|terative Context Bounding for Systematic Testing of
Multithreaded Programs

Madan Musuvathi

Shaz Qadeer

Microsoft Research
{madanm,qadeer }@microsoft.com

Abstract

Multithreaded programs are difficult to get right becauseuf
expected interaction between concurrently executingattseTra-
ditional testing methods are inadequate for catching sutxh-
currency errors which manifest themselves late in the devel
ment cycle and post-deployment. Model checking or systemat
exploration of program behavior is a promising alternativera-
ditional testing methods. However, it is difficult to penforsys-

tematic search on large programs as the number of possitle pr

gram behaviors grows explosively with the program size.-Con
fronted with this state-explosion problem, traditionaldabcheck-
ers perform iterative depth-bounded search. Althoughctiie for
message-passing software, iterative depth-boundingaieiuate
for multithreaded software.

This paper proposes iterative context-bounding, a newckear
algorithm that systematically explores the executions afildti-
threaded program in an order that prioritizes executionis feiver
context switchesWe distinguish between two kinds of context
switches, preempting and nonpreempting, and show thatdiogin
the number of preempting context switches to a small numiger s
nificantly alleviates the state space explosion, withauttlng the
depth of the execution. We show both theoretically and eically
that context-bounded search is an effective method foroeixg
the behaviors of multithreaded programs. We have impleetent
our algorithm in two model checkers and applied it to a nunuer
real-world multithreaded programs. The iterative conteotinding
algorithm uncovered/ previously unknown bugs in our bench-

marks. Each of these bugs was exposed by an execution with at

most two context switches. Our initial experience with theht
nique is very encouraging and demonstrates that iteratisieegt-
bounding is a significant improvement on existing technégfos
testing multithreaded programs.

1. Introduction

Multithreaded programs are difficult to get right. Specificelad
interleavings, unexpected even to an expert programmed, tie
crashes that occur late in the software development cyctvem
after the software is released. The traditional method dstirig
concurrent software in the industry s¢ress-testingin which the
software is executed under heavy loads with the hope of gindu

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titisenand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright© ACM [to be supplied]. .. $5.00.

an erroneous interleaving. Empirical evidence clearly alestrates
that this form of testing is inadequate. Stress-testing e pro-
vide any notion of coverage with respect to concurrencyn efter
executing the tests for days the fraction of explored sclesde-
mains unknown and likely very low.

A promising method to address the limitations of traditiona
testing methods imodel checkingR, 22] or systematic exploration
of program behavior. A model checker systematically exeut
each thread schedule, while verifying that each executiamm
tains desired properties of the program. The fundamentddi@m
in applying model checking to large programs is the well¥no
state-explosion problen.e., the number of possible program be-
haviors grows explosively (at least exponentially) wite gize of
the program.

To combat the state-explosion problem, researchers hags-in
tigated reduction techniques such as partial-order reztufd] and
symmetry reduction [13, 12]. Although these reduction teghes
help in controlling the state explosion, it remains praadticim-
possible for model checkers to fully explore the behavidiaige
programs within reasonable resources of memory and time. Fo
such large programs, model checkers typically resort toistaes
to maximize the number of errors found before running outeef r
sources. One such heuristicdepth-boundind23], in which the
search is limited to executions with a bounded number ofsstiép
the search with a particular bound terminates, then it ieatgal
with an increased bound. Unlike other heuristics for phdiate-
space search, depth-bounded search provides a valuatdeagev
metric—if search with depth-bounditerminates then there are no
errors in executions with at moststeps.

Since the number of possible behaviors of a program usu-
ally grows exponentially with the depth-bound, iterativepth-
bounding runs out of resources quickly as the depth is iseka
Hence, depth-bounding is most useful when interesting\betsa
of the program, and therefore bugs, manifest in small nurober
steps from the initial state. The state space of messagpas
software has this property which accounts for the succeswdgl
checking on such systems [10, 17]. In contrast, depth-bagnd
does not work well for multithreaded programs, where thedts
in the program have fine-grained interaction through sharenh-
ory. While a step in a message-passing system is the senceiree
of amessage, a step in a multithreaded system is a read erof/at
shared variable. Typically, several orders of magnitudeensteps
are required to get interesting behavior in a multithregofedram
than in a message-passing program.

This paper proposes a novel algorithm calledative context-
bounding for effectively searching the state space of a multi-
threaded program. In the execution of a multithreaded piragr
a context switchoccurs when a thread temporarily stops execution
and a different thread starts. Some context switches ocenithe
currently running thread either terminates or blocks teraply on

a resource. We call thesmnpreemptingontext switches. On the
other handpreemptingcontext switches occur when the scheduler
suspends the running thread at an arbitrary point. Inglitivthe
iterative context-bounding algorithm prioritizes exéons with
fewer preempting context switches during state space lseBor

a given context-bound, the algorithm executes only those exe-
cutions in which the number of preempting context switclseati
mostc. Unlike depth-bounding, a thread in the program can execute
an arbitrary number of steps between context switches.allows

the model checker to go deeper in the state space with a samail n
ber of context switches. Moreover, even with a context-looah

0, a model checker can execute a terminating and deadloek-fre
program to completion. In the rest of the paper, unless waflser
qualified, we will refer to prempting context switches sisnplith-

out the qualifier.

