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I. INTRODUCTION 
 
Discriminative learning has become a major theme in recent statistical signal processing and 
pattern recognition research including practically all areas of speech and language processing, 
e.g., [9][10] [13][22][29][35][44][45][48][50]. In particular, much of the striking progress in large 
scale automatic speech recognition over the past few years has been attributed to the successful 
development and applications of discriminative learning, e.g., [35][38][48][49]. A key to 
understanding the speech process is the dynamic characterization of its sequential or variable-
length pattern. Two central issues in the development of discriminative learning methods for 
sequential pattern recognition are: 1) construction of the objective function for optimization; and 
2) actual optimization techniques. There have been a wide variety of methods reported in the 
literature related to both of these issues (e.g., [9][18][22][29][35][38][42][46][50][53][55][59]). 
However, their relationships have not been adequately understood. Because of the practical and 
theoretical importance of this problem, there is a pressing need for a unified account of the 
numerous discriminative learning techniques in the literature. This article is aimed to fulfill this 
need while providing insights into the discriminative learning framework for sequential pattern 
classification and recognition. We intend to address the issue of how various discriminative 
learning techniques are related to and distinguished from each other, and what may be a deeper 
underlying scheme that can unify various ostensibly different techniques. Although the unifying 
review provided in this article is on a general class of pattern recognition problems associated 
with sequential characteristics, we will focus most of the discussions on those related to speech 
recognition and to the hidden Markov model (HMM) [11][51][57]. We note that the HMM as 
well as the various forms of discriminative learning have been used in many signal processing 
related areas beyond speech; e.g., in bioinformatics[6][16], in computational genetics [56], in text 
and image classification/recognition [33][63][66], in video object classification [64], in natural 
language processing [8][10], and in tele-robotics [65]. It is our hope that the unifying review and 
insights provided in this article will foster more principled and successful applications of 
discriminative learning in a wide range of signal processing disciplines, speech processing or 
otherwise.  
In addition to presenting an extensive account of the basic ideas behind approaches and methods 
in discriminative learning, in this article we also desire to position our treatment of related 
algorithms in a wider context of learning and building statistical classifiers from a more general 
context of machine learning. Generative and discriminative approaches are two main paradigms 
for designing and learning statistical classifiers/recognizers. Generative recognizers rely on a 
learned model of the joint probability distribution of the observed features and the corresponding 
class membership. They use this joint-probability model to perform the decision making task 
based on the posterior probability of the class computed by Bayes rule [12][51][67]. In contrast, 
discriminative classifiers/recognizers directly employ the class posterior probability (or the 
related discriminant function), exemplified by the argument that “one should solve the 
(classification/recognition) problem directly and never solve a more general problem as an 
intermediate step” [58]. This recognizer design philosophy is the basis of a wide range of popular 
machine learning methods including support vector machine [58], conditional random field 
[32][45], and maximum entropy Markov models [19][34], etc., where the “intermediate step” of 
estimating the joint distribution has been avoided. For example, in the recently proposed 
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structured classification approach [19] [32][34][45]   in machine learning and speech recognition, 
some well known deficiencies of the HMM are addressed by applying “direct” discriminative 
learning, replacing the need for a probabilistic generative model by a set of flexibly selected, 
overlapping “features”. Since the conditioning is made on the feature sequence and these 
“features” can be designed with long-contextual-span properties, the conditional-independence 
assumption made in the HMM is conceptually alleviated -- provided that proper “features” can be 
constructed. How to design such features is a challenging research direction and it becomes a 
critical factor for the potential success of the structured discriminative approach, which departs 
from the “generative” component or joint distribution. On the other hand, local features can be 
much more easily designed that are appropriate for the generative approach and many effective 
local features have been established (e.g., cepstra, filter-bank outputs, etc. [11][51] for speech 
recognition). Despite the complexity of estimating joint distributions when the sole purpose is 
discrimination, the generative approach has important advantages of facilitating knowledge 
incorporation and of conceptually straightforward analyses of recognizer’s components and their 
interactions.  

Analyses of the capabilities and limitations associated with the two general machine learning 
paradigms discussed above lead to a practical pattern recognition framework being pursued here. 
That is, we attempt to establish a simplistic joint-distribution or generative model, with the 
complexity lower than what is required to accurately “generate” samples from the true 
distribution. In order to make such low-complexity generative models discriminate well, it 
requires parameter learning methods that are discriminative in nature to overcome the limitation 
in the simplistic model structure. This is in contrast to the generative approach of fitting the intra-
class data as conventional maximum likelihood (ML) based methods intend to accomplish. This 
type of practical framework has been applied to and guiding much of the recent work in speech 
recognition research, where HMMs are used as the low-complexity joint distribution for the local 
acoustic feature sequences of speech and the corresponding underlying linguistic label sequences 
(sentences, words, or phones). Popular discriminative parameter learning techniques for HMMs 
are 1) maximum mutual information (MMI) [7][18][21][40][41][42][59][62]; 2) minimum 
classification error (MCE) [1][9][24][28][29][35][36][38][50][53][55], and 3) minimum phone 
error (MPE) and closely related minimum word error (MWE) [13][46][47][48][49]. 

In addition to providing a general overview on the above classes of techniques, this article has 
a special focus on three key areas in discriminative learning. First, it provides a unifying view of 
the three major discriminative learning objective functions, MMI, MCE, and MPE/MWE, for 
classifier parameter optimization, from which insights to the relationships among them are 
derived. We concentrate on a unified objective function that gives rise to various special cases 
associated with different levels of performance optimization for pattern recognition tasks --- 
including performance optimization levels of super-string unit, string unit, and sub-string unit. 
Second, we describe an efficient approach of parameter estimation in classifier design that unifies 
the optimization techniques for discriminative learning. This approach for parameter estimation in 
discriminative learning is based on the optimization framework of growth transformation (GT) 
(see its detailed introduction in Section IV). We show in a step-by-step fashion that this approach 
leads to unified parameter estimation formulas and it is scalable for large pattern recognition tasks.  
The third area is the algorithmic properties of the MCE and MPE/MWE based learning methods 
under the parameter estimation framework of growth transformation for sequential pattern 
recognition using HMMs..  

The organization of this paper is as follows. In Section II, we provide an introduction to 
discriminative learning criteria of MMI, MCE and MPE/MWE. In Section III, we show that 
under certain assumptions, objective functions from MMI, MCE, and MPE/MWE criteria can be 
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formulated and unified to a rational-function form. From that, relations among MMI, MCE, and 
MPE/MWE criteria are studied. In Section IV, we provide an overview of the growth 
transformation (GT) and Extended Baum-Welch (EBW) algorithm based parameter optimization 
framework. Based on the unified rational-function approach of Section III, we show that the same 
GT based parameter estimation framework can be applied to objective functions from the 
discriminative learning criteria of MMI, MCE, and MPE/MWE in sequential pattern recognition. 
In Section V, we derive the GT based parameter optimization formulation of discriminative 
learning for the classifier design of discrete HMMs.  In Section VI, we present the GT based 
parameter optimization formulation of discriminative learning for the classifier design of 
continuous-density HMMs (CDHMMs).  In these studies, some familiarities of HMMs are 
assumed, such as those described in standard textbooks (e.g., [51][57]). Comments and related 
work are discussed in Section VII and the paper is summarized in Section VIII. For expository 
purposes, additional technical details are provided in the Appendixes.  

 
II. DISCRIMINATIVE LEARNING CRITERIA OF MMI, MCE AND MPE/MWE 

MMI (maximum mutual information), MCE (minimum classification error), and MPE/MWE 
(minimum phone error/minimum word error) are the three most popular discriminative learning 
criteria in speech and language processing, which are the main subject of this paper.  

Although the discussion of the discriminative classifier design in this paper has a focus on 
speech and language processing, they are equally applicable to other similar sequential pattern 
recognition problems such as handwriting recognition. References made in this paper to words, 
phones, strings, etc. are for the purpose of showing that the sequential dynamic pattern 
recognition problem can be based on different levels of recognition units. Moreover, the classifier 
in sequential pattern recognition can be constructed based on recognizing each pattern (or 
recognition unit) in isolation. If it can take advantage of the sequential correlation, the classifier 
can also be constructed based on recognizing a string of patterns (or a string of recognition units), 
e.g. phrases, word strings, sentences, etc. This flexibility in classifier design for sequential pattern 
recognition has been a fertile field of research, and many approaches have been developed 
[23][29][48]. 

To set up the stage, we denote by Λ the set of classifier parameters that needs to be estimated 
during the classifier design. For instance in speech and language processing, a (generative) joint 
distribution of observing a data sequence X given the corresponding labeled word sequence S can 
be written as follows: 

( , | ) ( | , ) ( )p X S p X S P SΛ = Λ         (1) 
In this notation, it is assumed that the parameters in the “language model” ( )P S  are not subject 
to optimization. Given a set of training data, we denote by R the total number of training tokens. 
In this paper, we focus on supervised learning, where each training token consists of an 
observation data sequence: Xr=xr,1, …, xr,Tr, and its correctly labeled (e.g., word) pattern sequence: 
Sr = Wr,1,…, Wr,Nr, with Wr,i being the i-th word in word sequence Sr. We use a lower case variable 
sr to denote all possible pattern sequences that can be used to label the r-th token, including the 
correctly labeled sequence Sr and other sequences. 
  

A.  Maximum Mutual Information (MMI) 
In the MMI-based classifier design, the goal of classifier parameter estimation is to maximize 

the mutual information I(X,S) between data X and their corresponding labels/symbols S.  From the 
information theory perspective, mutual information provides a measure of the amount of 
information gained, or the amount of uncertainty reduced, regarding S after seeing X. The MMI 
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criterion is well established in information theory. It possesses good theoretical properties, and it 
is different from the criterion of maximum likelihood (ML) used in generative model based 
learning. Quantitatively, mutual information I(X,S) is defined as 

, ,

( , ) ( | )
( , ) ( , ) log    ( , ) log ( ) ( | )

( ) ( ) ( )X S X S

p X S p S X
I X S p X S p X S H S H S X

p X p S p S
= = = −∑ ∑  (2) 

where ( ) ( ) log  ( )
S

H S p S p S= −∑  is the entropy of S, and H(S|X) is the conditional entropy 

given data X: 
,

( | ) ( , ) log ( | )
X S

H S X p X S p S X= −∑ . When ( | )p S X  is based on model Λ, we 

have  

,

( | ) ( , ) log ( | , )
X S

H S X p X S p S X= − Λ∑         (3) 

Assume that the parameters in P(S) (“language model”) and hence H(S) is not subject to 
optimization. Consequently, maximizing mutual information of (2) becomes equivalent to 
minimizing H(S|X) of (3) on the training data. When the tokens in the training data are drawn 
from an i.i.d. distribution, H(S|X) is given by 

1 1

( , | )1 1
( | ) log  ( | , ) log  

( )

R R
r r

r r
r r r

p X S
H S X p S X

R R p X= =

Λ= − Λ = −∑ ∑ . 

Therefore, parameter optimization of MMI based discriminative learning is to maximize the 
following objective function: 

1 1

( , | ) ( , | )
( ) log log   

( ) ( , | )
r

R R
r r r r

MMI
r rr r rs

p X S p X S
O

P X p X s= =

Λ ΛΛ = =
Λ∑ ∑ ∑

,   (4) 

where P(sr) is the “language model” probability of pattern sequence sr.  
The objective function MMIO of (4) is a sum of logarithms. For comparisons with other 

discriminative training criteria in following sections, we construct the monotonically increasing 
function of exponentiation for (4).  This gives 

[ ]
1

( , | )
( ) exp ( )   

( , | )
r

R
r r

MMI MMI
r r rs

p X S
O O

p X s=

ΛΛ = Λ =
Λ∏∑

%      (5) 

It should be noted that MMIO%  and MMIO have the same set of maximum points, because maximum 
points are invariant to monotonically increasing transforms. For comparisons with other 
discriminative training criteria, we rewrite each factor in (5) as 

( )
model based expected loss

0-1 loss

( , | )
1 ( | , ) 1 1 ( , ) ( | , )

( , | )
r r r

r

r r
r r r r r r

s S sr rs

p X S
P s X s S P s X

p X s
δ

≠

Λ = − Λ = − − Λ
Λ ∑ ∑∑

6444447444448

1442443
.    (6) 

We define (6) as the model-based expected utility for token rX , which equals one minus the 
model-based expected loss for that token.  
 

B. Minimum Classification Error (MCE) 
 The MCE based classifier design is a discriminant-function-based approach to pattern 
recognition [1][28][29]. The decision rule of the classifier is treated as comparisons among a set 
of discriminant functions, and parameter estimation involves minimizing the expected loss 
incurred when these decision rules are applied to the classifier. The loss function in MCE-based 
discriminative learning is constructed in such a way that the recognition error rate of the classifier 
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is embedded in a smooth functional form, and minimizing the expected loss of the classifier has a 
direct relation to classifier error rate reduction.  

The objective (loss) function in MCE-based discriminative learning can be constructed from 
likelihood-based generative models through the following steps. For each training token rX , the 

set of discriminant functions { }
rs

g is given as  

( ; ) log  ( , | )
rs r r rg X p X sΛ = Λ , 

which is the log joint probability of data rX  and the pattern sequence (string) rs given model Λ. 
The decision rule of the classifier/recognizer is defined as 

* *( )  arg max ( ; )
r

r
r r r s r

s
C X s iff s g X= = Λ .      (7) 

In practice, the N most confusable competing strings, sr,1,…, sr,N, against the correct string Sr are 
considered in MCE-based discriminative learning, where each of these N-best strings can be 
defined inductively by 

,1
:

arg max  log ( , | )
r r r

r r r
s s S

s p X s
≠

= Λ   

,1 , 1

,
: , ,...,

argmax  log ( , | )
r r r r r r i

r i r r
s s S s s s

s p X s
−≠ ≠

= Λ ,    i=2,…,N        (8) 

and Λ is the current model parameter set of the classifier. 
Then, a misclassification measure ( , )r rd X Λ  can be defined to approximate the performance of 

the decision rule for each training token rX , i.e., ( , )r rd X Λ ≥0 implies misclassification and 

( , )r rd X Λ <0 implies correct classification. In particular, such a misclassification measure can be 
defined by  

( , ) ( ; ) ( ; )
r rr r S r S rd X g X G XΛ = − Λ + Λ       (9) 

where ( ; )
rS rG X Λ  is a function that represents the scores from the incorrect competing strings and 

( ; )
rS rg X Λ is the discriminant function for the correct string Sr. 

In the case of 1-best string MCE approach (N=1), only the most confusable incorrect string 
sr,1 is considered as the competitor where ( ; )

rS rG X Λ  becomes  

,1
( ; ) ( ; )

r rS r s rG X g XΛ = Λ .      (10) 

However, for the general case where N>1, different definitions of ( ; )
rS rG X Λ  can be used. 

One popular definition takes the following form [29]: 
1

,
1

1
( ; ) log  ( , | )

r

N

S r r r i
i

G X p X s
N

η
η

=

⎧ ⎫Λ = Λ⎨ ⎬
⎩ ⎭

∑        (11) 

Another popular form of ( ; )
rs rg X Λ and ( ; )

rS rG X Λ  (the latter has similar effects to (11) and 

was used in [55]) is 

,
1

( ; ) log ( , | )    

( ; ) log  ( , | )

r

r

S r r r

N

S r r r i
i

g X p X S

G X p X s

η

η

=

⎧ Λ = Λ
⎪
⎨

Λ = Λ⎪
⎩

∑
       (12) 

where η is a scaling factor for joint probability ( , | )r rp X s Λ . In this paper, we adopt ( ; )
rS rG X Λ  

with the form of (12) and set η =1 for mathematical tractability reasons. (The η ≠1 case will be 
discussed in Appendix II.)  
   Given the misclassification measure, the loss function can be defined for each training token r , 
and it is usually defined through a sigmoid function as originally proposed in [28][29] :  
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( ) ( , )

1
( , )

1 r r
r r r d X

l d X
e α− ΛΛ =
+

        (13) 

where α > 0 is the slope of the sigmoid function, often determined empirically. As presented in 
[25] (pp. 156), we also use 1α =  for simplifications in the exposition of this paper. (More 
discussions of α in empirical studies are included in Appendix II). It should be noted that the loss 
function of (13) approximates the zero-one classification error count in a smooth functional form.  

