Partial-Order Reduction for Context-Bounded
State Exploration

Madanlal Musuvathi Shaz Qadeer
February 8, 2007

Technical Report
MSR-TR-2007-12

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052



This page intentionally left blank.



Partial-Order Reduction for Context-Bounded
State Exploration

Madanlal Musuvathi and Shaz Qadeer

Microsoft Research

Abstract. Iterative context-bounding is a technique for performing pri-
oritized search of the state-space of multithreaded programs. A context
switch occurs in a concurrent execution when a thread temporarily stops
and a different thread resumes. Iterative context-bounding gives priority
to executions with fewer context switches during state-space search, ex-
ploring for a given context-bound c only those executions in which the
number of context switches is at most c. Prior work has shown that this
search algorithm is effective in finding many subtle concurrency errors
in large programs.

Partial-order reduction has traditionally been applied in complete state-
space search and depth-bounded search for reducing the cost of state
exploration; however, these techniques have not been applied to context-
bounded search. As we show in our paper, it is difficult to perform partial-
order reduction during a context-bounded search because of subtle in-
teractions between the two techniques. The main contribution of our
paper is an algorithm for performing partial-order reduction for context-
bounded state exploration.

1 Introduction

Multithreaded programs are difficult to get right. Unexpected thread interleav-
ings lead to crashes that occur late in the software development cycle or even
after the software is released. Empirical evidence clearly demonstrates that tradi-
tional methods for testing multithreaded programs are inadequate. Model check-
ing [3,19] or systematic exploration of program behavior is a promising alterna-
tive for verifying such programs. However, it is challenging to apply systematic
exploration to large programs because the number of possible executions of a
program increases exponentially with the length of the execution.

In recent work [14], we introduced the technique of iterative context-bounding
for effectively searching the state space of a multithreaded program. A context
switch occurs in an execution when a thread temporarily stops even though it is
enabled and a different thread resumes. Iterative context-bounding gives priority
to executions with fewer context switches during state-space search. For a given
context-bound ¢, the search explores only those executions in which the number
of context switches is at most c.

There are three important reasons for the efficacy of iterative context-bounding
in state-space search. First, for a fixed number of context switches, the total num-
ber of executions in a (terminating) program is polynomial in the number of steps



Tl T2

< x
0o
=
<
i
N

Fig. 1. Example

taken by each thread [14]. This theoretical upper bound makes it practically fea-
sible to scale systematic exploration to large programs without sacrificing the
ability to go deep in the state space. Second, we have observed empirically that
many subtle concurrency errors are manifested in executions with few context
switches. In fact, our implementations of context-bounded search in the Kiss [18]
and CHESS [14] model checkers have revealed many subtle bugs in real-world
multithreaded programs. Each of these errors was exposed by an execution with
a small number of context switches. Finally, if context-bounded search termi-
nates with ¢ context switches without reporting any errors, it is guaranteed that
any error in the program requires at least c+1 context switches. Not only does
context-bounded search provide a valuable coverage metric but also it is sound
in the limit as the search parameter is increased.

Partial-order reduction [21, 8, 16] is a class of techniques orthogonal to context-
bounding for reducing the complexity of state-space search. These techniques
have proved to be very effective in improving the scalability of model check-
ing on message-passing software [7]. In this paper, we address the problem of
incorporating partial-order reduction in context-bounded search.

The context-bound of a totally-ordered execution is the number of context-
switches in it. The context-bound of a partially-ordered execution is the minimum
among the context-bound of all totally-ordered executions equivalent to it. Given
a context-bound ¢, we would like to explore each partially-ordered execution with
a context-bound of ¢ or less exactly once. In Section 3, we present an algorithm
to solve precisely this problem.

A partial-order reduction algorithm is characterized by the rules it provides
for pruning a subset of the enabled transitions in each state. During depth-first
search, context-bounding can be trivially added by pruning a transition either if
the partial-order reduction algorithm requires it or if by executing the transition
the number of context switches of the current execution exceeds the context-
bound. We now present an example to motivate why this naive approach is
unsound.