Limiting the number of context switches has many powerful
and desirable consequences for systematic state-spaoeagion
of multithreaded programs. First, we show (Section 2) tbataf
fixed number of context switches, the total number of exeosti
in a program ispolynomialin the number of steps taken by each
thread. This theoretical upper bound makes it practicatygible to
scale systematic exploration to large programs withoutifszing
the ability to go deep in the state space.

Second, we provide (Section 4) empirical evidence that dlsma
number of context switches are sufficient to expose ingicetn-
trivial concurrency bugs. Also, for a set of programs for ethi
complete search is possible, we show that few context sestch
are sufficient to cover most of the state space. This empieica
idence strongly suggests that when faced with limited ness)
which is invariably the case with model checkers, focusimg o
the polynomially-bounded and potentially bug-yieldingedtions
with a small context-switch bound is a productive searcitsgy.

Third, iterative context-bounding has the important prope
that it finds a trace with the smallest number of context-cvas
exposing the error. As most of the complexity of analyzinga-c
current error-trace arises from the interactions betwkernhreads,
the algorithm naturally seeks to provide the simplest exatian
for the error. Moreover, when the search runs out of ressuate
ter exploring all executions withb context-switches, the algorithm
guarantees that any error in the program requires at ¢adston-
text switches. In addition to providing a valuable coveraggtric,
it also provides the programmer with an estimate of the cerifyl
of bugs remaining in the system and the probability of theau-
rence in practice.

We present our iterative context-bounding algorithm in-Sec
tion 3. To evaluate our algorithm, we implemented it in two
model checkers, RIG and GHESS ZING is an explicit-state model
checker for concurrent programs specified in the@& modeling
language. @BEssis a stateless model checker that executes the pro-
gram executables directly, much along the lines of Veriddf, but
designed for shared-memory multithreaded programs. Caluav
tion, based on these two implementations, is describeddtid®es.
Our implementation uncoverédpreviously unknown bugs in sev-
eral real-world multithreaded programs. Each of these was
exposed by an execution with at m@stontext switches.

In summary, the technical contributions of the paper are as
follows:

e The notion of iterative context-bounding and the concomtita
argument that bounding the number of contexts is superior to
bounding the depth as a strategy for systmatic exploratfon o
multithreaded executions.

e A combinatorial arugment that for a fixed number of contexts,
the number of executions is polynomial in the total number of
steps excuted by the program.

e An iterative context-bounding algorithm that systemdlyca
enumerates program executions in increasing order of xbnte
switches.

e Empirical evidence that context-bounded executions expes
teresting behavior of the program, even when the number of
contexts is bounded by a small number.

2. lterative context-bounding

In the view of this paper, model checking a multithreadedypom

is analogous to running the system on a nondeterministiedsglr
and then systematically exploring each choice made by thedsc
uler. Since the scheduler is allowed to choose the next dha¢a
each step, the number of possibilities explodes exporignivith
the number of steps. To make this point concretely, suppose
aterminatingmultithreaded program, i.e., there is a numbsuch
that the length of every execution 6fis bounded by. Let P have

n threads where each thread executes at rhaéps of which at
mostb are potentially-blocking. Then the total number of execu-
tions of P may be as large afk: > (n!)*, a dependence that
is exponential in botm and k. For most programs, although the
number of threads may be small, the number of steps perfobyed
a thread is very large. Therefore, the exponential deperdenk

is especially problematic. All previous heuristics for ferstate-
space search, including depth-bounding, suffer from trablem.

The fundamental and novel contribution of context-bougdm
that it limits the number of scheduler choices without limiting the
depth of the executiomn program executions, there are two kinds
of context switches—preempting and nonpremptingréempting
context switchoccurs when the scheduler preempts the execution
of the currently running thread, say at the expiration ofreetslice,
and schedules another thread. On the other handnpreempting
context switchoccurs when a thread voluntarily yields execution,
either when the thread terminates or blocks on an unavialahl
source. In context-bounding, we bound the number of preiegpt
context switches but leave the number of nonpreemptingegont
switches unconstrained. We show below that the number of exe
cutions of P with at mostc preempting context switches is poly-
nomial in k& but exponential irc. An exponential dependence on
c is significantly better than an exponential dependencé be-
causek is much greater thanand also because in our experience
many bugs are manifested when threads are preempted at unex-
pected places. With this polynomial bound, it becomes aso
apply context-bounded search to large programs, at leashfall
values ofc.

There are two important facts to note about context-boundin
First, the number of steps within each context remains unded.
Therefore, unlike depth-bounding there is no bound on the ex
cution depth. Second, since the number of nonpremptingegbnt
switches remains unbounded it is possible to get a competa-t
nating execution even with a bound of zero! For instanceh suc
terminating execution can be obtained from any state byddhe
ing each thread in a round-robin fashion without preempfidrese
two observations clearly indicate that context boundingsdwot af-
fect the ability of the search to go deep into the state space.

We now present a theoretical bound on the number of context-
bounded executions of a multithreaded program:"Cgtdenote the
number of ways of choosing objects out ofr.

