
1

Keyframe-Based Video Object Deformation
Yanlin Weng, Weiwei Xu, Shichao Hu, Jun Zhang, and Baining Guo

Abstract—This paper proposes a keyframe-based video object editing scheme for automatic object shape deformation. Except for

object segmentation, several technologies are developed in the proposed scheme to minimize user interactions as well as to facilitate

users’ flexible and precise control on deformation. First, an automatic modeling technique is presented to establish the graph model

for the segmented object, which can accurately represent 2D shape information. Second, when the user specifies the deformation of

a video object in keyframes by dragging handles on it to new positions, an algorithm is proposed to automatically generate motion

trajectories of the object handles along with frames. Finally, the 2D shape deformation is completed by our proposed non-linear energy

minimization algorithm. Furthermore, in order to handle the abrupt change of positions, dimensionality reduction is applied together

with the minimization algorithm. Experimental results fully demonstrate that the proposed scheme can generate natural video shape

deformations with few user interactions.

Index Terms—Video Object, Shape Deformation, Shape Editing.

F

1 INTRODUCTION

Video editing is the process of re-arranging or modifying

segments of video to form another piece of video. It has

long been used in the film industry to produce studio-quality

motion pictures. With the recent advances in interactive video

segmentation, it is much easier to cut out dynamic foreground

objects from a video sequence [4], [8], [11], [17]. Nowadays,

video editing has been focused at the object level. An example

operation is video object cut and paste, which is widely used

in movie production to seamlessly integrate a video object into

new scenes for special effects.

Recently, many research efforts have been devoted to video

object editing. Candemir et al. [15] present a texture replace-

ment technique for video objects using a 2D mesh-based mo-

saic representation. Their technique can handle video objects

with self or object-to-object occlusion. Non-photorealistic ren-

dering (NPR) techniques have been generalized to render video

objects in cartoon style [1], [19]. For the editing of motion,

Liu et al. [12] present a motion magnification technique to

amplify the small movements of video objects. Wang et al.

[18] use a cartoon animation filter to exaggerate the animation

of video objects to create stretch and squash effects. All these

techniques are very useful to generate new video objects with

different textures, styles or motions, and achieve interesting

video effects.

This paper focuses on video object shape deformation.

There already exist various previous works on shape editing of

static objects in an image. Barrett et al. [3] propose an object-

based image editing system, which allows the user to animate

a static object in an image. Recent 2D shape deformation

algorithms aim to produce visually pleasing results with shape

feature preservation and to provide interactive feedback to

users. Igrashi et al. [7] develop an interactive system that al-

E-mail:weng@uwm.edu, University of Wisconsin - Milwaukee

E-mail:wwxu@microsoft.com, Microsoft Research Asia

E-mail:shichaoh@microsoft.com, Microsoft Corporation

E-mail:junzhang@uwm.edu, University of Wisconsin - Milwaukee

E-mail:bainguo@microsoft.com, Microsoft Research Asia

lows the user to deform a 2D triangular mesh by manipulating

a few points. To make the deformation as-rigid-as-possible [2],

they present a two-step linearization algorithm to minimize the

distortion of each triangle. However, it might cause unnatural

deformation results due to its linear nature. On the other

hand, the algorithm based on moving least squares [14] does

not require a triangular mesh and can be applied to general

images. The 2D shape deformation algorithm in [20] solves

the deformation using nonlinear least-squares optimization. It

tries to preserve two geometric properties of 2D shapes: the

Laplacian coordinates of the boundary curve of the shape and

local areas inside the shape. The resulting system is able to

achieve physically plausible deformation results and runs in

real time. Our work is also inspired by the recent research

trend on generalizing static mesh editing techniques to the

editing of mesh animation data [9], [21]. We wish to generalize

static image object editing techniques to deform video objects.

In this paper, we present a novel video object deformation

scheme for shape editing of video objects. Our scheme has

the following features:

• Keyframe-based editing: Our scheme has a keyframe-

based user interface. The user only needs to manipulate

the video object at several keyframes. At each keyframe,

the user deforms the 2D shape in the same way as in tra-

ditional image deformation. Our algorithm will smoothly

propagate the deformation result from the keyframes to

the remaining frames and automatically generate the new

video object. In this way, it is able to minimize the

amount of user interaction, while providing flexible and

precise user control.

• Temporal coherence preservation: Our algorithm can

preserve the temporal coherence of the video object in

the original video clip.