The program in Figure 1 has two threads, T1 and T2. Let us perform depth-
first search with context-bound 0 while using the sleep set algorithm [8] for
performing partial-order reduction. We use the sleep set algorithm to illustrate
the difficulty; we believe that a similar issue would arise even with other partial-
order reduction algorithms. The state-space graph explored during the algorithm
is shown on the right. In each state, thread T1 is executed before thread T2.
Context-bounding does not prune the transition ¢ — d since the previously
executing thread T1 is disabled in state c. The transition b — e is pruned due to
context-bounding. When the transition ¢ — f of thread T2 is executed the sleep
set {T1} is passed along because the action x := 1 of T1 is locally independent
with the action y := 2 of T2. Consequently, the transition f — e is pruned.
As a result, the execution in which the final value of y is 1 is never explored
although the executiony := 2, x := 1,y := 1 has context-bound 0. Thus, we
find that the simple approach for integrating context-bounding and partial-order
reduction is unsound.

In Section 3, we present Algorithm 1 which soundly incorporates partial-
order reduction in context-bounded search. For any given context-bound ¢, Al-
gorithm 1 explores precisely once each partial-order, including all of its prefixes,
with context-bound c¢ or less. For detecting safety violations such as data-races,
local assertion failures, and deadlocks, it suffices to visit only the terminal partial-
orders with no successors. We present Algorithm 2, an improved algorithm that
visits each terminal partial-order precisely once and significantly reduces the
number of visited prefixes.

The key innovation that enables Algorithms 1 and 2 is that we represent
a state as a happens-before graph [10] and use efficient and incremental algo-
rithms (described in Section 3) for storing these graphs in a hashtable. Context-
bounded exploration provides a polynomial bound on the number of happens-
before graphs and consequently makes it feasible to scale this approach to large
programs. Our algorithms need to compute the context-bounds of each partial-
order encountered during the search. We first show that finding the context-
bound of a partially-ordered execution is NP-complete. We then present an
algorithm based on dynamic programming for solving this problem. By using
memoization, we are able to reuse the work performed in this computation across
various executions.

We present the asymptotic complexity of our algorithms on the class of ter-
minating multithreaded programs. This class of programs is interesting because
the testing harnesses of concurrent software components in the industry are in-
variably terminating. Suppose P is a terminating multithreaded program with
a maximum of n threads, where each thread performs a maximum of k steps.
Then, the total number of executions of P can be as large as £2(n*). Even though
the number of threads is usually small, the number of steps can be very large
and consequently the number of executions with its exponential dependence on
k is huge. If ¢ is the context-bound provided to our algorithms, the asymptotic
complexity of state exploration is O(n°T3.k" Tt (n + ¢)!), which although ex-



ponential in ¢ and n is polynomial in &, which is crucial for scaling to large
programs.

2 Multithreaded programs

In this paper, we are interested in systematic state exploration of terminating
multithreaded programs. We identify a program state with the partially-ordered
set of actions that happened since the beginning of the program. This notion (for-
mally defined below) is different from the usual notion of a state being a vector of
variables. Our notion of a state is appealing in the context of model checking of
software implementations [7,4,9,22, 13|, for which it is often extremely difficult
to collect all the variables defining the current state. For example, the state of a
concurrent user-mode WIN32 process comprises both its address space as well
as the state corresponding to any kernel resources allocated by it. However, it is
difficult for a model checker to access or modify the internal state of the kernel.

Let us fix a set Tid of thread identifiers, a set Act of actions, and a function
T : Act — Tid that provides for each action in Act the thread that performs it.

A state is a finite graph (A, H), where A C Act is a set of actions and H
is an irreflexive partial order on A that for each ¢t € Tid is total on the set
{a € A| T(a) =t} of actions in A performed by ¢. A set B C A is prefiz-closed
if whenever (a,b) € H and b € B then a € B. A state (A’, H') is a prefiz of state
(A, H) iff A’ is a prefiz-closed strict subset of A and H' is the restriction of H on
A’. We write s’ < s if ¢’ is a prefix of s. If (A, H') < (A, H) and A\ A’ is some

singleton set {a}, then we write (A’, H') e (A, H). Intuitively, thread T'(a)
takes a step to evolve the state from (A, H') to (A, H). In this case, (A’ H’)
is a predecessor of (A, H) and (A, H) is a successor of (A’, H'). If the action a
is a read of variable v by thread ¢, then H’ contains extra edges to a from the
last action performed by ¢ and from the last write action on v. Similarly, if the
action a is a write of variable v by thread ¢, then H’ contains extra edges to a
from the last action performed by ¢ and from the last read or write action on v.
In Section 3.3, we will formally define how these edges are added.

