

2 Definitions and notations

The system has two states: state S1 and state S2. A sequence of n requests
(xi, yi) for 1 ≤ i ≤ n arrives online. Request i can be served at cost xi in
state S1 and at cost yi in state S2. The serving algorithm may migrate from
state S1 to S2 at cost M1 and from state S2 to S1 at cost M2. Upon the
arrival of a request, the algorithm has one of two options: either to serve
the request at the current state, or to migrate to the other state and then
serve the request. (Observe that there is no need to allow the algorithm
to first serve the request and then migrate, because this last migration can
always be appended at the beginning of the next request.) The informa-
tion available to an offline algorithm when making a decision is the whole
sequence (past and future requests). The information available to an online
algorithm is all past requests and the current request, but the algorithm has
no information regarding future requests. (Later we shall also discuss how

2

our online algorithms can be adapted to take advantage of a limited amount
of lookahead.) The total cost of an algorithm on a sequence of requests is
the cost of serving the requests plus the cost of migration. Our goal is to
serve the sequence at a minimum total cost.

Given a sequence σ of requests and an algorithm A, we may divide the
total cost of A on σ (denoted by A(σ)) into three components.

The first component is a property of σ alone and is independent of A.
We call it the fixed cost of σ, and denote it by F (σ). It is the sum of costs of
serving all requests, if every request is served on the state in which it costs
less. Formally, F (σ) =

∑
i min[xi, yi].

The second component is the inefficiency AI that results from A serving
some requests at their more costlier state. Formally, let zi be an indicator
variable that is 0 if A serves request i at the cheaper state for request i
and 1 if A serves request i at the costlier state for request i. Then AI(σ) =∑

i zi · |xi − yi|.
The third component is the migration cost AM which is the total cost of

all migrations performed by algorithm A.
Altogether, we have that A(σ) = F (σ) + AI(σ) + AM (σ), and only

the overhead quantities AI(σ) + AM (σ) are actually under control of the
algorithm.

Let OPT (σ) denote the optimal total cost on a sequence σ of requests.
Hence OPT (σ) = F (σ) + OPT I(σ) + OPTM (σ).

We measure the performance of an online algorithm by comparing it to
the optimal offline algorithm. We shall now define the notions of competitive
ratio that we will be using. For brevity, let us use C to denote the commute
cost M1 + M2. This quantity will appear both in our algorithm, and as an
additive term in the definition of the competitive ratio. (This additive term
is required to handle boundary effects at the beginning and end of σ.)

One way of defining the competitive ratio of an algorithm A is as follows.
An algorithm A has competitive ratio ρ if for every sequence σ, A(σ) ≤
ρOPT (σ) + O(C). However, in the context of task systems it is customary
to use a stronger definition ρO, based only on the overhead payed by the
algorithm on top of the fixed cost portion F (σ). This leads to requiring
AI(σ) + AM (σ) ≤ ρO(OPT I(σ) + OPTM (σ)) + O(C).

With respect to the above “overhead competitive ratio” measure, pre-
vious work showed that there are online algorithms (including the work
function algorithm) that are 3-competitive (namely, ρO = 3), and no online
algorithm can have a better competitive ratio. However, in this work, we
shall use an even stronger notion of competitive ratio. Rather than allowing
ρO to multiply both the inefficiency cost and the migration cost of OPT , we

3

introduce a competitive ratio measure ρM that involves only the migration
cost.

Definition 2.1 Algorithm A is said to have strong competitive ratio ρM ,
if for every sequence of requests σ,

AI(σ) + AM (σ) ≤ OPT I(σ) + ρMOPTM (σ) + O(C)

Observe that the optimal offline algorithm may not be unique. It may
happen that at some points there would be an option either to migrate or
to serve a subsequence of requests at a more costlier state, giving the same
total costs using either option. In definition 2.1 we may assume the among
all optimal solutions, the one with the smallest number of migration events
is chosen.

We show that the work function algorithm achieves ρM = 3. The ad-
vantage of using the measure ρM (rather than the previously used overhead
competitive ratio ρO) is that it more clearly shows how the relative perfor-
mance of the algorithm improves as a function of properties of the request
sequence. The larger the total inefficiency cost OPTI(σ) is compared to the
total migration cost OPTM (σ), the closer the ratio A(σ)/OPT (σ) is to 1,
even if the fixed cost F (σ) is 0.

3 The optimal offline algorithm

To analyze our online algorithm, it would be helpful to first characterize the
optimal offline algorithm. In general metrical task systems, dynamic pro-
gramming is used in order to find the optimal solution to a given sequence.
However, in our two state setting there is a simple rule that always produces
the optimal solution, and among all optimal solutions, the one with fewest
migrations.

