Operator Algorithm Design For
Speculative Stream Processing

Jonathan Goldstein
Microsoft Research
Redmond, Washington, USA

jongold@microsoft.com

ABSTRACT

Current stream engine semantics and algorithms assume that input
events arrive in timestamp order. This results in well defined opera-
tor behavior and efficient processing algorithms. In the case where
events may arrive out of order, current systems assume buffering
combined with punctuations to disambiguate the arrival order as a
preprocessing step.

In previous work: ("Consistent Streaming Through Time: A Vi-
sion For Event Stream Processing”. CIDR 2007), we introduced a
new approach for processing out of order events. More specifically,
we introduced a model for event processing which allows specula-
tive output as a means of unblocking operators. As processing con-
tinues, incorrect speculative output is retracted and replaced with
correct output. This yields a spectrum of query behavior where two
processing attributes may be independently varied. The first is the
maximum blocking time before the system is forced to speculate.
The second is the maximum time for which events are "remem-
bered" for the purpose of correcting previous results.

In this work, we realize our previous vision by formally identi-
fying both necessary properties and conflicting desirable properties
that speculative stream processing algorithms may have. Note that
since all algorithms which converge to the correct answer over time
are considered correct, some of these tradeoffs involve varying the
actual output. This leads to an interesting design spectrum for such
algorithms.

In addition, we present algorithms which represent interesting
points on the design spectrum, and relate them back to these trade-
offs and properties. Finally, we show through a complexity study
that the algorithms are practical in that they have near linear-time
complexity in the size of input and output streams.

1. INTRODUCTION

In conventional database systems, queries are issued against
static snapshots of data, where the coordination of queries and
changes to these snapshots is done by the database system. This co-
ordination ensures atomicity and serialization, such that all transac-
tions, which are internally serial in nature, are strictly ordered and
the resulting behavior honors that order.

Mingsheng Hong
Cornell University
lthaca, NY 14853, USA
mshong@cs.cornell.edu

This is in sharp contrast to streaming systems, where queries
are issued over changes to data, and are therefore non-terminating.
Furthermore, The actual changes to the data are committed prior to
arrival at the stream processing system. The streaming system is
simply notified of the change along with a commit timestamp.

Queries over streams are, therefore. inherently temporal in na-
ture, and often include windowing constructs, such as “Give me
the moving average of process CPU utilization using context
switch events on a desktop computer” Various algebras includ-
ing such termporal constructs have been devised for formulating
such queries [1, 6, 4], and the community is converging on ap-
proaches based on view update semantics, where output streams
are views over input streams, and these views are incrementally
maintained [5, 1, 4].

While there is a convergence on query semantics, little attention
has been paid to the effect of out of order delivery [10]. More
specifically, the only complete approaches to date involve buffering
all input events to the stream engine, until a guarantee can be made
that all input up to a certain time is received [11, 2]. As such, all
stream operator algorithms can assume that all data arrives in order,
which greatly simplifies the design of operator algorithms.

In [4]. we proposed another alternative: Rather than block all
stream processing activity until a guarantee may be established on
input completeness, output a speculative answer, with the under-
standing that it may be revised over time. When a guarantee may
be established on input completeness, use this guarantee to estab-
lish permanence of the output up to a point in time. [4] further
suggests that each query plan allow the specification of 2 parame-
ters: the amount of time a query blocks before forcing speculative
output, and the amount of time a query remembers past input for the
purpose of revising output. This leads to the consistency spectrum
described in Figure 1.

There are some interesting things to note about this Figure. First,
the spectrum is a triangle since it doesn’t make sense to block
longer than you remember. Second, the diagonal of the line is the
line of no speculation. Also, the rightmost leg of the triangle is the
line of eventual correctness. All points along that leg produce cor-
rect eventual output. Finally, the bottom leg of the triangle is the
line of zero latency.

While [4] introduced the concepts related to speculative stream
processing. identified a temporal stream model. query algebra, and
formally defined consistency levels. it left to future work the oper-
ator algorithms which implement this consistency spectrum. It also
left unanswered what interesting other properties such algorithms
might have.

The goal of this work is to provide a well-grounded, viable start-
ing point for the design of such algorithms. Specifically, we for-
mally identify other desirable properties for these algorithms. In-

Blocking

Strong consistency

Slow & cautious

Middle
consistency
-

Quick & optimistic /

Weak consistency

M
Memory

Small & Big &
less correct more correct

Figure 1: Consistency Spectrum

terestingly, some of these properties are mutually exclusive, and
lead to further design choices. We also give precise, provably
correct stream processing algorithms for a sophisticated operator
(Aggregate) for a particular design point. Furthermore, we sketch
how these algorithms could be modified for some alternate design
points. Finally, we study the asymptotic efficiency of these algo-
rithms and show that they are efficient even in the worst case.

While the algorithms given in this paper implement solutions
very close to the middle level of consistency, including a sketch for
the true middle consistency level algorithm, all other levels of con-
sistency may be realized with the additional use of two other opera-
tors: Align, which controls blocking time. and Finalize, which con-
trols memory. Align controls blocking time by buffering events in
a manner similar to [10] for the purpose of ordering input. Unlike
[10]. Align may unblock output before a guarantee is available, re-
sulting in potential out of order input and speculation downstream.
Finalize controls forced expiration by issuing false guarantees to
downstream operators in order to get them to release state prior
to a real guarantee. For space constraints, these two operators are
described in our technical report [7]. We, therefore, do not need
algorithms for other consistency levels to fully realize the proposed
consistency spectrum for the operator presented here.

The paper is organized as follows. Section 2 reviews the tempo-
ral stream models, and introduces the concepts necessary for later
discussions on the operator algorithms. Section 3 presents the op-
erator algorithms, the correctness proofs and the complexity analy-
sis. Section 4 surveys related work. Finally, conclusions and future
work are presented in Section 5.

2. PRELIMINARIES
2.1 Temporal Stream Models

In this paper, we assume a discrete time model with a time line
composed of chronons [8]. To simplify the presentation, we set
the size of a chronon to be 1 time unit. We therefore use natural
numbers to represent timestamps.

Unitemporal Stream Model. The stream model adopted by the
Stanford STREAM system, as well as many other existing stream
systems, assumes, for each event, a timestamp belonging to an ap-
plication domain. Since the event contains only one notion of time,
application time [9], we refer to this stream model as unitemporal.
In addition to the timestamp attribute, each event also contains a
fixed set of attribute values, thus conforming to a relational schema.

We refer to these attribute values as the pavioad component of the
event.

In traditional unitemporal stream models, it is well-understood
that each stream is a time-varying relation [1]. Each event is an
insert into the underlying relation of the stream. A unitemporal
stream is append-only with respect to the application time: an event
with application time ¢ indicates that it is in the underlying relation
starting at time ¢. We define the valid interval [V, V.) of an event
to be the application time during which this event remains in the
underlying relation. The schema of a unitemporal stream can then
be represented by (Vi, Ve: P), where Vi and V. are respectively
referred to as valid start time and valid end time, and P denotes the
relational schema of the payload component. In traditional unitem-
poral stream models, the attribute V.. is redundant, since each event
has a V. value of oc. As we will see later, V. becomes more inter-
esting in the bitemporal stream model.

One major limitation in the unitemporal stream model is that it
is not able to model out of order event delivery [10], a phenomenon
that often occurs when the stream sources send events to the stream
engine via a network that does not guarantee ordering in packet
delivery (e.g. if UDP protocol is used). This limitation is addressed
by the bitemporal stream model, which we introduce as follows.

Bitemporal Stream Model. The bitemporal stream model sup-
ports application time, as well as a second, independent notion of
time, local processing server time, called CEDR rime [4]. A bitem-
poral stream is append-only with respect to the CEDR time. That
is, events are appended to the stream with strictly increasing CEDR
time values. For a CEDR bitemporal stream S, S up to (CEDR
time) T consists of the set of events in S with CEDR time values
no more than T'. S encodes a relation, called a virtual relation R,
whose content will be defined based on the events in S (see below).
R is time-varying with respect to CEDR time. For each CEDR time
T, Ry denotes the content of R associated with stream S up to 7",
Each Ry itself is time-varying with respect to the application time.
That is, each R can be viewed as a unitemporal stream.

In unitemporal stream models. “event” and “tuple” are often
interchangeable terms. To disambiguate the terminology in the
bitemporal stream model, we use “event” to refer to a tuple in a
bitemporal stream, and “tuple” to refer to a tuple in its virtual rela-
tion.

There are three types of events in the bitemporal stream model.
The first type is an insert, which inserts a tuple into the virtual
relation associated with the stream. As in the unitemporal stream
model, each insert event has a valid interval [V, V.), indicating the
application time interval during which the corresponding tuple is in
the virtual relation. For any insert event e, e.V, < e.Ve.

The second type of event is a retraction, which can shorten the
valid interval of a tuple in the virtual relation, by reducing the value
of its valid end time from the original V. value to the Viewe value
carried by this retraction event. Note that the valid interval of a
tuple can be shortened multiple times by a sequence of retraction
events in the bitemporal stream (with increasing CEDR time val-
ues). In order to associate a retraction event with a tuple in the
virtual relation, we require that the retraction event carry the valid
interval, as well as the payload content of the tuple it corresponds
to in the virtual relation. Therefore, each tuple in the virtual rela-
tion is initially created by an insert event. and potentially modified
later by 0 or more retraction events. For each tuple in the virtual
relation, We refer to this set of events associated with it as an event
chain.

The third type of event is called a CTT (current time increment).
A CTI event is similar to a heartbeat or punctuation event in the
stream literature [11, 10]. A CTI event with application time ¢ and

[Type [Vel Ve | Vaewe | (P)]

1 t Pl N % i
- x T [5]Pl
Retraction o0 10 Pl A 3| k2

Table 2: The
Canonical History
Table Correspond-
ing to Table 1

1

1

1
Retraction | 1 10 5 Pl
Insert 4 9 P2
CTI 10

Table 1: An Example Bitemporal Stream

CEDR time T indicates that the content of the virtual relation up
to (application time) ¢ should no longer be changed by any future
events in the input stream (i.e., any event whose CEDR time is
greater than T').

The schema of a bitemporal stream has the following structure
(Type, Vi, Veo Viewes P). Type indicates whether the stream
tuple is an insert, retraction, or CTL. Vi and V. together specify
the valid interval of the tuple in the virtual relation. Vieye is only
specified for a retraction event to indicate the new valid end time of
its corresponding tuple. Note that the information of CEDR time is
not explicitly represented in the schema. Rather, it is given by the
ordering of tuples in the bitemporal stream. P denotes the set of
attributes in the payload component of the schema.

We show an example bitemporal stream in Table 1. On this
stream, an insert event first occurs with valid interval [1. o) and
payload P1. Next a CTI event occurs, indicating that the content of
the virtual relation up to application time 1 will no longer change.
We subsequently see two retraction events on the stream, reducing
the valid end time of the same tuple first to 10, and then to 5. Next
another tuple is inserted into the virtual relation with valid interval
[4,9), followed by a CTI event with value 10.

For each stream event e, we define its sync time. denoted as
synec(e), as follows. If ¢ is an insert or a CTI event, sync(e) =
e.Vs. If e ls a retraction, sync(e) = ¢.Viewe-

With the notion of sync time, we can formally define out of or-
der events as follows. An event e is out-of-order, if there is an-
other event ¢’ such that ¢'.CEDR > e.CEDR, andsyne(e') <
synele).

The bitemporal stream model generalizes the unitemporal stream
model in two aspects. First, tuples can take V. values other than oc.
This is useful in many application scenarios, for example, when
modeling the expiration time of coupons. It is also essential for
modeling windows [4]. Also, the ability to shorten valid intervals
through retractions enables the stream engine to use fine grained
speculative execution [4] as a method of dealing with out of order
event delivery [10].

As the bitemporal stream model subsumes the unitemporal
stream model, we adopt the bitemporal stream model in this paper.
By default, a stream refers to a bitemporal stream.

Bitemporal Converter. A bitemporal stream S can be converted
into its canonical history table, which is a unitemporal stream, by
incorporating all the retraction events in S into content changes of
the virtual relation. The canonical history table therefore stores the
eventual content of the virtual relation. Note that while a bitem-
poral stream is a sequence of events where ordering is important,
its canonical history table is a standard relation, where tuple order-
ing is immaterial. For example, we show in Table 2 the canonical
history table of the bitemporal stream in Table 1. The first tuple in
Table 2 corresponds to incorporating the two retraction events with
Ve = 1 in Table 1 into the first insert event in that same table. The
second tuple in Table 2 corresponds to the second insert event in
Table 1.

Let the function that converts a bitemporal stream to its canon-
ical history table be S[-], referred to as the bitemporal converter.
Hence, for a stream S, S[[S] denotes its canonical history table.

2.2 Valid Streams

A bitemporal stream is a sequence of events ordered by the
CEDR time atrribute. We make the following assumptions on the
streams we deal with. First, streams are arbitrarily long bul finite
sequences of events. Second, we only consider valid bitemporal
streams. We say a bitemporal stream is valid, if a) the semantics of
its CTI events are not violated, b) the CEDR time of any insert event
is less than that of any retraction event belonging to the same event
chain as the insert, and ¢) for any two retraction events ¢ and ¢2 be-
longing to the same retraction chain, if e, . CEDR < e2.CEDR,
then ey. Viiewe > €3.Viewe. Note that we guarantee that all opera-
tors produce valid streams when given valid streams. As a result, if
all input streams are valid, all internal derived streams and output
streams are valid. In addition, there are zero latency, low overhead
techniques for converting all streams into valid streams [7]. We
therefore assume that these teheniques are applied automatically
whenever streams flow across a communication channel which may
introduce arbitrary disorder.

As a stream is a sequence of events, we allow the standard opera-
tions defined on sequences to also operate on streams. In particular,
we define stream concatenation and stream prefix as follows.

DEFINITION 1. Given two streams Sy, Sa, the stream concate-
nation Sy - Sy is defined, only if the resulting sequence is still a
valid stream.

Let ¢, denote the special CTI event with value oo, Note that
given a stream S, S - {eac} is always still valid.

DEFINITION 2. Fortwo streams S, p, p is a prefix of S, denoted
as p = S, if the sequence of events corresponding to p is a prefix
of the sequence of evenls corresponding 1o S.

‘We now define the following special classes of streams.

DEFINITION 3. A stream is ordered, if it has no out of order
evenis.

Intuitively, in an ordered stream, the sync time of its events in-
crease with their CEDR time.

LEMMA 1. If a stream is ordered, for each insert event in i1,
there is at most one retraction event belonging to the same event
chain as the insert.