• Shape feature preservation: Our algorithm is effective

in preserving shape features of the video object while

generating visually pleasing deformation.

To develop such a scheme, we need to address the following

2

challenges.

First, we need a shape representation for video objects.

Unlike a static image object, a video object is dynamic in

nature. Therefore, its shape is changing with time. We first

use recent interactive video cutout tools [11], [17] to extract

the foreground video object. Then a keyframe-based contour

tracking technique [1] is employed to locate the boundary

Bézier curves of the video object. The shape of the video

object is subsequently represented as the region bounded by

these boundary curves.

Secondly, to preserve the temporal coherence of the video

object, the keyframe editing results need to be smoothly

propagated from the keyframes to the remaining frames such

that the whole video object can be deformed consistently. In

our system, the user manipulates the deformation handles to

deform the shape at each keyframe, and we use a least-squares

handle editing propagation algorithm to create a new motion

trajectory of the handles along with frames according to the

handle editing results at keyframes. Therefore, after handle

editing propagation, we can get the target positions of the han-

dles at each frame. Then 2D shape deformation can be applied

to each frame given the propagated handle constraints. This

handle editing propagation algorithm can elegantly preserve

temporal coherence because it tries to minimize an energy

function that represents the temporal properties of the original

motion trajectory of the handles.

Finally, although the nonlinear 2D shape deformation al-

gorithm described in [20] can preserve shape features and

achieve physically plausible results in interactive keyframe

editing, it may generate unsatisfactory results for the remaining

frames with the propagated handle constraints (see Fig. 4).

This is because the deformation solver may stick to a bad

local minimum due to the abrupt change of handle posi-

tions in the remaining frames, while the handle positions are

smoothly changed in keyframe editing. We therefore propose a

dimensionality reduction technique to project the deformation

energy onto the subspace formed by the control points of the

boundary Bézier curves. Performing energy minimization in

this subspace greatly improves the stability and convergence

of the nonlinear deformation process, and thus leads to much

better deformation results.

The remainder of this paper is organized as follows. Algo-

rithm overview and the details of each step are presented in

Section 2. In Section 3, we introduce how we handle video

objects with self-occlusion. Experimental results are shown in

Section 4, and the paper concludes with some discussion of

future work in Section 5.

2 VIDEO OBJECT DEFORMATION

2.1 Algorithm Overview

As illustrated in Figure 1, our video object deformation

algorithm performs the following steps in a typical editing

session: video object cutout, video object shape generation,

keyframe editing, deformation propagation and new video

object generation.

Given an input video, the video object cutout step extracts

the foreground object from the video using the segmentation

Video object cutout

Video object shape
generation

Keyframe editing

Deformation
propagation

Novel video object
generation

Fig. 1. Main steps of our video object deformation sys-

tem.

based video cutout technique in [11]. The result is a sequence

of foreground images with alpha channels indicating the

opacity of each pixel.

However, the foreground images cannot be directly used by

the shape deformation algorithm. In the second step, video

object shape generation, we aim to represent the foreground

images with a sequence of 2D shapes and corresponding

textures, which can be the input of the deformation algorithm.

To build a consistent shape presentation along the time dimen-

sion, the keyframe based rotoscoping technique in [1] is used

to track the contours of the video object in the foreground

images. We first manually draw several Bezier curves along

the boundary of the video object at some keyframes. Then

the tracking algorithm will locate the optimal position of

the curves in the remaining frames. These Bezier curves are

then organized into a boundary polygon, and our algorithm

automatically inserts a set of points into the interior region

of the polygon and generates a 2D graph by connecting

the vertices of the boundary polygon and the inside points

(see Section 2.2 for details). Finally, we get a sequence of

2D shapes: {Si, i = 1, ...,N}, and the non-transparent part of

foreground images are stored as textures for each frame.

With the generated sequence of 2D shapes: {Si, i = 1, ...,N},

keyframe editing is the next step in which users edit the key-

frames. The editing results are used to instruct the video object

deformation algorithm to automatically create novel video

objects. During keyframe editing, the user can deform the 2D

shape Sk at any frame k. The edited frame will subsequently

become a keyframe. During deformation, the user only needs

to specify deformation handles {Hk
j , j = 1, ..., l} at frame k,

and then drag the handles to new positions Ĥk
j . The 2D shape

3

deformation algorithm in [20] can be used to automatically

deform the shape Sk into Ŝk.