For request i, let δi denote the difference xi − yi. Hence if δi < 0 it is
better to serve request i at state S1 and if δi > 0 it is better to serve request
i at state S2. (Without loss of generality, we assume that δi 6= 0, because
when δi = 0 no sensible algorithm will pay more than the fixed cost.) We
will use the following convention regarding sequences of requests. Assume
that OPT is at state S2 after it served the final request of σ. Then σ is
extended by additional requests, all with δi > 0, until the sum of δi over
all additional requests exceeds C (the commute cost). Likewise, if OPT is
at state S1 after it served the last request, then the sequence of requests is
extended by additional requests, all with δi < 0, until the sum of δi over

4

all additional requests exceeds −C. In either case, OPT needs to pay only
the fixed costs over this extension, whereas algorithm A might pay some
overhead above the fixed costs. Hence the competitive ratio may only get
worse by this extension, and hence our convention regarding the existence
of the extension can be made without loss of generality.

Cancelling the fixed costs, a sequence of requests can be viewed as a
sequence of δi. For every 2 ≤ t ≤ n + 1, define ∆(t) =

∑t−1
i=1 δi, and define

∆(1) = 0. Point i ≤ n is a local minimum of the function ∆ if δi−1 < 0 and
δi > 0. Point i ≤ n is a local maximum of the function ∆ if δi−1 > 0 and
δi < 0.

Proposition 3.1 Every optimal algorithm will migrate from state S1 to
state S2 only at time steps i that are local minima of ∆, and from state S2

to state S1 only at time steps i that are local maxima of ∆.

Proof: In any other case, either migrating one step earlier or one step
later results in lower total cost. Details omitted. 2

The following definition involves the key feature of optimal algorithms
for the two state task system.

Definition 3.2 Let i be a time step where ∆ has a local minimum. Let
j > i be the first time step after i in which ∆(j) > ∆(i) + C, and j = ∞
if no such time step exists. Let k > i be the first time step after i in which
∆(k) ≤ ∆(i), and k = ∞ if no such time step exists. (Observe that it cannot
be the case that j = k = ∞, by our convention regarding extending the
request sequence.) The local minimum at i is said to be significant if j < k,
and insignificant if j > k. Likewise, a local maximum at i is significant if
after i the function ∆ reaches a value strictly lower than ∆(i)−C before it
returns to a value of ∆(i) or higher.

Lemma 3.3 If the optimal solution (specifically, the one with fewest migra-
tions among all optimal solutions) is at state S1, it will migrate to state S2

at the first time step j ≥ i that is a significant local minimum of ∆ (if one
exists). Similarly, if it is at state S2 at time step i, it will migrate to state
S2 at the first time step j ≥ i that is a significant local maximum of ∆ (if
one exists).

Proof: First we show that if the optimal solution is at state S1 in a
significant local minimum of ∆ then it will migrate to S2. Let i denote the
time step of this local minimum, let j > i be the first time step in which
∆(j) > ∆(i) + C and let k > i be the first time step in which ∆(k) ≤ ∆(i)

5

(and k = ∞ if no such time step exists). Observe that k > j because i is a
significant local minimum. The optimal solution must migrate from S1 to
S2 not later than time step j, because it costs less to migrate from S1 to S2

at time step i, serve all request up to request j − 1 at S2, and then migrate
back to S1, then it costs to serve all requests from i to j − 1 at state S1.
Given that the optimal solution must migrate, the migration that results in
smallest inefficiency cost is at time i, because k > j.

Now we show that the optimal solution need never migrate from S1

at a time step i that is not a significant local minimum of ∆. Observe
that by Proposition 3.1, i can be assumed to be a local minimum of ∆
(though an insignificant one). Let k > i be the first time step in which
∆(k) ≤ ∆(i). There is no point in migrating from S1 to S2 at time step i
and returning by time step k, because the commute cost C is at least as large
as any saving that can be achieved in the inefficiency cost (because ∆ never
exceeds ∆(i) + C between time steps i and k). Likewise, there is no point
in migrating at time step i and not returning to S1 by time step k, because
then the inefficiency cost would not be larger if the migration is postponed
until time step k. Hence we may assume that the optimal solution does not
migrate at all at time step i.

The proof regarding migration from S2 to S1 is analogous to the proof
regarding migration from S1 to S2, and is omitted. 2

4 An online algorithm

Having characterized the optimal offline algorithm, our online algorithm
has a very intuitive interpretation. It stays in its current state until the first
time step in which it is certain that the optimal offline algorithm must have
migrated (perhaps several time steps earlier) from this state. At that point
the online algorithm also migrates. As such, its migration cost is identical
to that of the optimal solution, but it suffers a larger inefficiency cost, due
to the lag in migration time compared to the optimal algorithm. We now
provide more details.

The work function algorithm WFA.

• Initialization. Start at state S1 and set the value of the counter f to
f(0) = 0.