The lemma holds, since in any valid stream, any two retraction
events belonging to the same event chain are necessarily out of or-
der.

DEFINITION 4. A stream is perfect, if it is ordered, and has no
retraction events.

LEMMA 2. Any prefix of an ordered stream is still ordered. Any
prefix of a perfect stream is still perfect.

DEFINITION 5. A stream S is closed at t, if there is a CTI event
in S with syne time greater than or equal to l. A stream S is closed
uptol, if S is closed at t, and not closed art + 1.

A stream S is closed, if the last event of S (the event with the
largest CEDR time value) is a CTI event, and the application time
of this CTI event is larger than that of any other event in S.

LEMMA 3. A stream is closed up to t, if and only if the largest
syne time of all the CTI events contained in it is t.

A stream is closed, if and only if it is closed up to t, where t is
the sync time of its last CTI event.

LEMMA 4. If a stream p is closed at t, for any stream S such
thatp < 8, 8 is closed at t as well.

If a siream S is closed up to &, there exists a prefix p of S such
that p is closed up to t, and is closed.

Note that even if a stream is closed, it may not have any closed
prefix.

2.3 Operators and Consistency Levels

For simplicity, we focus on unary operators in the following dis-
cussion, but our results can be easily extended to binary operators.

A logical operator is a function from canonical history tables to
canonical history Lables. Recall that operator semantics are defined
on canonical history tables. Given a canonical history table H as
the input of a logical operator o, o[] denotes the output canonical
history table defined by the semantics of o.

A physical operator is an algorithm that implements a logical
operator, and is a function from streams to streams. Given a stream
S as the input of a physical operator f, f(5) denotes the output
stream.

Here are some properties that an physical operator may have.

DEFINITION 6. A physical operator f is order preserving, if for
any ordered stream S, f(S) is ordered. In addition, f(S) is closed
if § is closed.

A physical operator [is perfectness preserving, if for any peifect
stream S, f(S) is perfect. In addition, [(S) is closed if S is closed.

DEFINITION 7. A physical aperator [that implements logical
operator o iy consistent, if for any closed stream S, o[S[S]] =

SIS

Intuitively, a physical operator is consistent, if it implements its
corresponding logical operator correctly.

In addition to being consistent, A good physical operator should
also ensure that it produces output events incrementally as it reads
events from the input stream, even if the input stream has out of
order events. This is important, as the input stream may not be
closed, if it contains out of order events. In that case, a physical
operator that produces an arbitrary output stream (not conforming
the the operator semantics) can still be consistent. This shows that
the notion of operator consistency is rather weak.

The incremental output property is captured by the following
definition.

DEFINITION 8. A physical operator f that implements o is pro-
aressive, if for any stream S closed up 1o 1, o[S[S | {]] =

SIF(S [1) - {ex D

Here S | & (S up 1o application time 1) consists of the set of
events in .S whose sync time values are less than ¢.

The above definition establishes an upper bound for the output
latency of a progressive operator. That it, when a progressive oper-
ator sees an input CTI event, it must produce enough output events
to bring the state of its output stream up to the application time of
that input CTI event.

By Lemma 3, we obtain the following result.

LEMMA 5. Any progressive operator is consistent.

In the following text, we only consider progressive operators.

In addition to being progressive, a physical operator may also
guarantee that its output stream has nice properties such as being
ordered or perfect. This is useful to the consumers of its output
stream.

DEFINITION 9. A progressive physical operator f is ultra con-
sistent, if for any stream S, f(5) is perfect.

A progressive physical operator f is strongly consistent, if for
any stream S, f(S) is ordered.

LEMMA 6. Any ultra consistent operator is perfectness pre-
serving and is strongly consistent. Any strongly consistent operator
is order preserving.

THEOREM 7. If operator f is strongly consistent, it can pro-
duce output events only on input CTI events.

PROOF. sketch: Suppose not. We can construct a perfect in-
put stream that causes the operator [to produce retraction events,
and therefore produces an output stream that is not perfect. This
contradicts the assumption that f is strongly consistent. [J

2.4 Output Latency

We would like to formally study the relationship between the
output latency of operators and the size of the output streams. We
formalize the notion of output latency as follows. Intuitively, given
two physical operators fi and fi implementing the same logical
operator o, fi has no greater output latency than fo, if for any in-
put stream S, S[f1(S)] 2 S[f2(S)]. Thatis, f1(S) may con-
tain some events whose application time is beyond any event in
J2(S). For example, for a strongly consistent operator f imple-
menting logical operator o, given an input stream S that is closed
up to £, f cannot produce output events whose application time is
beyend &, as is shown in Theorem 7. However, for another physi-
cal operator [’ implementing o, where f’ is more speculative than
f. J can produce such output events. f” therefore has no greater
output latency than f.

DEFINITION 10. Given a consistent operator f, its output wa-
termark function 77 fs a function mapping streams 1o application
timestamps, where 77 (S) is defined to be the largest Ve, value of all
events in f(.59).

For example, for a ultra consistent operator f, let S be closed
up to ¢, then 74(S) < . This is because any output event with
application time beyond ¢ may induce future retraction events in
the output stream. A formal proof can be constructed similar to the
proof to Theorem 7.

We can compare the output latency of two physical operators
implementing the same logical operator as follows.

DEFINITION 11. Fora logical operator o, let f1 and f2 be two
progressive physical operators implementing o. We say the output
latency of [1 is no greater than that of fa, if for any input stream
S, 1 (S) 2 T(S).

Since a strongly consistent operator only produces output events
on input CTI events, its output latency is inversely proportional
to the frequency of CTI events in its input stream [2]. Therefore,
the output latency of a strongly consistent operator may be large.
among all progressive operators implementing the same logical op-
erator, a ultra consistent operator has the largest output latency.

THEOREM 8. Given a logical operator o, among all progres-
sive physical operators implementing it, the lowest output latency
of an order preserving operator is no greater than that of a prefect-
ness preserving operator and that of a strongly consistent operator,
which in turn is no greater than that of a ultra consistent operator.
The lowest output latency of a prefectness preserving operator and
that of a strongly consistent operator are in general not compara-

ble.

In Section 3, we will present perfectness preserving and order
preserving algorithms that achieve lower latency than ultra consis-
tent operators.

On the other hand, the lower the output latency of a progressive
operator is, the larger its output stream size is, as is given by the
theorem below.

THEOREM 9. For a logical eperator o, let f1 and fz be two
progressive physical operators implementing o. If the output la-
tency of fy is ne greater than that of fa, for any input stream S, the
size of f1(S) is no smaller than that of f2(5).

Putting together the above results, we can conclude that among
all progressive physical operators for the same logical operator,
the size of the output stream produced by a ultra consistent op-
erator is the smallest. A practitioner concerned with output stream
size may therefore favor more conservative physical operators over
more speculative ones.

3. ALGORITHMS AND ANALYSIS

In this section, we focus on a general class of unary operators,
snapshot-oriented operators, and present algorithms implementing
them. The semantics of snapshot-oriented operators is introduced
in Section 3.1. Section 3.2 describes the data structures used in
the algorithms and the invariants that are preserved. Section 3.3
overviews how the correctness proof can be constructed from the
invariants, and Section 3.4 presents the algorithms that implement
a perfectness preserving operator. Finally, we discuss how the pre-
vious algorithms can be easily adapted to implement an ordering
preserving operator, and a maximally speculative, true middle con-
sistency operator.

3.1 Semantics of Snapshot Oriented Opera-
tors

We formally define the semantics of snapshot oriented operators.
This 1s necessary for the correctness proof of the algorithms imple-
menting the snapshot oriented operators that we will present next.

For a canonical history table I/, ENDPT(/]) defines an array of
distinet end points of the valid intervals of the tuples in H, sorted
in an ascending order. Formally, ENDPT(H) = sort({e.Vile €
H}uU{e.Vele € H})., where sort takes an input set of values (elim-
inating duplicates), and produces an output array of these values in
an ascending order. The interval between every two consecutive
end points in ENDPT(H) is referred to as a snapshor.

Given a value v &€ ENDPT(H), v.next is defined to be the
smallest value y in ENDPT(H) where y > v. Note that if v
is the largest in ENDPT(H), v.next is not defined. For tech-
nical convenience, we define ENDPT ™ (H) 1w be ENDPT(H)
subtracting the largest value. This way, v.next is defined for any
v e ENDPT ™ H.

Given a value v € ENDPT ™ (H). define F, to be the set of
tuples in /7 whose valid intervals “cover” the interval defined by ¢
and v.next. Formally,

Fy = {e € Hle.Vy < v,e.Ve 2 v.next}

F, is undefined if v € ENDPT (H).
The semantics of a snapshot oriented operator o is as follows.

o(H) = U U (v, v.next;r)

vEENDPT— (H) T€P
where P, = ®(F‘,.)

P, is a set of payload values produced by (%). whose definition
is operator specific. For example, if e is the aggregation operator
SUM, then &) is X. Intuitively, in this case, for each set of tuples
defined by [, the SUM operator aggregates over them on a spec-
ified aggregation attribute. and for each value v € ENDPT(H)
except for the last one, produces exactly one output tuple whose
valid interval is defined by v and v.nexf.

3.2 Data Structures and Invariants

The algorithms for snapshot oriented operators are organized
into three event processing algorithms. These three algorithms cor-
respond to the actions taken when receiving each of the three types
of events (inserts, retractions, and CTIs).

The insert and retraction algorithms are organized into three
phases: The first phase, called the retraction phase, issues retrac-
tions for previously output events which are impacted by the in-
coming event. The second phase, called the snapshot update phase,
updates the internal operator state impacted by the incoming event.
The third phase, called the issue phase, issues the necessary insert
events. CTIs have an additional fourth phase. called the cleanup
phase.

The first presented algorithms have minimum latency amongst
all algorithms which guarantee that perfect input produces perfect
output.

We begin with some terminology and a description of the data
structures used throughout the algorithms. In the following text, S
denotes the input stream, and O denotes the output stream produced
by the operator algorithms reading 5 as input.

Qutput watermark 7. 7 is a point application timestamp, rep-
resenting the largest V, value that has appeared in the output stream
events so far. As it will become clear later, it corresponds to values
produced by the output watermark function defined in Section 2.4.

Invariant 7-0: For each ¢ € S[O]. e.V. < 7. Also, if S is
perfect, exactly all tuples in S[O] with V. < 7 have been produced
by the events in O, and O is perfect.

Invariant 7-S-Algorithms: Let S be closed up to t. After pro-
cessing an input event € in 5,

max(r,e.V.) if e is an ingert
if € is a retraction
ifeisaCTI

=R
max(7,7")

Here ' the largest value in ENDPT(S[S]) where 7’ < e.Vi.
Invariant 7-S-Algorithms shows that 7 monotonically increases
with the prefixes of S that have been processed.

THEOREM 10. Given a snapshot oriented operator o, among
all perfectness preserving operators bmplementing o, the opera-
tor whose outpur watermark function is defined by Invariant v-S-
Algorithms has the lowest output latency.

The proof is similar to the one to Theorem 7. Essentially, we
can show that for a perfectness preserving operator f, if for some
input insert event e in a perfect input stream S, the new value
of 7 is greater than max(r,e.V,) as is defined by Invariant 7-S-
Algorithms, then we can construct another perfect input stream S’

by extending S, such that f has to produce retraction events in or-
der to maintain its correctness on processing S', thus violating the
assumption that f is perfectness preserving.

POS. The discussion of the algorithms below is organized
around an internal structure, called the Previous Qutput Synopsis,
or POS. The POS is an associative data structure, keyed on an ap-
plication point timestamp TS, and valued on an abstract data type
Stare, of which the set of allowed operations will be described be-
low. The entries in POS are organized into an efficiently searchable
access structure ordered on TS (e.g. a B+ tree). It is guaranteed
that there are no duplicate TS entries in POS.

Each POS entry is a key, value pair, denoted as (TS, State). The
following operations are defined on POS.

POS.First denotes the entry in POS with the smallest TS
value.

POS. Last denotes the entry in POS with the largest TS value.

Given a timestamp T, POS. SearchLE(T) finds the entry (TS,
State) in POS with maximal TS value where TS < T.

POS.Search(Vs, Vi) returns all entries in POS which corre-
spond to output events with valid intervals overlapping with
[Vi. V..). The returned entries are sorted in the ascending or-
der of TS. More precisely, the first returned entry is the entry
with maximal TS such that TS < V5. The last returned entry
is the POS entry with maximal TS such that TS < V...

POS. ISearch(V,, V) is similar to POS.Search(V;, V.), with
a slightly different search criteria. It returns all entries in POS
which correspond to output overlapping with [V, V.]. More
precisely, the first returned entry is the entry with maximal
TS such that TS < V.. The last returned entry is the POS
entry with maximal TS such that TS < V..

POS.SearchEQ(T) returns a POS entry p with p. TS=T. Such
a POS entry must exist; otherwise the behavior is undefined.

POS.Insert(TS, State) adds a new entry (TS,State) to POS.

POS.Remove(T) removes the entry keyed on T. This entry
must exist.

Fora POS entry p, p.next denotes the POS entry with the smallest
TS value among those entries with TS value greater than p.TS. If p
is POS.Last, p.next is undefined. Dually,p.prev denotes the POS
entry with the largest TS value among those entries with TS value
less than p.TS. If p is POS.First, p.prev is undefined.

For the abstract data type State, we define the following opera-
tions. Assume p is an arbitrary POS entry.

p.State. GetPayloads constructs and returns the set of output
payloads associated with p.

p.State. Add(P) incorporates the P into the State associated
with p.

p.State. Remove(P) removes the payload P from the State as-
sociated with p.

p.State.k returns the number of events which “contribute”™ to
the value of p.State. Specifically, it starts at 0, is incremented
for each call to State.Add, and decremented for each call to
State.Remove. When this number drops down to 0 again, the
entry p is automatically removed from POS.

Note that the semantics of p.Sate.GetPayloads, p.State. Add(P)
and p.State.Remove(P) are operator specific. For example, if the
snapshot oriented operator is the COUNT aggregate, p.State sim-
ply maintains a count value, to be returned as a singleton set at
the call to p.Sate.GetPayloads. That count value is incremented at
each call to p.State.Add(P), ignoring the content of P, and simi-
larly decremented at each call to p.State. Remove(P). However, for
some other snapshot oriented operators such as Rank, p.State needs
to store the set of payloads that have been added to p.State via the
calls to p.State.Add, and that have not been removed via the calls
to p.State.Remove. In general, for a POS entry p. if p.TS = v for
some v € ENDPT ™ (S[S]). p.State.GetPayloads produces the set
of payload values F, defined in Section 3.1.