Deformation propagation is the the most important step of

our algorithm, since it will automatically generate a novel 2D

shape sequence according to the keyframe editing result. It

first propagates the user edited handle Ĥk
j at keyframe k to

the remaining frames to compute the new position of handle

Ĥ i
j at each frame i, and then applies the shape deformation

algorithm at each frame to meet the new positional constraints

from handles Ĥ i
j and simultaneously generates the deformed

2D shape Ŝi. To preserve the temporal properties of the motion

trajectories of the handles in the original video sequence, a

least-squares optimization algorithm is proposed for handle

editing propagation, and a novel 2D shape deformation al-

gorithm based on dimensionality reduction is presented to

guarantee the quality of the shape deformation result.

The final step, new video object generation, uses the

foreground images as textures to render the new 2D shapes

{Ŝi, i = 1, ...,N} to produce the new foreground images, which

composes a novel video object ready for integration into any

new background image or video.

Note that the contour tracking in the shape generation

step is a challenging task in computer vision because of the

complexity of motion. By applying it to foreground images

only, we are able to reduce the difficulty greatly. Our system

also supports the deformation of video objects with self-

occlusions. To achieve this, we model the shape of video

objects with multiple polygons which may occlude each other.

Please see Section 3 for details.

2.2 Video Object Shape Representation

The output of the contour tracking algorithm is the positions

of the Bézier curves at each frame. We need to make use of

these curves to construct a 2D shape representation for the

video object, which is actually a 2D graph suitable for the

deformation algorithm. Instead of asking the user to tediously

do this frame by frame, we first build a 2D graph for the video

object with some user interaction in the first frame. Then our

system will automatically transfer the graph to the remaining

frames.

As shown in Figure 2(a), after tracking, the boundary of the

walking teapot in the first frame is represented with Bézier

curves. In this paper, we use cubic Bézier curves:

g(t) = p0(1− t)3 +3p1t(1− t)2 +3p2t2(1− t)+p3t3, (1)

where pi is the control points, and t ∈ [0,1] is a scalar

parameter.

The Bézier curves are then automatically discretized into

connected line segments by uniformly sampling the parameter

t (Figure 2(b)).

To define the interior region of the shape, the user needs to

specify how the line segments are arranged into polygons. In

Figure 2(c), we organize the line segments into four polygons.

In this way, we can manipulate the four components of the

teapot: the handle, the body, the feet and the spout. As in

[20], a few interior points are then inserted into each polygon

and then connected to form the 2D graphs (Figure 2(d)).

(a) (b)

(d)(c)

Fig. 2. Video object shape generation. (a) Boundary

Bézier curves. The control points are shown as red dots.

(b) Discretization of Bézier curves. The blue dots indicate

the sampled points. (c) Organized polygons (indicated in

different colors). (d) Final 2D Graph.

Formally, we can denote the 2D graph as {V0,E0} , where

V0 is the set of n vertices in the graph, and E0 is the set of

edges. V0 consists of two parts: V0
p contains m vertices on the

shape boundary, and V0
g contains n−m interior vertices of the

graph.

For each point v0
g,i in V0

g, we can compute its mean value

coordinates [5] in the polygon formed by V0
p:

wi, j =
tan(α j/2)+ tan(α j+1/2)

|v0
g,i − v0

p, j|
,

where α j is the angle formed by the vector v0
p, j − v0

g,i and

v0
p, j+1 − v0

g,i. Normalizing each weight function wi, j by the

sum of all weight functions yields the mean value coordinates

of v0
g,i with respect to V0

p. Then v0
g,i can be easily represented

as a linear combination of V0
p according to:

v0
g,i = ∑

v0
p, j∈V0

p

wi, j ∗ v0
p, j, (2)

which can also be represented in matrix form:

V0
g = MpV0

p, (3)

where Mp is a matrix of mean value coordinates.

The transfer algorithm is relatively simple. For each frame

i, since each Bézier curve has its corresponding curve in the

first frame, we can easily get the boundary polygons (i.e., Vi
p)

through sampling the Bézier curves with the same parameters

t as in the first frame. Then we directly copy the interior points

and edge information from the 2D graph in the first frame, and

calculate the interior vertex positions Vi
g using the same mean

value coordinates Mp computed in the first frame:

Vi
g = MpVi

p. (4)

4

As a result, the shape of the video object is represented as a

sequence of 2D graphs {Vi,Ei}, i = 1, ...,N (see the companion

video). These graphs differ in positions, but have the same

topology. Now the user can deform the shape at any keyframe

using the algorithm in [20].