Given the set of all possible pattern sequences { } { },1 ,, ,...,r r r r Ns S s s= associated with 

observation data Xr, and with η =1 and 1α = , we substitute (12) into (13) and rewrite the loss 
function for the training token rX as 

( ) , ,

,

( , | ) ( , | )

( , )
( , | ) ( , | ) ( , | )

r r r r r r

r r r r

r r r r
s s S s s S

r r r
r r r r r r

s s S s

p X s p X s

l d X
p X s p X S p X s

≠ ≠

≠

Λ Λ
Λ = =

Λ + Λ Λ

∑ ∑
∑ ∑

.     (14) 

Correspondingly, we can define the utility function as one minus the loss function, i.e.,  
 
( ) ( )( , ) 1 ( , )r r r r r ru d X l d XΛ = − Λ .       (15) 

 
Then, the goal in the MCE-based discriminative learning becomes minimization of the 

expected loss over the entire training data 

( )
1

1
( ) ( , )

R

MCE r r r
r

L l d X
R =

Λ = Λ∑ .        (16) 

Obviously, minimizing LMCE(Λ) in (16) is equivalent to maximizing the following MCE objective 
function:   

( ) ( )
1 1

( , | )
( ) 1 ( ) ( , )  

( , | )
r

R R
r r

MCE MCE r r r
r r r rs

p X S
O R L u d X

p X s= =

ΛΛ = − Λ = Λ =
Λ∑ ∑∑

   (17) 

It is noteworthy that the summation in (17) for combining utilities of all string tokens for MCE 
forms a sharp contrast to the MMI case as in (5) where a multiplication of utility functions is 
constructed for pooling all string tokens. 
 

 
C. Minimum “Phone” or “Word” Errors (MPE/MWE) 

MPE/MWE is another approach to discriminative learning. It was originally developed in 
[46][48] and has demonstrated quite effective performance improvement in speech recognition. In 
contrast to MMI and MCE described earlier that are typically aimed at large segments of pattern 
sequences (e.g., at string or even super-string level obtained by concatenating multiple pattern 
strings in sequence), MPE aims at the performance optimization at the sub-string pattern level. In 
speech recognition, a pattern string usually corresponds to a sentence which consists of a 
sequence of words, and a sub-string as a constituent of the sentence can be words or phones 
(subwords).  
   The MPE objective function that needs to be maximized is defined as 

1

( , | ) ( , )
( )   

( , | )
r

r

R r r r rs

MPE
r r rs

p X s A s S
O

p X s=

Λ
Λ =

Λ
∑

∑ ∑
      (18) 

where A(sr, Sr) is the raw phone (sub-string) accuracy count in the sentence string sr (proposed 
originally in [46][48]). The raw phone accuracy count A(sr, Sr) is defined as the total phone (sub-
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string) count in the reference string Sr minus the sum of insertion, deletion and substitution errors 
of sr computed based on Sr. 
    The MPE criterion (18) equals the model-based expectation of the raw phone accuracy count 
over the entire training set. This relation can be seen more clearly by rewriting (18) as  

1

( ) ( | , ) ( , )  
r

R

MPE r r r r
r s

O P s X A s S
=

Λ = Λ∑∑  

where 
( , | ) ( , | )

( | , )   
( | ) ( , | )

r

r r r r
r r

r r rs

p X s p X s
p s X

p X p X s

Λ ΛΛ = =
Λ Λ∑

is the model-based posterior probability. 

    The concept of the raw phone accuracy count A(sr, Sr) in (18) can be generalized to define raw 
sub-string accuracy count. In particular, the raw word accuracy count Al(sr, Sr) can be defined in 
the same fashion as the total word (sub-string) count in the reference string Sr minus the sum of 
insertion, deletion and substitution errors of sr computed based on Sr. Based on raw word 
accuracy count Al(sr, Sr), we have the equivalent definition of the MWE criterion: 

1

( , | ) ( , )
( )   

( , | )
r

r

R r r l r rs
MWE

r r rs

p X s A s S
O

p X s=

Λ
Λ =

Λ
∑

∑ ∑
      (19) 

and therefore, in this paper, we merge these two approaches into one MPE/MWE category. 
 

D. Discussions 
Here we provide brief discussions on key differences among the three criteria presented in this 
section. At the single-token level, the MMI criterion uses a model-based expected utility of (6) 
while the MCE criterion uses an classifier-dependent smoothed empirical utility defined by (9), 
(13), and (15). Likewise, the MPE/MWE criterion also uses a model-based expected utility, but 
the utility is computed at the sub-string level; e.g., at the phone or word level. We note that for 
mathematical tractability reasons, in this paper, a specific misclassification measure (12) is used 
for MCE. As a consequence, the smoothed empirical utility (15) takes the same form as (6) 
(though they are derived from different motivations). This can be directly seen by substituting (14) 
to (15). 

At the multiple-token level, by comparing (5), (17), (18), and (19), it is clear that MMI 
training maximizes a product of model-based expected utilities of training tokens, while MCE 
training maximizes a summation of smoothed empirical utilities over all training tokens and 
MPE/MWE training maximizes a summation of model-based expected utilities (computed on 
sub-string units). The difference between the product and the summation forms of the utilities 
differentiates MMI from MCE/MPE/MWE. This difference causes difficulties in extending the 
original GT/EBW formulas proposed for MMI to other criteria (See more detailed discussions on 
this point in Section 7.2, pp. 92 of  [48].) 

In the following sections, we will show how this difference is reflected in our unified 
criterion.  
 

III. THE COMMON RATIONAL-FUNCTION FORM FOR OBJECTIVE FUNCTIONS OF MMI, 
MCE, AND MPE/MWE 

In this section, we show that the objective functions in discriminative learning based on the MMI, 
MCE and MPE/MWE criteria can be mapped to a canonical rational-function form where the 
denominator function is constrained to be positive valued. This canonical rational-function form 
has the benefit of offering insights into the relationships among MMI, MCE, and MPE/MWE 
based classifiers. In addition, it facilitates the development of a unified classifier parameter 
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optimization framework for applying MMI, MCE, and MPE/MWE objective functions in 
sequential pattern recognition tasks.  

 
A. Rational-Function Form for the Objective Function of MMI 

 Based on (5), the canonical rational-function form for MMI objective function can be 
constructed as:  

1

1 1

1 1 1...1 1

1 1 1 1... ...

( ... , ... | ) ( ... )( ... , ... | )
( )   

( ... , ... | ) ( ... , ... | )
R

R R

R R MMI Rs sR R
MMI

R R R Rs s s s

p X X s s C s sp X X S S
O

p X X s s p X X s s

ΛΛΛ = =
Λ Λ

∑
∑ ∑

%  (20)

where  

1
1

( ... ) ( , )
R

MMI R r r
r

C s s s Sδ
=

=∏         (21) 

is a quantity that depends only on the sentence sequence s1,…,sR , and ( , )r rs Sδ  is the Kronecker 

delta function, i.e., 
1    

( , )
0   

r r
r r

if s S
s S

otherwise
δ

=⎧
= ⎨
⎩

. In (20), the first step uses the common assumption 

that different training tokens are independent  of each other. 
 
      The MMI objective function is aimed at improving the conditional likelihood on the entire 
training data set instead of on each individual string (token). It can be viewed as a discriminative 
performance measure at the “super-string” level of all training data s1,…,sR, where CMMI(s1,…,sR)  
can be interpreted as the binary function  (as “accuracy count”) of the “super-string” s1,…,sR, 
which takes value one if the super-string s1,…,sR is correct and zero otherwise.  
 
B. Rational-Function Form for the Objective Function of MCE  

Unlike the MMI case where the rational-function form can be obtained through a simple 
exponential transformation, the objective function of MCE as given in (17) is a sum of rational 
functions rather than a rational function in itself (i.e., a ratio of two polynomials). This creates the 
problem of making the objective function of MCE amenable to the parameter optimization 
framework of growth transform (GT). Consequently, the objective function of MCE is usually 
optimized using the generalized probabilistic descent (GPD) [9][28][29] algorithm or other 
gradient-based methods [37][38]. Despite the popularity and many successful applications, the 
gradient descent based sequential learning using GPD has two main drawbacks. First, it is a 
sample-by-sample learning algorithm. Algorithmically, it is difficult for GPD to parallelize the 
parameter learning process, which is critical for large scale tasks. Second, it is not a monotone 
learning algorithm and it does not have a monotone learning function to determine the stopping 
point of the discriminative learning. Recently, applying other batch-mode gradient-based 
optimization methods, including batch and semi-batch probabilistic descent, Quickprop, and 
Rprop, to MCE training have been proposed, and improved recognition results are reported 
[37][38]. However, monotone convergence of these methods has not been established. 

In this paper, we take a different approach that makes the objective function for MCE-based 
discriminative learning directly suitable for GT-based parameter optimization. The scalability and 
monotone convergence learning properties of GT have the advantage being fast and stable. In 
order to realize this advantage, we need to re-formulate the MCE objective function and derive a 
canonical rational-function form for the objective function of MCE. The canonical rational-
function form of MCE derived in this process has an additional benefit of unifying the MCE 
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objective function with MMI and MPE/MWE ones, upon which their differences and similarities 
can be studied.  

The derivation of the rational-function form for the objective function of MCE is as follows: 

1

( , | ) ( , )
( )  

( , | )
r

r

R
r r r rs

MCE
r r rs

p X s s S
O

p X s

δ

=

Λ
Λ =

Λ
∑

∑ ∑
      (22) 

1 2

1 2

3

3

1 1 1 1 2 2 2 2

1 1 2 2

: :

3 3 3 3

3 3

:

1 2

3 :

( , | ) ( , ) ( , | ) ( , )

( , | ) ( , | )

( , | ) ( , ) ( , | ) ( , )

( , | ) ( , | )
R

R

s s

s s

R R R Rs s

R Rs s

R

O O

OO

p X s s S p X s s S

p X s p X s

p X s s S p X s s S

p X s p X s

δ δ

δ δ
= =

==

Λ Λ
= +

Λ Λ

Λ Λ
+ + +

Λ Λ

∑ ∑
∑ ∑

∑ ∑
∑ ∑

14444244443 14444244443

L

14444424 314444244443 4444

 

1 2

1 2

1 1 2 2 1 1 2 2

3
1 1 2 2

( , | ) ( , | )[ ( , ) ( , )]

( , | ) ( , | )
s s

R

s s

p X s p X s s S s S

O O
p X s p X s

δ δΛ Λ +
= + + +

Λ Λ

∑∑
∑∑

L

1 2

1 2

1 2 1 2 1 2

3
1 2 1 2

( , , , | )[ ( )]

( , , , | )

MCE
s s

R

s s

p X X s s C s s

O O
p X X s s

Λ
= + + +

Λ

∑
∑

L  

1 2 3

1 2 3

1 2 3 1 2 3 1 2 3

4
1 2 3 1 2 3

( , , , , , | )[ ( )]

( , , , , , | )

MCE
s s s

R

s s s

p X X X s s s C s s s

O O
p X X X s s s

Λ
= + + +

Λ

∑
∑

L  

1

1

1 1 1...

1 1...

 ( ... , ... | ) ( ... )
 

 ( ... , ... | )
R

R

R R MCE Rs s

R Rs s

p X X s s C s s

p X X s s

Λ
=

Λ
∑

∑
      (23) 

 

where 1
1

( ... ) ( , )
R

MCE R r r
r

C s s s Sδ
=

=∑ . CMCE(s1,…,sR) can be interpreted as the string accuracy count 

for s1,…,sR, which takes an integer value between zero and R as the number of correct strings in 
s1,…,sR. As it will be further elaborated, the rational-function form (23) for the MCE objective 
function will play a pivotal role in our study of MCE-based discriminative learning. 

 
C. Rational-Function Form for the Objective Functions of MPE/MWE 

Similar to MCE, the MPE/MWE objective function is also a sum of multiple (instead of a 
single) rational functions, and hence it is difficult to derive GT formulas as discussed in [48] (pp. 
92). In order to bypass this issue, a method of optimizing MPE/MWE objective functions based 
on a heuristic weak-sense auxiliary function (WSAF) was developed in [46][48]. In this paper, we 
show how to rigorously overcome the above difficulty by re-formulating the MPE/MWE 
objective function and by deriving a canonical rational-function form for the MPE/MWE 
objective function. This makes the parameter optimization in MPE/MWE-based discriminative 
learning directly amendable to the GT-based parameter estimation framework. It provides a 
unified parameter estimation framework with guaranteed monotone convergence properties 
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which are lacking in other alternative methods such as gradient-based and WSAF-based 
approaches.  

An important finding is that the same method used to derive the rational-function form (23) 
for the MCE objective function can be applied directly to derive the rational-function form for  
MPE/MWE objective functions as defined in  (18) and (19). Note that (18) and (19) are in the 
same form as (22), except that ( , )r rs Sδ  is replaced by ( , )r rA s S  or ( , )l r rA s S . Same derivation 
steps for the objective function of MCE can be applied here and rational-function forms for 
MPE/MWE are given as follows: 

 

1

1

1 1 1...

1 1...

( ... , ... | ) ( ... )
( )   

( ... , ... | )
R

R

R R MPE Rs s
MPE

R Rs s

p X X s s C s s
O

p X X s s

Λ
Λ =

Λ
∑

∑
     (24) 

where 1
1

( ... ) ( , )
R

MPE R r r
r

C s s A s S
=

=∑ , and  

1

1

1 1 1...

1 1...

( ... , ... | ) ( ... )
( )   

( ... , ... | )
R

R

R R MWE Rs s
MWE

R Rs s

p X X s s C s s
O

p X X s s

Λ
Λ =

Λ
∑

∑
     (25) 

where 1
1

( ... ) ( , )
R

MWE R l r r
r

C s s A s S
=

=∑ .  

CMPE(s1,…,sR) or CMWE(s1,…,sR) can be interpreted as the raw phone or word (sub-string unit) 
accuracy count within the “super string” s1,…,sR. Its upper-limit value is the total number of 
phones or words in the full training data (i.e., the correct super-string S1,…,SR). However, the 
actual value can become negative, e.g., if there are too many insertion errors. Correspondingly, 
OMPE(Λ) and OMWE(Λ) can be interpreted as the model-based average raw phone or word accuracy 
count of the full training data set, respectively. 

 
D. Comments and Discussions 

The main result in this section is that all three discriminative learning objective functions, 
MMI, MCE, and MPE/MWE, can be formulated in a unified canonical rational-function form as 
follows: 

1

1

1 1 1...

1 1...

( ... , ... | ) ( ... )
( )   

( ... , ... | )
R

R

R R DT Rs s

R Rs s

p X X s s C s s
O

p X X s s

Λ ⋅
Λ =

Λ
∑

∑
    (26) 

where the summation over s=s1…sR in (26) denotes all possible labeled sequences (both correct 
and incorrect ones) for all R training tokens. As it will be further elaborated, this huge number of 
possible strings can be drastically reduced in practical implementations.  

In (26), 1... RX X  denotes the collection of all observation data sequences (strings) in all R 
training tokens, which we also call a “super string” after concatenating them into one single 
string.  1 1( ... , ... )R Rp X X s sΛ  is the joint distribution of the super-string data X1…XR and its possible 
label sequence s1…sR. MMI, MCE, and MPE/MWE are differentiated in (26) through  the 
criterion-dependent weighting factors 1( ... )MMI RC s s , 1( ... )MCE RC s s , and 1( ... )MPE RC s s , 

respectively. An important property is: 1( ... )DT RC s s  is dependent only on the labeled sequence 
s1…sR, and it is independent of the parameter set Λ to be optimized. 

The rational-function formulation (26) for MMI, MCE, and MPE/MWE objective functions 
serves two main purposes. First, it unifies the objective functions for MMI, MCE, and 
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MPE/MWE in a canonical rational-function form upon which the relations among different 
discriminative learning criteria can be studied and their properties be compared. This provides 
insights into the various approaches in discriminative learning. Second, the unified objective 
function (26) overcomes the main obstacle for applying the GT-based parameter optimization 
framework in discriminative learning. It leads to a scalable and common parameter estimation 
framework for discriminative learning which is highly efficient and has well-founded algorithmic 
convergence properties. All these properties have been among the major concerns in the past 
when applying discriminative learning to sequential pattern recognition. 

 
As presented in this section, the key difference in the rational-function form of MMI, MCE, 

and MPE/MWE criteria is the weighting factor in the numerator of (26), where CDT(s1 ...sR) as a 
generic weighting factor depends on what discriminative training (DT) criterion is being applied. 