THEOREM1. Consider a terminating progran® with n threads,
where each thread executes at méssteps of which at most
are potentially-blocking. Then there are at md¥iC.(nb + c)!
executions of? with ¢ preempting context switches.

PROOF. The length of each execution d? is bounded bynk.
Therefore, there are are at mosk points where a preempting

100 / o

90

80

70

60

50

40

% State Covered

30

20

10

10 11

Context Switch Bound

Figure 1. Coverage graph

context switch can occur and at md¥ic. ways of selecting:
context switches from thesg: points. Once the context switches
have been chosen, we have a maximumief-c execution contexts
which can be arranged in at mdstb + ¢)! ways. Thus, we get the
upper bound of*C..(nb+c)! executions with: preempting context
switches O

Assuming that: is much smaller than both andnb, the bound
given in the theorem above is simplified (k) (nb)(nd)!
(n?kb)©(nb)!. This bound remains exponential énn, andd, but
each of these values is significantly smaller tihamwith respect to
which this bound is polynomial. It is also interesting to plify
this bound further for non-blocking multithreaded progsarn
such programs, the only blocking action performed by a threa
is the fictitious action representing the termination of theead.
Thereforeb = 1 and the bound becomé¢a?k)°n!.

2.1 Empirical argument

To evaluate the efficacy of iterative context-bounding ipasing
concurrency errors, we have implemented the algorithm aed it
to test several real-world programs. We describe our etialuén
detail in Section 4. Here we give a brief preview of the parfance
of our algorithm on an implementation [15] of a work-steglin
gueue algorithm [8]. This implementation represents theuqu
using a bounded circular buffer which is accessed concilyrby
two threads in a non-blocking manner. The implementor gavbel
test harness along with three variations of his implemantaeach
containing what he considered to be a subtle bug. The tesessr
has two threads that concurrently call functions in the wsidaling
gueue API. Our model checker based on iterative contextidiog
found each of those bugs within a context-switch bound of two
We plotted the coverage graph for this implementation of the
work-stealing queue. Unlike syntactic notions of coverageh as
line, branch or path coverage, we have chosen the numbes-of di
tinct visited states as our notion of coverage. We belieaé state
coverage is the most appropriate notion of coverage for séosa
based safety checkers such as our model checker. Figurdsl plo
the fraction of reachable states covered on the y-axis sgtie
context-switch bound on the x-axis. There are several estarg
facts about this coverage graph. First, full state coveisgehieved
with eleven context switches although the program has éxeu
with at least35 preempting context switches (see Table 1). Second,
90% state coverage is achieved within a context-switch éafn
eight. These observations indicate that iterative corttexinding
is good at achieving high coverage within bounds that are sig

1000000

100000

—=—ich

#States 10000 —+—dfs
—o—random
—¥—db:40

——db:20

T
%—l—k—(’

ottt

100

Executions (x1000)

Figure2. Coverage growth

nificantly smaller than the maximum number of possible cante
switches.

Finally, we also compared the variation of coverage withetim
for various methods of state-space search. Figure 2 pletaum-
ber of distinct visited states on the y-axis against the remobex-
ecutions explored by different methods. Note that the g-&xon a
logarithmic scale. There are five curves in the graph coomdipg
to iterative context-boundingiab), unbounded depth-first search
(dfs), random searchrgndom), depth-first search with depth-
bound 40 {b:40), and depth-first search with depth-bound 20
(db:20). As is evident from the graph, iterative context-bounding
achives significantly better coverage at a faster rate coeda the
other methods. In Section 4, we present a more detailedstignu
of the various graphs presented here.

3. Algorithm

In this section, we describe an algorithm that systemdyical
searches the state space of a program by iteratively iringetse
number of preempting context switches. The algorithm talssis-
put s, the initial state of the program anrsb, the context-switch
bound. The algorithm works in phases. In phas¢he algorithm
explores using a depth-first search all states that areabbecfrom

so Via executions with at mostsb preempting context switches.
All states that are reachable with exacthb preempting context
switches are added to a work list calledrkQueue. In phasel,
these states are removed framerkQueue one by one. For each
state, another depth-first search with a context-switcimtadicsb

is initiated. Just as before, new states generated frone ttases
via executions with exactlysb context switches are pushed to the
back of workQueue. The algorithm continues in this fashion un-
til workQueue is empty. Our algorithm ensures that at the end of
phasei, it has explored all executions wifli + 1) * csb + ¢ pre-
empting context switches. ¢6b = 0, the algorithm performs strict
iterative context-bounding—for any> 0, every execution with
preempting context switches is explored before any exacuwtith
i+ 1 context switches.