Invariant POS-7-S-0: Let 5 be closed up to . For each v £
ENDPT(S[S]): the following conditions hold.

o If v < 7' there is a one-to-one correspondence between
payload values in P, and the set of tuples in S[O] with valid
interval defined by [v, v.next). If there exists entry p in POS
such that p. TS=v, p.State.GetPayloads=P,,.

e If v = 7, POS.Last. TS = v. Furthermore, the set of payload
values associated with POS Last.State is {e.P : e € EC'Q}

If v € ENDPT(S[5]),v < tand v.nezt < {, there is no
entry in POS with TS< v. That is, the state stored in POS is
purged as aggressively as possible on input CTI events from

S.

If v € ENDPT (S[S]).v < t and v.nest > ¢t
POS. First. TS=u.

Note that POS initially has one entry (—oo, EmptyState). Here
EmptyState corresponds to the value for State which signifies that
there are no entries in the snapshot (see discussion of Sum for an
example). Also, the initial value of T is —oc.

ECQ. In order to also guarantee provably good performance in
the worst case, we need a priority queue data structure, called the
Endpoint Compensation Queue. or ECQ. It is keyed on 75, and val-
ued on Tuple, the abstract data type representing a tuple in canon-
ical history tables. Recall from Section 2 that a Tuple has schema
(Vi Ve; P). Similar to the entries in POS, the entries in ECQ are
sorted on TS. Different from POS, ECQ can have multiple entries
with the same TS value.

Each ECQ entry is a key, value pair, denoted as (TS, Tuple).
ECQ maintains the invariant that for each entry (T. ¢), T = e.V..

The following operations are defined on ECQ.

e ECQ.Empry returns True if the queue is empty. Otherwise it
returns false.

ECQ.Head returns the first entry (i.e.. an entry with the
smallest TS value) in ECQ. It is undefined if the queue is
empty.

ECQ.Pop returns and removes the head element in ECQ. It is
undefined if the queue is empty.

ECQ.Insert{Tuple) inserts a new entry (Tuple. V., Tuple) into
ECQ.

ECQ.Remaove(Tuple) removes an existing entry (Tuple. Ve,
Tuple) from ECQ. This entry must exist.

Invariant ECQ-7-S: The set of tuples contained in ECQ is {¢ &
S[S] ;e Ve > 7}
"In this case, since we know = € ENDPT(S[S]) by invariant
7-0,v € ENDPT (S[S]) must hold true.

3.3 Overview of Correctness Proof

Let Z be the set of invariants containing 7-O, 7-S-Algorithms,
POS-7-5-0 and ECQ-7-5, all of which are described in Section
3.2,

Given an input stream S, we will prove that the algorithms to
be presented below uphold all the invariants in Z. This is done by
induction on the prefixes of 5. Specifically, we will show that in the
base case, the initial values of 7, POS. ECQ. S and O satisfy the
invariants. In the inductive case. we will show that if the invariants
hold for some p = 5, after processing the event in S following p,
the invariants still hold for the values 7, POS, ECQ and O updated
by the algorithims. The proofs to these claims can be found in the
appendix.

Once we show that the algorithms always uphold the invariants,
the correctness of the algorithms follow straightforwardly.

THEOREM 11. If the algorithms uphold all the invariants in T,
then the physical operator f that they together implement is con-
sistent, and perfectness preserving.

PROOF. Given any closed stream S. Note that O = f(S) by
definition. Let the logical operator implemented by f be o. By the
correspondence between P, and S[O] in the first bullet of Invariant
POS-7-5-0, §[O] = o[S[S]]. Therefore, f is consistent.

Invariant 7-€) shows that f is perfectness preserving. [

3.4 Algorithms

In order to indicate when and what output is produced in the
following algorithms, we introduce a few simple output produc-
ing functions. Quiputinsert(Vs, Ve, P) produces an insert event e
with e.Ve = VielVe = Vi, eo P = P. QuiputRetraction(Vs, Ve,
Viewe, P) produces a retraction event e with .V, = V,, eV, =
Ve, e Vicwe = Viewe, €.P = P. OutputCTI(V;) produces a CTI
event e with e.V, = V.

We are now ready to give the algorithms for our snapshot-
oriented operators.

3.4.1 Handling Insert Events

Phase 1. We must first identify all the previously output events
which must be retracted. To do so, we first invoke POS.Search
to obtain a set of POS entries affected by the input insert event.
From each such entry, and the TS of the next entry, we construct
the correct retractions. Note that end points must be handled with
care. This results in the following algorithm for phase 1 of insert
(Line I — Line 7 in Algorithm 1).

Complexity analysis of Phase 1. In our complexity analysis, we
state complexity in terms of n =#input events, and m =#output
events. This allows us to establish and compare ourselves to the
lower bound on optimality: O(n + m). Note that for each insert,
the amount of work done in phase 1 is O(log n4-m+1) in the worst
case. The log factor comes from the B+ tree lookup to retrieve the
first retracted entry. while m corresponds to the number of POS
entries which are retrieved and retracted. The | comes from the
worst case assumption that we always retrieve the last entry of POS,
which is never retracted since it never produced prior output. The
complexity of phase 1, given n inputs, is therefore O(n * (logn +
1) +m) = O(nlogn +m)

Note that we do not multiply m by n since the sum of all output
over all inserts is m.

Phase 2. Note that for convenience, given an event e, we define
Tuple(e) = the tuple (¢.Vs,e. Ve, .P). The algorithm for Phase 2 is
shown between Line 8 and Line 19 in Algorithm 1.

In the while loop, we create entries in POS from the unprocessed
endpoints in ECQ which are behind V. of the incoming event. This

Algorithm 1 Algorithm for Insert Events

Require: Input insert event e
I/ phase 1
: for all entry p in POS.Search(e.Vs. ¢.V.) ordered by TS do
if p == POS.Last then
break
OutputPayloads := p.State.GetPayloads
OutTS = max(e.V,, p.TS):
for all payload = in OutputPayloads do
OutputRetraction(p. TS, p.next.TS, OutTS,)

SHEBLR deckad b B

/I phase 2
/I Maintain ECQ
8: Invoke Algorithm 2 with V. = €.V,
/1 Insert new entries into POS due to e
9: (tz, State;) := POS.SearchLE(e.Vs)
10: if t> < e.Vs then
11: POS.Insert(e.V,, copy of State;)
12: ife.V. < 7 then
13: (3, Statez) := POS.SearchLE(e.V,)
14: iftz < e.V; then
15: POS.Insert(e. Ve, copy of States)
16: else // Maintain invariant ECQ-7-5
17: ECQ.Insert(Tuple(e))
/I Incorporate ¢ into the relevant POS entries
18: for all entry p in POS.Search(e.V;, ¢.V.) ordered by TS do
19: p.State. Add(e.P)

Il phase 3
20: if 7 < e.V, then // ¢ increases the output watermark
21: Invoke Algorithm 3 with V, = 7, V, = eV,
23 Ti=eVe
23: else // output events whose valid intervals intersect that of e
24: forall entry p in POS.ISearch(e.V,, e.V.) ordered by TS do

25: if (p==POS.Last) || (p. TS = .V, && p.Statek > 1) then
26: break

27: QutputPayloads := p.State GetPayloads

28: for all payload = in OutputPayloads do

29: OutputInsert(p. TS, p.next.TS, x)

Algorithm 2 Algorithm for Moving Data from ECQ to POS
Require: A timestamp V5
1: while 'ECQ.empty && ECQ.Head. TS < V; do

2: (t1,¢") == ECQ.Pop

3: NewsState := copy of POS.Last.State
4: NewState.Remove(c'. P)

5: POS.Insert(f;, NewState)

Algorithm 3 Algorithm for Producing Insert Events from POS en-
tries
Require: Two timestamps Vi, V. where Vi < V.
: for all entry p in POS Search(V5, V.) ordered by TS de
if p == POS.Last then
break
OutputPayloads := p.State.GetPayloads
for all payload = in OutputPayloads de
Outputlnsert(p.TS. p.next.TS, x)

DB) -

way, we maintain our post-conditions for both ECQ and POS. We
then make sure that we have appropriate entries in POS for e.Vs,
and e.V.if e.V.is behind 7. This also is done to maintain our post-
conditions on POS. If ¢.V5, is after 7, we instead add an entry to
ECQ, which ensures that ECQ conforms to our post-conditions.
Now that we have all required entries in POS, we use the for loop to
add the event to the state associated with all affected entries in POS.
After phase 2, all post-conditions on POS and ECQ are upheld.

Complexity analysis of Phase 2. In terms of complexity, since
every input event’s endpoint may be added and removed only once
in this structure over the lifetime of the operator, and since the to-
tal number of checks of the head cannot exceed the number of in-
put events, the total complexity of this loop is O(nlogn + n) =
O(nlogn)

For each call to Insert, the if conditions which potentially add
new entries to POS. have complexity O(1). The final for loop 1s
guaranteed to update at most m + 1 intervals. This is the result
of our post-condition that all but the last entry in POS must be
updated in the output, The complexity of this operation is therefore
O(m + n) over all inserts. The total complexity of phase 2 is
therefore O(n logn + m +n) = O(nlogn +m).

Phase 3. Phase 3 must ensure that all necessary inserts are out-
put. The algorithm is shown between Line 20 and Line 29 in Algo-
rithm 1.

Phase 3 is divided into 2 cases. In the first case, 7 < e.V,. In this
case, the output must “catch up” to the new +. We must therefore
produce output for all POS entries between the old 7 and the new 7.
We therefore first search the POS and then generate all necessary
output. We then adjust 7 to maintain our post-condition. This case
has worst case complexity O(logn -+ m + 1) per insert call, or
O(nlogn +m +n) = O(nlogn + m) over all inserts if it is
always chosen.

The second case is where €.V, < 7. In this case, we simply
need to produce output for all POS entries which were previously
corrected during phase 2, except for possibly the last POS entry,
which may have been corrected, but cannot be output. It is easy
to see that the worst case complexity, like the previous case, 1s
O(log rn + m + 1) per insert call, and therefore O(nlogn + m)
over all inserts if it is always chosen.

Complexity analysis of Phase 3. Since the complexity is the
same in both cases, the complexity of phase 3 is O(n logn + m).

‘We may now determine the overall complexity of insert, which is
O(nlogn+m)+0O(nlogn+m)+O(nlog nt+m) = O(nlogn+

]’FI).

3.4.2 Handling Retraction Events

Phase 1. The phase 1 algorithm for retraction is very similar to
the phase 1 algorithm for insert. The difference is that instead of
generating retractions for the interval [Vi, V.), we use the interval
[Viewe, Ve, and issue a retraction on the POS entry with TS=V,iff
we are going to remove the POS entry later. The result is shown
between Line | and Line 13 in Algorithm 4.

Using reasoning identical to insert, the complexity is
O(nlogn + m).

Phase 2. Phase 2, unlike phase 1, is different than the corre-
sponding algorithm for insert. This algorithm, in addition to poten-
tially ereating a new entry in POS, may also remove an entry from
POS, and potentially add and/or remove an entry from ECQ.

Note that for convenience, given a retraction event e, we define
OldTuple(e) = the tuple (e.V,e.V, €.P), and NewTuple(e) = the
tuple (e.Ve. €.Viewe. €.F). Note that both of these function can be
computed in constant time.

The algorithm is shown between Line 14 and Line 27 in Algo-

Algorithm 4 Algorithm for Retraction Events

Require: Input retraction event ¢
/] phase 1

: for all entry p in POS.ISearch(e.Viewe, €.Ve) ordered by TS
do

2 if (p == POS Last) || (p.TS = .V, && p.Srate.k > 1) then

3 break

4 OutputPayloads := p.State.GetPayloads

5 OutTS := max(e.Viewe, p.TS):

6: for all payload = in QurputPayloads do

7

8

9

OutputRetraction(p. TS, p.next. TS, OutTS, x)
2 if e.Viyewe == €.V, then // e is a full retraction
p' = POS.SearchEQ(e.V,)
10: if p’.State.k == | then // need to issue full retractions
11; OutputPayloads’ := p’ State.GetPayloads
12: for all payload y in OutputPayloads’ do
13: OutputRetraction(p’.prev. TS, p TS, p’.prev.TS, i)

/I phase 2
{/ Maintain ECQ
14: if ¢.V. > 7 then
15: ECQ.Remove(OldTuple(e))
16: if e.Viewe > 7 then
17: ECQ.Insert(NewTuple(e))
{/ Maintain POS
18: if e.V. < 7 then
19: (ty, State;) := POS.SearchEQ(e. V)
20: if State k = | then
21; POS.Remove(e.V.)
22: if e.Viewe < 7 then
23: (12, Statey) := POS . SearchEQ(e. Ve we)
24: if ts < e.Viowe then
25: POS.Insert(e.Vyewe. copy of States)
26: for all entry p in POS.Search(e. V5o, €.V,) ordered by TS
do
27: pState.Remove(e.P)

/I phase 3
28: Invoke Algorithm 3 with V, = e.Viowe, Ve = e.Ve

Algorithm 5 Algorithm for CTI Events
Require: Input CTI event e
/Il phase 1: no operation

/1 phase 2: Maintain ECQ and POS
1: Invoke Algorithm 2 with Ve = ¢.V;

/! phase 3
2 if ¥ < e. Vs then
Invoke Algorithm 3 with V, = 7, V. = e.V,
7 := POS.Last.TS
: OutputCTI(e. V)

I/ phase 4

6: while (POS.First '= POS.Last) && (POS FirstnextTS <
e.Vs) do

7: POS.Remove(POS First.TS)

[VI]

rithm 4.

The first two if statements adjust the endpoints of the retraction
interval so that all structures contain appropriate entries. This re-
flects the potential removal of entries associated with e.V.and the
potential introduction of endpoints associated with €.V, 0we. The
most complex operations are Find, and SearchLE, both of which
are Oflogn). The for loop makes any correction to State in af-
fected POS entries. Like insert, this loop is guaranteed to update at
most m+1 intervals. As a result, similar to insert, the complexity of
phase 2 is O(n logn -+ m).

Phase 3. Like Phase 1, Phase 3 is somewhat different from Phase
3 of insert, and is actually simpler. For instance, it is not possi-
ble that 7 has changed. Also, we are outputting using the interval
[e.Viewe- €.Ve). Finally, the end of the insertion interval is handled
more simply. This results in Line 28 of Algorithm 4,

It is easy to see, given our previous analysis of other phases. that
this is also O(n logn + m).

The worst case complexity of retraction is. like insert,
O(nlogn +m).