For example, for MMI, 1
1

( ... ) ( , )
R

DT R r r
r

C s s s Sδ
=

=∏ , and for MPE, 1
1

( ... ) ( , )
R

DT R r r
r

C s s A s S
=

=∑ . In 

the case of MCE with general N-best competitors where N>1, 1
1

( ... ) ( , )
R

DT R r r
r

C s s s Sδ
=

=∑ , and for 

one-best MCE (N=1), sr belongs to only the subset {Sr, sr,1}. From the canonical rational-function 
form (26), direct comparisons can be made on the objective functions of MMI, MCE and 
MPE/MWE. Table 1 tabulates the relation among these discriminative objective functions. As 
discussed in [48], MPE/MWE has an important difference from MCE and MMI in that the 
weighting given by the MPE/MWE criterion to an incorrect string (sentence token) depends on 
the number of wrong sub-strings (e.g., wrong phones or words) within the string. MCE and MMI 
make a binary distinction based on whether the entire sentence string is correct or not, which may 
not be a good fit if the goal is to reduce the sub-string errors (e.g., word errors in speech 
recognition). This distinction can be clearly seen by comparing the sum of the binary function 

1
1

( ... ) ( , )
R

DT R r r
r

C s s s Sδ
=

=∑  for MCE and the sum of non-binary functions 

1
1

( ... ) ( , )
R

DT R r r
r

C s s A s S
=

=∑  for MPE/MWE. This key difference gives rise to the distinction of the 

sub-string level versus the string level recognition performance optimization in MPE/MWE and 
MCE. Further, the product instead of summation form of the binary function associated with 

MMI, i.e., 1
1

( ... ) ( , )
R

DT R r r
r

C s s s Sδ
=

=∏ , makes it clear that MMI achieves performance 

optimization at the super-string level, e.g., the joint product of Kronecker delta functions becomes 
zero if any sentence token is incorrect. Therefore, all summation terms in the numerator of (26) 
are zero except for the one corresponding to the correct label/transcription sequence. This 
criterion is apparently less desirable than MCE or MPE/MWE, as has been observed extensively 
in speech recognition experiments [35] [46][47][48]. 
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Objective Functions CDT(sr) CDT(s1 ...sR) Label Sequence Set Used in DT 

MCE (N-best) ( , )r rs Sδ  

1

( )
R

DT r
r

C s
=
∑  

{Sr, sr,1,…, sr,N } 

MCE (one-best) ( , )r rs Sδ  

1

( )
R

DT r
r

C s
=
∑  

{Sr, sr,1} 

MPE ( , )r rA s S  

1

( )
R

DT r
r

C s
=
∑  

all possible label sequences 

MWE ( , )l r rA s S  

1

( )
R

DT r
r

C s
=
∑  

all possible label sequences 

MMI ( , )r rs Sδ  

1

( )
R

DT r
r

C s
=
∏  

all possible label sequences 

Table 1: CDT(s1 ...sR) in the unified rational-function form for MMI, MCE, and MPE/MWE objective 
functions. The set of “competing token candidates” distinguishes N-best and one-best versions of the MCE. 
Note that the overall CDT(s1 ...sR) is constructed from its constituents CDT(sr)’s in individual string tokens by 
either summation (for MCE, MPE/MWE) or product (for MMI). 

 
    Another insight from the unified form of the objective function (26) is that in the special case 
of having only one sentence token (i.e., R=1) in the training data and when the sentence contains 
only one phone, then all three MMI, MCE, and MPE/MWE criteria become identical. This is 
obvious because in this case CDT(s1 ...sR) becomes identical. The difference surfaces only when 
the training set consists of multiple sentence tokens. With multiple training tokens, the difference 
lies mainly in the Λ-independent weighing factor CDT(s1 ...sR) (as well as in the set of competitor 
strings) while the general rational-function form (26) for the three criteria remains unchanged. 

Although we intend to derive the GT-based parameter optimization framework for the three 
types of objective functions of MMI, MCE, and MPE/MWE in sequential pattern recognition, it 
should be noted that the unified objective function (26) can provide a critical foundation to derive 
other parameter optimization methods in discriminative learning. For example, recently Jebara 
[26][27] proposed a parameter optimization method for rational functions as an alternative to the 
GT method. This method is based on the reverse Jensen inequality, upon which an elegant 
solution for HMMs with exponential-family densities is constructed [26].  

 
 
 

IV. OPTIMIZING RATIONAL FUNCTIONS BY GROWTH TRANSFORMATION 
 
GT-based parameter optimization refers to a family of batch-mode, iterative optimization 
schemes that “grow” the value of the objective function upon each iteration. That is, the new set 
of model parameter Λ is estimated from the current model parameter set ′Λ  through a 
transformation ( )T ′Λ = Λ  with the property that the target objective function “grows” in its value  

( ) ( )O O ′Λ > Λ  unless ′Λ = Λ . One particular algorithm of this type of optimization techniques is 
called Extended Baum-Welch (EBW) algorithm when HMM parameters are estimated. GT/EBW 
algorithm was initially developed for the homogeneous polynomial by Baum and his colleagues 
[3][4]. It was later extended to optimizing non-homogeneous rational functions as reported in [18]. 
EBW algorithm became popular for its successful application in MMI-based discriminative 
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training of discrete HMMs [18]. It was later extended and applied to MMI-based discriminative 
training of CDHMMs [2][21][42][60][62].  

The importance of GT/EBW algorithm lies in its monotone convergence properties, its 
algorithmic effectiveness and scalability for parallel execution, and its closed-form parameter 
updating formulas for large-scale optimization problems. The unified parameter optimization 
framework of GT also alleviates the need for other heuristics, e.g., tuning the parameter-
dependent learning rate as in some other methods [29][53]. 
    Let G(Λ) and H(Λ) be two real-valued functions on the parameter set Λ, and the denominator 
function H(Λ) is positive valued. The goal of GT based parameter optimization is to find an 
optimal Λ that maximizes the objective function ( )O Λ which is a rational function of the 
following form: 

( )
( )   

( )

G
O

H

ΛΛ =
Λ

.         (27) 

For example, ( )O Λ can be one of the rational functions of (20), (23), (24) and (25) for the MMI, 
MCE, and MPE/MWE objective functions, respectively, or the general rational-function (26). In 
the general case of (26), we have 

( ) ( ,  | ) ( )
s

G p X s C sΛ = Λ∑ , and   ( ) ( ,  | )  
s

H p X sΛ = Λ∑     (28) 

where we use short-hand notation s=s1 ...sR  to denote the labeled sequences of all R training 
tokens/sentences,  and X=X1 ...XR, to denote the observation data sequences for all R training 
tokens. 
 
Primary Auxiliary Function: 

As originally proposed in [18], for the objective function (27), the GT-based optimization 
algorithm will constructs an auxiliary function of the following form: 

( ; ) ( ) ( ) ( )F G O H D′ ′Λ Λ = Λ − Λ Λ +        (29) 
where D is a quantity independent of the parameter set, and Λ is the model parameter set to be 
estimated by applying GT to another model parameter setΛ′ . The GT algorithm starts from the 
(initial) parameter set ′Λ (e.g., obtained using maximum likelihood training). Then, it updates the 
parameter set from ′Λ  to Λ by maximizing the auxiliary function ( ; )F ′Λ Λ , and the process 

iterates until convergence is reached.  Maximizing the auxiliary function ( ; )F ′Λ Λ  can often be 
more feasible than directly maximizing the original rational function O(Λ). The important 
property of GT-based parameter optimization is that as long as D is a quantity not relevant to the 
parameter set Λ, an increase of F(Λ;Λ′)  guarantees an increase of O(Λ). This can be seen clearly 
from the following derivation. 
    Substituting ′Λ = Λ  into (29), we have 
 
 

0

( ; ) ( ) - ( ) ( )     F G O H D D
=

′ ′ ′ ′ ′Λ Λ = Λ Λ Λ + =
144424443

 

Hence, 

( )

( ; ) - ( ; ) ( ; ) - ( ) - ( ) ( ) 

( )
( ) ( ) ( ) ( ) ( )

( )

F F F D G O H

G
H O H O O

H

′ ′ ′ ′ ′Λ Λ Λ Λ = Λ Λ = Λ Λ Λ

⎛ ⎞Λ ′ ′= Λ − Λ = Λ Λ − Λ⎜ ⎟Λ⎝ ⎠

 

    Since H(Λ) is positive, we have ( ) ( )O O ′Λ − Λ >0 on the right hand side, as long as 

( ; ) ( ; )F F′ ′ ′Λ Λ − Λ Λ >0 on the left hand side. 
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Secondary Auxiliary Function: 
    However, ( ; )F ′Λ Λ may still be too difficult to optimize directly, and a secondary auxiliary 

function can be constructed and optimized based on the previous auxiliary function ( ; )F ′Λ Λ . As 
proposed in [17], this secondary auxiliary function in GT-based parameter estimation can have 
the following form:  
 

( ; ) ( , , , ) log ( , , , )
s q

V f q s f q s
χ

χ χ′ ′Λ Λ = Λ Λ∑∑∑       (30) 

where ( , , , )f q sχ Λ  is a positive valued function which is constructed with discrete arguments1 of 

, ,q sχ and which is related to the primary auxiliary function ( ; )F ′Λ Λ  according to 
 
   ( ; ) ( , , , )

s q

F f q s
χ

χ′Λ Λ = Λ∑∑∑        (31) 

      By applying the Jensen’s inequality to the concave log function, it is easy to prove (proof 
omitted here) that an increase in the auxiliary function ( ; )V ′Λ Λ guarantees an increase in 

log ( ; )F ′Λ Λ . Since logarithm is a monotonically increasing function, this implies an increase of  

( ; )F ′Λ Λ  and hence an increase of the original objective function O(Λ). 
 

V. DISCRIMINATIVE LEARNING FOR DISCRETE HMMS BASED ON THE GT FRAMEWORK 
The GT/EBW-based discriminative learning for discrete HMMs needs to estimate the model 

parameters -- { },{ },{ ( )}i j ia b kΛ =  consisting of the state transition and emitting probabilities. We 

derive the parameter optimization formula that “grows” the generic discriminative objective 
function O(Λ) in the form of (26) which covers MMI, MCE and MPE/MWE as special cases. The 
discriminative function O(Λ) is difficult to optimize directly. However, since it is a rational 
function, it is amenable to the GT/EBW-based parameter estimation framework. We can 
construct the auxiliary function F and then construct the secondary auxiliary function V  based on 
F. We describe how to optimize ( ; )V ′Λ Λ , leading to the GT-based parameter estimation 
formulas for all three types of discriminative criteria: MMI, MCE, and MPE/MWE. This 
approach is applicable to any other discriminative criteria as long as the objective functions can 
be represented in a rational-function form of (26). 

For the discrete HMM, the observation space is quantized by some discrete codebook. In this 
case, X=X1 ... XR, is a concatenation of all training tokens, and each training token rX consists of 
a sequence of discrete indices obtained by mapping the time sequence of observations for r-th 
token to a discrete index sequence with each element xr,t ∈ [1,2,…, K], where K is the size of the 
codebook index set and xr,t is the index of the cell that the observation of the t-th frame in r-th 
token is quantized to. 

 
A.  Constructing the Primary Auxiliary Function ( ; )F ′Λ Λ  

Substituting (28) into (29), we obtain the following auxiliary function  

                                                 
1 Examples of the arguments , ,q sχ are the discrete acoustic observation, the HMM state sequence, 
and the label sequence, respectively,  in a discrete-HMM-based sequential classifier.  
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[ ] [ ]

( ; ) ( , | ) ( ) ( ) ( , | )

( , | ) ( ) ( )   ( , , | ) ( ) ( )
s s

s s q

F p X s C s O p X s D

p X s C s O D p X q s C s O D

′ ′Λ Λ = Λ − Λ Λ +

′ ′= Λ − Λ + = Λ − Λ +

∑ ∑

∑ ∑∑
   (32)  

where q is an HMM state sequence, and s=s1 ...sR  is the “super” label sequence for all R training 
tokens (including correct or incorrect sentences). The main terms in the auxiliary function F(Λ;Λ′) 
above can be interpreted as the average deviation of the accuracy count. 
 

B. Constructing the Secondary Auxiliary Function ( ; )V ′Λ Λ  
Since p(s) depends on the language model and is irrelevant for optimizing Λ, we have 

p(X,q,s|Λ) = p(s) · p(X,q|s,Λ), and  
( ; ) [ ( ) ( )] ( ) ( , | , )

s q

F C s O p s p X q s D′ ′Λ Λ = − Λ Λ +∑∑      

[ ]( ) ( ) ( , | , )
s q

d s p q s
χ

χ′= Γ Λ + Λ∑∑∑      (33) 

where  
         [ ]( ) ( , ) ( ) ( ) ( )X p s C s Oδ χ′ ′Γ Λ = − Λ       (34)  

and ( ) 
s

D d s=∑ is a quantity independent of parameter set Λ. In (34), ( , )Xδ χ  is the Kronecker 

delta function, where χ represents the entire discrete data space where X belongs. Using ideas in 
[21], the summation over this data space is introduced here for satisfying the requirement in (29) 
and (33) that constant D be parameter independent. That is, in (33), 

( ) ( , | , ) ( )
s

s q

d s p q s d s D
χ

χ Λ = =∑∑∑ ∑  is a Λ-independent constant. Importantly, while the full 

sum is Λ-independent, each constituent ( ) ( , | , )d s p q sχ Λ  is a Λ-dependent quantity in order to 
account for the possibility that the corresponding term ( ) ( , | , )p q sχ′Γ Λ Λ  may be negative. We 
elaborate this point below. 

To construct the secondary auxiliary function for (30) based on function (33), we first 
identify from (33) that 

 [ ]( , , , ) ( ) ( ) ( , | , )f q s d s p q sχ χ′Λ = Γ Λ + Λ  

according to (31).  To ensure that ( , , , )f q sχ Λ  above is positive, d(s) should be selected to be 

sufficiently large so that ( ) ( ) 0d s′Γ Λ + >  (note ( , | , )p q sχ Λ  in (33) is non-negative). Then, using 
(30), we have 

[ ] [ ]

[ ]

( ; ) ( ) ( ) ( , | , ) log ( ) ( ) ( , | , )

( ) ( ) ( , | , ) log ( , | , ) .

q s
optimization independent

q s

V d s p q s d s p q s

d s p q s p q s Const

χ

χ

χ χ

χ χ
−

⎧ ⎫⎪ ⎪′ ′ ′ ′Λ Λ = Γ Λ + Λ Γ Λ + Λ⎨ ⎬
⎪ ⎪⎩ ⎭

′ ′= Γ Λ + Λ Λ +

∑∑∑

∑∑∑

1442443
 

( )( , , | ) ( ) ( ) log  ( , | , )

( ) ( , | , ) log  ( , | , ) .

q s

q s

p X q s C s O p X q s

d s p q s p q s Const
χ

χ χ

′ ′= Λ − Λ Λ

′+ Λ Λ +

∑∑

∑∑∑
    (35) 

The auxiliary function (35) is easier to optimize than (33), because the new logarithm 
log  ( , | , )p X q s Λ introduced in (35) (which is absent in (33)) can lead to significant simplification 

of ( ; )V ′Λ Λ  which we outline below. 
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C. Simplifying the Secondary Auxiliary Function ( ; )V ′Λ Λ  

We first ignore optimization-independent constant in (35), and divide V(Λ; Λ′) by another 
optimization-independent quantity,  p(X|Λ′), in order to convert the joint probability 

( , , | )p X q s ′Λ  to the posterior probability ( , | , )p q s X ′Λ = ( | , ) ( | , , )p s X p q X s′ ′Λ Λ . We then 
obtain an equivalent auxiliary function of 

( )( ; ) ( | , ) ( | , , ) ( ) ( ) log  ( , | , )

        ( ) ( , | , ) log  ( , | , )             

q s

q s

U p s X p q X s C s O p X q s

d s p q s p q s
χ

χ χ

′ ′ ′ ′Λ Λ = Λ Λ − Λ Λ

′ ′+ Λ Λ

∑∑

∑∑∑
  (36) 

where  ( ) ( ) ( | )d s d s p X′ ′= Λ .                (37) 
Since X depends only on the HMM state sequence q, we have 

( , | , ) ( | , ) ( | , )p X q s p q s p X qΛ = Λ ⋅ Λ . Therefore,  ( ; )U ′Λ Λ  can be further decomposed to four 
terms as follows: 

( )

( )

( ; ) ( | , ) ( | , , ) ( ) ( ) log  ( | , )

        ( ) ( , | , ) log  ( | , )

        + ( | , ) ( | , , ) ( ) ( ) log  

term I

q s

q s

term II

s

U p s X p q X s C s O p X q

d s p q s p q

p s X p q X s C s O

χ
χ χ

−

−

′ ′ ′ ′Λ Λ = Λ Λ − Λ Λ

′ ′+ Λ Λ

′ ′ ′Λ Λ − Λ

∑∑

∑∑∑

∑

6444444444447444444444448

1444444442444444443

( | , )

        ( ) ( , | , ) log  ( | , )              

term III

q

q s

term IV

p q s

d s p q s p q s
χ

χ

−

−

Λ

′ ′+ Λ Λ

∑

∑∑∑

6444444444447444444444448

1444444442444444443

   (38)  

In this case, X=X1 ...XR, aggregates all training data with R independent sentence tokens. For 
each token Xr=xr,1, …, xr,Tr, the observation vector xr,t is independent of each other and it depends 
only on the HMM state at time t. Hence, log  ( | , )p X q Λ  can be decomposed, enabling 
simplification of both term-I and term-II in (38). To simplify term-III and term-IV in (38), we 
decompose log  ( | , )p q s Λ based on the property of the first-order HMM that state at time t 
depends only on state at time t-1. We now elaborate on the simplification of each of these four 
terms. 