We now present a more detailed description of the algorithm.
The algorithm assumes that the set of thread identifiersvisngi
by Tid. The variableworkQueue is a queue of work items whose
type is given in line 1. Each work item contains a state.state,
athread identifietv.tid, and a phase identifies. phase. The work
represented by this work item is a depth-first search witheodn
switch boundcsb to be performed from state.state with the

© 00 N O U A WN B

=
o

16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
il
42

Input: initial statesy € State and context switch bounesb

struct Workltem { State state; Tid t¢id; int phase; }
Queue(Workltem) workQueue;
Workltem w;
int currPhase;
for t € T'id do
w.state = So,
w.tid = t,
w.phase :=0;
workQueue.Add (w);
end
currPhase = 0;
while ~workQueue.Empty () do
w = workQueue .Front ();
workQueue.Pop();
if currPhase < w.phase then
/* explored (currPhase + 1)+ csb+ currPhase
preempting context switches */
currPhase := w.phase;
end
Search(w, 0);
end

Search (Workltem w, int ncs) begin
if ~w.state . Enabled (w.tid) then
return;
end
Workltem z;
z.state ;= w.state Execute (w.tid);
r.tid = w.tid;
z.phase := w.phase;
Search(z, ncs);
for t € Tid \ {w.tid} do
x.tid == t;
if -z.state.Enabled(w.tid) then
x.phase ;= w.phase;
Search(z, ncs);
elseif ncs = csb then
z.phase ;= w.phase + 1,
workQueue.Push(x);
ese
z.phase ;= w.phase;
Search(z, nes+l);
end
end
end
Algorithm 1: Iterative context bounding

proviso that only threaa.tid is executed fromw.state. The field
w.phase represents the phase of the algorithm in which the work
item will be processed.

In lines 5-10,workQueue is initialized with work items cor-
responding to the initial state. One work item is createdefach
thread inTid. Line 11 initializes the current phase of the algo-
rithm stored in the variableurrPhase to 0. The phase is updated
in line 16 whenever the phase of the work item extracted from
the work queue is greater than the current value of the pHdme.
loop in lines 12—-19 removes a work item from the queue, udate
currPhase if required, and invokes the procedusearch on it.
Whenever control reaches line 16, the algorithm guarartegsll
executions with currPhase + 1) * csb + currPhase preempting
context switches have been executed.

The recursive procedur®earch takes two arguments—a work
item w and an integen.cs. The integemcs represents the number
of preempting context switches that have occurred in thesotr
depth-first search. The search is pruned whesn = csb and an
preempting context switch is about to occur. The invocatdn
Search on line 18 has the valugfor this parameter because a fresh
search is being initiated.

The implementation of the proceduearch is as follows. If the
threadw.tid is enabled inw.state we execute that thread (line 25)
one step to create a new state. In lines 25-28, we create a new
work item containing the new state and the same threadd
that was executed to reach it. Th8earch is called recursively
with the new work item but with the same value wfs that was
passed in since no additional context switch has occurrethis
way, our algorithm always gives preferences to schedulés wi
fewer context switches. After this search terminates, teugo-
code in lines 29-42 schedules all threads other thatid from
the new state obtained in line 25. Scheduling a differeneatir
results in a context switch; the test on line 31 determinekef
context switch is nonpreempting. t6.tid is not enabled in the
new state, then the context switch is nonpreempting. Thezef
Search is invoked with the same value ofcs that was passed
in. Otherwise, the context switch is preempting. The testirmm
34 determines whether this preempting context switch et
given the bound ofsb. If the test succeeds, then the context switch
is not allowed, the search is pruned, and a work item is added
to the back of the queue. Otherwissarch is called recursively.
The algorithm is guaranteed to terminate if for all possibiead
schedules, the input program reaches a state in which dvergd
is either blocked or terminated.

State caching is orthogonal to the idea of context-boundiog
algorithm may be used with or without it. In fact, we have im-
plemented our algorithm in two different model checkersiz,
which caches states andHEsS which does not cache states. The
description in this section has ignored the issue of stathiog. It
is easy enough to add that feature by introducing a globé&dlvia:

Set(State) table;

The variabletable is initialized to the empty set. We also add the
following code at the very beginning Skarch to prune the search
if a state is revisited.

if table.Contains(w.state) then
return;

end
table.Add(w.state);

4. Empirical Evaluation

We have created two implementations of iterative contextroling
in the ZNG and GHEssmodel checkers. We now give brief de-
scriptions of these two model checkers.

ZING has been designed for verifying models of concurrent
software expressed in theiG modeling language. The models
may be created manually or automatically using other tdols-
rently, there exist translators from subsets of C# and X86érably
code into the ZNG modeling language. IXG is an explicit-state
model checker; it performs depth-first search with statéicac It
maintains the stack compactly using state-delta compmmessnd
performs state-space reduction by exploiting heap-symymet

CHESsis meant for verifying concurrent programs directly and
does not require a model to be created. Similar to the Veri$of
model checker, Bessis stateless and runs program executables
directly. However, Verisoft was designed for messageipgsoft-
ware whereas Bessis designed to verify shared-memory multi-
threaded software. SinceHEssdoes not cache states, it expects
the input program to have an acylic state space and termimate
der all possible thread schedules. Thev& model checker de-
scribed earlier has no such restriction and can handle haficc
and acyclic state spaces.