A thread that can take a step in a state s is said to be enabled in s. We
denote the set of enabled threads in s by F(s). We assume that if a thread ¢ is
enabled in a state s, then the state resulting from a step of ¢ is unique; this state
is denoted by nezt(s,t). We denote the set of all successors and predecessors of
a state s by succ(s) and pred(s), respectively.

A multithreaded program starts execution in the state s; = (Ay, Hr) where

Ay is the empty set and Hj is the empty relation. An execution is a sequence

¢ ¢ tno1 ¢ .
S —= 8] —= -+ 25 5,1 — s, for some n > 0. The length of an execution

a, denoted by len(a), is the number of steps in it. We write « 5 s to denote
the extension of the execution a by a single step of thread ¢. The final state of
a is denoted by final(a). The thread that performs the last step in « is denoted
by last(c).

Informally, a context-bound of an execution is the number of preempting
context-switches in the execution. Such context-switches occur when a thread



executing an action is different from the thread that executed the previous action,
despite the latter being enabled. Formally, the context-bound of an execution «,
denoted by CB(a), is defined recursively as follows:

CB(s; = s) =0
CB(a -5 s) = CB(a) + ite(t = last(a) V last(e) & E(final(c)),0,1)

We extend the function CB to apply to program steps. We define CB(s,t),
when ¢ € E(s), to be the least value of CB(«) over all o whose last step is

PRLAN next(s,t). Finally, we extend the function CB to apply to program states.
We define CB(sy) = 0. For any state s # sy, we define CB(s) to be the least
value of CB(«) over all executions « such that final(a)) = s. Obviously, CB(s)
is also the least value of CB(s',t) over all s’ and t such that nezt(s',t) = s.

Given a state s, define the frontier F(s) = {t | 3¢'.s' AN st It t € F(s),

then let s — ¢t denote the unique predecessor of s such that s — ¢ -5 5. From
the definitions above, it is easy to show that the following recursive function
computes CB(s,t) for a t € E(s).

CB(S],t) =0
CB(s,t) = minpep) CB(s =1, t") +ite(t' =tV € E(s),0,1)

3 Algorithm

In this section, we describe algorithms for performing partial-order reduction
during context-bounded state-space search. We fix for the rest of this section a
multithreaded program P and a context-bound csb > 0. We wish to search the
state space of P and discover all reachable states s such that CB(s) < csb.
One complication in designing such a search algorithm is that the context-
bound is not monotonic across transitions. Figure 2 shows an example of two

states ¢ and d such that ¢ —> d but CB(c) > CB(d). At first sight, this seems
to imply that a model checker should visit states with arbitrary context-bounds
in order to reach those within a smaller context bound. However, we show that
every reachable state s of P such that CB(s) < csb is indeed reachable via an
execution in which every state has a context-bound of csb or less. This is a direct

result of Theorem 1 presented below.

. to t1 tn_2 tn—1 trn . .
An execution S =8 —— 81 —— " —> 8,1 —> 8, —> Sp+1 18 ’I'TlO’TLOtO’I“LZC7

if CB(Sifl,tifl) S CB(SZ,tJ for all 1 S ) S n.

Theorem 1 (Monotonicity). For each execution « there is a monotonic exe-
cution o' such that the last step of o and o are identical.

Proof. We will prove the theorem by induction on the length of a. The base case
when len(a) = 1 is trivial. For the inductive case, let n > 1 and suppose the
theorem holds for all « such that len(a) = n—1. Suppose 3 is an execution such

that len(8) = n and the last step of 3 is s, Ln, Sna1. Let 3 be an execution



T1 T2

< x
==
x
1
N

Y= 1
CB(a) =0 yi=1 ? A x=2
CB(b)=0 O]
CB(c)=1
CB(d) = 0

Fig. 2. This figure shows a state ¢ such that executing thread 7’1 from ¢ results in
state d with a smaller context-bound. However, the state d is also reachable through
an equivalent monotone execution through e.

to t1 tn—2 tn—1 tn
S] = 89 —= 8] — +++ — 8y 1 — 8, —= Spy1 such that CB(sp,t,) =

CB(8p—1,tn—1) + ite(t, = tn—1 Vitn_1 & E(s,),0,1). Let o/ be the execution
obtained by removing the last step from . Since len(a’) =n — 1, the theorem
holds for o/. Therefore, there is another monotonic execution o’ such that the
last steps of o and o' are identical. Since CB($n,—1,tn—1) < CB(sp,tn), we get

t . . o .
o’ = s,11 as a monotonic execution sequence whose last step is identical to
s. a

. t() t1 tn—2 tn—1 tn .
An execution s; = s — §1 — ++ — Sp—1 — Sp —= Spy1 IS csb-
bounded if CB(s;,t;) < csb for all 0 < i < n. The following observation is a

simple corollary of Theorem 1.