For term-I, we first define  

,

, , , ,
,

( ) ( | , , ') ( | , , ') ( | , , ')
r

r t

i r s r t r t r r
q q i

t p q X s p q i X s p q i X sγ
=

= Λ = = Λ = = Λ∑       (39) 

   The last equality comes from the fact that sentence tokens in the training set are independent of 
each other. , , ( )

ri r s tγ is the occupation probability of state i at time t, given the label sequence sr 

and observation sequence rX , which can be obtained through an efficient forward-backward 
algorithm [51]. Using the definition of (39) and assuming the HMM state index is from 1 to I, we 
have  

( ) , ,
1 1

- ( | , ) ( ) - ( ) ( | , , ) log  ( | , )
rTR

r t r t
s q r t

term I p s X C s O p q X s p x q
= =

′ ′ ′= Λ Λ Λ Λ∑ ∑ ∑∑  
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( )
,

, ,
1 1 1 ,

( | , ) ( ) - ( ) ( | , , ) log  ( | , )
r

r t

TR I

r t r t
s r t i q q i

p s X C s O p q X s p x q i
= = = =

′ ′ ′= Λ Λ Λ = Λ∑ ∑∑∑ ∑  

( ) , , , ,
1 1 1

( | , ) ( ) - ( ) ( ) log  ( | , )
r

r

TR I

i r s r t r t
s r t i

p s X C s O t p x q iγ
= = =

′ ′= Λ Λ = Λ∑ ∑∑∑   (40) 

The simplification process for the second term in (38) is as follows. Using notations 

1,1 , 1 , 1 ,,..., , ,...,
Rr t r t R Tq q q q q− +=%  and 1,1 , 1 , 1 ,,..., , ,...,

Rr t r t R Tχ χ χ χ χ− +=% , we have 

1,1 , 1,1 ,

1,1 , 1,1 , , ,
,..., ,..., 1 1

- ( ) ( ,..., , ,..., | , ) log  ( | , )
r

R R

R T R TR R

TR

R T R T r t r t
s q q r t

term II d s p q q s p q
χ χ

χ χ χ
= =

′ ′= Λ Λ∑ ∑ ∑ ∑∑  

, ,

, , , , , ,
1 1

1

( ) ( , | , ) ( , | , , , ) log  ( | , )
r

r t r t

TR

r t r t r t r t r t r t
s r t q q

d s p q s p q q s p q
χ χ

χ χ χ χ
= =

=

′ ′ ′= Λ Λ Λ∑ ∑∑∑∑ ∑∑
%%

% %

1444442444443

 

, ,

, , , ,
1 1

( ) ( , | , ) log  ( | , )
r

r t r t

TR

r t r t r t r t
s r t q

d s p q s p q
χ

χ χ
= =

′ ′= Λ Λ∑ ∑∑∑∑  

,

, , , , ,
1 1 1

( ) ( | , ) ( | , ) log  ( | , )
r

r t

TR I

r t r t r t r t r t
r t i s

d s p q i s p q i p q i
χ

χ χ
= = =

′ ′ ′= = Λ = Λ = Λ∑∑∑∑∑  

,

, , , ,
1 1 1

( , , ) ( | ; ) log  ( | ; )
r

r t

TR I

r t r t r t r t
r t i

d r t i p q i p q i
χ

χ χ
= = =

′= = Λ = Λ∑∑∑ ∑    (41)     

 where  ,( , , ) ( ) ( | , )r t
s

d r t i d s p q i s′ ′= = Λ∑ .             (42) 

To simplify term-III in (38), we first define  

, 1 ,

, , , , 1 , , 1 ,
: ,

( ) ( | , , ) ( , | , , ') ( , | , , ')
r

r t r t

i j r s r t r t r t r t r r
q q i q j

t p q X s p q i q j X s p q i q j X sξ
−

− −
= =

′= Λ = = = Λ = = = Λ∑  

           (43) 
which is the posterior probability of staying at state i at time t-1 and staying at state j at time t, 
given the labeled  sequence sr and the observation sequence rX . This posterior probability can be 
computed using an efficient forward-backward algorithm [51]. Further, ( | , )p q s Λ can be 
decomposed as follows: 

, 1 ,,1 , ,
1 1 1

( | , ) ( ,..., | , )
r

r r t r t

TR R

r r T r q q
r r t

p q s p q q s a
−

= = =

Λ = Λ =∏ ∏∏ .  

This leads to the following simplification: 

( )
, 1 ,,

1 1

- ( | , ) ( ) ( ) ( | , , ) log
r

r t r t

TR

q q
s q r t

term III p s X C s O p q X s a
−

= =

′ ′ ′= Λ − Λ Λ∑ ∑ ∑∑  

( )
, 1 ,

,
1 1 1 1 , ,

( | , ) ( ) ( ) ( | , , ) log
r

r t r t

TR I I

i j
s r t i j q q i q j

p s X C s O p q X s a
−= = = = = =

′ ′ ′= Λ − Λ Λ∑ ∑∑∑∑ ∑  

( ) , , , ,
1 1 1 1

( | , ) ( ) ( ) ( ) log
r

r

TR I I

i j r s i j
s r t i j

p s X C s O t aξ
= = = =

′ ′= Λ − Λ∑ ∑∑∑∑    (44) 

and 

, 1 ,,
1 1

- ( ) ( , | , ) log
r

r t r t

TR

q q
s q r t

term IV d s p q s a
χ

χ
−

= =

′ ′= Λ∑ ∑∑ ∑∑  
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, 1 ,

, 1 ,

, 1 ,

,
1 1

, 1 , ,
1 1

( ) ( , | , ) log

( ) ( , | , ) log

r

r t r t

r

r t r t

r t r t

TR

q q
s r t q

TR

r t r t q q
s r t q q

d s p q s a

d s p q q s a

χ
χ

−

−

−

= =

−
= =

′ ′= Λ

′ ′= Λ

∑ ∑∑∑∑

∑ ∑∑∑∑
 

, 1 , , 1 ,
1 1 1 1

( ) ( | , ) ( | , , ) log
rTR I I

r t r t r t i j
s r t i j

d s p q i s p q j q i s a− −
= = = =

′ ′ ′= = Λ = = Λ∑ ∑∑∑∑  

, ,
1 1 1 1

( , -1, ) log
rTR I I

i j i j
r t i j

d r t i a a
= = = =

′=∑∑∑ ∑       (45) 

where , , , 1( | , , )i j r t r ta p q j q i s−′ ′= = = Λ  is the transition probability from the previous GT iteration. 

 Substituting (40), (41), (44) and (45) into (38), and denoting the emitting probability by 

, , ,( ) ( | , )i r t r t r tb x p x q i= = Λ  and '
, , ,( ) ( | , ')i r t r t r tb x p x q i= = Λ , we obtain the decomposed and 

simplified objective function: 

1 2( ; ) ( ; ) ( ; )U U U′ ′ ′Λ Λ = Λ Λ + Λ Λ         (46)  
where  

( )

,

1 , , ,
1 1 1

, ,
1 1 1

( ; ) ( | , ) ( ) ( ) ( ) log ( )

        ( , , ) ( ) log ( )

r

r

r

r t

TR I

i r s i r t
r t i s

TR I

i r t i r t
r t i

U p s X C s O t b x

d r t i b b
χ

γ

χ χ

= = =

= = =

′ ′ ′Λ Λ = Λ − Λ

′+

∑∑∑∑

∑∑∑ ∑
   (47) 

( )2 , , , ,
1 1 1 1

, ,
1 1 1 1

( ; ) ( | , ) ( ) ( ) ( ) log

        ( , -1, ) log              

r

r

r

TR I I

i j r s i j
r t i j s

TR I I

i j i j
r t i j

U p s X C s O t a

d r t i a a

ξ
= = = =

= = = =

′ ′ ′Λ Λ = Λ − Λ

′+

∑∑∑∑∑

∑∑∑ ∑
   (48) 

In (46), 1( ; )U ′Λ Λ is relevant only to optimizing the emitting probability bi(k), and 2 ( ; )U ′Λ Λ is 
relevant only to optimizing the transition probability ai,j.  

 
D. Establishing Growth Transformation by Optimizing the Auxiliary Function ( ; )U ′Λ Λ  

In order to optimize the discrete distribution bi(k) = , ,( | , )r t r tp x k q i= = Λ , k=1, 2,…, K, where 

the constraint 
1

( )
K

i
k

b k
=
∑  =1 is imposed, we apply the Lagrange multiplier method by constructing 

1 1
1 1

( ; ) ( ; ) ( ) 1
I K

i i
i k

W U b kλ
= =

⎛ ⎞′ ′Λ Λ = Λ Λ + −⎜ ⎟
⎝ ⎠

∑ ∑        (49) 

 Setting 1( ; )
0

i

W

λ
′∂ Λ Λ =

∂
 and 1( ; )

0
( )i

W

b k

′∂ Λ Λ =
∂

,  k=1,…,K, we have the following K+1 equations: 

1

( ) -1 0
K

i
k

b k
=

=∑  

 ( )
,

( , , )

, ,
1       1 1 1

. . 

0 ( ) ( | , ) ( ) - ( ) ( ) ( , , ) ( )
r r

r

r t

i r t
T TR R

i i i r s i
r t s r t

s t x k

b k p s X C s O t d r t i b k

γ

λ γ
∆

= = = =
=

′ ′ ′= + Λ Λ +∑ ∑ ∑ ∑∑
644444474444448

, k=1,…,K. 
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where ( )ib k  is multiplied on both sides. Solving for ( )ib k , we obtain the re-estimation formula: 

          

( )

( )
,

, ,
1       1 1 1

. . 

, ,
1 1 1 1

( | , ) ( ) - ( ) ( ) ( ) ( , , )

( )
( | , ) ( ) - ( ) ( ) ( , , )

r r

r

r t

r r

r

T TR R

i r s i
r t s r t

s t x k

i T TR R

i r s
r t s r t

p s X C s O t b k d r t i

b k

p s X C s O t d r t i

γ

γ

= = = =
=

= = = =

′ ′ ′Λ Λ +

=
′ ′Λ Λ +

∑ ∑ ∑ ∑∑

∑∑∑ ∑∑
 (50) 

We now define 

1 1

( , , )
rTR

i
r t

D d r t i
= =

=∑∑          (51) 

( ) , ,( , , ) ( | , ) ( ) ( ) ( )
ri r s

s

i r t p s X C s O tγ γ′ ′∆ = Λ − Λ∑       (52) 

and re-write (50) as 

 

( )

( )
,

1       1
. . 

1 1

, , ( )

( )
, ,

r

r t

r

TR

i i
r t

s t x k

i TR

i
r t

i r t b k D

b k

i r t D

γ

γ

= =
=

= =

′∆ +

=
∆ +

∑ ∑

∑∑
       (53) 

In order to optimize transition probability ai,j, with constraint ,
1

1
I

i j
j

a
=

=∑ , we apply the 

Lagrange multiplier method by constructing 

2 2 ,
1 1

( ; ) ( ; ) 1
I I

i i j
i j

W U aλ
= =

⎛ ⎞
′ ′Λ Λ = Λ Λ + −⎜ ⎟

⎝ ⎠
∑ ∑        (54) 

 Setting 2 ( ; )
0

i

W

λ
′∂ Λ Λ =

∂
 and 2

,

( ; )
0

i j

W

a

′∂ Λ Λ =
∂

, j=1,…,I, we have the following I+1 equations: 

,
1

1 0
I

i j
j

a
=

− =∑  

( )
( , , , )

, , , , ,
1 1 1 1

0 ( | , ) ( ) - ( ) ( ) ( , -1, )
r r

r

i j r t
T TR R

i i j i j r s i j
r t s r t

a p s X C s O t d r t i a

ξ

λ ξ
∆

= = = =

′ ′ ′= + Λ Λ +∑∑∑ ∑∑
64444444744444448

, j=1,…,I. 

Note that , , , , ,
1

( ) ( )
r r

I

i j r s i r s
j

t tξ γ
=

=∑ . By solving ,i ja , we obtain the re-estimation formula with a 

standard procedure (used for deriving the EM estimate of transition probabilities [11]): 

( )

( )

, , , ,
1 1 1 1

,

, ,
1 1 1 1

( | , ) ( ) - ( ) ( ) ( , -1, )

( | , ) ( ) - ( ) ( ) ( , -1, )

r r

r

r r

r

T TR R

i j r s i j
r t s r t

i j T TR R

i r s
r t s r t

p s X C s O t a d r t i
a

p s X C s O t d r t i

ξ

γ

= = = =

= = = =

′ ′ ′Λ Λ +
=

′ ′Λ Λ +

∑∑∑ ∑∑

∑∑∑ ∑∑
   (55) 

Now we define  

1 1

( , -1, )
rTR

i
r t

D d r t i
= =

=∑∑%          (56) 

( ) , , ,( , , , ) ( | , ) ( ) - ( ) ( )
ri j r s

s

i j r t p s X C s O tξ ξ′ ′∆ = Λ Λ∑      (57) 

and together with (52), we re-write (55) as 
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,
1 1

,

1 1

( , , , )

( , , )

r

r

TR

i j i
r t

i j TR

i
r t

i j r t a D
a

i r t D

ξ

γ

= =

= =

′∆ +
=

∆ +

∑∑

∑∑

%

%
        (58)  

The parameter re-estimation formulas (53) and (58) are unified across MMI, MCE, and 
MPE/MWE. What distinguishes among MMI, MCE, and MPE/MWE is the different weighing 
term ( , , )i r tγ∆  in (52) and ( , , , )i j r tξ∆  in (57) due to the different ( )C s  contained in the unified 
objective function. Details for computing ( , , )i r tγ∆  for MMI, and MCE, and MPE/MWE are 
included in Appendix I.  
 

E. Setting Constant iD  

     Values of constant Di in (53) and iD%  in (56) determine the stability and convergence speed of 
the above GT/EBW algorithm. From (51), (42), and (37), we have   

, ,
1 1 1 1 1 1

1
( , , ) ( ) ( | , ) ( ) ( | , )

( | )

r r rT T TR R R

i r t r t
r t r t s r t s

D d r t i d s p q i s d s p q i s
p X= = = = = =

′ ′ ′= = = Λ = = Λ
′Λ∑∑ ∑∑∑ ∑∑∑  (59) 

The theoretical basis for setting Di to ensure that (53) and (58) are growth transformations is the 
requirement described in (33) that d(s) of (59) be sufficiently large so that ( ) ( ) 0d s′Γ Λ + > .  
From (34),  

 [ ] [ ]( ) ( ) ( )     
( ) ( , ) ( ) ( ) ( )

0                                

p s C s O if X
X p s C s O

otherwise

χδ χ
′⎧ − Λ =′ ′Γ Λ = − Λ = ⎨

⎩
.  

Therefore, { }( ) max 0, ( )[ ( ) ( )]d s p s C s O ′> − − Λ . This gives 

{ } ,
1 1

1
max 0, ( )[ ( ) ( )] ( | , )

( | )

rTR

i r t
r t s

D p s O C s p q i s
p X = =

′ ′> Λ − = Λ
′Λ ∑∑∑     (60) 

 
Similarly, we can derive that  

{ } , 1
1 1

1
max 0, ( )[ ( ) ( )] ( | , )

( | )

rTR

i r t
r t s

D p s O C s p q i s
p X −

= =

′ ′> Λ − = Λ
′Λ ∑∑∑% .    (61) 

 
In practice, Di and iD%  given by (60) and (61) have often been found to be over conservative 

and unnecessarily large, causing slower convergence than those obtained through some empirical 
methods. We will not discuss such heuristics in this review, and would like to point out that this 
is still an interesting research problem and to refer the readers to the studies and discussions in 
[18] [42][43][48][55][60][62]. 