3.4.3 Handling CTI Events

Unlike the other event types, the algorithm for CTI is broken into
4 phases. While the first 3 phases correspond to the same phases for
other event types, the last phase is unique to CTL It is the cleanup
phase, and is the only place amongst all algorithms where state may
be freed.

Phase 1. Since no retractions may ever be issued as a result of
CTIs; the first phase is empty.

Phase 2. In this phase, we may need to prepare to produce any
output associated with entries (TS, Event) in the ECQ with TS <
e.Vs. The algorithm for phase 2 is identical to the beginning of
phase 2 for insert and is shown in Line 1 in Algorithm 5.

As in insert, the complexity of this loop is O(n logn).

Phase 3. Similar to phase 2, phase 3 is very similar to phase
3 for insert. The main difference is that we only want to produce
output if the CTI moves the output time forward. Also, we generate
an output CTI. The algorithm is shown between Line 2 and Line 5
in Algorithm 5.

Using similar reasoning to previous phases, the complexity of
this phase is: O (nlogn + m).

Phase 4. In this phase, we release the memory associated with
output events which are no longer volatile. For POS, this is all
the pairs p is an element of POS where p.next < e.V.. Since ECQ
only contains information about future output, we are not able to
perform any cleanup. The resulting algorithm is shown between
Line 6 and Line 7 in Algorithm 5.

In terms of complexity, the number of times the loop condition
is checked is the number of CTI events received, plus the number
of entries ever added to the POS. Since the maximum number of
entries ever added to the POS is O(n), the complexity of this phase
is: O(n)

The overall complexity of CTI is therefore also Q(nlog n+m).

3.5 Other Levels of Latency

In the previous section, we developed minimally latent algo-
rithms which guaranteed that perfect input produced perfect out-
put. In this section, we outline the changes necessary to implement
operators with lower latency and weaker guarantees. Since these
algorithms are highly related to the given algorithms, we simply
describe the changes informally.

Order preserving. Here we describe the minimally latent algo-
rithms which guarantee that ordered input produces ordered output.
In practice this means that the algorithms may produce one retrac-

tion per event in the canonical history table, and we must use this
flexibility to maximum advantage in terms of latency for ordered
input. This is a very simple change from the algorithms in Section
3.4. Instead of not producing output for the last entry in POS. we
produce output events ¢ with e.V. = oo, and retract the output
when a new entry is appended to POS. There are no changes to the
way in which internal structures are maintained.

For instance. at the end of the first phase of insert, we check
if e.Vo> 7. If it is, we retract the output associated with the last
entry of POS from infinity to e.V,. In the third phase of insert.
before “r = e.V.", we output inserts for POS.Last. These inserts
have V. = oc. Changes similar in scope are necessary for handling
retractions and CTIs.

Note that this increases the complexity of each algorithm no
more than a constant factor, and therefore has no impact on asymp-
totic complexity.

Minimum latency (true middle consistency). In the algorithm
which minimizes latency, no ECQ is necessary since, after any
event 1s processed, every event endpoint in the current input canon-
ical history table must have corresponding output in the current
output canonical history table. As a result, every volatile event
endpoint in the current input canonical history table has an asso-
ciated POS entry. Also, output must be produced for each one of
these entries. While much more output may be produced, and m,
as a result, may be much higher, asymptotic efficiency in terms of
n and m is unchanged from O(n logn + m).

4. RELATED WORK

While there is little work on out of order delivery of stream data,
the work on stream buffering [10] and punctuations [11] is perhaps
the most useful. There, the authors suggest buffering and wait-
ing for an external guarantee that all data has been delivered up
to some application time before allowing the data to be processed
by the system. This allows unary operators to assume that all data
arrives in order, and allows n-ary (n > 1) operators to assume
that each individual input stream arrives in order. This implements
one extreme point (highest level of consistency) on our consistency
spectrum. More recently, [2] studied the trade-offs between output
latency and memory usage with different frequencies of punctua-
tions in data streams.

Closer in spirit, although not in fact, is the work presented in [3],
which proposes the use of a rewind event to implement a very
coarse form of speculative output. Specifically. [3] proposes this as
a mechanism for handling the exceptional case of an input source
in a distributed system going down for a long period of time. How-
ever, the coarseness of the retraction makes the approach impracti-
cal for active use, and the resulting algorithms and design decisions
are not formally motivated, described, or analyzed.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the first algorithms which imple-
ment the consistency spectrum presented in [4]. More specifically,
we have formally identified interesting new design considerations
in the construction of such algorithms, and given stream process-
ing algorithms for a sophsiticated operator, Aggregate. We have
also provided an asymptotic analysis which shows that these algo-
rithms are O(n log n + m), where n is input size, and m is output
size. The algorithms are, therefore, close to optimal (O(n + m)).

The algorithms presented here represent a viable starting point
for speculative streaming algorithms. and are an important initial
step in the implementation of such a system.

‘While this work establishes viable operator algorithms for one of

the more challenging CEDR operators, futare work includes devel-
oping the necessary algorithms for other operators, and establish-
ing either slightly tighter lower bounds on optimality, or slightly
less asymptotically expensive algorithms. Also, while the algo-
rithm properties deseribed in this paper are interesting, there may
be other interesting desirable properties, leading to other interesting
design points.

6. REFERENCES

[1] A. Arasu, S. Babu, and J. Widom. The CQL continuous
query language: Semantic foundations and query execution,
Technical report, Stanford University, 2003.

[2] Y. Bai, H. Thakkar, H. Wang, and C. Zaniolo. Optimizing
timestamp management in data stream management systems.
In Proc. ICDE, 2007.

[3]1 M. Balazinska, H. Balakrishnan, S. Madden, and
M. Stonebraker. Fault-tolerance in the borealis distributed
stream processing system. In Proe, SIGMOD, 2005.

[4] Roger Barga, Jonathan Goldstein, Mohamed Ali, and

Mingsheng Hong. Consistent streaming through time: A

vision for event stream processing. Proc. CIDR, 2007.

S. Chandrasekaran, O. Cooper, A, Deshpande, M. J.

Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,

S. R. Madden. V. Raman. F. Reiss, and M. A. Shah.

TelegraphCQ: Continuous dataflow processing for an

uncertain world. In Proc. CIDR, 2003.

A. Demers, J. Gehrke, M. Hong, M. Riedewald, and

W. White. Towards expressive publish/subscribe systems. In

Proc. EDBT, 2006.

[7] 1. Goldstein and M. Hong. Consistency sensitive operators in
cedr. 2007. TR ID MSR-TR-2007-158.

[8] C.S. Jensen and R. T. Snodgrass. Semantics of time-varying
attributes and their use for temporal database design. In
Fourteenth International Conference on Object-Oriented and
Entity Relationship Modeling, 1995.

[9] R. Motwani, . Widom, A. Arasu, B. Babcock, S. Babu,

M. Datar, G. S. Manku, C. Olston, J. Rosenstein, and

R. Varma. Query processing, approximation, and resource

management in a data stream management system. In Proc.

CIDR, 2003.

U. Srivastava and J. Widom. Flexible time management in

data stream systems. In Proc. PODS, pages 263-274, 2004.

[11] P. Tucker and D. Maier. Exploiting punctuation semantics in

data streams. In Proc. ICDE, page 279, 2002.

APPENDIX

Recall that the set of invariants 7 is defined in Section 3.3.

[

[6

[10

LEMMA 12. The initial values of T, POS, ECQ, S and O satisfy
the invariants in T.

PROOF. Recall that POS initially contains one entry (—oc,
EmptyState), and 7 is initialized to —oc. Alse, ECQ, S and O
are () initially. The invariants hold trivially in this case as follows.

7-0 holds, as (is empty. 7-S-Algorithms is defined only induc-
tively, without specifying the initial value of 7. So it holds for any
initial value of v. ECQ-7-S and POS-7-5-O hold, as S is empty.
In addition, note that even if there is no v in ENDPT(S[ST).
POS.Last.TS=r=—occ in this case (the second bullet of POS-7-5-
).

O

LEMMA 13. Algorithm 1 upholds the set of invariants in T.

PROOF. For an input insert event e, let 7.4 and 7,04 respec-
tively denote the values of variable 7 before and after e is pro-
cessed. Similarly, let Soi4 and Sh.. respectively denote the value
of the input stream S before and after ¢ is processed. Clearly,
Snew = Sata + {€}. Let Opra and Opew respectively denote the
value of the input stream O before and after ¢ is processed. Clearly,
Ootg = Onew-

‘We want to prove if all the invariants are satisfied with respect
to the values 7ora, Sotd, Oote. and the content of POS and ECQ
before e is processed. then they are still satisfied with respect to the
values Thew, Snew s Gnew, and the content of POS and ECQ after e
is processed.

Invariant 7-S-Algorithms: In Algorithm 1. the value of variable
7 either remains unchanged, or is updated to e.V; in Line 22, when
Totd < €.Vi. Therefore, Tnew = max(7oq,e.V5). So Invariant
7-5-Algorithms is satisfied.

Invariant ECQ-7-S5: ECQ is possibly updated in Line 8 and Line
17 of Algorithm 1.

If e.Ve < 74, then eV, < e V. € 7,4. By assumption,
any entry in ECQ has TS value greater than 7,4, and therefore is
greater than e.V,. Therefore, the invocation of Algorithm 2 in Line
8 has no effect on ECQ. Also, Line 17 is not executed. Therefore
the content of ECQ remains unchanged. Since 7o1¢ = Thew in this
case, Invariant ECQ-7-S remains satisfied.

Otherwise, e.Ve > o4 In Line 17 of Algorithm 1, ¢ is inserted
into ECQ. Since e.V. > e. V.. we know e.Ve > 7pew = e.Ve.
Therefore, according to Invariant ECQ-7-S, e should be in ECQ
after e is processed. Also, if Thew = €.Vs > 744, according to
ECQ-7-5. all the ECQ entries with TS no greater than 7. should
be removed. This is realized by the invocation of Algorithm 2 in
Line 8. Therefore, Invariant ECQ-7-5 is satisfied in all cases.

Invariant POS-7-5-0: there are four bullets in this invariant,
which we refer to respectively as Bl through B4.

Let Sai4 be closed up to {, note that Syey is still closed up to £.
By the semantics of CTI events and the definition of ¢, e.Ve > .

Let v € ENDPT(S[Snew]). We first prove B3. The only po-
tential entries to be inserted into POS are the ones with TS values
being .V or €.V, (Line 11 and 15). Specifically, regardless of
whether Line 11 is executed, it is guaranteed POS after processing
e contains an entry with TS=e.V,. The POS entry with TS=e.V.,
inserted into POS by Line 15, is conditioned on €.V, < 7.

Soif v < tv.mexrt < t, then v < e Vi, v.next < eV, and
there is still no POS entry with TS < ». S0 B3 remains satisfied.

Next we prove B4, If v < t,v.next > tin POS before pro-
cessing ¢, by assumption POS.First. TS=v before processing ¢. that
entry remains in POS after processing e, and the potential new POS
entries with TS values being €.V, or .V, are guaranteed to be or-
dered after that entry with TS=v. Therefore, in POS after process-
ing ¢, POS First. TS=v. So B4 1s satisfied.

The proof to B2 is split into two cases. In case 1, 70 > e.Vs.
S0 Thew = Toia in this case. If e.Ve > Tuq. Line 15 is not ex-
ecuted, and so the last entry in POS still has TS=7,4. Also, by
Line 19, e¢.P is added to the last entry in POS. Also. ¢ is also
added to ECQ in this case, B2 remains satisfied. On the other hand,
if Ve < 754. the POS entry with TS=e.V. is inserted by Line
15, but the last entry in POS still has TS=7,4. Also, e.P is not
added to that last entry, as the last POS entry will not be returned
by POS.Search(e.Vs, €.V;) executed in Line 18 in this case. As we
have argued above, e is not added to ECQ in this case. Again B2
remains satisfied.

In Case 2; Toia < €.V, Then 7w = €. V5. So eV, > eV, =
Tnew = Taold- S0 Line 15 is not executed in this case, an the last

entry of POS after processing e has TS=e.V,. Also, that last entry
is a newly inserted entry by Line 11. Since its state is copied from
the previously last entry in POS, by assumption, the set of tuples
corresponding to it coincide with the tuples in ECQ before process-
ing e. Since ¢ is added to both ECQ and the new last entry in POS
in this case, B2 remains satisfied.

Finally, the proof to Bl is presented as follows. If 7,4 < €.V,
POS.Search invoked in Line 1 returns only the lastentry of POS. As
aresult, Line 7 is never executed. so no retraction event is produced
in the output stream. Therefore, for any v € ENDPT(S[Snew]).
if v < 7To1g. Bl still holds for v. Next. Line 21 is executed in this
case. As a result, for any 74 € v < e.Vs = Thew, there is a POS
entry p with TS=v after processing e, and p.State.GetPayloads =
P, where P, is defined on S,,.,.. Furthermore, for each such v,
the tuples in S[[O,,m,.]l with valid interval [z:, v.next) are produced
from the payload values in p.State.GetPayloads. Therefore, there
is a one-to-one correspondence between payload values in P, and
this set of tuples in S[Oc. . Therefore, B1 holds in this case.

If e.Ve < 7at¢ < e.Ve, the tples between e.Vs and o0 are
retracted in S[Opew] in Line 7. Also, the POS entries between
€.V, and 7, are updated to incorporate e in Line 19. These POS
entries are then used to produce new tuples between ¢.Vs and 7o14
in S|[O,mu.]] in Line 29. Therefore, by a similar argument to the
above case, B1 again holds in this case.

In the last case, if 7,4 = .V, the argument is similar to the
previous case, except that the interval during which events are re-
tracted and later inserted again is between ¢,V and e.V,., instead
of between e.V; and 142, We note the “if condition™ in Line 25 in
this case. If the POS entry p is the last entry, by the invariants, we
never produce any output event for that entry. Also, if p.TS=e. V.,
it may correspond to a newly inserted POS entry by Line 15, where
p.Statek = 1, and therefore should be used to produce a new in-
sert event. However, if p.State.k > 1, this means the POS entry
with TS=e.V. already exists before processing e, and Line 15 is
not executed. In this case, there is already a ruple in Sl[()o;d]] cor-
responding to that POS entry, which should remain in 8[0,,...] as
its value is not changed. We therefore do not produce a new insert
event in this case.

Invariant 7-O: Given that we have proved POS-7-5-0, 7O fol-
lows straightforwardly. First, by B2 in POS-7-5-0, for any POS
entry p, p.TS < Thew. When processing e, the potential new out-
put events produced by Algorithm 1 all have their Vi.values set to
the TS value of some POS entry (Line 7. 21 and 29). Therefore,
for each ¢ € S[Oncw]s €.Ve € Tnew. Also, if S is perfect, for
each insert event ¢, e.V. > 7,4. In this case, on input e, Algo-
rithm 1 produces a set of new insert events whose valid intervals lie
between 7,74 and €.V, (Line 21). The output stream produced this
way is clearly perfect as well.