Num Max | Max | Max
Programs LOC | Threads| K B c
Bluetooth 400 3 15 2 8
File System Model| 84 4 20 8 13
Work Stealing Q. 1266 3 99 2 35
APE 18947 4 247 2 75
Dryad Channels | 16036 5 273 4 167

Table 1. Characteristics of the benchmarks. For each benchmark,
this table reports the number of lines, the number of thredids
cated by the test driver. For an execution, K is the total nremalb
steps, B is the number of blocking instructions, and c is tina-n

ber of preempting context switches. The table reports théman
values of K,B, and ¢ seen during our experiments.

emulates processes creating files and thereby allocatiagand
blocks. Each inode and block is protected by a lock.
Work-Stealing queue: This program is an implementation [15]
of the work-stealing queue algorithm originally designed the
Cilk multithreaded programming system [8]. The program &as
gueue of work items implemented using a bounded circuldebuf
Our test driver consists of two threads, a victim and a thiedf

For each program execution, each model checker verifies concurrently access the queue. The victim thread pushek wor

language-specific and programmer-supplied assertionsdti-
tion, the absence of data-races along each execution isvatso
fied using an implementation of the Goldilocks algorithm [@Lr
verification methodology partitions the set of program ablés
into data and synchronization variables. Synchronizataiables,
such as locks, events, and semaphores, are used to ensuhetba
are no data-races on the data variablesESs introduces con-
text switches only at accesses to synchronization vasableis is
sound as long as there are no data-races on the data vaftdbkes
specification that is verified by the model checker.

4.1 BenchmarksUsed

We evaluated the iterative context-bounding algorithm aetaof
benchmark programs. Each program is an open library, rieguir
a test driver to close the system. The test driver allocdtesatls
that concurrently call interesting sequences of librargcfions
with appropriate inputs. The input program together with tést
driver forms a closed system that is given to the model chrecke
for systematically exploring the behaviors. For the puepokour
experiments, we assume that the only nondeterminism imgh i
program and the test driver is that induced by the schedutéch
the model checker controls.

Obviously, a model checker can only explore behaviors of the
program triggered by the test driver. The quality of theestygace

search, and thus the bugs found depends heavily upon goobd tes

drivers. When available, we used existing concurrent @s¢s for
our experiments. For programs with no existing test casesynwte
our own drivers that, to our best knowledge, explored irstimng
behavior in the system. Comprehensively closing an opetesys
to expose most of the bugs in the system is a challenging gurgbl
beyond the scope of this paper.

We provide a brief description of the programs used for our
evaluation below.

Bluetooth: This program is a sample Bluetooth Plug and Play
(PnP) driver modified to run as a library in user space. Thepgam
driver does not contain hardware-specific code but captilres
synchronization and logic required for basic PnP functibnaVe
wrote a test driver with three threads that emulated theas®n
of the driver being stopped when worker threads are perfami
operations on the driver.

File System Model: This is a simplified model of a file system
derived used in prior work (see Figure 7 in [7]). The program

items to and pops them from the tail of the queue. The thiefattir
steals work items from the head of the queue. Potentialfertamnce
between the two threads is controlled by means of sophistica
non-blocking synchronization.

APE: APE is an acronym for Asynchronous Processing En-
vironment. It contains a set of data structures and funstitbiat
provide logical structure and debugging support to asyrobus
multithreaded code. APE is currently used in the Windowgatpe
ing system. For our experiments, we compiled APE in useramod
and used a test driver provided by the implementor of APEhén t
test, the main thread initializes APE’s data structuresates two
worker threads, and finally waits for them to finish. The worke
threads concurrently exercise certain parts of the interfaiovided
by APE.

Dryad channels: Dryad is a distributed execution engine for
coarse-grained data-parallel applications [14]. A Drypgliaation
combines computational "vertices” with communication doh
nels” to form a data-flow graph. Dryad runs the application by
executing the vertices of this graph on a set of availablegso
sors communicating as appropriate through files, TCP pgas,
shared-memory FIFOs. The test harness for Dryad for ourrexpe
iments was provided by its lead developer. The testthdseads
and exercises the shared-memory channel library used fiomen
nication between the nodes in the data-flow graph.

Transaction manager: This program provides transactions in a
system for authoring web services on the Microsoft .NETfptat.
Internally, the in-flight transactions are stored in a halslet, access
to which is synchronized using fine-grained locking. We used
isting test harnesses written by our colleagues for ourraxgats.
Each test contains two threads. One thread performing aatipe
—create, commit, or delete— on a transaction. The secomédhr
is a timer thread that periodically flushes from the haslketatl
pending transactions that have timed out.

4.2 Benchmark Characteristics

Except for the transaction manager, all the benchmarks alse¢e
are written in a combination C and C++. Table 1 enumerates the
characteristics of these benchmarks. The transaction geasa
ZING model constructed semi-autmatically from the C# implemen-
tation, and has roughly000 lines of code.