2.3 Handle Editing Propagation

During keyframe editing, the user selects some vertices as

deformation handles and drags them to new positions. The

updated positions of the handles will serve as positional

constraints to drive the 2D shape deformation algorithm.

Therefore, a handle editing propagation algorithm is necessary

to smoothly propagate the handle editing results from the

keyframes to the remaining frames such that the 2D shape at

each frame can be deformed properly. In order to preserve the

temporal properties of the motion trajectories of the handles in

the original sequence of 2D graphs, we formulate the handle

propagation as a least squares optimization problem as in [21],

and the motion trajectory of a handle is abstracted as the

temporal curve of the center of the handle.

Since a handle may contain multiple vertices, we define

a single local coordinate frame for each handle to force all

vertices inside this handle to move together rigidly, which

prevents severe distortion of the overall shape of the handle.

Formally, let us denote a user specified handle i at frame k as

Hk
i = {ck

i ,F
k
i ,{vk

i j
| j = 0, ...,ni −1}}, where {vk

i j
| j = 0, ...,ni −

1} is the set of vertices inside this handle, and ck
i and columns

of Fk
i define the center and axes of the local coordinate frame.

ck
i can be the centroid of the vertices, and the initial axes

can be defined arbitrarily since we only consider the rotation

between the initial and altered axes. Note that once a handle

is specified at some keyframes by the user, we can easily get a

set of corresponding handles in all frames by using the same

indices of the vertices inside the handle. The center of all

the corresponding handles ck
i ,k = 1, ...,N forms a curve in the

temporal domain, and local coordinate axes Fk
i are associated

with each center (see Figure 3).

The temporal properties of the handle are defined as the

rotation invariant coordinate of each center in its neighboring

local coordinate system. Precisely, for each center ck
i , we can

compute its rotation invariant coordinate using the following

formula in the original animation:

ck
i − cl

i = Fl
id

k→l
i , l ∈ Nk, (5)

where Nk represents the index set of the immediate neighbors

of ck
i , |Nk| ≤ 2, and dk→l

i represents the so-called rotation

invariant coordinate of ck
i . It is obvious that dk→l

i is the local

coordinate of ck
i in its immediate neighboring local coordinate

frames.

During handle propagation, we try to preserve dk→l
i , since it

represents the temporal properties computed from the original

video. Therefore, we formulate the following quadratic energy

for handle propagation:

∑
k

∑
l∈Nk

‖ĉk
i − ĉl

i − F̂l
id

k→l
i ‖2 (6)

Propagation result

Original trajectory

Fig. 3. Handle editing propagation. The dashed line

indicates the original temporal curve of the handle, while

the solid line indicates the propagation result. A local

coordinate frame is associated with each center.

where ĉl
i represents the target position of the handle i at frame

l, and F̂l
i represents the target local coordinate frame axes.

Since dk→l
i remains the same value computed from Equation

(5), the target positions and local coordinate frame axes solved

from Equation (6) will have the same temporal properties as

those in the input 2D shape animation.

To make Equation (6) a linear least squares problem, we

simply interpolate corresponding handle rotations at keyframes

over the remaining nodes on the temporal curve to get the ori-

entations of all the new local coordinate frames, {F̂k
i }. Handle

rotations are represented as unit quaternions, and the logarithm

of the quaternions are interpolated using Hermite splines [10].

The user can optionally designate an influence interval for a

keyframe to have finer control over the interpolation.

Once these new local frames are known, the equations

in (6) over all unconstrained handle centers give rise to

an overdetermined linear system and can be solved using

least squares minimization. The new world coordinates of the

vertices inside each handle at an intermediate frame can be

obtained by maintaining their original local coordinates in the

new local coordinate frame at that handle.

2.4 2D Shape Deformation Using Dimensionality Re-
duction

Once the handle editing is propagated to all frames, we are

ready to independently deform the 2D shape at each frame

using the nonlinear shape deformation algorithm [20]. How-

ever, although the algorithm in [20] works well in interactive

keyframe editing, it may produce unsatisfactory results for

the remaining frames due to the abrupt change of handle

positions in these frames. Inspired by the subspace technique

in [6] and model reduction method in [16], we propose a

dimensionality reduction technique to project the deformation

energy onto the subspace formed by the control points of the

boundary Bézier curves. Performing energy minimization in

this subspace greatly improves the stability and convergence

of the nonlinear deformation process, and thus leads to much

better deformation results. In the following, we will first briefly

describe the deformation energy, and then introduce how it can

be represented as a function of the control points of the Bézier

curves only. To facilitate discussion, we omit the frame index

in the following equations.