O

LEMMA 14, Algorithm 4 uphelds the set of invariants in T.

PROOF. Invariant 7-S-Algorithms: Clearly, Algorithm 4 does
not update 7. Therefore this invariant holds.

Invariant ECQ-7-S: Line 14 through Line 17 ensures that: if
e Ve > 7, ¢ is removed from ECQ; if €.Viewe > 7, € is added
back to ECQ with the key value TS set to ¢.Vjewe. Therefore, this
invariant holds.

Invariant POS-7-5S-(}: There are three cases to consider. Case
l: 7 < e.Vyewe. In this case, no POS entry is added or removed,
since Line 18 through Line 25 have no effect. On the other hand,
for the last POS entry with TS=7, e.P will be removed from its
state, accomplished by Line 26 through Line 27. This ensures the

content of POS corresponds with P, satisfying B1. As POS Last
does not change, B2 continues to hold. By the same argument, B3
and B4 continue to hold as well.

Case 2: ¢.Vyewe < 7 < €.Ve. Asis in Case 1, POS.Last.State
will have e.P removed by Line 26 through Line 27. However,
we show that POS.Last.TS remains unchanged (i.e., POS.Last.TS
= 7 before and after ¢ is processed) in this case. That is,
POS.Last.State.k > | before e is processed. This is in turn equiv-
alent to saying that POS.Last.TS is equal to ¢’. V. for some ¢’ that
was added to POS previously, since in that case POS.Last.State
has at least two contributing events, e and ¢', and therefore k > 1.
Suppose for a contradiction that this is not the case. By Invariant
7-5-Algorithms, the only case when 7 is set to e. V. is through an
input CTI event, say e”. Let ¢”.V, = t, and let the T value after &”
is processed be . By the semantics of CTI events, €. Viewe = &
We know 7% = €.V, > e.Viewe. Therefore, 7* > £. On the other
hand, by Algorithm 5. since the value of 7 is changed when pro-
cessing ¢”, Line 4 in Algorithm 5 is executed. Also, POS.Last.TS
before and after processing ¢ are different. Therefore, new POS
entries are added when processing ¢”’. By Line 1 in Algorithm 5, all
the newly added POS entries have TS greater than the = value be-
fore processing ¢”/, but no greater than ¢. Therefore, after process-
ing ¢”, POS.Last. TS < t. However, POS.Last.TS after processing
¢ is 7 by assumption. This is a contradiction.

We have shown POS.Last. TS remains unchanged after process-
ing e. Therefore. B1 through B4 again hold by a similar argument
used in Case 1.

Case 3: 7 > e.V.. When 7 > e V., clearly POS.Last. TS re-
mains unchanged, as the last entry of POS will not be removed
when processing . When 7 = e.V,. it may seem that POS.Last
can be removed. if Line 21 is executed. However, by a similar
proof-by-contradiction argument as in Case 2, we can show that
for the last POS entry, say p, where p.TS = e.Ve, p.Statek > 1.
Therefore, that entry remains after processing ¢’. As POS.Last. TS
does not changed, B1 through B4 again hold by a similar argument
used in Case 1 and Case 2.

Therefore, Invariant POS-7-S-0 holds in all of the three cases.

Invariant 7-0: Given that Invariant POS-7-5-0O holds, by the
same argument as in the proof to Lemma 12, 7-O holds as well. [0

LeEMMA 15, Algorithn 5 upholds the set of invariants in 7.

PROOF. Invariant ECQ-7-S: Line 1 removes all tuples in ECQ
with TS < e.V,. However, this invariant requires that after process-
ing e, ECQ contains exactly all tuples in S[S] with Vi > Thew.
Therefore, we need to show that for each tuple v in S[S], ».Ve >
Tnew ff r.Ve > e.Ve,

There are two cases to consider. Case 1: e.Vy > T4, In this
case, Line 1 may remove tuples from ECQ with TS between e.V,
and 7,4. We know in POS before e is processed, POS.Last.TS
= Tord. If Line | adds new entries to POS, these entries have TS
greater than 7,4. All POS entries have TS value no greater than
¢.V,. In this case Line 3 and 4 are executed, SO Thew IS St t0
POS.Last.TS. Hence, Tyewy < €.Vi. Therefore, for any tuple 7
in §[S]. if r.Ve > eV, 7.Ve > Tuew. On the other hand. if
r. V. < e.Ve, r has been added to POS either previously, or while
processing e by Line 1. Since POS.Last.TS = mhew, 7.Ve < Thew.
This shows ECQ-7-5 holds.

Case 2: .V, < 7Tgq. Inthis case, Line 1 has no effect on ECQ,
since by assumption, all tuples in ECQ have TS value greater than
Totd- Also, Line 3 and 4 are not executed. S0 7w = Tota. Since
this invariant holds on the ECQ content before processing e and
Totd- it still holds on the ECQ content after processing e and 7.,

Invariant 7-S-Algorithms: If e.V. < 7,4, POS.Last is not

changed, and Trew = 7o, as is argued above, 7' defined in this
nvariant is no greater than mrq. Therefore, Thew = I‘ﬂa-X(Tn!d, T’)-

On the other hand. if e.Ve > 7o T 2 Tota, and Tpew =
POS.Last.TS = 7' = max(7a4, 7') as is argued above. Therefore,
this invariant holds.

Invariant POS-7-S-0: Take any v € ENDPT(S[Scw]). Bl
holds for any v < 7,14, as the content of these POS entries is not
affected by e. For any 751 < v < Thew. new POS entries may be
added by Line 1. Each such POS entry p however corresponds to
Pprs. So Bl holds. For B2, as is argued above, either the value
7 does not change, in which case POS.Last. TS does not change,
or 7 is explicitly set to POS.Last.TS by Line 4. Therefore, Thew
= POS Last.TS. B3 holds, as those POS entries corresponding to v
where v < e.Vi,v.next < e.Ve will have been removed by Line
7. Finally, B4 holds. because when the “while loop™ in Line 6 sees
such a POS entry p with p. TS < e.V, p.nextTS = e.V,, the loop
exists. So this entry becomes POS.First.

Invariant 7-Q: Given that Invariant POS-7-5-O holds, by the
same argument as in the proof to Lemma 12, 7-O holds as well. [

Consistency Sensitive Streaming Operators in CEDR

Mohamed Ali

Perdue University

Jonathan Goldstein
Microsoft Research
One Microsoft Way

Redmond, WA 98053

jongold@microsoft.com
ABSTRACT

"Consistent Streaming Through Time: A Vision for Event Stream
Processing” through a bitemporal model for streaming data
systems, infroduced a spectrum of consistency levels for handling
out of order data. This paper shows how this model may be
realized, through the use of speculative output, for select, join,
alterlifetime, and sum. In addition, this paper introduces two new
operators which can be used, in conjunction with the other
operators, to implement the full spectrum of consistency levels.
Furthermore, algorithms are given for all these operators which
are provably efficient, and close to optimal.

1. INTRODUCTION

Over the past 10 years, many new requirements for streaming and
event processing systems have been discovered. and used to
design various stream/event processing systems. These
requirements derive from a multitude of motivating scenarios,
some of which include sensor networks, large scale system
administration, internet scale monitoring, and stock ticker data
handling. Among the agreed upon requirements are the following:

mhali@cs.purdue.edu

s Rather than one time queries against static data, queries have
a continuous nature, and never terminate (e.g. compute a one
minute moving average for heat across a sensor network).

e Insert/event rates are very high (e.g. orders of magnitude
higher than a traditional database can process inserts).

® These systems over time have had to handle increasingly
expressive standing queries. For instance, today’s streaming
systems support stateful computation (e.g. join).

In addition, there is a growing consensus in our community that
this computation is sufficiently rich that it should be based on
compositional SQL/relational algebra semantics, although the
precise nature of that basis is in dispute.

While our growing understanding has led to successful streaming
systems for specific vertical markets, broad adoption of a single
system across a wide spectrum of application domains remains
unattained. Rather than a marketing phenomenon, we believe this
is a consequence of a missing technical requirement: The domain
specific correct handling of out of order data and data retraction.
More specifically, consider the following three scenarios:

1. We have a large collection of machines in a corporate network
which produces system maintenance events. As a result of
transient network phenomena, such as network partitioning,
individual events may get arbitrarily delayed. Since the
consequence of an alert (e.g. finding machines that didn’t
come up after a patch was installed) involves human
intervention (e.e. a system administrafor examining a
machine), and is therefore expensive, we should wait for the
delayed events to get to the stream processing system before
reporting an install problem.

Mingsheng Hong
Cornell University
mshong(@cs.cornell.com

Roger Barga
Microsoft
One Microsoft Way
Redmond, WA 98053

barga@microsoft.com
2. We are collecting statistics on web traffic. As in the previous
example, networks are unreliable. There is far too much data
to remember for any significant period of time, so we simply
process the data as it comes in, dropping any significantly late
arriving data, and report the best answer we can reasonably
compute.

3. We are monitoring a stock ticker for the purpose of computing
trades. Occasionally the stock feed provides incorrect data.
There is an SLA (service level agreement) in place which
gives the data provider 72 hours to report the correct ticker
price for each reading. If a stock trade occurs with an incorrect
price, the parties have the option to back out of the transaction
during that 72 hour period (US SEC requirement). As a
consequence, even though results are provided immediately,
corrections, which may be posted up to 72 hours later, may
lead to some form of compensation. The system must
therefore respond instantly, but provide corrections when
necessary.

Careful serutiny of our scenarios reveals 2 interesting aspects of
query processing which are being varied:

« How long do we wait before providing an answer (blocking).

+ How long do we remember input state both for blocking and
for providing necessary compensations once we unblock.

Blecking
Strong consistency

-

Slow &

Middie
consistency

lQuick & optimistic | M

Memo
Weak consistency v

Small & Bigh
less correct more comact

Figure 1 — Spectrum of Possible Consistency Levels

These variables lead to the spectrum of consistency levels
described in Figure 1. Our three examples correspond to the three
corners of the consistency triangle: High (1), Low (2), Middle (3).

[16] defines these distinct consistency levels formally, based on a
bitemporal model for streaming queries that employs both inserts
and retractions. In addition, [16] also provided denotational
semantics for relational algebra based operators which are
explicitly independent of retractions. While no algorithms were
introduced in [16], it introduced two notions of correctness for
streaming operators which must be enforced using retractions for
any valid implementation of the given operator semantics.

In this paper we present the first algorithms for streaming
operators which implement the full spectrum of consistency levels
by being the first to make use of speculative output. We define
correct algorithms for several of these operators, and introduce
definitions and algorithms for 3 new operators. In addition, we
provide results of a theoretical analysis of all algorithms that show
they are provably optimal in many cases and at least close to
optimal for others.

Two of the new operators, Align, and Finalize, combined with the
other operators, implement the full consistency spectrum shown in
Figure 1 over a rich relational algebra based computational model.
This is critically important, as it shows that consistency may be
varied easily on a per query basis.

Section 2 contains a review of the relevant formal model and
correctness requirements from [16]. Section 3 introduces the
physical event model used in our algorithms, as well as a
discussion of processing plans. Section 4 describes our operators
and algorithms. Section 5 describes the results of our asymptotic
analysis. Section 6 discusses related work. We conclude with
Section 7.

2. CEDR Streams and Operator Properties

In this section, we review a variant of our temporal stream model,
introduced in [16]. This model is used to characterize CEDR
streams, CEDR engine operator semantics, and consistency levels
for handling out of order or invalidated data [16]. The temporal
model in this paper is simplified from what is described in [16] in
the sense that we only model valid time and CEDR time
(occurance time is omitted). For the purposes of this paper, this is
sufficient since only these two netions of time are necessary to
understand CEDR speculative output and consistency levels.

In CEDR, a data stream is modeled as a time varying relation. For
most operators, we will use the interpretation that a data stream
models a series of updates on the history of a table, in contrast to
previous work which models the physical table updates
themselves. In CEDR a stream is modeled as an append only
relation. Each tuple in the relation is an event, and has a logical ID
and a payload. Each tuple also has a validity interval, which
indicates the range of time when the payload is in the underlying
table. Similar to the convention in temporal databases, the
interval is closed at the beginning, and open at the end. Valid start
and end times are denoted as V, and V, respectively. When an
event arrives at a CEDR stream processing system, its CEDR
time, denoted as C, is assigned by the system clock. Since, in
general, CEDR systems use different clocks from event providers,
valid time and CEDR time are not assumed to be comparable.

CEDR has the ability to introduce the history of new payloads
with insert events. Since these insert events model the history of
the associated payload, they provide both valid start and valid end
times. In addition, CEDR streams may also shrink the lifetime of
payloads using retraction events. These retractions may reduce
their associated valid end times, but are not permitted to change
their associated valid start times. Retraction events must provide
new valid end times, and be uniquely associated with the payloads
whose lifetimes are being reduced. A full retraction is a
retraction where the new valid end time is equal to the valid start
time.

The history of a stream can be represented in a history table such
as the one shown in Table 1. In this table, we have two events.

The first event, EQ, has its lifetime initially established at CEDR
time 1 with payload P1, valid start time of 1, and valid end time of
infinity. At CEDR times 2 and 3, the valid end time is retracted
first to 10, then to 5. The second event, E1, is initially modeled at
CEDR time 3 and has a payload of P2, a valid start time of 4, and
a valid end time of 9.

Table 1 — Example of a History Table.

D | Ve | V. | C[(Payload)
EO 1 @& 1 |PlI
E0 1 10 |2 [Pl
EO |1 K
EL [4 9 3| P2

A canonical history table is a history table in which all retracted
rows are removed, all rows whose event [Ds are fully retracted are
removed, and the C column is projected out. In cases with
multiple retractions for the same ID, the order is unambiguous
since V, can only shrink. For instance, in Table 1, both the first
and second rows of the table are removed since they are both
retracted. Canonical history tables reflect the eventual history of
the stream, independent of CEDR arrival time, after retractions
have been taken into account.

An infinite history table contains all events over all time. Two
streams are logically equivalent if’ they have identical infinite
canonical history tables.

We now have enough machinery to define our first notion of
operator correctness, which applies to all computational operators
(as opposed to operators whose purpose is to vary consistency):

Definition 1: A CEDR operator O is well behaved iff for all
(combinations of) inputs to O which are logically equivalent, O’s
outputs are also logically equivalent.