 
VI. DISCRIMINATIVE LEARNING FOR CONTINUOUS DENSITY HMMS  

For continuous-density HMMs (CDHMMs), the observation space is not quantized. In this case, 
X=X1 ... XR, is a concatenation of all training tokens, and each training token rX consists of a 
sequence of continuous random variables. The formulation (26) applies to discriminative learning 
for CDHMMs. In particular, χ in previous equations (30) and (31)  is a continuous variable and 
hence the summation over domain χ is changed to integration over χ. That is, (30) is modified to 

( ; ) ( , , , ) log ( , , , )
s q

V f q s f q s d
χ

χ χ χ′ ′Λ Λ = Λ Λ∑∑∫      (62) 
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where the integrand ( , , , )f q sχ Λ  is defined by       

( ; ) ( , , , )
s q

F f q s d
χ

χ χ′Λ Λ = Λ∑∑∫            (63) 

Correspondingly,  
( ; ) [ ( ) ( )] ( ) ( , | , )

s q

F C s O p s p X q s D′ ′Λ Λ = − Λ Λ +∑∑      

[ ]( ) ( ) ( , | , )
s q

d s p q s d
χ

χ χ′= Γ Λ + Λ∑∑∫       (64) 

where  

[ ]( , , , ) ( ) ( ) ( , | , )f q s d s p q sχ χ′Λ = Γ Λ + Λ       (65) 

and 
         [ ]( ) ( , ) ( ) ( ) ( )X p s C s Oδ χ′ ′Γ Λ = − Λ       (66)  

with ( , )Xδ χ  in (66) being the Dirac delta function 2 . After a similar derivation as in the 
preceding section, it can be shown that the transition probability estimation formula (58) stays the 
same as the discrete HMM case. But for the emitting probability, (47) is changed to 
 

( )

,

1 , , ,
1 1 1

, , ,
1 1 1

( ; ) ( | , ) ( ) ( ) ( ) log ( )

        ( , , ) ( ) log  ( )

r

r

r

r t

TR I

i r s i r t
r t i s

TR I

i r t i r t r t
r t i

U p s X C s O t b x

d r t i b b d
χ

γ

χ χ χ

= = =

= = =

′ ′ ′Λ Λ = Λ − Λ

′+

∑∑∑∑

∑∑∑ ∫
   (67) 

 
 

A. GT-Based Parameter Estimation for Gaussian Density CDHMM 
We first derive the GT-based parameter estimation formulas for the CDHMM with Gaussian 

distributions and then generalize them to the case of mixture-Gaussian distributions in the 
subsequent subsection. For the CDHMM with Gaussian distributions, the observation probability 
density function ,( )i r tb x in (67) becomes a Gaussian distribution taking the following form: 

-1
, , ,1/ 2

1 1
( ) exp ( - ) ( - )

| | 2
T

i r t r t i i r t i
i

b x x xµ µ⎡ ⎤∝ − Σ⎢ ⎥Σ ⎣ ⎦
.     (68) 

 where ( ,  ), 1,2,...,i i i Iµ Σ =  are the mean vector and covariance matrix of the Gaussian 
component at state i. 

 In order to solve for  and i iµ Σ , based on (67), we set  

1 1( ; ) ( ; )
0;        and 0.

i i

U U

µ
′ ′∂ Λ Λ ∂ Λ Λ= =

∂ ∂Σ
 

This gives: 

                                                 
2
 Due to the Dirac delta function, Jensen's inequality no longer applies to the secondary auxiliary function. However, in 

section VI.B we will show that (62) is still a valid auxiliary function. 
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( )

,

( , , )

1
, , ,

1 1

1
, , ,

1 1

0 ( | , ) ( ) - ( ) ( ) ( - )

( , , ) ( )( - )

r

r

r

r t

i r t
TR

i r s i r t i
r t s

TR

i i r t r t i r t
r t

p s X C s O t x

d r t i b d

γ

χ

γ µ

χ χ µ χ

∆

−

= =

−

= =

′ ′= Λ Λ Σ

′+ Σ

∑∑∑

∑∑ ∫

644444474444448

    (69)  

( )

,

( , , )

1 1 1
, , , ,

1 1

1 1 1
, , , ,

1 1

0 ( | , ) ( ) - ( ) ( ) ( - )( - )

( , , ) ( ) ( - )( - )

r

r

r

r t

i r t
TR

T
i r s i i r t i r t i i

r t s

TR
T

i r t i i r t i r t i i r t
r t

p s X C s O t x x

d r t i b d

γ

χ

γ µ µ

χ χ µ χ µ χ

∆

− − −

= =

− − −

= =

′ ′ ⎡ ⎤= Λ Λ Σ −Σ Σ⎣ ⎦

′ ⎡ ⎤+ Σ −Σ Σ⎣ ⎦

∑∑∑

∑∑ ∫

644444474444448

  (70) 

For a Gaussian distribution , , ,( ) ( | ; )i r t r t r tb p q iχ χ′ ′= = Λ , we have 

,
, ,( ) 1

r t
i r t r tb d

χ
χ χ′ =∫ , 

,
, , ,( )

r t
r t i r t r t ib d

χ
χ χ χ µ′ ′⋅ =∫ ,  

,
, , , ,( )( ) ( )

r t

T
r t i r t i i r t r t ib d

χ
χ µ χ µ χ χ′ ′ ′ ′− − ⋅ = Σ∫ . 

Hence integrals in (69) and (70) have closed-form results. Next, we left-multiply both sides of  
(69) by iΣ , and left- and right-multiply  both sides of (70) by iΣ . Finally, solving  and i iµ Σ  
gives the “GT” formulas of 

1 1

1 1

( , , )

( , , )

r

r

TR

t i i
r t

i TR

i
r t

i r t x D

i r t D

γ µ
µ

γ

= =

= =

′∆ +
=

∆ +

∑∑

∑∑
,        (71) 

 

1 1

1 1

( , , )( )( ) ( )( )

( , , )

r

r

TR
T T

t i t i i i i i i i i
r t

i TR

i
r t

i r t x x D D

i r t D

γ µ µ µ µ µ µ

γ

= =

= =

′ ′ ′⎡ ⎤∆ − − + Σ + − −⎣ ⎦
Σ =

∆ +

∑∑

∑∑
   (72)

 
where ( , , )i r tγ∆ is defined in (52) and iD  defined in (51).

  

 
Just as in the discrete HMM case, (71) and (72) are based on the generic discriminative 

objective function O(Λ) in the form of (26), which covers MMI, MCE and MPE/MWE as special 
cases. This leads to unified, GT-based parameter estimation formulas for MMI, MCE, 
MPE/MWE, as well as for any other discriminative objective functions that can be mapped into 
the rational-function form (26). Moreover, ( , , )i r tγ∆  in (71) and (72) is defined in the same way 
as (52) in the discrete-HMM case — differing only in ( )C s  for MMI, MCE, and MPE/MWE, 
respectively, as will be illustrated further in Appendix I. 

 
B. Setting Constant iD  for CDHMM 
     Based on Jensen’s inequality, the theoretical basis for setting an appropriate constant Di to 
ensure that (71) and (72) are growth transformation is the requirement specified in (33), where d(s) 
in (59) needs to be sufficiently large to ensure that for any string s and any observation sequence 
χ , ( ) ( ) 0d s′Γ Λ + > , where [ ]( ) ( , ) ( ) ( ) ( )X p s C s Oδ χ′ ′Γ Λ = − Λ  is defined in (34). However, for 
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CDHMM, ( , )Xδ χ  is the Dirac delta function, which is a distribution with its density function 
value unbounded at the centre point, i.e., ( , )Xδ χ = +∞  when Xχ = . Therefore, for a string s 

such that ( ) ( ) 0C s O ′− Λ < , ( ) | Xχ=′Γ Λ = −∞ . Under this condition, it is impossible to find a 

bounded d(s) that ensures ( ) ( ) 0d s′Γ Λ + >  and hence Jensen’s inequality may not apply. Note 
that this problem does not occur in the discrete HMM case, because in that case ( , )Xδ χ  is a 
Kronecker delta function taking only a finite value of either zero or one. 
    The above-mentioned difficulty for CDHMMs can be overcome and the same derivation can 
still be used, if it can be shown that there exists a sufficiently large but still bounded constant D 
so that ( ; )V ′Λ Λ  of (62), with the integrand defined by (65), is still a valid auxiliary function of 

( ; )F ′Λ Λ ; i.e., an increase of the value of ( ; )V ′Λ Λ  can guarantee an increase of the value of 
( ; )F ′Λ Λ . Such a proof was developed in the recent work of [2] for GT-based MMI training for 

CDHMMs, and it holds for our common rational-function discriminative training criterion as 
well3, an important topic which we will outline in Appendix IV.  Therefore, a bounded Di exists 
according to (59), where d(s) satisfies (124) in Appendix IV.  

Although a sufficiently large Di guarantees monotone convergence of  the GT-based iterative 
estimation formulas, i.e., (53)(58) for the discrete HMM and (71)(72) for the CDHMM, the value 
of Di from the monotone convergence proof is a very loose upper bound and it can be too large 
for a reasonable convergence speed. In practice, Di is often empirically set to achieve 
compromised training performance.  

Empirical setting of Di has been extensively studied from the day when EBW was proposed. 
In early days, only one global constant D was used for all parameters [18][42]. Later research 
discovered on the empirical basis that for CDHMM, a useful lower bound on (non-global) Di is 
the value satisfying the constraint that newly estimated variances remain positive [43]. In [60][61], 
this constraint was further explored, leading to some quadratic inequalities upon which the lower 
bound of Di can be solved. Most recently, in [55], constant Di was further bounded by an extra 
condition that the denominators in re-estimation formulas remain non-singular. 

In [62], the use of Gaussian-specific Di was reported to give further improved convergence 
speed. For MMI, the Gaussian-specific constant Di was set empirically to be the maximum of i) 
two times of the value necessary to ensure positive variances, i.e., min2 D⋅ ; and ii) a global 

constant E multiplied by the denominator occupancy; e.g., den
iE γ⋅  . Specifically, for MMI in the 

work of [62], , , ,
1 1 1 1

( ) ( | , ) ( )
r r

r

r

T TR R
den den
i i r r r i r s

r t r t s

t p s X tγ γ γ
= = = =

′= = Λ∑∑ ∑∑∑ . For MPE reported in 

[46][47][48], the empirical setting of Di was the same as MMI, i.e., 

minmax{2 , }den
i iD D E γ= ⋅ ⋅ except that the computation of the denominator occupancy became 

( )
1 1

max 0, ( , , )
rTR

den
i

r t

i r tγ γ
= =

= −∆∑∑ . In addition, these new parameters were further smoothed with 

the ML estimate of parameters (which was called I-smoothing).  

 For MCE, the empirical setting of den
iγ  as , ,

1 1

( | , ) ( | , ) ( )
r

r

r

TR

r r r r i r s
r t s

p S X p s X tγ
= =

′ ′Λ Λ∑∑ ∑  was 

developed in the recent work of [24][68]. It was based on the consideration that MCE and MMI 
are equivalent in the special case of having only one utterance in the training set. This setting was 

                                                 
3 The authors would like to thank an anonymous reviewer for pointing us to the work of [2]. 



 24

experimentally verified with strong recognition results as reported in [24][68]. Further 
discussions and comparisons of different settings of empirical Di can be found in [18] [24][42][43] 
[48] [55][61] [62] . 
 
C. Parameter Estimation for Gaussian Mixture CDHMM   
 The model parameter estimation formulas for a Gaussian-mixture HMM are similar to those 
for a Gaussian HMM discussed earlier. For a Gaussian-mixture HMM, the continuous 
observation density function ,( )i r tb x for state i  has the following form: 

 , , , , ,
1

( ) ( | , )
L

i r t i l r t i l i l
l

b x w N x µ
=

= Σ∑      (73) 

where ,( )i r tb x  is a mixture of L Gaussian components, , , ,( | , )r t i l i lN x µ Σ  is the l-th Gaussian 

mixture component that takes the same form as (68), ,i lw is a positive weight of the l-th Gaussian 

component, and ,1,...,
1i ll L

w
=

=∑ . Compared with a Gaussian HMM, there is an additional hidden 

component, the Gaussian component index sequence l. The hidden sequence l can be 
accommodated in (62) by the same way that we exploited to treat the hidden state sequence q. 
Then after similar derivation steps, we can obtain the following parameter estimation formulas: 

, ,
1 1

,

,
1 1

( , , , )

( , , , )
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r

TR

t i l i l
r t

i l TR

i l
r t

i l r t x D
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γ µ
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=

∆ +

∑∑
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 (75)

 
where ,i lD  and ( , , , )i l r tγ∆  are defined in a similar way to (51) and (52), i.e., 

 

,
1 1

( , , , )
rTR

i l
r t

D d r t i l
= =

=∑∑          (76) 

( ) , , ,( , , , ) ( | , ) ( ) ( ) ( )
ri l r s

s

i l r t p s X C s O tγ γ′ ′∆ = Λ − Λ∑       (77) 

and , , , ,( ) ( , | , , ')
ri l r s r t r rt p q i l X sγ = = Λ  is the occupation probability of Gaussian mixture 

component l of state i, at time t in the r-th utterance. Accordingly, the empirical setting of Di,l 
takes similar forms as discussed in the previous section, except that ( , , , )i l r tγ∆  and , , , ( )

ri l r s tγ  will 

be used instead. Estimation of the mixture component weights ,i lw  is similar to the discrete HMM 

estimation case, and will not be described here.  
 
 

VII. RELATED WORK AND DISCUSSIONS 
 

A. Relation to other approaches   
In recent papers [35][55], an approach was proposed to unify a number of discriminative 

learning methods including MMI, MPE, and MPE/MWE (the earlier paper [55] did not include 
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MPE/MWE). Functional similarities and differences among MMI, MCE, and MPE/MWE criteria 
were noted and discussed in [35][55]. In this paper, the proposed framework takes an additional 
step of unifying these criteria in a canonical rational-function form (26), and GT-based 
discriminative learning is applied to this rational-function which includes MMI, MCE and 
MPE/MWE criteria as special cases. This is significant from two perspectives. First, it provides a 
more precise and direct insight into the fundamental relations among MMI, MCE and MPE/MWE 
criteria at the objective function level based on the common rational-function form (26). Second, 
it enables a unified GT-based parameter optimization framework that applies to MMI, MCE, 
MPE/MWE and other discriminative criteria, as long as their objective functions can be 
represented by (26). 

The proposed framework in [35] was based on the objective function of the following form 
(rewritten using the mathematical notations adopted in this paper for easy comparisons): 

1

( , | ) ( )
1 1

( ) log
( , | )

r

r r

r r DT rR
s

r r r
s M

p X s C s

O f
R p X s

η

ηη=
∈

⎛ ⎞Λ
⎜ ⎟Λ = ⎜ ⎟Λ⎜ ⎟
⎝ ⎠

∑
∑ ∑

    (78) 

where CDT(sr) takes the same value as in our Table 1. The choices of the smoothing function f(z), 
the competing word sequences Mr, and the weight value η in (78) are provided in Table 2 for the 
different types of DT criteria. In Table 2, q is the slope of a sigmoid smoothing function. 
 

Criteria  Smoothing Function f(z) Alternative Word Sequences Mr η 
MCE (N-best) 1/[1 exp(2 )]qz− +  {sr} excluding Sr ≥1 

MCE (one-best) 1/[1 exp(2 )]qz− +  {sr,1} N/A 

MPE/MWE exp( )z  all possible label sequence {sr} 1 

MMI z  all possible label sequence {sr} 1 
Table 2. Choices of the smoothing function f(z), alternative word sequences Mr, and exponent weight η in 
(78) for various types of DT criteria. This is modified from the original table in [55]. 

 
Eq. (78) indicates that different discriminative criteria can have a similar form of kernel and 

differ by the criterion-dependent smoothing function f(z) that modulates the kernel, where the 
objective function is a sum of smoothing functions. Eq. (78) is a generic description of the 
objective functions of MMI, MCE, and MPE/MWE. However, it is not in a general form of a 
rational function (defined as a ratio of two polynomial functions) due to the presence of the 
nonlinear function f(z). The important distinction of product vs. summation of utility functions 
among these criteria (as described in section II.D) is not explicitly addressed. In the approach 
presented in this paper, we address this issue directly and show that the objective functions from 
MMI, MCE, and MPE/MWE criteria can have a definitive rational-function form (26), and for 
each discriminative criterion, the objective function differs only by a model-independent 
quantity 1( ... )DT RC s s .  