In the rest of the section, we will show that bounding the nemb
of preempting context switches is an effective method ofakpg

Bugs with

Total ontext Bound
Programs Bugs
Bluetooth 1

C
0
0
Work Stealing Queug 3 0
0
2
1

N R O PR R R
O NN OIN
O Or OO W

Transaction Manage 3
APE 4
Dryad Channels 3

Table 2. For a total of 14 bugs that our model checker found. this
table shows the number of bugs exposed in executions witttlgxa

¢ preempting context switches, ferranging from0 to 3. The 7
bugs in the first three programs was previously known. likerat
context-bounding algorithm found threpreviouslyunknownbugs

in Dryad and APE.

interesting behaviors of the system, while alleviatingdtae space

explosion problem. Note, as described in Section 2, bogntlie

number of preempting context switches results in a stateespa

polynomial in the number of steps in an execution. This alow

to scale systematic exploration techniques to larger progr
Specifically, we will use our experiments to demonstrate the

following two hypotheses

1. Manysubtlebugs manifest themselves in executions with very
small preempting context switches.

2. Most states can be covered with few preempting context
switches

4.3 Small context bounds expose subtle bugs

Context bounding relies on the intuition that many errorsuoc
due to few context switches happening at thight places. To
substantiate this intuition, we ran the iterative contextmnding
program for the five programs shown in Table 2. For the first
three programs, namely Bluetooth, work-stealing queud, the
transaction manager, we introduceknown concurrency bugs that
the respective developers considered subtle concurrerang €T he
iterative context bounding algorithm was able to find allsacrors
within a bound of3.

We also ran the iterative context-bounding algorithm on the
APE and Dryad programs. These programs are the largest éeamp
our model checkers is able to currently handle. We foundad odit
7 previously unkonwnconcurrency errors. To provide the reader
with an idea of the complexity of these errors, we describe afhn
the errors we found in Dryad below in detail. This error contd
be found by a depth-first search, even after running for alecafp
hours.

Dryad use-after-free bug: When deallocating a shared heap
object, a concurrent program has to ensure that no existiegd in
the system has a live reference to that object. This is a conuoio-
currency problem that is very hard to get right. Figure 4 dbss
an error that requires only one preempting context switcit,6b
nonpreempting context switches. The iterative contexiring
algorithm finds the error when the bound is set to one. Note, th
algorithm does not bound the number of nonpreempting contex
switches.

[
A
||
|

% State Space Covered

——Work Stealing Queue

Figure 3. Figures shows the percentage of the entire state space
(y axis) covered by executions with bounded number of préemp
ing context switches (x axis). For state spaces of progranals
enough for our model checkers to completely search, thehgrap
shows that more tha#0% of the state space is covered with exeuc-
tions with at mos8 context switches.

subsequently delete the channel, which in this case is thrergu
this pointer for the worker thread. The use-after-free bug accur
when the worker thread is subsequently scheduled. Inbegdst
this bug scenario is prevented if the context switch happigis
before the call ta\lertApplication or after the worker thread
enters the critical section.

When run with a context bound one, the iterative contextedwi
algorithm systematically tried its budgeted preemptingtexgt
switch at every step, and eventually found the small window i
AlertApplication that found the error. In contrast, a depth-first
search is flooded with an unbounded number of preemptingxont
switches, and is thus unable to expose the error within redde
time limits.

4.4 Few context boundscover most states

In the previous section, we empirically showed that a smathiper
of context switches are sufficient to expose interesting saritle
concurrency errors. In this section, we show that a fair greiage
of state space is reached through executions with few prizegnp
context switches. Obviously, we are only able to demorsstitzis
on programs for which our model checkers are abkotopletehe
state space search.

Figure 3 shows the cumulative percentage of the entiresstate
space covered by executions with increasing context bouritss
results for transaction manager benchmark is from tines2anodel
checker, which is an explicit-state model checker. Thusinto
ing states is straightforward for this program. The renmajrthree
programs are actual executables run directly by the£smodel
checker. GiEsSis a stateless model checker, and it is fairly com-
plicated to capture the state of these executables, whidke ma
extensive call to the synchrnoization primitives provided the
kernel. Thus, capturing states would require accountingthis
kernel state, apart from the executable state in the glohat v
ables, heap, and the stacklnstead of capturing the states, we
use the Mazurkiewicz trace [16] as a representation forttte.sA
Mazurkiewicz trace captures the happens-before relattwéden

The error involves a message channel, which contains a few accesses to the synchronization variables in an execuitioe. tTwo
worker threads that process messages in the channel. Waen th executions that produce the same Mazurkiewicz trace anegua

function TestChannel calls theclose function on the channel,

teed to result in the same state.

each worker thread gets a STOP message, in response to which a Figure 3 shows that for both Bluetooth and the filesystem

worker thread calls thealertApplication function, as part of
its cleanup process. However, when there is an preemptimigxo
switch right before the thread enters théaseCs critical section,
the main thread is able to return from tkeose function and

model,4 preempting context switches are sufficient to completely

1This difficulty in capturing the states is the key reason fesigning
CHEssas a stateless model checker.

// Function called by worker thread
void RChannelReaderImpl::AlertApplication(
RChannelItem* item)

{
RChannelInterruptHandler* interruptHandler = NULL;
{
// need a context switch here for the bug
EnterCriticalSection(&m_baseCS) ;
if (m_interruptHandler != NULL)
{
// code removed here
// process interrrupts
}
}
}
// Function called by the main thread
void TestChannel (WorkQueue* workQueue, ...)
{

// RChannelSerializedReader is a subclass
// of RChannelReaderImpl
RChannelReader* channel =

new RChannelSerializedReader(..., workQueue);
// ... do work here

channel->Close();

// wrong assumption that channel->Close() calls
// workQueue->Stop(), which waits for all

// worker threads to be done

delete channel;
// BUG: deleting the channel when
// worker threads still have a valid reference

}

Figure 4. Use after free bug in Dryad. The bug requires a context

switch to happen right before the call to EnterCritical8etin
AlertApplication. This is the only preempting context setit The

bug trace Giessfound involves 6 nonpreempting context switches.

explore the entire state space. For the relatively largarstction
manager and the work-stealing queue benchmark, a contextsb
of 6 and8 respectively are sufficient to cover more tH¥% of the
state space. This strongly suggests the advantage ofvitecain-
text bounding — when systematically exploring the behawaibr
multithreaded programs, model checkers can maximize spatee
coverage by focusing on the polynomial number of executiits
few preempting context switches.