Intuitively, the above definition says that a CEDR operator is well
behaved as long as the output produced by the operator
semantically converges to the output produced by a perfect
version of the input without retractions and out of order delivery.

Our second notion of operator correctness only applies to
operators which are based on materialized view update semantics.
While a formal definition is provided in [16], we provide a more
intuitive definition here:

Definition 2: Assuming we interpret the stream as modeling the
changes to a relation, and the valid time intervals as describing the
time (V) at which the payload was inserted, and the time (V,) at
which the payload was removed, a view update compliant
operator produces snapshot identical output for snapshot identical
input. In other words if the table contents are identical for all
snapshots of two inputs, the output snapshots must also match,

[16] specified the denotational semantics of a number of operators
based on relational algebra. For brevity, we will only provide
algorithms for three view update compliant operators. A stateless
operator (select), a join based operator (equijoin), and an
aggregation based operator (sum). In these definitions, E(S) is the
set of events in the infinite canonical history table for stream S.

Selection corresponds exactly to relational selection. It takes a
Boolean function f which operates over the payload. The
definition follows:

Definition 3: Selection 6(S):

o S)={(e.V,. e.V,, e.Payload) | e € E(S) where [{e.Payload)}

Similarly, the next operator is join, which takes a boolean
function 6 over two input payloads:

Definition 4: Join B gp poy(S1. S2):

Mgprp(S S2) = {(Vi, Ve, (e;.Payload concantenated with
e, Payload)) | e, € E(S)). ex € E(S;), V=max{e,.V,, e,.V,},
Ve=minge V,, eV}, where Vo < V., and 06(e;.Payload,
e;.Payload)}

Intuitively, the definition of join semantically treats the input
streams as changing relations, where the valid time intervals are
the intervals during which the payloads are in their respective
relations. The output of the join describes the changing state of a
view which joins the two input relations. In this sense, many of
our operators follow view update semantics such as those
specified in [14].

The last materialized view compliant operator is introduced in this
paper, and is the first aggregate for which we provide denotational
semantics. Sum sums the values of a given column for all rows in
each snapshot, starting at the earliest possible time. An observant
reader will note that the given definition is implementable without
retractions if there are no retractions in the input, and all events
arrive in V, order. More specifically, we only output sums
associated with snapshots which precede the arriving event’s V..
Note that the output event lifetimes have valid start and end points
which are determined by the valid start and end points of the input
events. This is sensible given that the output sum values may only
change when an input tuple is added or removed from the
modeled input relation. The definition for sum follows:

Definition 5: Sumy(S):

C={eV]eeS8} ufeV,]eecS]u {0}

Let C[i] be the ith earliest element of C

sumy(8) = {(V, Vi a) | [C] > 1>= 1, V=C[U, VO], a= Es,

eNs < Vs, Ve <= e.Ve ©-

While all CEDR computational operators are well behaved, not all
are view update compliant. Indeed, the streaming only operators
which our community has discovered (e.g. windows, deletion
removal) are not view update compliant by necessity. In CEDR,
we can easily model these operators with AlterLifetime.
AlterLifetime takes two input functions, fy(e) and [y(e).
Intuitively, Alterlifetime maps the events from one valid time
domain to another. In the new domain, the new V times are
computed from [y, and the durations of the event lifetimes are
computed from f,. The precise definition follows:

Definition 6: AlterLifetime Il £1(S)
Hpis, a(S)={([vsle); [Evs(e)| + |E ()], e.Payload) | eeE(S}}

From a view update compliant operator’s perspeciive,
AlterLifetime has the effect of reassigning the snapshots to which
various payloads belong. We can therefore use AlterLifetime to
reduce a query which crosses snapshot boundaries, like computing
a moving average of a sensor value, to a problem which computes
results within individual snapshots, and is therefore view update
compliant. For instance, [16] noted that a moving window
operator, denoted W, is a special instance of II. This operator
takes a window length parameter wl, and assigns the validity

interval of its input based on wl. More precisely: W (8) =
Iyewa(S). Once we use AlterLifetime in this manner, each
snapshot of the result contains all tuples which contribute to the
windowed computation at that snapshot’s point in time. Therefore,
when we feed this output to sum, the result is a moving sum with
window length wl.

One can similarly define hopping windows using integer division.
Finally, we can even use the AlterLifetime operator to easily get
all inserts and deletes from a stream:

s Inserts(S)= Iy, .(S)
o Deletes(S)= Iy, .(S)

In addition this paper introduces two new operators, called align
and finalize which while uninteresting from a computational
model point of view, are used to implement the full spectrum of
consistency levels. We define them fully in Section 4.

3. CEDR Physical Stream Model

While the stream model in Section 2 is a useful theoretical
construct for formally defining the semantics of streams and
operators, the operator algorithms themselves are based on a
slightly different definition of a stream. More specifically,
operators respond to individual events as they arrive at the CEDR
system. While CEDR time is implicitly encoded in the event
arrival order, it is not explicitly part of a CEDR physical event.

CEDR operators receive, one at a time, three types of events. The
first type of event is an insert, which corresponds semantically to
insert events in the CEDR bitemporal model. Insert events come
with V; and V, timestamps, and also a payload. Note that CEDR
uses bag semantics, and may, therefore, receive two inserts with
identical payloads and identical lifespans.

The second type of event is a retraction, which corresponds
semantically to retractions in the CEDR bitemporal model. Since
retractions must be paired with their corresponding inserts or
previous retractions, we either need to have global event IDs, or
include in the retraction enough information to establish the
pairing. If we used global IDs, certain stateless operators, like
select, would become more complicated. Since we consider
retractions to be far less common than inserts, we will instead
include all necessary information in the retraction to establish the
connection with the original insert. Note, however, that the
algorithms presented in this paper may be easily adapted to make
use of global IDs if desirable. CEDR physical retractions therefore
include the original valid time interval, V,, and V,, the new end
valid time Vv, and the payload values from the original insert.

Note that the physical stream associated with the logical stream in
Table 1 is given in Table 2 below:

Table 2: Physical Stream Representation

Event Ve V. Viewe | (Payload)
Type

Insert 1 o Pl
Retract | 1 o 10 P1
Retract | 1 10 |35 P1

Insert 4 9 12

The third type of event is a kind of punctuation. This type of
event, called a CTI (current time increment), comes with a
timestamp V.. The semantics of the message are that all events

have arrived in the stream whose sync times ([16]) are less than
the accompanying timestamp. More specifically, the sync times
for insert events occur at 'V, while the sync times for retraction
events occur at V..

There are actually two types of CTls. The first type is an internal
CTI, which we assume cannot be reordered to a position in the
stream prior to its earliest correct placement. This corresponds to
the CTI described in the earlier paragraph. The second type of
CTI, called an ExternalCTI, may arrive arbitrarily out of order
relative to the rest of the stream contents. We only define the
handling of ExternalCTls for Finalize, which converts out of order
externalCTls into in order internal CTIs. External CTIs have a V,
a V. and a Count. The semantics are that Count events exist in the
stream whose sync times are in the timestamp interval [V, V).
Furthermore, while ExternalCTIs may arrive arbitrarily out of
order, they must have nonoverlapping valid time intervals.

crn

[on |
E:V(4 EII‘
P .
| ;A'h'gn ‘ ‘ Alrgn |
cin cm
Finalize ‘ Finalize |
ExtemalCTI ExternalCTI
Select ‘ Select
ExternalCTI ExtenalCT! ExteraiCTI
Select | AtterLifetime ‘ |ArterL.ifetimer
ExternalCTI ExternalCTI ExternalCTI
s] [] (&]
Stateless Stateful

Figure 2: CEDR Processing Plans

Two typical CEDR query plans are shown in Figure 2. Note that
in these plans, Finalize has two purposes. First, it forces the
purging of state in a stateful operator by issuing CTIs and
therefore controls the forgetfulness axis of consistency. Second, it
partially reorders external streams, which may be arbitrarily out of
order, into well behaved intemal CEDR streams. More
specifically, Finalize ensures that all output CTls are output no
eatlier than the earliest correct time, and also ensures that all
retractions in a retraction chain are issued in correct relative order.

The second operator to note is the Align operator. This operator
blocks the events of the incoming stream and combines inserts
and retractions with other retractions when possible. The blocking
time is controlled by a provided input function, although internal
CTIs may cause early unblocking. The Align operator, therefore,
controls the blocking axis of consistency.

Note that there are two types of plans in Figure 2. The first type
of plan is a stateless plan, and doesn’t have either a Finalize or
Align operator. These operators are unnecessary in this plan since
there is no state to purge, and nothing is gained by blocking out of

order events. In this plan, since we never convert ExternalCTIs to
CTls, we simply allow the ExternalCTIs to pass through the
operators unchanged. This is generally the case with stateful
operators, with the one exception, AlterLifetime, which we
discuss later. We will not discuss ExternalCTI algorithms for
other stateless operators.

The more interesting type of plan is the stateful plan, which
contains, below the first stateful operator, a Finalize, followed by
an Align. These two operators together determine the consistency
of the query. Note, all stateful plans must minimally have a
Finalize somewhere below the first stateful operator, although an
align is optional. This is to ensure that all stateful operators
operate over streams with no out of order CTls and no out of
order delete chains. As a result, no ExternalCTI algorithms are
specified for stateful operators, with the exception of Finalize.

4. CEDR Operator Algorithms

Operators in the CEDR system have a 1 to 1 correspondence with
the operators discussed in Section 2. These operators must
faithfully implement the denotational semantics provided in all
cases in order to be considered correct. While formal correctness
proofs are beyond the scope of this work, we will provide
informal arguments as to the correctness of the provided
algorithms, as well as detailed examples for Join and Finalize
showing the algorithm behavior on various input streams.

All operators, except align and finalize, are written assuming an
output consistency level which involves no blocking and infinite
memory (B=0, M=w). Algorithms for CTI events will, however,
clean state which is sufficiently stale that the CTI and operator
semantics guaraniee the state is no longer needed. Operators
implemented in this manner can be made to behave according to
any consistency level using align and finalize.

All operators are written using copy out semantics. While this has
no effect on asymptotic behavior, a real system would need to
avoid this where possible. All provided algorithms may be
adapted to avoid copying in many places but such a discussion is
beyond the scope of this paper.

For each operator, we provide the behavior for processing insert,
retraction, and CTI events, and for some operators, ExternalCTI
events. Whether this processing is the result of a push or pull
maodel of event processing is not relevant to our discussion, which
is about the processing algorithms themselves. Clearly a full
system implementation needs to address architectural issues such
as push versus pull event processing and operator scheduling.

Throughout the algorithms, references are made to data structures
which are ordered according to a specified key. These structures
have a number of methods:

Collection.Insert(K) inserts a key, in some cases a key value pair

Collection.Remove(K) removes a key and possibly an
accompanying value from the structure

ResultCursor = Collection.Search(K) returns a cursor into
the structure which initially points to the first exact key
match. If there is no match, ResultCursor = Empty

ResultCursor = Collection.SearchL(K) similar to Search but
returns a pointer to the first key less than K. Similarly we
have SearchLE, SearchGE, and SearchG.

ResultCursor = Collection.First() returns the first element of
the collection according to the given sort order

In addition, some operators make use of interval search structures
based on a multidimensional structure. These structures have
Insert, Remove, and Search functions comparable to the ones
previously described for unidimensional structures. When Search
is given a point, it returns all intervals which contain the point.
When it is given an interval, it finds all overlapping intervals.

Inequality based searches can only be performed with an input
point, and are only used in sitvations where data intervals are
nonoverlapping, and therefore ordered.

4.1 Select

Select is the most straightforward operator described in this paper.
It is a simple filter which allows inserts and retractions to pass
through the operator unchanged if they satisfy a Boolean function
f(Payload). Note that retractions need no special handling since
the payload is included in the retraction. Therefore, if the payload
in the retraction satisfies the function, the matching retraction
chain has already passed through the select. The resulting
algorithms follow:

Algorithm for o:(S):

Insert/Retraction(e):
If f(e.Pavload)
Output a copy of e

CTI (e):
Output a copy of e

4.2 AlterLifetime

This operator uses two provided functions, fy.(e) and fu(e), to map
incoming events from one valid time domain to another. In order
to make AlterLifetime implementable, we have a few important
constraints on these input functions:

¢ [fy(e)) must be constant or increasing with increasing
V., and may only depend on V, and constants (e.g.
window size, chronon, etc...)

* [fy(e)) must be constant or decreasing with decreasing V,

The first constraint ensures that CTls in the input imply CTls on
the output. The last constraint ensures that retractions in the input
will never produce event lifetime expansions in the output.

It may seem that AlterLifetime is like select, and merely needs to
pass events through with their lifetimes modified according to the
input functions, but there is an important special case to consider.
Since full retractions and their associated events are removed
from the infinite canonical history tables upon which the
semantics of AlterLifetime are defined, we must ensure that full
retractions in the input lead to full retractions in the output in all
cases. This should be true even if, for instance, fy(e) is a constant,
which is a common function and implements windows. The
resulting algorithms for insert and retraction are shown below.
Note that in this algorithm fea(e) refers to a version of fy(e)
where all references to V,, are replaced with references 10 Viye.

Algorithm for g, (S):
Operator state:

e LastCTI is a timestamp variable initialized to 0

Insert(e):
Create an insert event ie

ieVy = [fys(e) |

ie.Ve = |fy(e) | + [fale)]
ie.Payload = e.Payload
output ie

Retraction (e) :
Create a retraction event re

re.Vy, = |fy.(e) |
re.Vo = |fys(e) | + |£,(e)|
re.Payload = e.Payload
If e is a full retraction

re. Viewe = | fysle) |
Else

re . Vpewe = |Eysfe) | + [Epewale) |
Output re

Now we discuss the algorithm for CTL In this discussion, fi.(e)
refers to a version of fy(e) where all references to V, are replaced
with references to V.. The algorithm for CTI is also not as simple
as it might first seem. If we always generate an output event,
using V.=|fy.(e)l, we might generate CTlIs which do not advance
the clock. Since we assume that CTIs arrive in increasing V,
order, we can avoid this problem by delaying the output CT1 until
we receive a CTI which moves the output CTI forward in time.
The resulting algorithm follows:

CTI(e):

If LastCIT = |fy.(€} |
Create a CTI event ctie
ctie.Ve=|fy.(e) |
LastCTI = ctie.V,
output ctie

While there is no algorithm for external CTI, the given algorithms
may be integrated into a combination of Finalize and
AlterLifetime when it is desirable to combine windowing with
forced expiration to improve state management.