5

(a) Keyframe editing (b) propagation result

Our reduced sovler [Weng et al. 2006]

Reduced Solver

[Weng et al. 2006]

(c) Convergence curves
Iteration5 10 15 50454035302520 807570656055

Fig. 4. Comparison between the deformation solver

[20] and our dimension-reduced solver. (a) Deforming

the shape at a keyframe. The teapot spout is dragged

down. The original shape is represented as dashed lines

while the deformed shape is represented as solid lines.

(b) Propagation result at one frame. The deformation

solver in [20] causes serious distortion around the teapot

spout, while our dimension-reduced solver generates a

more natural result. (c) Convergence curves. The reduced

solver converges much faster to an optimal minimum,

while the deformation solver in [20] gets stuck in a wrong

local minimum.

The deformation energy in [20] can be written as:

‖LV−δ (V)‖2 +‖MV‖2 +‖HV− e(V)‖2 +‖CV−U‖2, (7)

where V is the point positions of the 2D graph, ‖LV−δ (V)‖2

is the energy term for Laplacian coordinates preservation,

‖MV‖2 + ‖HV− e(V)‖2 corresponds to local area preserva-

tion, and ‖CV−U‖2 represents the position constraints from

the handles. Please refer to [20] for details on how to compute

each term. Note that U contains the target positions of the

handles. In keyframe editing, U is changed smoothly because

the user moves the mouse continuously. In the remaining

frames, U is computed from handle propagation and may

change abruptly.

The above energy can be simplified into the following

formula:

min
V

‖AV−b(V)‖2 (8)

where

A =









L

M

H

C









,b(V) =









δ (V)
0

e(V)
U









.

V consists of two parts: Vp and Vg. Since Vp is sampled

from the Bézier curves according to Equation (1), it can be

represented as a linear combination of the control points of

the Bézier curves:

Vp = BP, (9)

(a) (b) (c)

Fig. 5. Handling a video object with self-occlusions. (a)

The original shape is modeled as two occluded polygons,

one is in red and one in blue. (b) The editing result

without video inpainting. The originally occluded region

is exposed. (c) The editing result with video inpainting.

where P is the control point postions and B is the parameter

matrix that maps P to Vp.

Recall that the interior points Vg are computed from Vp

using mean value coordinates (Equation (4)), so we have:

Vg = MpVp = MpBP. (10)

Therefore, the point positions V can be represented as a

linear combination of the control points:

V =

(

Vp

Vg

)

=

(

B

MpB

)

P = WP. (11)

Replacing V with WP in Equation (8), we get:

min
P

‖AWP−b(WP)‖2. (12)

This is a nonlinear least squares problem since b is a

nonlinear function dependent on the unknown control point

positions. It can be solved using the inexact iterative Gauss-

Newton method as described in [6]. Precisely, the inexact

Gauss-newton method converts the nonlinear least squares

problem in Equation (12) into a linear least squares problem

at each iteration step:

min
Pk+1

‖AWPk+1 −b(WPk)‖2, (13)

where Pk is the control point positions solved from the k-th

iteration and Pk+1 is the control point postions we want to

solve at iteration k+1. Since b(WPk) is known at the current

iteration, Equation (13) can be solved through a linear least

squares system:

Pk+1 = (WT AT AW)−1WT AT b(WPk) = Gb(WPk). (14)

Note that G = (WT AT AW)−1WT AT only depends on the

2D graph before deformation and is fixed during deformation.

It can be precomputed before deformation.

The model reduction we use in Equation (11) is based on

the matrices B and Mp. Both have nice properties: each com-

ponent of the matrices are positive and the sum of each row

6

of the matrices equals to one. Therefore, this dimensionality

reduction greatly reduces the nonlinearity of b according to

the analysis in [6]. Hence the stability of the inexact Gauss-

Newton solver is improved significantly.

Figure 4 shows a comparison between the deformation

solver in [20] and our dimension reduced solver. Due to the

abrupt change of the handle position, the solver in [20] pro-

duces unnatural deformation results, while our solver generates

satisfactory results. Please see the companion video for an

animation comparison.