Furthermore, as shown in Table 2, since f(z) is a nonlinear function for the MPE/MWE and 
MCE criteria, the original GT solution [18], while directly applicable to MMI with f(z) being an 
identity function and z being the logarithm of a rational function (since sum of log becomes log of 
product),  is not directly applicable to the objective functions of the MPE/MWE and MCE criteria 
(since the sum stays when f(z) is nonlinear). In order to circumvent this difficulty, the theorem 
described in [30] is applied. In [30], the original objective function is approximated by a Taylor 
series expansion. Then, via a similar approach to that of [18], the GT-based parameter 
optimization may be applied to the partial sum of the Taylor series expansion, which is a 
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polynomial with a finite degree. This forms the theoretical basis of the earlier GT-based methods 
for MCE and MPE/MWE [35][55]. However, the positive growth of the partial sum depends on 
the degree of that partial sum (see more detailed discussions on this point in [18]), and it vanishes 
when the degree goes to infinity. It may vanish even faster than the error of Taylor series 
approximation does. Therefore, it has not been definitively shown that the re-estimation formula 
ensures true growth of the value of the objective function with iteration. 

In contrast, the unified rational-function approach described in this paper departs from the 
work of [35][55]. It is free from the Taylor series approximation and it shows that the objective 
functions for the MMI, MCE, and MPE/MWE criteria have a common definitive rational-
function form (26). Therefore, the GT-based parameter optimization framework can be directly 
applied to (26) in a constructive way.4 Moreover, the unified representation of the discriminative 
objective functions developed in this paper opens a way to apply other rational-function based 
optimization methods (e.g., the method based on the reverse Jensen inequality [26]) to MMI, 
MCE, and MPE/MWE-based classifier design. Using the structure of the rational function, we 
expect that all desirable algorithmic properties of the parameter optimization procedures 
presented in this paper can be established and justified. 

 
B. Relation to gradient-based optimization   

The relation between the GT/EBW methods and gradient-based methods has been studied in 
the literature (e.g., [2][54][55]). In addition to the critical difference in the convergence properties, 
the learning speed of GT/EBW-based updating formula (71) is comparable to a quadratic Newton 
update; i.e., it can be formulated as a gradient ascent with the step size that approximates inverse 
Hessian H of the objective function. Let us take the mean vector estimation as an example for the 
objective function of the form (26) in the case of CDHMM. The gradient of O(Λ) w.r.t. µi can be 
shown to be 

1

1 1

( ) | ( , , )( )
r

i

TR

i t i
r t

O i r t xµ γ µ−
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= =
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On the other hand, we can rewrite the GT formula of (71) into the following equivalent form: 
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     (80) 

 Consider the quadratic Newton update, where the Hessian Hi for µi can be approximated by 
the following equation after dropping the dependency of µi with ( , , )i r tγ∆ : 

2 1

1 1

( ) | ( , , )
r

i

TR

i i
r t

H O i r tµ γ−
′Λ=Λ

= =

′= ∇ Λ ≈ −Σ ∆∑∑  

Therefore, the updating formula of GT in (71) can be further re-written to 

                                                 
4 Note that the approach we take in this paper is based on the work in [2][21]  rather than on the work of 

[3][18].  
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which approximates the quadratic Newton update 1 ( ) |
ii i iH Oµµ µ α −

′Λ=Λ′= − ⋅ ∇ Λ  and usually gives 

a faster learning speed than the simple gradient-based search.  
Other popular and effective gradient-based methods exist for optimizing discriminative 

training criteria [38][31][15][22][37]. For instance, Quickprop [17] is a batch-mode, second-order 
optimization method that approximates Newton’s optimization, with the help of heuristics to 
determine the proper update step size. Rprop [52], which stands for “Resilient back-propagation”, 
is another batch-mode optimization method, which performs dynamic scaling of the update step 
size for each parameter based on different kinds of heuristics. In [38], a comprehensive study of 
gradient-based optimization methods for MCE training, including batch and semi-batch 
probabilistic descent (PD), QuickProp, and RProp, is given for large vocabulary speech 
recognition tasks. It was shown that the MCE criterion can be optimized by using these gradient-
based methods, and improved recognition accuracies were reported. Furthermore, there exist 
other gradient-based methods such as BFGS and conjugate gradient search [5][14]. Although 
both of these methods are more complicated to implement for large scale discriminative training 
tasks, they are superior to other gradient-descent techniques in terms of the convergence 
properties. Readers are referred to [5][53] for further discussions.  

In contrast to the popular gradient-based methods discussed above, we can view a class of 
optimization methods with a re-estimation style, including Expectation-Maximization (EM) 
algorithm and EBW algorithm, as GT-based methods in a broad sense. The GT-based methods 
are designed for the objective functions with special, rational-functional forms, and the GT 
algorithm can ensure rigorous monotone growth of the value of the objective functions iteratively. 
From this perspective, on the one hand, GT-based methods are less general than gradient-based 
ones. On the other hand, they give desirable monotone convergence in training. Further, although 
GT-based parameter re-estimation formulas may be rewritten into gradient-based forms, the step 
sizes are specifically derived so that monotone convergence is guaranteed. This critical property 
differentiates them from general gradient-based methods. 

The advanced gradient-based methods discussed above, such as batch and semi-batch PD, 
QuickProp, RProp, BFGS, and conjugate gradient, are alternatives to the GT/EBW-method for 
optimizing discriminative training criteria. Although theoretically the GT/EBW method has the 
desirable monotone convergence property, empirical setting of D is used in practice to speed up 
training with the trade-off for monotone convergence.  This makes rigorous comparisons between 
GT/EBW-based and advanced gradient-based methods difficult. In the literature, experimental 
results of both types of methods have been reported on various speech recognition tasks 
[22][24][31][55][43].  

Algorithmic convergence of parameter estimation is a central issue for classifier design using 
discriminative training criteria. Search for more powerful discriminative criteria and optimization 
methods in classifier design remains an area of active and on-going research. It is our hope that 
the unified rational-function based objective function representation reviewed in this paper can 
provide additional structural formulation and can motivate the development of new learning 
algorithms to improve the discriminative power of sequential pattern classifiers and recognizers. 
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VIII. SUMMARY  
In this paper, we studied the objective functions of MMI, MCE and MPE/MWE for 
discriminative learning in sequential pattern recognition. We presented an approach that unifies 
the objective functions of MMI, MCE and MPE/MWE in a common rational-function form of 
(26). The exact structure of the rational-function form for each discriminative criterion was 
derived and studied.  While the rational-function form of MMI has been known in the past, we 
provided the theoretical proof that the similar rational-function form exists for the objective 
functions of MCE and MPE/MWE. Moreover, we showed that the rational function forms for 
objective functions of MMI, MCE and MPE/MWE differ in the constant weighting factors 

1( ... )DT RC s s  and these weighting factors depend only on the labeled sequence s1…sR, and are 
independent of the parameter set Λ to be optimized. 

The derived rational-function form for MMI, MCE and MPE/MWE allows the GT/EBW-
based parameter optimization framework to be applied directly in discriminative learning. In the 
past, lack of the appropriate rational-function form was a difficulty for MCE and MPE/MWE, 
because without this form, the GT/EBW-based parameter optimization framework cannot be 
directly applied. Based on the unified rational-function form, in a tutorial style, we derived the 
GT/EBW-based parameter optimization formulas for both discrete HMMs and CDHMMs in 
discriminative learning using MMI, MCE, and MPE/MWE criteria. 

This paper is motivated by the striking success of the MMI, MCE, and MPE/MWE-based 
discriminative criteria in sequential pattern recognition and particularly in speech and language 
processing. Yet there was a lack of common understanding of the inter-relation among these 
techniques, despite the relatively long history of MMI (since 1987 [7]), MCE (since 1992 [28]), 
and MPE/MWE (since 2002 [46]). Due to the complexity of these techniques and the lack of a 
common underlying theoretical theme and structure, disparate discriminative learning procedures 
were developed and parameter optimization has become a major issue.  The main goal of this 
paper is to provide an underlying foundation for MMI, MCE, and MPE/MWE at the objective 
function level to facilitate the development of new parameter optimization techniques and to 
incorporate other pattern recognition concepts, e.g., discriminative margins [68], with the current 
discriminative learning paradigm.  
 
 
 

APPENDIX I:  COMPUTING ( , , )i r tγ∆  IN THE GROWTH TRANSFORMATION FORMULAS 

In (52), computing ( , , )i r tγ∆  involves summation over all possible super-string label sequences 

1... Rs s s= . The number of training tokens (sentence strings), R, is usually very large. Hence, the 
summation over s needs to be decomposed and simplified. To proceed, we use the notations of 

1 -1... rs s s′ = , 1...r Rs s s+′′ = , 1 -1... rX X X′ = , and 1...r RX X X+′′ = . Then, from (52), we have, 

( ) , ,( , , ) ( | , ) ( , | , ;  ) ( , , ) - ( ) ( )
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r r r i r s
s s s

i r t p s X p s s X X C s s s O tγ γ
′ ′′

Ψ

⎡ ⎤′ ′ ′′ ′ ′′ ′ ′ ′′ ′∆ = Λ Λ Λ⎢ ⎥⎣ ⎦
∑ ∑∑

144444444424444444443

  (82) 

where factor Ψ is the average deviation of the accuracy count for the given string sr. The 
remaining steps in simplifying the computation of ( , , )i r tγ∆  will be separate for MMI and 
MCE/MPE/MWE because the parameter-independent accuracy count function ( )C s  for them 
takes the product and summation form, respectively (as shown in Table 1 ).  
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A.  Product form of C(s) (for MMI) 

For MMI, we have 1
1 1
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R R

R r r r
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C s C s s C s s Sδ
= =

= = =∏ ∏  in a product form. Using 

( , , ) ( ) ( , )r rC s s s C s C s s′ ′′ ′ ′′= ⋅ , we simplify factor Ψ in (82) to   
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The idea behind the above steps is to make use of the product form of the C(s) function for 
canceling out common factors in both ( )O ′Λ  and C(s) functions. To proceed, we now factorize 

( )O ′Λ  as follows: 
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where the last step uses ( ) ( , )r r rC s s Sδ= . Substituting this to (83) then gives the simplification of 
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Substituting (84) to (82) and using C(sr)= δ(sr , Sr) again, we obtain 
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In the re-estimation formulas (71) and (72), if we divide both the numerator and denominator by 
( )O ′Λ ,  ( , , )i r tγ∆ in (85) can take a simplified form of 
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The corresponding constant Di in the re-estimation formulas (71) and (72) then becomes 
( )i iD D O ′= Λ% .               (87)        

Substituting the above into (71) and (72), we have the GT/EBW formulas for MMI  
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  (89) 
This gives the classical GT/EBW-based MMI re-estimation formulas described in [42][62]. 
    Eqn. (85) or (86) gives an N-best string based solution to computing ( , , )i r tγ∆ . This is 
illustrated by the string-level summation over sr  (i.e., the label sequence for token r, including 
both correct and incorrect strings). For N-best string-level discriminative training, the summation 
over sr in (85) or (86) amounts to going through all N-best string hypotheses and is 
computationally inexpensive when N is relatively small (e.g., N in the order of thousands as 
typical for most N-best experiments).   
    When a lattice instead of an explicit N-best list is provided for competing hypotheses in 
discriminative training, in theory, (85) or (86) can be applied just as for the N-best string based 
solution already discussed. This is because a lattice is nothing more than a compact representation 
of N-best strings. However, since N in this equivalent “N-best list” would be huge (in the order of 
billions or more [67]), more efficient techniques for dealing with the summation over sr in 
computing (85) or (86) will be needed.  Readers are referred to Appendix III for details of such 
computation. 
 
B.   Summation form of ( )C s  (MCE and MPE/MWE) 

    Different from MMI, for MCE and MPE/MWE, we have 1
1

( ) ( ,..., ) ( )
R

R r
r

C s C s s C s
=

= =∑ , or 

( , , ) ( ) ( , )r rC s s s C s C s s′ ′′ ′ ′′= + . That is, the C function is in a summation instead of a product form. 
This changes the simplification steps for factor Ψ of (82) as follows: 
 

' ( , | , ) ( ) ( , | , ;  ) ( , ) ( )r
s s s s

p s s X X C s p s s X X C s s OΛ
′ ′′ ′ ′′

Ψ ′ ′′ ′ ′′ ′ ′′ ′ ′′ ′ ′ ′′ ′= + Λ − Λ∑∑ ∑∑
( ) ( , | , ;  ) ( , ) ( )r

s s

C s p s s X X C s s O
′ ′′

′ ′′ ′ ′′ ′ ′ ′′ ′= + Λ − Λ∑∑           (90) 

The idea behind the above steps is to make use of the summation form of the C(s) function for 
subtracting out the common terms in the ( )O ′Λ  function. To achieve this, we decompose ( )O ′Λ , 
based on its original non-rational form, e.g., (22) or (18) and (19), as follows:  

1,

,

( , | ) ( )( , | ) ( )
( )

( , | ) ( , | )

( , | ) ( )
( , | , | ) ( , )

( , | )

ir

r i

r

r

R
i i ir r r ss

i i rr r i is s

r r rs

s s
r rs

p X s C sp X s C s
O

p X s p X s

p X s C s
p s s X X C s s

p X s

= ≠

′ ′′

′′ ΛΛ
′Λ = +

′ ′Λ Λ

′Λ
′ ′′ ′ ′′ ′ ′ ′′= + Λ

′Λ

∑∑
∑∑ ∑

∑
∑∑

      

The second term above cancels out the same term in (90), leading to the simplification of 

( , | ) ( )
( )

( , | )
r

r

r r rs
r

r rs

p s X C s
C s

p s X
Ψ

′Λ
= −

′Λ
∑
∑

          (91) 

Now, substituting (91) back to (82), we obtain  
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, ,

( , | ) ( )

( , , ) ( | , ) ( ) ( )
( , | )

r

r

r

r

r r r
s

r r r i r s
s r r

s

p X s C s

i r t p s X C s t
p X s

γ γ
′⎛ ⎞Λ

⎜ ⎟′∆ = Λ −⎜ ⎟′Λ⎜ ⎟
⎝ ⎠

∑
∑ ∑

    (92) 

For MCE that has ( ) ( , )r r rC s s Sδ= , the above equation can be further simplified as: 

, , , ,( , , ) ( | , ) ( ) ( | , ) ( )
r r

r

r r i r S r r i r s
s

i r t p S X t p s X tγ γ γ
⎡ ⎤
′ ′∆ = Λ − Λ⎢ ⎥
⎣ ⎦

∑      (93) 

Again, if a lattice instead of an N-best list is provided for discriminative learning, a huge 
number of terms in the summation over sr in (92) would be encountered. In order to keep the 
computation manageable, efficient computation of (92) based on the lattice is needed, which we 
describe in Appendix III.  

 
 
 

APPENDIX II:   TWO EMPIRICAL ISSUES IN MCE IMPLEMENTATION 

In this Appendix, we discuss two empirical issues in MCE implementation that were raised in 
Section II.B. First, in (12), if we use the exponent scale factor η≠1, we can obtain the following 
result corresponding to (14) : 

( ) ,

( , | )

( , )
( , | )

r r r

r

r r
s s S

r r r
r r

s

p X s

l d X
p X s

η

η
≠

Λ
Λ =

Λ

∑
∑

 

The corresponding result to (17) then becomes 

1

( , | )
( )  

( , | )
r

R
r r

MCE
r r rs

p X S
O

p X s

η

η
=

ΛΛ =
Λ∑∑

       

which can be reformulated into a rational function using the same steps as in Section III.B: 

1

1

1 1 1...

1 1...