4.3 Equijoin

Equijoins are joins (See Section 2) where the Boolean function 8,
when put in conjunctive normal form (CNF), has one or more
conjuncts which are equality tests on columns from both input
streams. For instance, consider the join plan:

b s1p-s2p(S1, S2)

Actual input streams are shown in Table 1, which we use to
illustrate how join works. Note that the table includes both input
streams, and uses an Sid column to distinguish between events
from the different streams. In addition, we include a CEDR time
column, even though it’s not part of the physical event, to
establish the order of arrival. Also note that Table 2 shows the
infinite canonical history table for the input streams, and Table 3
shows the result of applying the denotational semantics of the join
to the infinite canonical history tables. For our join algorithm to
be correct, the infinite canonical history table of the output must
be identical to Table 3.

Table 1 : Physical input streams for join
Sid | Type Vi | Ve | Viewe | C | P
S Insert (1] 2 1 Ay

S cti 1 2
8, Insert | 2 6 3 A
S Insert 3 5 4 Ay
S Cti 3 3
5 Retract | 2 6 4 [Ay

Table 2 : Infinite Canonical History Table of Input

sid V. Ve (Payload)
S 0 1 Ag
S 2 4 Ay
S 3 5 Ay

Table 3 : Infinite Canonical History Table of Output
Vs Ve (Payload)
3 4 Al

Our algorithm for jein is based on symmetric hash join. When an
event arrives on one side, the other side is checked and output is
produced. If the incoming event is an insert, we join to the other
side and output necessary inserts. If the incoming event is a
retraction, we join to the other side to see whether any retractions
of previously output events are necessary. Note that in addition to
checking the equality predicate, for inserts, we also need to check
whether join candidates have lifetimes which overlap the lifetime
of the incoming event. In the case of retractions, we need to check
whether the result of applying the retraction causes a previously
output lifetime to shorten. Both of these checks mvolve retrieving
all the entries from the hash bucket whose lifetimes overlap the
input event. We will therefore use a multidimensional structure to
perform the overlaps test in an algorithmically efficient manner.

The resulting algorithms for insert and retraction are shown
below. Note that since our algorithm is symmetric, we consider
events only on ;.

Algorithm for Bgp; p2y(S1, S2) :

Operator state:

e 2 Hashtables SHash; and SHash; which hash on the
columnsets of the equijoin on S, and S, respectively. Each
hash bucket contains a multidimensional structure keyed on
the valid time interval of the event. Each hash supports three
methods. Insert(e) and Remove(e) respectively add and
remove events to the two level structure.
FindMatchingInsert(e) takes a retraction event and returns
the insert event in the two level structure which pairs with
the retraction. SHash, and SHash, are initially empty.

o §CTI and S,CTI are timestamp variables which hold the
latest CTI V., from 8; and S; respectively and are initialized
to 0.

e Ordered structures EventV.Q; and EventV.Q, with <key,
value> = <V,, event>. These are used for cleaning state when
we receive CTI events,

Insert con S;(e):
ResultCursor = SHash,.Lookup(e) .Search(e.V,,
e.Ve)
While ResultCursor != Empty
If 8(e.Payload,ResultCursor.event.Payload)
Create an insert event ie
ie.V. = max (e.V,, ResultCursor.event.V.)
ie.V, = min (e.V,, ResultCursor.event.V.)

ie.Payload = (e.Payload,
ResultCursor.event.Payload)
output ie
Increment ResultCursor
If e.V, >= 8,CTI
SHash;.Insert (e)
EventV.Q;.Insert (e.V., &)

Retraction on 35 (e):
ResultCursor = SHash;.Lookup(e) .Search(e.V,,
e.V.)
While ResultCursor != Empty
If ©(e.Payload,ResultCursor.event.Payload)
and
e.V.we<min({e.V., ResultCursor.event.V.)
Create a retraction event re
re.V, = max (e.V,, ResultCursor.event.V.)
re.V, = min (e.V,, ResultCursor.event.V.)
re.Viswe =
max(e.V,.., ResultCursor.event.V;)
re.Payload = (e.Payload,
ResultCursor.event.Payload)
output re
Increment ResultCursor
ie = SHash,.FindMatchinglInsert (e)
if ie != NULL
SHash;.Remove (ie)
EventV,0;.Remove (1e.V,, ie)
If e.Vaowe >= SoCTI
ie.Vy = .Viswe
SBash,;.Insert (ie)
EventV.Q;.Insert (ie.V,, ie)

The algorithm for CTI events is quite simple. When the min of
S\CTI and S,CTI increases, we output a CTI. In addition we
remove events in our state that can no longer contribute to future
results. The algorithm is shown in Figure ... Since this algorithm
is also symmetric, we will again consider events only on ;.

CTI on Si{e):

If S;CTI < S,CTI
Create a CTI event ctie
ctie.V,= min(e.V., S.,CTI)
output ctie

SCTI = e.V.

While EventV.Q..NotEmpty &&

EventV.Q,.First() .V, < e.V,

eventtoageout = EventV.Q,.First ()
EventV.Q,.Remove (eventtoageout)
SHash;.Remove (eventtoageout)

Observe that this join algorithm, when provided with the input in
Table 1, produces the output in Table 4. The infinite canonical
history table of this output is, as required by the denotational
semantics of join, the same as Table 3.

Table 4: Physical output of Join

Type Vs | Ve Viee | P
Insert 3 5 Ay
CTI 1

Retract 3 5 4 Ay

4.4 Sum
See accompanying theory paper.

4.5 Align

While the align operator is a pass through from a denotational
semantics point of view (the input and output infinite canonical
history tables are identical), it is a vital component for realizing
the spectrum of consistency levels described in the introduction.
Specifically, Align is used to adjust the blocking component of
consistency.

This is accomplished by buffering and blocking incoming events
for a certain period of time. We will not specify in our algorithm
whether we are blocking based on application time or system
time, as either option is easily implementable and the distinction
is semantically unimportant. While the events are buffered, any
retractions are combined with buffered ecarlier inserts or
retractions of the same event. When events are unblocked through
a CTI, events are released in sync timestamp order, and are
accompanied by an output CTI.

Another way the operator may become unblocked is by using the
outputtime() function, which returns the latest application
timestamp of events which should be unblocked. This function
may internally refer to either system or application time. The only
requirement is that outputtime() must stay constant or increase
with subsequent calls. When streams are unblocked in this
manner, the V, time, rather than the sync time, is used, and no CTI
is issued. This is due to the assumption that once an event is
unblocked, all subsequent retractions for that event should also be
unblocked.

Note that any stream may be converted to the highest consistency
level from a blocking point of view by having outputtime() always
return 0. All Align algorithms make use of a method, called
Unblock. Unblock is the routine which actually releases blocked
events in accordance with outputtime(). The algorithms for insert
and retraction are provided in below:

Algorithm for Align,upusmen(S):
Operator state:

s CurrentOutputTime keeps the last reading of outputtime(),
and represents the latest V, for which output events have
been unblocked. CurrentOutputTime is initially set to 0.

e LastC11 is the timestamp value of the last output CTI issued.
It is initialized to 0

e bufferedinserts is an ordered data structure which buffers
events and uses the ordering key (V,, V., P). This structure
may be searched using a retraction event r. This search
returns a match if the buffered entry b matches in the
following way: b.V, = r.V, bV, = rV, bPayload =
r.Payload

e bufferedretractions is an ordered data structure which buffers
events and uses the ordering key (V., Viewe, P, V). This
structure may be searched using a retraction event r. This
search returns a match if the buffered entry b matches in the
following way: b.V, = .V, b.Viw. = 1.V,, b.Payload =
r.Payload

o Ordered structure EventV.Qjyens Which contains insert events
ordered by (V,, V., P). This is used for unblocking inserts
when we receive CTI events.

* Priority queue EventViewQretractions Which contains retraction
events ordered by (Viewes Ve Voo P). This is used for
unblocking retractions when we receive CTI events.

Unblock () :
CurrentOutputTime = outputtime ()
While ((bufferedinserts.First() != NULL) &&

(bufferedinserts.First().V. <=
CurrentOutputTime)) or
{{bufferedretractions.First () !=
NULL) &&
(bufferedretractions.First() .V, <=
CurrentOutputTime))
if (({bufferedretractions.First() ==
NULL) ||
((bufferedinserts.First () != NULL) &&

(bufferedinserts.First() .V, <=
bufferedretractions.First () .V,)

e, = bufferedinserts.First();

Output a copy of e

bufferedinserts.Remove (ey)

EventV,.Qinserts- REMOVE (€1)

else

e, = bufferedretrations.First():

Output a copy of e,

bufferedretractions.Remove ()

EventVieveQretractions - REMove (ep)

Insert(e):
bufferedinserts.Insert (e)
EventV.Qinserts- LNSETE (&)
Unblock()

Retraction (e) :
ResultCursor = bufferedinserts.Search(e}
If ResultCursor != Empty
€tomp = ResultCursor.event ()
bufferedinserts.Remove (epup)
EventV.Qinserts+ REMOVE (Bramp)
€tomp- Ve €. Viewe
bufferedinserts.Insert (eg.)
EventVeQinserts: INSETL (Bram)

else
ResultCursor=bufferedretractions.Search (e)
If ResultCursor != Empty

€remp = ResultCursor.event()
bufferedretractions.Remove (€ruu)
EventVicyeQretractions - REMOVE (@ropp)
Ctang > Vaewe = &- Vi
bufferedretractions.Insert (€cem)
EventVieweQretractions - INSETL (Erayp)
else
bufferedretractions.Insert (&)
EventVieweQretractions . INSErt (e)
Unblock()

Align may also be unblocked when it receives a CTI. This is
permissible, even if outputtimer() hasn’t reached the incoming
CTI's V, since we have a guarantee that no more events can arrive
which may be combined with some buffered events. The
algorithm can be found below:

CTI(e):
While ((EventV.Qinserts-First() != NULL) &&
(EventV.Q; uerrs. First () .V. <= e.V.)) or
((EventV,sweQretractions« FLTSE(} != NULL) &&
(EventVieweQretractions» FLESE () . Viewe <=
e.Va))

if ((EventVieuOretractions-First () == NULL} ||
((EventV.Qinserts. First () != NULL) &&
(EventV.Qinserts. First () .V, <=
EventVieueQretractions» FIISt () « Viaene)
e, = EventV.Qineerts-First ()
Cutput copy of e,
bufferedinserts.Remove (e,)
EventV.Qinzerts - REMOVE ()
else
ey = EventVieweQrotractions- F1rst ()
Qutput copy of g,
bufferedretractions.Remove (e,)
EventVieveQretractions- REMOVE (&)
Unblock ()
If bufferedinserts.First() != NULL
NewCTI=min (e.V.,bufferedinserts.First () .V.)
Else
NewCTI=e.V,
If (NewCTI > LastCTI)
Output a CTI with V, = NewCTI
LastCTI = NewCTI

4.6 Finalize

The Finalize operator serves two related purposes in the system.
The first purpose is to enable queries with Finalize operators to
navigate in the consistency space along the memory axis. This is
accomplished by having Finalize issue CTIs for time periods
which we are willing to call “final”. These CTIs are induced by a
function finalizetime(), which is similar to the outputtime()
function used in Align. Unlike Align, Finalize does impact the
infinite canonical history table of the output, as any operator that
limits memory must. It should therefore be used with a high
degree of care and understanding.

The second purpose of finalize is, like align, semantically
transparent. Finalize buffers all incoming events, with the purpose
of correctly ordering out of order retraction chains, and also
placing output CTIs at no earlier than the earliest correct
opportunity. It receives ExternalCTIs instead of CTIs. While it
never blocks well formed output, it does have to remember most
events until either an external CTI guarantees it can no longer
connect to an incoming retraction, or our finalizetime() function
enables us to forget them. These events are stored in a structure
called receivedevents, which is sorted on the events’ sync time.
These algorithms are broken into a number of pieces. In addition
to the usual insert, retraction, and CTI functions, we also have a
function CleanState which removes all events from supporting
memory structures with sync time less than the time passed into
the function. We also have a function AgeOut which forces CTIs
and event cleanup based on the time returned by finalizetime().

Finally, we have ReceiveEventforCTI which adds events to
receivedevents and also checks to see whether we can correctly
issue a CTI. The algorithms for insert, retraction, and CTI can be
found below:

Algorithm for Finalizegaiserimen(S):
Operator state:

o LastCTI is the timestamp value of the last output CT1 issued.
It is initialized to 0

e CTlLifetimes is an ordered data structure which stores non-
overlapping valid time intervals [V, V) in order. Associated
with each entry are expected and received fields, which store
the number of events expected and received with a sync time
which falls within the associated time interval. When insert is
called, the parameters provide initial values in the following
order (V,, V,, expected, received)

* Receivedevents is an ordered data structure with entries
<key, value>= <V, Event>

* brokenretractionssucc is an ordered data structure which
stores entries <Key, value> = <(V,, V,, Payload), Event>.
When it is searched using a retraction r, it finds all entries e,
with e,.V, = .V, e, Ve = 1'Vyewe, €p.Payload = r.Payload

* Brokenretractionsprev is an ordered data structure which
stores entries <Key, Value> = <(V,.. V., Payload), Event>.
When it is searched using a retraction r, it finds all entries e,
with ey V; = 1.V, ey Viewe = 1.V, . Payload = r. Payload

* bufferedinsertshyV, is an ordered data structure which stores
entries <Key> = < V, V|, Payload>. The entries correspond
to a set of inserts and may be searched with either an insert
or retraction. In either case, exact field matches will be
searched for, and in the case of retractions, V.. 1s ignored.