• At every time step i, upon arrival of a request (xi, yi) with δi = xi−yi,
do the following.

6

– If at state S1, let f(i) = max[0, f(i− 1) + δi]. If f(i) ≤ C, serve
the request at state S1. If f(i) > C, migrate to state S2, serve
the request there, and change f(i) to f(i) = 0.

– If at state S2, let f(i) = max[0, f(i− 1)− δi]. If f(i) ≤ C, serve
the request at state S2. If f(i) > C, migrate to state S1, serve
the request there, and change f(i) to f(i) = 0.

For those familiar with the “standard” version of the work function algo-
rithm (as described in [2], for example), let us remark that it is not hard to
show that our version of the algorithm is almost equivalent to the standard
version. Our version is simplified compared to the standard version in the
sense that instead of keeping two separate counters, one for each state, it
keeps only one counter f , which (up to some fixed offset) is equal to the dif-
ference between the two counters. The only difference between our version
of the algorithm and the standard version is in the behavior when f(i) = C
– in this case the standard version would migrate whereas our version would
not.

Theorem 4.1 Let σ be an arbitrary request sequence on which the opti-
mal solution starts at state S1. Recall that OPT (σ) = F (σ) + OPT I(σ) +
OPTM (σ). Then the total cost of the work function algorithm is at most
WFA(σ) ≤ OPT (σ) + 2OPTM (σ) + C.

Proof: Both OPT and WFA pay the same fixed cost. As we have
seen, both pay exactly the same migration cost, because the migrations of
WFA follow those of OPT (with a delay). Hence the only difference is due
to inefficiency cost. This difference is concentrated on those intervals in
which OPT has migrated and WFA has not yet migrated. In each such
interval, the difference in inefficiencies between the two algorithms is at
most C (because WFA migrates the moment that f exceeds C, but pays
for the request that caused f to exceed C in the new state, and hence does
not incur an inefficiency cost on this request). For every two consecutive
intervals, WFA pays at most 2C more inefficiency cost compared to OPT ,
but both pay also a migration cost of C. This gives the term 2OPTM (σ)
in Theorem 4.1. The extra term of C comes from the possibility that the
total number of migrations is odd, and OPT finishes at state S2. (Note that
WFA will finish at the same state as OPT , due to our convention regarding
extending the sequence σ.) 2

Observe that in the statement of Theorem 4.1 we assumed that both
OPT and WFA start processing σ at the same state S1. This assumption

7

can be removed by adding a term of O(C) to the cost of WFA. The initial
conditions (starting state and initial value f(0)) affect the cost WFA(σ)
only by an additive term of O(C). This follows from the fact that after
the first significant local extremum (minimum or maximum), at the point
where ∆ already changed by more than C compared to its value at the local
extremum, the state WFA is at and the value of f (which necessarily is 0 at
this point) become independent of the initial conditions.

Corollary 4.2 The strong competitive ratio ρM of the work function algo-
rithm is 3.

Proof: The upper bound of 3 follows from Definition 2.1, Theorem 4.1,
and the discussion that follows the theorem. It is easy to construct examples
showing that the strong competitive ratio of WFA is no better than 3. 2

It is known that for every deterministic algorithm for the two state task
system, there is a request sequence in which the strong competitive ratio
(and even the overhead competitive ratio) is not significantly better than 3.
For completeness, we explain how such a request sequence can be generated.
The sequence is generated in an inductive fashion. Having generated a
sequence of length t, simulate A on this sequence and observe the state that
A ends up in. Choose request t + 1 as a request that costs slightly more at
A’s current state than in the other state. On such a sequence, the overhead
cost of A is roughly (up to an additive term of O(C)) equal to the sum of
overhead costs of the following three algorithms: always stay at S1, always
stay at S2, always migrate if the current request costs less at the other state.
Hence one of these algorithms has overhead cost roughly a third of that of
A.

5 Extensions

Corollary 4.2 extends to a window based competitive ratio. That is, within
every time window, algorithm WFA is 3-strongly competitive with the op-
timal solution on this particular time window (regardless of whether this
optimal solution is part of an optimal solution on the whole request se-
quence).

It is easy to extend the work function algorithm to cases where looka-
head is available. If the algorithm can see some (limited number) of future
requests, it can use this information to shorten the delay between the local
extremum and the time that the algorithm migrates, and by this reduce the
inefficiency costs. In more details, at time i, with lookahead up to time k,

8

the algorithm can compute ahead of time the value of f for all time steps
between i and k. If at any of these time steps (say, time step j), the value
of f is above C, the algorithm need not wait until time step j for migrat-
ing. Instead, it migrates at a time step i ≤ ` ≤ j in which f(`) is smallest
(breaking ties in favor of later time steps).