 ( ... , ... | ) ( ... )
( )  

 ( ... , ... | )
R

R

R R MCE Rs s
MCE

R Rs s

p X X s s C s s
O

p X X s s

η

η

Λ
Λ =

Λ
∑

∑
       (94) 

The remaining derivations in Sections V and VI will no longer follow strictly for the more 
general and practical case of (94). In the MCE implementation as in our experiments reported in 
[23], however, we modify (92) for computing ( , , )i r tγ∆  in the following way in order to include 
the effects of the exponent scale factor:  

, ,( , , ) ( | , ) ( ) ( | , ) ( ) ( )
r

r r

r r r r r r i r s
s s

i r t p s X C s p X s C s tγ γ
⎛ ⎞
′ ′∆ = Λ − Λ⎜ ⎟
⎝ ⎠

∑ ∑% %          (95) 

where ( | , )r rp s X ′Λ%  is the generalized posterior probability of sr, which can be computed as 

( , | )
( | , )

( , | )
r

r r
r r

r rs

p X s
p s X

p X s

η

η

′Λ′Λ =
′Λ∑

%        (96) 

The second empirical MCE implementation issue concerns the use of α≠1 in (13). For 1-best 
MCE, α acts as η, or we equivalently set η = α, and α = 1. Then we can compute 
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( , , )i r tγ∆ according to (95). For N-best MCE (N>1), given the discriminant function defined in 
(12)  and the sigmoid function defined in (13),  we have the following result (which is 
corresponding to (14)): 

( ) ,

,

( , | )

( , )

( , | ) ( , | )

r r r

r r r

r r
s s S

r r r

r r r r
s s S

p X s

l d X

p X S p X s

α
η

α
η α η

≠

⋅

≠

⎛ ⎞
Λ⎜ ⎟

⎝ ⎠Λ =
⎛ ⎞

Λ + Λ⎜ ⎟
⎝ ⎠

∑

∑
    (97) 

Now, α is applied outside of the summation of scaled joint probabilities over all competing 
strings, making the rigorous computation intractable. In our practical MCE implementation, we 

instead use 
,

( , | )
r r r

r r
s s S

p X sη α⋅

≠

Λ∑  to approximate
,

( , | )
r r r

r r
s s S

p X s

α
η

≠

⎛ ⎞
Λ⎜ ⎟

⎝ ⎠
∑ . This approximation 

(which is exact when η approaches infinity) makes it equivalent to setting the new “η” as α·η, and 
setting new α = 1. Then, again, we can compute ( , , )i r tγ∆ according to (95). It should be noted 
that, with this approximation, the computation for the lattice-based MCE does not require 
removing the correct word string rS  from the lattice. This contrasts with the solution in [55][35] 
where the removal was necessary without using the approximation, making it more difficult to 
implement in practice.  

The above two empirical solutions have been implemented successfully in our speech 
recognition system, yielding strong practical results (published in [24][68]) that validate the 
solutions.   
 
 

 
APPENDIX III:   COMPUTING ( , , )i r tγ∆  WHEN USING LATTICES 

A lattice, as illustrated in Fig. 1, is a compact representation of a large list of strings. It is an 
acyclic directed graph consisting of a number of nodes (nine in Fig. 1 as a highly simplified 
example) and a set of directed arcs each connecting two nodes. In Fig. 1, each node corresponds 
to a time stamp and each arc corresponds to a sub-string unit (e.g., a word in a sentence). A string 
in the lattice contains multiple arcs. A typical arc is shown as q in Fig. 1. Two time stamps, bq and 
eq, are associated with each arc, providing an estimate of the segment boundaries for the substring. 
For a time slice t within the arc segment q, we have bq ≤ t ≤ eq.  
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q 

t 
1 bq eq T 

t 

 
Fig. 1.  A graphical illustration of a lattice, where q represents an arc in the lattice and t represents a time 
slice. The time span of arc q is bq ≤ t ≤ eq and that for the entire lattice is 1 ≤ t ≤ T. In this simple example, 
the total number of arcs (q) is 21, which is substantially lower than the total number of paths (sr ) of 420. 
The essence of the decomposition of occupation probability introduced in the text (Eq. (98)) is to enable 
fast computation by reducing the number of terms in summation over sr to that over q. 

 
We will show below that (86) and (92) can both be computed efficiently by a forward-

backward algorithm. First, given the lattice in Fig. 1 and sr as an arbitrary path in that lattice, we 
will show the occupancy given the entire string sr can be computed as the occupancy given the 
local arc q, where arc q belongs to sr. i.e.,  
 

, , , ,( ) ( )
ri r q i r st tγ γ=     when  bq ≤ t ≤ eq        (98) 

 
    To see this, let sr be composed of three sub-strings: rs′ ,q, rs′′ , and correspondingly the 

observation sequence Xr is compose of three sub-sequences: , ,r q rX X X′ ′′ . Then the right hand side 

of (98) can be analyzed to be 
 

, , , :

, :

, :

, ,

( : ) ( | , , )

( | , , , , , , )

( | , , )

( : )

r q q

q q

q q

i r s q q r t b t e r r

r t b t e r q r r r

r t b t e q

i r q q q

t b t e p q i X s

p q i X X X s q s

p q i X q

t b t e

γ

γ

≤ ≤

≤ ≤

≤ ≤

′≤ ≤ = = Λ

′ ′′ ′ ′′ ′= = Λ

′= = Λ

= ≤ ≤

 

 
which is the left hand side of (98). The third step holds because usually the HMM of sr is formed 
by concatenating phone specific HMMs, so the states in different arcs are belong to different 
HMMs, and are independent with each other, i.e., given arc q, its first HMM state , qr bq is 

independent of its preceding state , 1qr bq − .  

    The essence of (98) is to decouple the dependency on the local arc q from the entire string sr.  
This enables drastic simplification of the computation in (86) and (92), which we discuss below 
for three separate cases. 
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A.   Computing ( , , )i r tγ∆  for MMI involving lattice approximation 

   The principal computation burden in (86) is the huge number (N) of summation terms for rs  for 
the equivalent N-best list of a lattice in the following quantity in (86): 
 

, ,( | , ) ( )
r

r

r r i r s
s

p s X tγ′ϒ = Λ∑         (99) 

Using (98), we can significantly reduce the computation by the following simplification:  
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, , , ,
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( ) ( | , ) ( )
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r q q r r

q q q q

r r i r q i r q r r
s q t b e s q s

r
i r q r i r q

q t b e q t b e r

p s X t t p s X

p q X
t p q X t

p X

γ γ

γ γ

∈ ∈

∈ ∈

′ ′ϒ = Λ = ⋅ Λ

′Λ′= ⋅ Λ = ⋅
′Λ

∑ ∑ ∑

∑ ∑
    (100) 

 
Note the number of summation terms for q in (100) after the approximation is substantially 
smaller than that for sr before the approximation. The key quantities in (100) can be efficiently 
computed as follows (proof omitted): 

( , | ) ( ) ( )rp q X q qα β′Λ = ;         (101) 

: { } : { }

( | ) ( , | ) ( )r r
q q ending arcs q q ending arcs

p X p q X qα
∈ ∈

′ ′Λ = Λ =∑ ∑      (102) 

where the “forward” and “backward” probabilities are defined by  
 ( ) ( , ( ), ( ) | )r rq p q X q X qα ′ ′Λ� ;         (103) 

( ) ( ( ) | , )rq p X q qβ ′′ ′Λ� .         (104) 

 In (103), ( )rX q′  denotes the r-th training token’s partial observation sequence preceding arc q, 

i.e.,  during 1≤ t < bq. ( )rX q  is the observation sequence bounded by arc q with bq ≤ t ≤ eq . 

( )rX q′′  in (104) denotes the partial observation sequence succeeding arc q, or during eq < t ≤ Tr. 
α(q) is the probability that lattice is at arc q during time bq ≤ t ≤ eq, and having generated partial   
observation   ( )rX q′    plus  ( )rX q ,  i.e., xr,1 ,…, xr,eq. β(q)  is   the   probability  of generating 

partial observation ( )rX q′′  given that the lattice is at arc q at time t=eq.  
For each arc q in the lattice, α(q) and  β(q) can be computed by the following efficient 

forward and backward recursions, respectively (proofs omitted): 

{ :   }

( ) ( | , ) ( ( ) | , ) ( )r
p p precedes q

q P q p p X q q pα α′ ′= Λ Λ∑      (105) 

and 

{ : }

( ) ( | , ) ( ( ) | , ) ( )r
v v succeeds q

q P v q p X v v vβ β′ ′= Λ Λ∑      (106) 

where in (105), {p: p precedes q} is the collection of all arcs p that directly connects to q in the 
lattice. Similarly, {v: v succeeds q} in (106) is the collection of all arcs v that directly connect to q 
in the lattice. α(q) is initialized at the starting arc 0q by 0 0 0 0( ) ( ) ( ( ) | , )rq q p X q qα π ′= Λ , and β(q) 

initialized at the ending arc Eq by β( Eq ) = 1. 
The recursive computation of α(q) and  β(q) is illustrated in Fig. 2. There is direct analogy 

between this forward and backward probability computation over the sub-lattice illustrated here 
and that for the standard HMM over time [51][11]. In Fig. 2, the arc q under consideration is 
analogous to the HMM state occupied at current time frame t in describing the HMM’s forward-
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backward algorithm, the set of arcs {p : p precedes q} is analogous to all states in HMM at frame 
t-1, the set {v : v succeeds q} is analogous to all states in HMM at frame t+1. Xr′(q) plays the role 
of the sequence of observation vectors from 1 to t-1, and Xr″(q) plays the role of the sequence of 
observation vectors from t+1 to the end. P(q|p,Λ′) is analogous to the HMM’s transition 
probability (and its value is available from the lattice as the phone or word’s “bigram language 
model” score). p(Xr(q)|q,Λ′) is analogous to the HMM’s emission probability (and its value is 
available from the lattice as the “acoustic model” score for arc q).  Given these analogies, the 
forward and backward probability computation for (105) and (106) as illustrated in Fig. 2 
becomes identical to that for the standard HMM (as illustrated in Figs. 6.5 and 6.6 of the textbook 
[51]). 

 p(Xr(v)|v,Λ′) 
 

   P(v|q,Λ′) 
 

 {v : v succeeds q}  {p : p precedes q} 

    q . 
. 
. 

. 

. 

. 
   P(q|p,Λ′) 
 

  α(p)  β(v)   α(q),  β(q) 

. . . . . . . . . . . . 

. . . . . . 

. . . . . . 

. . . . . . . . . . . . 

. . . . . . 

. . . . . . 

 p(Xr(q)|q,Λ′) 
 

    Xr(q) 
    1 bq-1  bq   eq  eq+1 

    Xr′(q)     Xr″(q) 
  T 

 
Fig. 2. Illustrations of the sub-lattice that contains arc q and of the computation of the forward and 
backward α(q) and  β(q) based on the sub-lattice. Each solid line represents an arc in the lattice, and each 
dashed line represents the direct connection between two arcs (i.e., bq-1=ep). 
 
B.   Computing ( , , )i r tγ∆  for MPE/MWE involving lattice approximation 

We now describe how the computation burden in (92) due to the huge number of summation 
terms for rs  can be drastically reduced for the MPE/MWE case. It should be pointed out that (92) 
is a unified form for both MCE and MPE/MWE. However, due to the different properties of C(sr) 
(i.e., MCE has each term as the Kronecker delta function, but not so for MPE/MWE), the lattice-
based computation of (92) for MCE and MPE/MWE becomes different.  

Consider a particular string token sr that consists of a sequence of sub-tokens or sub-strings. 
For MCE, ( ) ( , )r r rC s s Sδ= , and hence if any of the sub-tokens is incorrect, the entire token is 

incorrect also. On the other hand, for MPE, ( ) ( , )r r rC s A s S= , which is the raw phone (sub-string) 
accuracy count in the sentence string sr. Therefore, we have a sum of raw phone (sub-string) 

accuracy counts of all sub-tokens; i.e., for sr = sr,1,…, sr,Nr, we have ,
1

( ) ( )
rN

r r i
i

C s C s
=

=∑ , where 

,( )r iC s is the raw accuracy count of the sub-token sr,i. Readers are referred to [48] for the 

computation of ,( )r iC s  for sub-token sr,i in the lattice.  
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In this subsection, we discuss the lattice-based computation of (86) for MPE/MWE. (The 
lattice-based MCE will be discussed in the next subsection.)  

To proceed, we define 
( , | ) ( )

( , | )
r

r

r r r
s

r
r r

s

p X s C s

C
p X s

′Λ
=

′Λ

∑
∑

        (107) 

which is the average accuracy count of utterance r, given the observation sequence (Xr) and the 
lattice that represents all possible strings sr. 

Then, we make use of (98) to simplify (92) as follows: 
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where 
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and (102). In (108),  we define 
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         (109) 

which is the average accuracy count of the utterance r, given observation sequence Xr and the 
sub-lattice that represents all strings sr containing arc q. 

The difficulty of computing ( )rC q  and rC  in (108) lies in the very large number of terms in 

the summation over :r rs q s∈  and over rs  , respectively. To efficiently compute ( )rC q  and rC , 
we now further define the following two additional “forward” and “backward” variables for each 
arc q  (following [48]): 

{ : '  }

{ : '  }

( , , ( ), ( ) | ) ( , )

( )
( , , ( ), ( ) | )

r r
s s precedes q

r r
s s precedes q

p s q X q X q C s q

q
p s q X q X q
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∑
∑

         (110) 

and       

{ :  }

{ :  }

( , ( ) | , ) ( )

( )
( , ( ) | , )

r
s s succeeds q

r
s s succeeds q

p s X q q C s

q
p s X q q

ψ ′′ ′′

′′ ′′

′′ ′′ ′ ′′Λ
=

′′ ′′ ′Λ

∑
∑

       (111) 
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In (110), φ(q) is the weighted average accuracy count of the sub-lattice that represents all 
partial paths (s′,q) ending inclusively in q, with the  partial observation sequence ( )rX q′ U ( )rX q   
(i.e., xr,1 ,…, xr,eq). In (111), ψ(q) is the weighted average accuracy count of the sub-lattice that 
represents all partial paths s″ that  succeeds q, with the partial observation sequence ( )rX q′′ . Fig. 3 
illustrates the sub-lattice that represents all sr that contains arc q, together with all the relevant 
quantities for defining φ(q) and ψ(q) based on the sub-lattice. To show these quantities in 
defining φ(q), we denote the accuracy count as C(s′,q) for a given partial path (s′,q) encircled by 
the dotted line to the left of Fig. 3. We denote the weight associated with this partial path as p(s′, 
q, X′r(q), Xr(q)|Λ′). The quantities defining ψ (q) are illustrated to the right of Fig. 3, including the 
partial path (s″) that is to the future of arc q,  the accuracy count C(s″) associated with this path, 
and the associated weight of p(s″, X″r(q)|Λ′). 

    bq 

    q 

. 

. 

. 

. 

. 

. 

. . . . . . . . . . . . 

  T 

 weight=p( s′,q, X′r(q),Xr(q) |Λ′) 
 

. . . . . . 

C(s′,q) 

. . . . . . 
C(s″) 

    eq 
    Xr(q)     Xr′(q)     Xr″(q) 

. . . . . . 

. . . . . . . . . . . . 

. . . . . . 

     φ(q)                ψ(q) 

 s′ s″ 

  weight= p(s″, X″r(q)|Λ′) 
 

    1  
Fig. 3. Illustrations of the sub-lattice that contains arc q, and of the probability weights that define φ(q) of  
(110) and ψ(q) of (111) based on the sub-lattice.  
 
We now describe how to compute φ(q) defined in (110) and ψ(q) defined in (111) efficiently for 
each arc q in the lattice. For φ(q), we use the following efficient “forward” recursion (proof 
omitted): 

{ :  }

{ :  }

{ :  }

{ :  }
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∑

∑
∑

    (112) 

where φ(q) is initialized for each starting arc 0q by 0 0( ) ( )q C qϕ = , which is the raw phone or 

word accuracy for 0q . For ψ(q), we use the following efficient “backward” recursion (proof 
omitted): 
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[ ]
{ :  }

{ :  }

( ( ) | , ) ( | , ) ( ) ( ) ( )
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=

′ ′Λ Λ

∑
∑

    (113) 

where ψ(q) is initialized for each ending arc Eq by ( ) 0.Eqϕ =  
The recursive computation of φ(q) in (112) is illustrated in Fig. 4. Given the partial 

observation sequence xr,1 ,…, xr,eq, [ ( ) ( )]p C qϕ +  is the mean accuracy count of the sub-lattice 
that represents all partial paths that pass p and end with q. These paths are marked by the dotted 
line in Fig. 4.  φ(q) is a weighted sum and the weighted associated with each path passing arc p is 

( ) ( | , ) ( ( ) | , )rp P q p p X q qα ′ ′Λ Λ , where each of the three factors is associated with each 
corresponding portion that makes up the path. The three factors are placed in the corresponding 
portions on the path in Fig. 4. The weighted average of [ ( ) ( )]p C qϕ +  over all arcs p (directly 
preceding q) using the three-factor weight above gives the recursive form of φ(q) shown in the 
first line of (112). The second line of (112) removes some redundant computation and has been 
implemented in practice. 

    q 
. 
. 
. 

. . . . . . 

  T 

. . . . . . 

    eq     Xr(q)     bq     Xr″(q) 

. . . . . . 

. . . . . . 