3 HANDLING A VIDEO OBJECT WITH SELF-
OCCLUSION

Video objects in real life often have complex topology. Self-

occlusions frequently occur when one part of the object oc-

cludes another, especially in articulated video objects. Figure

5 illustrates a simple example. The left leg of the character is

occluded by by his right leg.

To enable editing of video objects with complex topology,

our system models the shape of the video object with multiple

polygons. These polygons may occlude each other. For each

polygon, a depth value is assigned by the user to determine its

rendering order. With this setting, the user is able to manip-

ulate the meaningful parts of a video object after generating

the interior graph for each polygon. However, we still need to

solve the following two problems.

First, once the polygons are deformed, some originally

occluded regions in the video object may become exposed.

However, there is no texture information for these regions in

the extracted foreground images. To solve this incomplete tex-

ture problem, we adopt an existing video inpainting technique

[13] to automatically generate textures for these occluded

regions. Figure 5(c) shows the inpainting result. Note the

occluded region of the left leg now is filled with inpainted

texture.

Secondly, the contour tracking algorithm may output un-

expected results when occlusions occur. Although there exist

some tracking algorithms that can handle self-occlusions [22],

currently we simply decide the positions of the Bézier curves

in the occluded regions by interpolating the positions from

neighboring keyframes. If the simple interpolation cannot

generate satisfactory results, the user can manually adjust the

positions of the Bézier curves.

4 EXPERIMENTAL RESULTS

We have implemented the described video object editing

scheme on a 3.7Ghz PC with 1GB of memory. For the

purpose of clarity, we implement the proposed scheme in

two modules: data preparation module and interactive editing

module. The data preparation module implements the first two

steps, video object cutout and video object shape generation, of

the algorithm, and the interactive editing module implements

the remaining three steps, keyframe editing, deformation prop-

agation and novel object generation, to create a novel video

object (see the algorithm flowchart illustrated in Figure 1). In

the following, we will first briefly analyze the time complexity

of each module, and then report various experimental results

to demonstrate the capability and facility of our scheme.

The output of data preparation is a sequence of 2D graphs

and corresponding textures of the video object. The video

object cutout is the most time-consuming step in data prepa-

ration. Since it needs user intervention and we expect high-

quality matting results, it is relatively tedious and usually takes

3-4 minutes for a 100-frame video [11]. The output of data

preparation can be stored for arbitrary editing.

For interactive editing, keyframe editing and deformation

propagation are two important steps. In keyframe editing, our

system runs in real-time due to the high speed of the 2D

shape deformation solver [20]. In deformation propagation,

we propagate the handle editing results from the keyframes to

the remaining frames and then perform offline computation

to solve Equation (12) for every frame. The iterative 2D

shape deformation algorithm presented in section 2.4 is the

most time-consuming step in interactive editing. Here we will

analyze its time complexity in detail. The one iteration of

deformation algorithm can be formulated into a linear system

in Eq. (14). Therefore, its computation also involves two parts:

compute function b(WPk) and compute Gb(WPk) to get the

new positions of vertices. Precisely, b(WPk) involves linear

operations at each graph vertex and Gb(WPk) is just matrix-

vector multiplications [20]. Suppose we have M control points

and N graph vertices, the time complexity of the deformation

algorithm can be easily determined as O(M2 + N2), which

means it is mainly influenced by the number of vertices. The

statistics and timings of the interactive editing are listed in

Table 1 for the editing results presented in this paper, and

the solving time column of Table 1 also proves that the

time complexity of our solver is dominated by the number

of vertices. The propagation time is just the accumulation of

deformation time at each frame.

The convergence curves of the deformation solvers are

shown in the Figure 4.c. The reduced solver converges much

more faster to an optimal minimum, while the deformation

solver in [20] gets stuck in a wrong local minimum. There-

fore, the reduced solver significantly improves the speed of

deformation algorithm and the quality of the deformation

result. Figure 7.b illustrates another comparison between our

dimension-reduced solver and the solver in [20]. Note the

unnatural deformation result at the top boundary of the teapot

from the solver in [20], while the deformation result from our

solver is quite natural.

The teapot example in Figure 7 demonstrates the facility

of our system. In this example, the user only sets the first

frame as a keyfame, deforms it into the desired shape, and

specifies the influence area of the keyframe to be the entire

sequence. Our system will automatically generate a novel

teapot walking sequence (see the accompanying video for the

editing process). The handle propagation result after keyframe

editing is illustrated in Figure 7.e and Figure 7.f. Since the

deformation handle is translated to the new position at a

keyframe, the automatically calculated motion trajectory is just

the translation of the original motion trajectory.