1000000

o /_/——/‘—_//

10000

States Covered

100

12345678 910111213141516171819202122 2324 25 26 27 2829 30
Exections (x1000)

1000000

K_:MM .
__M

——idfs-125

States Covered
~

—s—dfs
—idfs-100

—idfs-75

103 s 7 9 om o1 15 w1 A B B B B
Executions (x1000)

Figure 6. Coverage growth for Dryad

that context bounding is able to systematically achieveebstate
space coverage, even in the fit8b0 executions.

5. Related work

Context-bounding: The notion of context-bounding was intro-
duced by Qadeer and Wu [21] as a method for static analysis of
concurrent programs by using static analysis techniquesiajged
for sequential programs. That work was followed by the theor
ical result of Qadeer and Rehof [20] which showed that cdntex
bounded reachability analysis for concurrent boolean narog is
decidable. Our work exploits the notion of context-bougdfor
systematic testing in contrast to these earlier resultshwviere fo-
cused on static analysis. The combinatorial argument dii@Ge2
and the distinction between preempting and nonpreemptintext
switches is a direct result of our focus on dynamic rathem 8tatic
analysis.

State-space reduction techniques: Researchers have explored

For programs on which the model checker is unable to complete the use of partial-order reduction [9, 19, 18, 3] and symynetr

the state space search, we report the increase in the sisited v
by different search strategies. Figure 5 shows the numbstatés

reduction [13, 5, 12] to combat the state-space explosiai-pr
lem. These optimizations are orthogonal and complemerttary

covered in the y axis with the number of complete executidns o the idea of context-bounding. In fact, our preliminary expents
the program in the x axis for the APE benchmark. Figure 6 shows indicate that state-space coverage increases at an even e
corresponding graph for the Dryad benchmark. These twohgrap when partial-order reduction is performed during itertontext-

compare the iterative context bounding algorithm with teptt-
first (dfs) search strategy and the iterative depth-boundidfs)
strategy. For the idfs search, we selected different demihds and

bounding.
Analysis tools: Researchers have developed many dynamic
analyses, such as data-race detection [24] and atomiicilstion

selected the the depth bound with maximum, minimum, and me- detection [6], for finding errors in multithreaded softwa&uch

dian coverage. For comparison, we also performed a randate st

analyses are again orthogonal and complementary to centext

space search, and we report the coverage only for APE. Randombounding. They are essentially program monitors which can b

search on Dryad did very poorly. From the graph, it is vergemt

applied to each execution explored by iterative contexiroing.

Heuristic search: Confronted with limited computational re-
sources and large state spaces, researchers have deVedopisd
tics for partial state-space search. Groce and Visser [14] p
posed the heuristic of prioritizing states with more endikeeads.
Sivaraj and Gopalakrishnan [25] proposed the use of a rangadin
through the search space. Unlike these heuristics, ¥eratintext-
bounding provides an intuitive notion of coverage and apafyial
guarantee on the number of context-bounded executions.

6. Conclusions

Model checking or systematic exploration of program betraig
a promising alternative to traditional testing methods raulti-
threaded software. However, it is difficult to perform sysétic

search on large programs because the number of possible pro-

gram executions grows exponentially with the length of tke-e
cution. Confronted with this state-explosion problemditianal
model checkers perform partial state-space search ugihgitpies
such as iterative depth-bounding. Although effective fassage-
passing software, iterative depth-bounding is inadedfieateulti-
threaded software because several orders of magnitudestep®
are required to get interesting behavior in a multithregotedram
than in a message-passing program.

This paper proposes a novel algorithm caliedative context-
bounding for effectively searching the state space of a multi-
threaded program. Unlike iterative depth-bounding whigkgpri-
ority to executions with shorter length, iterative contbrunding
gives priority to executions with fewer context switchese ghow
that that by bounding the number of context switches, the-num
ber of executions becomes a polynomial function of the etkacu
depth. Therefore, context-bounding allows systematidogation
to scale to large programs without sacrificing the abilitgeodeep
in the state space.

We implemented iterative context-bounding in two model
checkers and used our implementation to unc@vereviously un-
known bugs in realistic multithreaded benchmarks. Eacthee
bugs required at mo&tcontext switches. Our experience with these
benchmarks and other benchmarks with previously known nigs
dicates that many bugs in multithreaded code are manifestea:-
cutions with a few context switches. Our experiments algcate
that state coverage increases faster with iterative cobtexnding
than with other search methods. Therefore, we believe tbat-i
tive context-bounding significantly improves upon exigtsearch
strategies.