   φ(q)     

. . . . . . 

. . . . . . 
. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . . . . . . . . . . 

    1     Xr′(q) 

 {p: p precedes q} 

 p  
   P(q|p,Λ′) 
 

 P(Xr(q)|q,Λ′) 
 

. 

. 

. 

. 

. 

.    φ(p)     

   C(q)     

   α(p)     

 
Fig. 4. Illustrations of the sub-lattice containing arc q and of the recursive φ(q) computation based on the 
sub-lattice. Each solid line represents an arc in the sub-lattice, and each dashed line represents the transition 
between two arcs. The dotted line encircles all partial paths that pass p and end with q. 
  

The recursive computation of ψ(q) in (113) can be similarly interpreted as the weighted 
average of the accuracy count ( ) ( )C v vψ+  for all arcs v directly following q. 

Now given that both φ(q) and ψ(q) are computed, and assuming that arc q depends only on 
the arcs directly preceding it and succeeding it, we can use (110) and (111) to directly prove that  

( ) ( ) ( )rC q q qϕ ψ= + .          (114) 
as one of the two quantities required to compute  ( , , )i r tγ∆   in (108). The interpretation of (114) 

is offered using Fig. 3. By definition, ( )rC q  is the average accuracy count for utterance r over the 
sub-lattice shown in Fig. 3 that contains arc q.  This count can be decomposed into two parts. The 
first part is the “forward” average accuracy count of the left part of the sub-lattice in Fig. 3 for the 
utterance from t=1 to eq, which is φ(q). The second part is the “backward” average accuracy count 
of the right part of the sub-lattice for the utterance from t= eq+1 to Tr, which is ψ(q). 

The second quantity, rC , required to compute ( , , )i r tγ∆   in (108) can be proved to be 
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: { }
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q q ending arcs
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q q ending arcs

q q

C
q

ϕ α

α
∈

∈

=
∑
∑

        (115) 

The interpretation of (115) is as follows. Let arc q be an ending arc in the lattice. And recall φ(q) 
is the average accuracy count of utterance r given the sub-lattice that represents all sr containing 
(sub-lattice-ending) arc q, and α(q) is the weight of this sub-lattice. Therefore, rC , which is 
defined in (107) as the average accuracy count for the entire lattice, becomes a weighted sum of 
the average accuracy counts of all sub-lattices as shown in (115). 

This completes the description of the computation of ( , , )i r tγ∆  in (108). 
 
C.   Computing ( , , )i r tγ∆  for MCE involving lattice approximation 

Finally, we discuss using (98) to compute ( , , )i r tγ∆ of (92) for MCE. As we mentioned earlier, 

while (92) is unified between MPE and MCE, the specific form of ( ) ( , )r r rC s s Sδ=  in MCE 
permits special simplification of ( , , )i r tγ∆ of (92) for MCE. The simplification steps, followed by 
the use of (98), lead to 
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  (116) 

 
The last line shows a striking similarity between the lattice-based MCE and MMI. In (116), 

( , | ')
( | , ')

( | ')
r

r
r

p q X
p q X

p X

ΛΛ =
Λ

 is computed by (101) and (102) for the numerator and denominator, 

respectively. Also in (116), we have 
( | , ) ( | )

( | , )
( | )

r r r
r r

r

p X S p S
p S X

p X

′ ′Λ Λ′Λ =
′Λ

, where correct 

string rS  is known. Hence , , ( )
ri r S tγ  and ( | , )r rp X S ′Λ  in (116) can be efficiently computed by the 

standard forward-backward algorithm for the HMM [51]. Finally, for the computation of 
( | )rp S ′Λ and ( | )rp X ′Λ , we use the language model and 

: { }

( )
q q ending arcs

qα
∈
∑ , respectively. 
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     Note that the computation for the lattice-based MCE provided in (116) does not require 
removing the correct word string rS  from the lattice.  

  

 

APPENDIX IV:   EXISTENCE PROOF OF FINITE D IN GT UPDATES FOR CDHMM   

As shown in Section VI.B, Jensen’s inequality based optimization cannot be applied directly to 
Gaussian CDHMM since the value Di in the GT update formulas (71) and (72) may be infinite, 
making the algorithm’s convergence infinitely slow. In this Appendix, we follow the insight 
provided in [2] to prove that there exist finite values of Di which make the GT update formulas 
(71) and (72) practical for all MMI, MCE, and MPE/MWE. 

To proceed the proof, we substitute (65) into (62) and obtain 
  

[ ]( ; ) ( ) ( ) ( , | , ) log  ( , | , ) .
q s

V d s p q s p q s Const
χ

χ χ′ ′ ′Λ Λ = Γ Λ + Λ Λ +∑∑∫    (117) 

We prove below that for CDHMM, given a sufficiently large but bounded (i.e., finite) constant 
D,  

( ; ) ( ; ) ( ; ) ( ; )F F V V′ ′ ′ ′ ′ ′Λ Λ − Λ Λ ≥ Λ Λ − Λ Λ       (118) 
    First, we define  
 [ ] [ ]( ; ) ( ; ) ( ; ) ( ; )D F F V V′ ′ ′ ′ ′ ′∆ = Λ Λ − Λ Λ − Λ Λ − Λ Λ      (119) 

and will show that ∆D ≥ 0 for any parameter set Λ. Substituting (64) and (62) into (119), we 
obtain 

[ ] [ ]( ; ) ( ; ) ( ; ) ( ; )D F F V V′ ′ ′ ′ ′ ′∆ = Λ Λ − Λ Λ − Λ Λ − Λ Λ  

[ ][ ]
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where ( ) ( , | , ) ( , | , )
, , , , 1 log 1 1

( , | , ) ( , | , )

p q s p q s
q s

p q s p q s

χ χχ
χ χ

⎡ ⎤⎡ ⎤ ⎡ ⎤Λ Λ′Η Λ Λ = − − − +⎢ ⎥⎢ ⎥ ⎢ ⎥′ ′Λ Λ⎣ ⎦ ⎣ ⎦⎣ ⎦
.  

  Then, we need to show that there exists a bounded d(s) that ensures the summand of ∆D in (120) 
be non-negative. To proceed, we expand the summand to  

[ ] ( )

[ ] ( ) ( )

( ) ( ) ( , | , ) , , , ,

( ) ( ) ( ) ( , | , ) , , , , ( ) ( , | , ) , , , ,

d s p q s q s d

p s C s O p X q s X q s d s p q s q s d

χ

χ

χ χ χ

χ χ χ

′ ′ ′Γ Λ + Λ Η Λ Λ

′ ′ ′ ′ ′= − Λ Λ Η Λ Λ + Λ Η Λ Λ

∫

∫
(121) 

   We now use the following key theorem from [2]: If ( , )f X Λ  is non-negative and analytic for 
 and X χ∈ Λ∈Ω , where  and χ Ω are the data space and model space, respectively, then there is 

a Λ-independent constant K > 0 such that 
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 ( , ) ( , )f d K f X
χ

χ χΛ ≥ Λ∫        (122) 

 for any valid model Λ. (Readers are referred to [2] for a rigorous proof.)  
Define ( )( , ) ( , | , ) , , , ,f X p X q s X q s′ ′Λ = Λ Η Λ Λ . Here ( , )f X Λ  is non-negative and analytic 

since both ( , | , )p X q s ′Λ  and ( ), , , ,X q s ′Η Λ Λ  are non-negative and analytic (for CDHMM). 

Using (122), we have 

( ) ( )( , | , ) , , , , ( , | , ) , , , ,p q s q s d K p X q s X q s
χ

χ χ χ′ ′ ′ ′Λ Η Λ Λ ≥ Λ Η Λ Λ∫    (123) 

Now we construct non-negative d(s) as follows: 

( )

0                                 if ( ) ( )
( ) 1

( ) ( ) ( )  if ( ) ( ) 

C s O
d s

p s O C s C s O
K

′≥ Λ⎧
⎪= ⎨ ′ ′Λ − < Λ⎪⎩

      (124) 

Then, (123) becomes 

 ( ) [ ] ( )( ) ( , | , ) , , , , ( ) ( ) ( ) ( , | , ) , , , ,d s p q s q s d p s C s O p X q s X q s
χ

χ χ χ′ ′ ′ ′ ′Λ Η Λ Λ > − − Λ Λ Η Λ Λ∫  

This proves that the summand of ∆D , [ ] ( )( ) ( ) ( , | , ) , , , ,d s p q s q s d
χ

χ χ χ′ ′ ′Γ Λ + Λ Η Λ Λ∫ , is non-

negative for any s (according to (121)) , and therefore 0D∆ ≥ .  
Given (124) and (122), Di can be computed according to (59) which is a sufficiently large but 

bounded value. 
 

APPENDIX V:   UNIFYING DISCRIMINATIVE TRAINING CRITERION USING THE REVERSE 
JENSEN INEQUALITY  

While the proof in Appendix IV above (based on Axelrod et. al.’s work [2]) shows that the GT 
update formulas for CDHMM are valid given a sufficiently large (but bounded) constant Di, no 
explicit construction of Di was given. Therefore, it was an existence proof.  In this Appendix, we 
will outline a constructive proof based on Jebera’s work [26][27]. 

In principle, Jebara’s method is applicable to maximizing any rational function, whose 
numerator and denominator are a mixture of exponential models. Therefore, it is applicable to 
optimizing our unified discriminative criterion of (26) for all MMI, MCE, and MPE/MWE 
criteria. In this brief review of Jebara’s method, we will introduce the principle of the reverse 
Jensen inequality and its application to discriminative objective function optimization.  

For a rational function in the form of (27) and (28), we desire to maximize the following 
equivalent function:  
log ( ) log ( ) log ( ) log ( ,  | ) ( ) log ( ,  | )

s s
O G H p X s C s p X sΛ = Λ − Λ = Λ − Λ∑ ∑   (125)  

The first term of the right-hand side of (125) is a log-sum function similar to log likelihood. 
Based on the well known Jensen’s inequality and with several steps of simplifications, we have 

( ; )
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p X s C s
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p X s C s

′Λ Λ

′Λ ≥ Λ Λ +

⎛ ⎞′Λ= Λ +⎜ ⎟⎜ ⎟′Λ⎝ ⎠

∑

∑ ∑
144444444424444444443

,   (126) 

where k is a constant irrelevant to Λ (although relevant to Λ′), and equality holds when Λ = Λ′.  
This is similar to the E-step in the EM algorithm. 
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The left hand side of  (126) is a lower bound of log ( )G Λ , and makes tangential contact with 
log ( )G Λ at Λ′. Therefore maximizing the auxiliary function QG(Λ; Λ′) guarantees increase of 
log ( )G Λ  iteratively.  

However, in order to maximize log O(Λ), we need a lower bound for log O(Λ), which in turn 
requires an upper bound of log H(Λ). In [26], it was shown (non-trivially) that using reverse 
Jensen’s inequality an auxiliary function QH(Λ; Λ′) can be constructed so that  

( )
( ; )

log ( ,  | ) ( ; ) log ( ,  | )

H

H s ss s

Q

p X s Q k w p Y s k

′Λ Λ

′Λ ≤ Λ Λ + = − Λ +∑ ∑% %
14444244443

   (127) 

where k is a Λ-irrelevant constant that makes QH(Λ; Λ′)+ k tangential contact with log ( )G Λ at Λ′, 
ws and Ys are positive weights and modified observations, respectively. The reverse Jensen 
inequality was derived by exploiting the convexity of the cumulant generating function of 
exponential family in [26] and will not be elaborated further here. 

Given (126) and (127), one can construct the auxiliary function for log O(Λ) as: 
( ; ) ( ; ) ( ; )G HQ Q Q′ ′ ′Λ Λ = Λ Λ − Λ Λ        (128) 

Then optimizing log O(Λ) can be achieved by iteratively optimizing Q(Λ; Λ′), which takes the 
same step as the M-step in the conventional EM algorithm for an HMM (i.e., with a closed-form 
solution in the M-step). 

Note for our unifying discriminative objective function (26), the summand of G(Λ) may take 
negative value for MPE; i.e., for some path s that has many insertion errors, the corresponding 
C(s) may be negative. In this case, we can add extra dummy training tokens to the training set, 
while these dummy tokens can only be recognized as correct references. Appending these dummy 
tokens to s can effectively increase its raw accuracy count to be positive. Moreover, since the 
dummy token will not compete with any other tokens in the training set, it will not affect the 
training performance. 

 
APPENDIX VI:   BAYES RISK AND MPE 

In [54], Schlüter showed that MMI and MCE criteria are an upper bound of the true Bayes 
sentence- or string-level error rate. Extending that work, we show here that the MPE criterion, 
after being normalized by the number of training utterance, is an upper bound of the true Bayes 
risk at the sub-string (e.g., phone) level. In order to compare the MPE criterion with the true 
Bayes risk, we denote by  ( | )r rP s X  the true posterior probability, and ( | , )r rP s X Λ  the model-
based posterior probability. Given the true posterior probability ( | )P s X , The Bayes risk of 
classifying X to s is  

,( | ) ( | ) s s
s

R s X P s X e ′
′

′= ⋅∑  

where es, s′  is the loss of classifying X to class s while X actually has reference class s′. For zero-
one loss (e.g., sentence error), , ( , )s se s sδ′ ′= . However, for MPE, the error is counted on the 

phone level. Therefore, the conventional zero-one loss is not suitable. Instead, we need to use a 
non zero-one loss. For classification tasks that count errors on the sub-string level (e.g., speech 
recognition for words or phones), we use non zero-one loss for es, s′ as the raw error counts, 
including deletion, insertion, and substitution errors of the recognized string s given the reference 
string s′. Specifically, in the MPE framework, , | | ( , )s se s A s s′ ′ ′= − , where | |s′  is the number of 

sub-strings in reference s′, and A(s,s′) is the raw accuracy as defined for MPE [48]. Therefore, 
minimum Bayes risk becomes 
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Then, the expectation of the true Bayes error is 

1

expectation of number of sub-strings (e.g.,phones

1
( ) lim ( | ) | | max ( | ) ( , )

( ) ( | ) | | max ( | ) ( , )

( ) ( | ) | |

R

Bayes rR s
r s s

s
s s

s

R e P s X s P s X A s s
R

dX p X P s X s P s X A s s

dX p X P s X s

→∞ ′ ′=

′ ′

′

⎧ ⎫′ ′ ′ ′= ⋅ −⎨ ⎬
⎩ ⎭

⎧ ⎫′ ′ ′ ′= ⋅ ⋅ ⋅ −⎨ ⎬
⎩ ⎭
⎧ ⎫′ ′= ⋅ ⋅ ⋅⎨ ⎬
⎩ ⎭

∑ ∑ ∑

∑ ∑∫

∑∫
)

( ) max ( | ) ( , )
s

s

dX p X P s X A s s
′

⎧ ⎫′ ′− ⋅ ⋅ ⎨ ⎬
⎩ ⎭

∑∫
1444442444443

 

 
On the other hand, the model-based posterior probability for string s given the observation 

sequence X is denoted by  ( | , )P s X Λ . In the limit of an infinite amount of training data, the 
normalized MPE criterion then becomes 

1

1
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Since ( )MPEO Λ%  is actually the expectation of utility instead of loss, the complementary loss 
incurred by normalized MPE is  

( | ) ( ) ( | ) | | ( )

( ) ( | ) | | ( ) max ( | ) ( , )

( )

MPE MPE
s

s
s s

Bayes

R e dX p X P s X s O
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R e
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⎧ ⎫′ ′Λ = ⋅ ⋅ ⋅ − Λ⎨ ⎬
⎩ ⎭
⎧ ⎫ ⎧ ⎫′ ′ ′ ′≥ ⋅ ⋅ ⋅ − ⋅ ⋅⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

=
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%

 

 This proves that the MPE criterion provides an upper bound of true (model-independent) 
minimum Bayes risk on the sub-string level. Moreover, if we can minimize ( | )MPER e Λ  to 
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achieve equality in the above inequality, i.e., if the model distribution ( | , )P s X′ Λ  can be 
estimated to be 

1    iff max ( | ) ( , ) 
( | , )

0   otherwise                                   

s
s

s P s X A s s
P s X ′′ ′

′ ′′ ′⎧ =⎪Λ = ⎨
⎪⎩

∑
 

then the minimum Bayes risk can be obtained.  
It is important to point out that, for the non zero-one loss as we discussed here, the 

conventional maximum a posteriori probability classifier may not lead to minimum Bayes risk at 
the sub-string level. To address this issue, Minimum Bayes Risk decoding has been developed in 
[20], to which we would like to refer the interested readers for technical details.  
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