Corollary 1. For each execution o such that CB(final(c)) < csb, there is a
csb-bounded execution sequence o such that final(a') = final(a).

Corollary 1 forms the basis for the correctness of Algorithm 1. This algorithm
performs a depth-first search using the hashtable H to store the visited states.
The guard on line 6 prunes a transition from state s either if the successor has
already been visited or if the context-bound of the transition is greater than
csb. The computation of the context-bound of a state required to implement the
test CB(s,t) > csb is described in Section 3.2. The design of a canonical state
representation required to implement the hashtable-lookup operation nezt(s,t) €
H is described in Section 3.3. We postpone a discussion of the computational
complexity of Algorithm 1 to Section 3.4.

To prove the correctness of Algorithm 1, we introduce a few definitions. We
define Reach(s) to be the set of states reachable from s by following steps whose
context-bound is c¢sb or less. Formally, the set Reach(s) is § if CB(s) > csb and
is the least fixpoint of the following equation if CB(s) < csb:

Reach(s) = {s} U{s' | 3z € Reach(s),t € E(x).CB(z,t) < csb As' = next(z,t)}



1 Hashtable H;
2 Search (s1);

requires : (s € HV CB(s) > csb)
ensures :s¢EH
Search(state s) begin
H=HU{s};
for t € E(s) do
if —(next(s,t) € HV CB(s,t) > csb) then
Search(next(s,t))
end

© 00N O T AW

end
10 end
Algorithm 1: Basic algorithm

We now define the predicate Closure(u) for any state wu.
Closure(u) = CB(u) < ¢sb AVv € Reach(u) :v € H

In our proof, we refer to an auxiliary variable S C state that represents the set
of states on the stack of Search. The proof depends on the precondition and
postcondition of Search given in the figure and the global invariant

Cl = Yue H:ue SV Closure(u).

Theorem 2 (Correctness). Algorithm 1 terminates. At termination, for every
state s, we have s € H iff there is an execution a such that final(a) = s and

CB(s) < csb.

Proof. Termination is straightforward for terminating programs.

Clearly CI holds initially because H is empty. The precondition holds at the
call on line 2 because H is empty and CB(s;) = 0 < csb. At line 4, when s is
added to H it is added to S simultaneously and therefere CI is preserved. The
precondition to Search for each call on line 7 is satisfied because CB(nezxt(s,t)) <
CB(s,t) < c¢sb. Moreover, CI is preserved by each call to Search (by induction).
We show that Closure(s) holds at line 10. By the precondition of Search, we
have CB(s) < csb. Suppose v € Reach(s). Then either v = s or there is t € E(s)
such that CB(s,t) < csb and v € Reach(next(s,t)). In the first case, we have
v = s € H because s was added to H on line 4 and states are never removed from
H. In the second case, we know that next(s,t) € H because either nezt(s,t) € H
already on line 6 or Search(next(s,t)) was called on line 7 and the postcondition
of Search guarantees that next(s,t) € H. Since CI holds, we get next(s,t) €
SV Closure(next(s,t)). Clearly, next(s,t) ¢ S because S contains precisely the
states on the stack and at line 10 next(s,t) has been popped. Therefore, we
get Closure(next(s,t)) and since v € Reach(next(s,t)) we conclude that v € H.
Thus, Closure(s) holds at line 10 and CT is preserved by the removal of s from
S at line 10. Finally, the postcondition of Search is clearly satisfied because s
was added to H at line 4 and not removed thereafter.