Two more complicated results with self-occlusions are

shown in Figure 6 and Figure 10. In Figure 6, an elephant is

7

Fig. 6. Deformation of an elephant video object. Top row: original video object. Bottom row: editing result.

Video object Frames Bézier curves Graph vertices Solving time Keyframes Propagation time

Teapot 73 12 698 2.93ms 1 4.69s

Elephant 90 10 1269 4.93ms 7 10.04s

Walking man 61 14 658 2.577ms 6 3.32s

Flame 100 2 519 1.36ms 4 2.998s

Fish 100 5 365 1.44ms 10 3.241s

TABLE 1

Statistics and timings. Solving time means the time for each iteration of our dimension-reduced deformation solver.

Keyframes indicates the number of frames edited to achieve the result, and the propagation time means the time

required to propagate the keyframe editing to the entire sequence.

made to stand on its hind legs. The large scale deformation in

this example is made possible by the power of our dimension

reduced deformation solver. Figure 10 demonstrates that our

system is capable of editing complex motion, like human

walking. The input video object is a man walking on the

ground, and we make it walk up stairs.

To achieve the human walking editing result, two consecu-

tive editing steps are performed. The first step is fully auto-

matical and is adapted from the footprint editing algorithm in

[21]. Specifically, we select points on the 2D shape to represent

the feet of the man (shown in figure 10.e), and then extract

footprints from the input video object by checking in what

interval the position of points are unchanged or the changes are

less than a threshold. Any frame that contains a footprint will

automatically become a keyframe. After extracting footprints,

the user only needs to draw lines to roughly specify where is

the stairs, then our system automatically computes the target

position of footprints by projecting them to the specified lines.

The handle editing propagation algorithm is then invoked to

find out the target position of each foot at each frame. Finally,

the video object is deformed at each frame according to the

calculated target positions. After this step, the overall motion

has been changed to stair walking automatically. Note that the

temporal properties of the original motion trajectory are well

preserved in the automatically computed motion trajectory

with our handle editing propagation algorithm as shown in

Figure 10.e and Figure 10.f.

However, the resulting motion might contain visible arti-

facts, like the compression of the leg, since our deformation

solver does not support skeleton constraints. Therefore, we

need to perform second editing steps to improve the initial

stair walking result. In second step, the user only needs to edit

the frames where the artifacts are most obvious, and let the

system smoothly propagate the editing to generate the final

result. In the walking editing example in Figure 10, only 6

keyframes are edited for a sequence of 62 frames.

The candle flame in Figure 8 exhibits highly nonrigid mo-

tions. After editing, all motions of the flame are well preserved.

This clearly demonstrates that our system can preserve the

temporal coherence of the video object in the original video

clip. In Figure 9, both the motion and shape of a swimming

fish are changed.

5 CONCLUSION AND FUTURE WORK

We have presented a novel deformation system for video

objects. The system is designed to minimize the amount of

user interaction, while providing flexible and precise user

control. It has a keyframe-based user interface. The user only

needs to deform the video object into the desired shape at

several keyframes. Our algorithm will smoothly propagate the

editing result from the keyframes to the remaining frames and

automatically generates the new video object. The algorithm

can preserve temporal coherence as well as the shape features

of the video objects in the original video clips.

Although our deformation system can generate some inter-

esting results, it has several restrictions. First, the handle prop-

8

agation algorithm requires the 2D shape of the video object

to have the same topology, which greatly restricts the motion

complexity of the video object. Our method will not work if

the shape boundary of the video object experiences topology

change in motion. Secondly, the 2D handle editing propagation

algorithm does not take the perspective projection effect into

consideration, so it may cause undesirable deformation results.

REFERENCES

[1] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz. Keyframe-
based tracking for rotoscoping and animation. ACM Trans. Graphics,
23(3):584–591, 2004.

[2] M. Alexa, D. Cohen-Or, and D. Levin. As-rigid-as-possible shape
interpolation. In SIGGRAPH 2000 Conference Proceedings, pages 157–
164, 2000.

[3] W. A. Barrett and A. S. Cheney. Object-based image editing. ACM

Transactions on Graphics, 21:777–784, 2002.
[4] Y.-Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin, and R. Szeliski.

Video matting of complex scenes. ACM Trans. Graphics, 21(3):243–
248, 2002.