In future work, we would like to make our model checker even
more scalable. We find that on very large benchmarks, seaeh d
not terminate even for a context-switch boun®ofVe believe that
incorporating complementary state-reduction technigsash as
partial-order reduction, could improve scalability. Yabéher inter-
esting direction for our work is to extendHEss which currently
handles user-mode programs written against the WIN32 API, t
kernel-mode programs.

References

[1] Derek Bruening and John Chapin. Systematic testing dfithteaded
Java programs. Technical Report LCS-TM-607, MIT/LCS, 2000

[2] E. M. Clarke and E. A. Emerson. Synthesis of synchroiorat
skeletons for branching time temporal logic. Unogic of Programs
LNCS 131, pages 52—71. Springer-Verlag, 1981.

[3] Matthew B. Dwyer, John Hatcliff, Robby, and Venkatestasad
Ranganath. Exploiting object excape and locking infororaiin
partial-order reductions for concurrent object-orienpgrdgrams.
Formal Methods in System Desjit5:199-240, 2004.

[4] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Golkdiloc
Efficiently computing the happens-before relation usinckéets.

In FATES/RV 06: Formal Approaches to Testing and Runtime
Verification 2006.

[5] F. Allen Emerson and A. Prasad Sistla. Symmetry and model
checking.Formal Methods in System Desid@{1/2):105-131, August
1996.

[6] C. Flanagan and S. N. Freund. Atomizer: A dynamic atotyici
checker for multithreaded programs. ROPL 04: Principles of
Programming Language#\CM, 2004.

[7] C. Flanagan and P. Godefroid. Dynamic partial-ordeuotion for
model checking software. IROPL 05: Principles of Programming
Languagespages 110-121. ACM Press, 2005.

[8] Matteo Frigo, Charles E. Leiserson, and Keith H. Randdlhe
implementation of the Cilk-5 multithreaded language.PIlrDI 98:
Programming Language Design and Implementatjmeges 212-223,
1998.

[9] Patrice Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosiobl&m
LNCS 1032. Springer-Verlag, 1996.

[10] Patrice Godefroid. Model checking for programmingdeages using
Verisoft. INPOPL 97: Principles of Programming Languag@sges
174-186, 1997.

[11] Alex Groce and Willem Visser. Model checking Java peogs using
structural heuristics. IhSSTA 02: Software Testing and Analysis
pages 12-21, 2002.

[12] Radu losif. Exploiting heap symmetries in expliciatt model
checking of software. IMSE 01: Automated Software Engineering
pages 254-261, 2001.

[13] C. Norris Ip and David L. Dill. Better verification thrgtn symmetry.
Formal Methods in System Desjd¥(1/2):41-75, 1996.

[14] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, drDennis
Fetterly. Dryad: Distributed data-parallel programs freeguential
building blocks. Technical Report MSR-TR-2006-140, Mewét
Research, 2006.

[15] Daan Leijen. Futures: a concurrency library for C#. fr@cal Report
MSR-TR-2006-162, Microsoft Research, 2006.

[16] A. Mazurkiewicz. Trace theory. LNCS 255, pages 279-3¥inger-
Verlag, 1987.

[17] Madanlal Musuvathi, David Park, Andy Chou, Dawson Rglen
and David L. Dill. CMC: A Pragmatic Approach to Model Cheaofin
Real Code. IrOperating Systems Design and Implementatidegc
2002.

[18] Ratan Nalumasu and Ganesh Gopalakrishnan. An effipieriial
order reduction algorithm with an alternative proviso ierpentation.
Formal Methods in System Desj20(3):231-247, May 2002.

[19] Doron Peled. Partial order reduction: Model-checkimging
representatives. IMFCS 96: Mathematical Foundations of Computer
Sciencepages 93-112. Springer-Verlag, 1996.

[20] S. Qadeer and J. Rehof. Context-bounded model cheakiing
concurrent software. ITACAS 05: Tools and Algorithms for the
Construction and Analysis of Systemglume 3440 of_ecture Notes
in Computer Scien¢gpages 93-107. Springer, 2005.

[21] S. Qadeer and D. Wu. KISS: Keep it simple and sequenitigdPLDI
04: Programming Language Design and Implementatjpeges 14—
24. ACM, 2004.

[22] J. Queille and J. Sifakis. Specification and verificatad concurrent
systems in CESAR. In M. Dezani-Ciancaglini and U. Montanari
editors, Fifth International Symposium on Programmijrigecture
Notes in Computer Science 137, pages 337-351. Spring&agver
1981.

[23] Stuart Russell and Peter Norvidhrtificial Intelligence: A Modern
Approach (Second EditionPrentice Hall, 2002.

[24] Stefan Savage, Michael Burrows, Greg Nelson, Patroka®/arro,
and Thomas Anderson. Eraser: a dynamic data race detector fo

multithreaded programsACM Transactions on Computer Systems
15(4):391-411, 1997.

[25] Hemanthkumar Sivaraj and Ganesh Gopalakrishnan. éranvdalk
based heuristic algorithms for distributed memory modeic&ing.
Electronic Notes in Theoretical Computer Scier8@(1), 2003.