It is relatively easy to upper bound the competitive ratio of WFA on
particular sequences of requests and on some natural distributions. For
example, assume that σ is random sequence in which each δi independently is
equally likely to be either ±1. Then it is not hard to see that in expectation,
OPTM (σ) = O(OPT I(σ)/C), implying that the overhead competitive ratio
of WFA is 1 + O(1/C), which converges to 1 as the commute cost C grows.
If the sequence of request is biased (e.g., δi is more likely to be +1 than
−1), the overhead competitive ratio converges to 1 exponentially fast as C
grows.

6 Simulations

In general, we believe that our analysis presents an easy methodology for
characterizing the performance of WFA both in worst case instances and in
other instances. Nevertheless, we present some simulation results. They are
presented for two reasons. One reason is that even though we understand
well the algorithm, our understanding of properties of typical request se-
quences is not as good, and it may be informative to see at least one such
sequence. Hence, we simulated our algorithm on a sequence of requests gen-
erated by the application that motivated this work. The other reason to
present these experimental results is that they illustrate some interesting
features of our algorithm.

In our simulation, the two states of the system corresponded to two data
structures – one (that we call R) in which read operations are more efficient,
and one (that we call W) in which write operations are more efficient. In
state R the read cost is 24 and the write cost is 763. In state W the read
cost is 120 and the write cost is 48. The cost to migrate from R to W is
1200, and the cost to migrate from W to R is 800. These costs correspond
to Micro Joule (µJ) energy units.

The setting used in order to generate the sequence of requests is as
follows. It was generated by inserting 30, 000 items into a B+-tree (that
has up to 64 items per node). Each insertion involves a sequence of read
and write operation on various nodes of the tree. The items to insert were
temperature readings collected from a set of sensors. These readings were

9

given with very high precision, so all items were distinct. Given the complete
B+-tree, we sampled at random roughly half its nodes. From each such node
we extracted the list of read/write operations that occurred at that node.
Finally, we concatenated all these lists to generate one sequence of roughly
50, 000 read/write requests.

We compared the performance of six different algorithms on this se-
quence of requests.

• OPT . This is the the optimal offline algorithm.

• WFA. This is our online algorithm.

• R. This algorithm always stays at state R.

• W . This algorithm always stays at state W.

• MIGRATE. This algorithm always serves a request at the state in
which it is cheaper to serve it, ignoring migration costs. Hence it
migrates very often.

• LOCAL. This algorithm computes only the costs of serving a request
at its current state (ignoring the cost at the other state), and migrates
(and resets the cost to 0) once the accumulated cost exceeds the com-
mute cost. The worst case competitive ratio of this algorithm is 3
(similar to WFA), and this algorithm is included so as to illustrate
the point that algorithms with similar worst case competitive ratios
may have very different typical performance, supporting the need for
more refined measures (such as the strong competitive ratio used in
this paper).

The results appear in figure 1. As predicted by the analysis, the mi-
gration cost of WFA is essentially the same as that of OPT . The small
difference (in the 4th significant digit) is due to the fact that OPT was al-
lowed to start from the optimal starting state, whereas WFA started from an
arbitrary state. The analysis predicts that the inefficiency cost of WFA will
be equal to that of OPT plus twice the migration cost. However, it turned
out to be even smaller. The reason for this is the fact that costs had values
that are not infinitesimally small, leading to situations where WFA could
migrate at time steps i where f(i− 1) was strictly smaller than C, cutting
down on the inefficiency cost. The overhead cost of W turned out to be much
better than that of R, due to the asymmetric nature of the cost structure
for read and write operations. In fact, W performed not much worse than

10

OPT , and hence the fact that WFA outperformed W is very encouraging.
In comparison, this would not have happened if the sequence of requests
was generated independently at random, because for such sequences either
R or W is the optimal online algorithm (in terms of expected total cost).
As predicted, WFA preformed better than LOCAL (even though both have
the same worst case competitive ratio), but it is interesting to note that
LOCAL performed better than R. The online algorithm MIGRATE per-
formed much worse than all other algorithms, which shows that the request
sequence was not simply composed of alternating long blocks of reads and
of writes.

Fix Inefficiency Migration

OPT 4.988 3.86 0.2322

WFA 4.988 4.25 0.2329

R 4.988 24.72 0

W 4.988 6.68 0

MIGRATE 4.988 0 52.6217

LOCAL 4.988 7.75 6.7224

Figure 1: Table of the various cost each algorithms

References

[1] D. Black and D. Sleator. “Competitive algorithms for replication and
migration problems.” Technical report CMU-CS-89-201, Department of
Computer Science, Carnegie-Mellon University, 1989.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[3] A. Borodin, N. Linial and M. Saks. “An optimal on-line algorithm for
metrical task system.” JACM 39(4), 745–763, 1992.

11