[5] M. S. Floater. Mean value coordinates. Comp. Aided Geom. Design,
20(1):19–27, 2003.

[6] J. Huang, X. Shi, X. Liu, K. Zhou, L. Wei, S. Teng, H. Bao, B. Guo,
and H.-Y. Shum. Subspace gradient domain deformation. ACM Trans.

Graphics, 25(3):1126–1134, 2006.
[7] T. Igarashi, T. Moscovich, and J. F. Hughes. As-rigid-as-possible shape

manipulation. ACM Trans. Graphics, 24(3):1134–1141, 2005.
[8] N. Joshi, W. Matusik, and S. Avidan. Natural video matting using camera

arrays. ACM Trans. Graphics, 25(3):779–786, 2006.
[9] S. Kircher and M. Garland. Editing arbitraily deforming surface

animations. ACM Trans. Graphics, 25(3):1098–1107, 2006.
[10] D. H. U. Kochanek and R. H. Bartels. Interpolating splines with local

tension, continuity, and bias control. In SIGGRAPH 1984 Conference

Proceedings, pages 33–41, 1984.
[11] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste. ACM Trans.

Graphics, 24(3):595–600, 2005.
[12] C. Liu, A. Torralba, W. T. Freeman, F. Durand, and E. H. Adelso. Motion

magnification. ACM Transactions on Graphics, 24(3):321–331, 2005.
[13] K. A. Patwardhan, G. Sapiro, and M. Bertalmio. Video inpainting of

occluding and occluded objects. In Proceedings of IEEE International

conference on Image Processing, pages 69–72, 2005.
[14] S. Schaefer, T. McPhail, and J. Warren. Image deformation using moving

least squares. ACM Trans. Graph., 25(3):533–540, 2006.
[15] C. Toklu, A. T. Erdem, and A. M. Tekalp. Two-dimensional mesh-based

mosaic representation for manipulation of video objects with occlusion.
IEEE Transaction on Image Process, 9(9):1617–1630, 2000.

[16] A. Treuille, A. Lewis, and Z. Popovic. Model reduction for real time
fluids. ACM Transaction on Graphics, 25(9):826–834, 2006.

[17] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Cohen.
Interactive video cutout. ACM Trans. Graphics, 24(3):585–594, 2005.

[18] J. Wang, S. Drucker, M. Agrawala, and M. F. Cohen. The cartoon
animation filter. ACM Trans. Graphics, 25(3):1169–1173, 2006.

[19] J. Wang, Y. Xu, H.-Y. Shum, and M. F. Cohen. Video tooning. ACM

Trans. Graphics, 23(3):574–583, 2004.
[20] Y. Weng, W. Xu, Y. Wu, K. Zhou, and B. Guo. 2d shape deformation

using nonlinear least squares optimization. The Visual Computer, 22(9-
11):653–660, 2006.

[21] W. Xu, K. Zhou, Y. Yu, Q. Tan, Q. Peng, and B. Guo. Gradient
domain editing of deforming mesh sequence. ACM Trans. Graphics,
26(3): Article 84, 10 pages, 2007.

[22] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM

Computing Surveys, 38(4):1–45, 2006.

9

(b) (a)

(c) (d)

(e) (f)

Our reduced sovler [Weng et al. 2006]Keyframe deformation

Fig. 7. Deformation of a walking teapot. (a) Keyframe editing. Only one keyframe is edited in this example. (b)

Comparison of Propagation result. Note the unnatural deformation result from the solver in [20], while our reduced

solver generates natural transitions at the top boundaries of the teapot. (c) 2D graphs corresponding to keyframe

editing in (a). (d) Deformed 2D graphs of video object corresponding to the comparison in (b). (e) The motion trajectory

of a handle on original video object, indicated by the green curve. (f) The automatically calculated motion trajectory of

the handle after keyframe editing.

Fig. 8. Editing of a candle flame. Top row: Original

video object. Bottom row: Editing result.

Fig. 9. Editing of a swimming fish. Top row: Original

video object. Bottom row: Editing result.

10

(a) (b)

(c)

(e)

(d)

(f)

Fig. 10. Walking editing. (a) Two frames in the original video. (b) The editing result. (c) The 2D graphs of the two

frames of the original video object. (d) The deformed 2D graphs. (e) The original motion trajectory of the center of

the handle representing the right foot, indicated by the green curve. (f) The calculated motion trajectory from handle

editing propagation.