UpdateCTI (NewCTI)

If LastCTI < NewCTI
Create CTI event ctie
ctie.V, = NewCTI
CleanState(ctie.V,)
output ctie
LastCTI = ctie.V,

ReceiveEventforCTI (V,,., €)
receivedevents.Insert (Vo e)
ResultCursor = CTILifetimes.Search (Vi)
If ResultCursor != Empty
Increment ResultCursor.received
If ResultCursor.received=
ResultCursor.expected and
ResultCursor.Entry() =
CTILifetimes.First()
UpdateCTI (ResultCursor.V,)

CleanState (V..,:.)
For each event e in receivedevents with V.
€ Wapgiat

remove entry from receivedevents

For each

If e is a retraction
brokenretractionssucc.Remove (&)
brokenretracticnsprev.Remove (e)

Else
bufferedinsertsbyV..Remove (&)

While CTILifetimes.First().V. <= Virale
CTILifetimes.Remove (CTILifetimes.First())

Ageo‘-“: (v;:l.a'l.e)
ResultCursor = CTILifetimes.Search (Veiaie)

If ResultCursor != Empty
NewCTI = ResultCursor.V,
Else

NewCTI = Viiale
UpdateCTT (NewCTT)

Insert(e):
If e.V, »= LastCTI
Cromp-Vs = €.V,
Ctempr Vnewe = €.V
€tenp- Payload = e.Payload

ResultCursor =
brokenretractionssucc.Search (€iamp)
if ResultCursor != Empty

e.V. = ResultCursor.Vi..
€remove = ResultCursor.Event ()
brokenretractionssucc.Remove (& uove)
brokenretractionsprev.Remove (€ omove)
Output a copy of e
bufferedinsertsbyV..Insert (e)
ReceiveEventforCTI (e.V,, e)
AgeOut (finalizetime())

Retracticn(e) :
If e.Viewe >= LastCTI
ResultCursor=
brokenretractionsprev.Search{e)
if ResultCursor != Empty
e.V. = ResultCursor.V,
€remove = ResultCursor.Event ()
brokenretractionssucc.Remove (€, .ve)
brokenretractionsprev.Remove (€ epove)
ResultCursocr =
Brokenretractionssucc.Search{e)
if ResultCursor != Empty
e.Vyewe = ResultCursor.Vig.
€,amove = ResultCursor.Event ()
brokenretractionssucc.Remove (€,.,.y.)
brokenretractionsprev.Remove (&, o)
bufferedinsertsbyV,.Search (e)
if ResultCursor = Empty
brokenretractionsprev. Insert (e)
brokenretracticnssucc. Insert (e)
else
ResultCursor.V, = .V ae
output a copy of e
ReceiveRventforCTI(e.V o,)
AgeOut (finalizetime())

ExternalCTI (e)
CTILifetimes.Insert(e.V,, e.V., e.Count, 0)
ResultCursor = CTILifetimes.Search(e.V.)
For each element e, of receivedevents with
e. V<= Ve < €.V,
Increment ResultCursor.received
If ResultCursor.received =
ResultCursor.expected and
ResultCursor.entry() =
CTILifetimes.First()
UpdateCTI (ResultCursor.V,)
AgeOut (finalizetime ())

To better understand the subtle behavior of this important
operator, we include an example to illusirate how broken
retraction chains are repaired, and how internal CTIs are
generated from external CTIs. The physical stream corresponding
to this example is shown in Table 5. Note that a CEDR time
column is included to show the order of arrival, though it is not
part of the physical event. In addition, we show the Count field for
ExternalCTIs in the payload column. When we refer to event 1,
we refer 1o the event which arrived at CEDR time 1. When we
refer to event 2, we refer to the event which arrived at CEDR time
2etc...

Table 5 : Physical Input Stream for Finalize

Type Ve Ve Ve | © | P

Retract 0 10 8 1 Ps
Retract 0 6 4 2 Py
Retract 1} 8 6 3 Po
Insert 0 10 4 Py
ExternalCTI 0 8 5 5

Insert 1 5 6 P,

We assume the finalizetime() function associated with this finalize
operator always returns 0. In this case, [inalize will not change the
semantics (eventual state) of its input stream. Now we will show
that the algorithm for finalize produces the correct result.

o When event | arrives, it is inserted into brokenretractions as
well as receivedevents.

e When event 2 amives. it is also inserted into
brokenretractions and receivedevents.

e When event 3 arrives, it is combined with the broken
retractions from events 1 and 2 and itself stored in
brokenretractions with V.=0, V,...=4, V.=10. Events 1 and 2
are removed from brokenretractions. The original event 3 is
also inserted into receivedevents.

e When event 4 arrives, it is combined with the event in
brokenretractions, and its.V, is changed to 4. The event in
brokenretractions is then removed. Also, the modified event
4 is output and inserted into bufferedinsertsbyV, as well as
receivedevents.

e When externalCTI arrives at CEDR time 5, an entry, denoted
as N, with value (0, 8, 5, 0) is inserted into CTILifetimes.
Next, since there are 4 events stored in receivedevents with
sync value between 0 and 8, N.received is set o 4.

e When event 6 arrives, it is first output, and then stored in
both bufferedinsertsbyV, and receivedevents. Next, since
event 6 falls into entry N in CTILifetimes. N.received is

incremented, and is now equal to N.expected=5. As a result,
an internal CTI event is output with V, = 8. LasiCTI is
updated to 8, and in cleaning the operator state, we remove
all 5 events stored in receivedevents, the two events stored in
bufferedinsertsbyV,, and N in CTILifetimes.

5. Asymptotic Results

This section presents our asymptotic algorithm complexity results.
All analysis is worst case in terms of the number of input tuples n,
and the number of output tuples m. The complexity results are
presented in this manner in order to better understand the
optimality of the algorithms presented in this paper. For instance,
even though the worst case time complexity for join is inherently
quadratic in the size of the input, this bad case only occurs when
the output is similarly large. O(n+m) then becomes a lower bound
for the time complexity of all algorithms since all input must be
read and all output must be produced.

The results for the worst cases are the following:

* For stateless operators, all operators have time complexity of
O(n+m), which is clearly optimal. Space complexity is also
optimal at O(1).

» TFor stateful operators, all operators have worst case time
complexity bounded by O((logn)(n+m)). Worst case space
complexity is O(nlogn), which while clearly not optimal
(O(n) is optimal), enables sub-quadratic complexity for time.

An interesting special case to consider is the case where state is
bounded, as is typically the case with well behaved streams when
operators are windowed. In this case, all operators have time
complexity of O(n+m) and space complexity of O(1), which is
clearly optimal. The log in the general case comes from having to
fix output arbitrarily far back in time, which requires an
unbounded accumulation of state, over time. The log is associated
with traversing an ordered structure (in some cases
multidimensional), through internal nodes of this stored state.

6. Related Work

Motivated by enterprise activities [1], RFID technologies [2],
sensor networks [3], surveillance systems [4], network traffic
management [5][20], and many other applications, the research
focus of the database community has been directed to event
stream processing. Several research efforts have been conducted
to develop an expressive language for event stream processing
[6][71[8][16][20] and efficiently process continuous queties over
the incoming streams of event data [9][10][11]. Along this
research direction, several data stream management systems have
been developed, e.g., [12-19][20]. In this section, we overview
related work and differentiate the CEDR system [16] from
existing approaches with respect two major issues: (1) The stream
representation model and (2) the corresponding consistency
guarantees provided by the system’s query processor.

Stream tuples are modeled as points in time in various DSMSs.
Therefore, they do not naturally support the notion of validity
intervals'. Consequently, current DSMSs support a single type of
retraction, i.e., full retractions, which occurs at the time of
delivery, through the concept of revision tuples [18] or negative
tuples [22]. CEDR models the validity interval (application time)
of an event and allows retractions to shorten the event validity
interval arbitrarily. Some DSMS work describes externally

! An interval can be encoded with a pair of points, but the resulting query
formulation will be unintuitive.

separating the notions of application time and system time [19] in
order to resolve out of order delivery. However, current DSMSs
internally are sensitive only to a single notion of time. This
precludes the possibility of speculative execution and, therefore,
the support of a wide spectrum of consistency levels.

To handle the infiniteness of data streams, the window operator is
utilized in almost every DSMS. There are several notions of the
window operator, e¢.g., time-based windows, tuple-based
windows, partitioned windows, windows with a slide, and
predicate windows, e.g., [7][21]. Moreover, the window construct
can be attached to streams [7] as well as to operators [12]. These
windowing approaches commingle the roles of windows as query
constructs and windows as state limiters. CEDR separates these
concerns. The CEDR AlterLifetime operator provides a simple,
general technique for handling windowed query processing from a
semantic point of view, while memory in CEDR may be explicitly
managed separately using the Finalize operator. This is vitally
important as windowing (e.g. computing a moving average over
one minute) is a query construct with deterministic, well-defined
output, while forgetfulness (our Finalize operator) exposes a
state/correctness tradeoff.

There have been several approaches to define and implement
notions of correctness in DSMSs. In Aurora [12], the output
stream is generated on a best effort basis taking into consideration
the maximization of a specific measurement for quality of service
(QoS). The STREAM system [19] describes the notion of
heartbeats to limit the blocking time and the memory
requirements to generate a highly-consistent output. Nile [14]
abides by view update semantics as its notion of correctness, that
is, a continuous query is semantically equivalent to a materialized
view on the input streams. More generally, CEDR implements a
spectrum of consistency levels where the previous approaches can
be mapped into single points inside the consistency domain
depicted in Figure [1].

The concept of output retraction is crucial to output consistency.
Borealis [18] and Nile [22] generate a revision tuple or a negative
tuple, respectively, to retract a previously-generated output in
response to a correction event issued by the stream provider. The
STREAM system [7] has a similar notion to insertion/deletion
tuples through the IStream/DStream operations. However, CEDR
supports retractions in response to two scenarios: First, the stream
provider issues a correction tuple; Second, CEDR may generate
an optimistic output to reduce the blocking time and, later on,
CEDR retracts that output and issues a compensation tuple to
ensure output correctness.

7. Conclusions

In today’s streaming applications, data sources, such as devices,
or RFID generators, frequently send their events across unreliable
networks. As a result, events frequently arrive at the associated
stream processing system out of order. Furthermore, as we
discussed in the introduction, some applications generate
retractions at the data sources. Due to radically diflerent
performance and correctness requirements across different
problem domains, systems have been vertically developed to
handle a specific set of tradeotfs.

[16] introduced a formal stream model which characterized the
full spectrum of behaviors resulting from these stream
imperfections. In addition, it introduced a new approach for
handling these imperfections based on speculative execution.
More specifically, [16] introduced the notion of retractions, which

can be used by operators to remove speculatively produced
incorrect output. In addition, it introduced formal semantics
independent of data delivery order for operators in the system.
Finally, [16] introduced a spectrum of consistency levels
characterized by two parameters. The first parameter, maximum
blocking time, exposed a tradeoff between the degree of
speculation and latency. The second parameter, the maximum
time data is remembered before being purged from the system,
exposed a tradeoff between state size and correctness. While the
second parameter is somewhat known, the first parameter is
unique to CEDR. Varying these two parameters produces a
spectrum of consistency levels which include the specific
tradeoffs built into other systems

In this paper we present the first algorithms for streaming
operators that product speculative output. Specifically, we present
speculative algorithms for three operators, Select,
AlterLifetime, and Join, whose semantics are formally
defined in [16], as well as a formal definition and algorithms for a
new operator, Sum. Combined with the two operators introduced
in this paper, Align and Finalize, the algorithms provided in
this paper fully implement the entire spectrum of consistency
levels for a rich computational model based on relational algebra.
Moreover, these algorithms are provably efficient, and are all
either optimal or within a log of optimal for their worst cases.
Finally, when state is bounded, as is typically the case for
windowed queries over well behaved streams, all algorithms are
linear, optimal, and have state complexity of O(1).

8. REFERENCES

[1] Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise system. Addison
Wesley Publishers, 2002.

S. Garfinkel and B. Rosenberg. RFID: Applications, security,
and privacy. Addison-Wesley Publishers, 2006.

[2

3

Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri.
Towards sensor database systems. In Mobile Data
Management, pages 3—14, 2001.

14

Suman Srinivasan, Haniph Latchman, John Shea, Tan Wong,
and Janice Mc-Nair. Airborne traffic surveillance systems:
video surveillance of highway traffic. In the ACM
international workshop on Video surveillance & sensor
networks, 2004,

[5] S. Babu, L. Subramanian, and J. Widom. A dara stream
management system for network traffic management. In
Proceedings of Workshop on Network-Related Data
Management, 2001.

[6] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. Proceedings of the ACM
SIGMOD Int’1 Conference on Management of Data, 2006.

Arvind Arasu, Shivnath Babu, Jennifer Widom. The CQL

continuous query language: semantic foundations and query
execution. VLDB I. 15(2): 121-142 (2006).

[7

[8] D. Zimmer and R. Unland. On the semantics of complex
events in active database management systems. In 1CDE,
392-399, 1999.

[9] S§. Madden, M. Shah, J. Hellerstein, and V. Raman,
Continuously Adaptive Continuous Queries over Streams. In
Proceedings of ACM SIGMOD, 2002,

[10] Ron Avnur and Joseph M. Hellerstein. Eddies: Contimwously
adaptive query processing. In SIGMOD Conference, pages
261-272, 2000.

[11] Shivnath Babu and Jennifer Widom. Streamon: An adaptive
engine for stream gquery processing. In SIGMOD
Conference, pages 931-932, 2004.

[12] D. I. Abadi, D. Camey, U. Cetintemel, et al. Aurora: A New
Model and Architecture for Data Stream Management.
VLDB Journal, 12(2):120-139, 2003.

[13] J. Naughton, D. DeWitt, D. Maier, et al. The Niagara
Internet Query System. http://www cs. wisc.edwniagara.

[14] M. A. Hammad, M. F. Mokbel, M. H. Ali, et al. “Nile: 4
Query Processing Engine for Data Streams.” In ICDE, 2004.

[15] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek
Riedewald, Varun Sharma, Walker M. White: Cayuga: A
General Purpose Event Monitoring Svstem. In Proceedings
of the CIDR Conference on Innovative Data Systems
Research, 412-422, 2007,

[16] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and
Mingsheng Hong. Consistent Streaming Through Time: A
Vision for Event Stream Processing. . In Proceedings of the
CIDR Conference on Innovative Data Systems Research,
412-422, 2007.

[17] M. I. Franklin, et al. Design considerations for high fan-in
svstems: The HiFi approach. In Proceedings of the CIDR
Conf on Innovative Data Systems Research, 412-422, 2005.

[18] D. Abadi, et al. The Design of the Borealis Stream
Processing Engine. In Proceedings of the CIDR Conference
on Innovative Data Systems Research, 412-422, 2005,

[19] Arvind Arasu, et al. STREAM: The Stanford Stream Data
Manager. In Proceedings of the ACM SIGMOD
international Conference on Management of Data, 2003.

[20] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck,
Vladislav Shkapenyuk. Gigascope: A Stream Database for
Network Applications. SIGMOD Conf, 647-651, 2003.

[21] T. M. Ghanem, W. G. Aref, and A. K. Elmagarmid.
Exploiting Predicate-Window Semantics over Data Streams.
SIGMOD Record, 35(1):3-8, 2006.

[22] Thanaa M. Ghanem, Moustafa A. Hammad, Mohamed F.
1Mokbel, Walid G. Aref, Ahmed K. Elmagarmid:
Incremental Evaluation of Sliding-Window Queries over
Data Streams. IEEE TKDE 19(1): 57-72, 2007.

[23] Utkarsh Srivastava, Jennifer Widom: Flexible Time

Management in Data Stream Systems. In PODS, 263-274,
2004.