If s € H, clearly there is an execution « with final(a) = s that was present
on the stack when Search(s) was called and we get CB(s) < c¢sb from the precon-
dition of Search. If there is an execution « with final(a) = s and CB(s) < esb,
then Corollary 1 gives us that s € Reach(sr). From the postcondition of Search,
sy € H when Algorithm 1 terminates. At the same time, S is empty at termi-
nation because the stack is empty. Therefore Closure(sy) holds at termination
and we get s € H. a

3.1 Improved algorithm

Algorithm 1 has the property that it visits each reachable state with context-
bound at most csb precisely once. However, if the goal of the state-space search is
to detect safety violations such as data-races, local assertion failures, and dead-
locks, then it is sufficient but not necessary to visit each reachable state. In fact,
it suffices to visit only the terminal states, which are states with no successors.
Since the number of prefixes of a non-terminal state may be exponential in the
size of the state, an algorithm that minimizes the number of explored prefixes
may offer significant savings in practice. In this section, we present Algorithm 2,
an improved algorithm in which the number of visited states is equal to the sum
of the sizes of all terminal states with context-bound at most csb. In the worst
case, Algorithm 2 still processes all the prefixes of visited states, but does not
require driving the program to these non-terminal states. Thus, even though the
two algorithms have similar asymptotic complexities, we expect Algorithm 2 to
be more efficient for large programs.

The Search procedure in Algorithm 2 does not put any state in the hashtable
H directly; rather it calls the procedure Mark to do it. If E(s) # (), the behavior
of Search is the same as before. If E(s) = (}, then Mark is invoked on s. Such a
state s with no successors is called a terminal state. The goal of Mark is to add
s to H and then further add all states from which it is impossible to execute the
program and arrive at a csb-bounded terminal state that has not been visited
before. Mark achieves this task by a depth-first search of all prefixes of s.

To understand the invariants behind the correctness of Algorithm 2, we define
the set TerminalReach(s) = {s’ € Reach(s) | E(s') = (}}. We now define the
predicate TerminalClosure(s) for any state s.

TerminalClosure(s) = CB(s) < c¢sb AVv € TerminalReach(s) :v € H

The correctness of the algorithm relies on the following invariant, ensured by
Mark when it returns.

Inv = Vu € state: u € H < TerminalClosure(u).

Informally, this invariant states a state is in H iff all csb-bounded terminal
successors of that state are also present in H. When Search calls Mark this
invariant is temporarily violated but re-established by the time the call returns.

We will assume that Mark ensures Inv (which will be proved later) and use
Inv to prove the following theorem that states the correctness theorem for Al-
gorithm 2.



1 Hashtable H;
2 Search (s1);

requires : (SR) —=(s € H V CB(s) > csb)
ensures : (SE)se€ H

3 Search(state s) begin

4 if succ(s) =0 then

5 Mark(s)

6 end

7 else

8 for t € E(s) do

9 if = (next(s,t) € HV CB(s,t) > csb) then
10 Search(next(s,t))
11 end

12 end

13 end

14 end

requires : (MRa) —(s € H V CB(s) > csb)
requires : (MRb) V¢ € E(s) : next(s,t) € HV CB(s,t) > csb
ensures : (MFE)se H

15 Mark(state s) begin

16 H=HU/{s};

17 for z € {x | 3t.next(x,t) = s A CB(z,t) < csb} do

18 if V' € E(z) : next(z,t') € HV CB(z,t") > csb then
19 Mark(z)

20 end

21 end

22 end

Algorithm 2: Improved algorithm

Theorem 3 (Correctness). Algorithm 2 terminates. At termination, for every
state s, we have s € H iff there is an execution o such that final(a) = s and
CB(s) < csb.

Proof. Termination is straightforward for terminating programs. We first show
that the precondition SR holds before each call to Search and postcondition SE
holds when Search returns.

[SR at Line 2] The precondition of Search is satisfied at the call on line 2 because
H is empty and CB(s;) =0 < csb.

[SE at Line 6] The postcondition of Search follows from ME at line 6.

[SR at Line 10] We have next(s,t) ¢ H from the guard at line 9. Similarly,
CB(next(s,t)) < CB(s,t) < csb. The precondition of Search follows.

[SE at Line 13] If line 8 is executed, then we first show that TerminalClosure(s)
holds at line 13. Clearly CB(s) < ¢sb from the precondition of Search. Consider
an arbitrary v € TerminalReach(s). Since E(s) # 0, we have v # s and there ex-
ists a thread t € E(s) such that CB(s,t) < csb and v € TerminalReach(next(s,t)).
Since CB(s,t) < csb, either next(s,t) € H at line 9 or Search(next(s,t)) is called



at line 10. From the postcondition of Search and the fact states are never re-
moved from H, we get that in either case next(s,t) € H at line 13. From Inv,
we get that TerminalClosure(next(s,t)) holds at line 13 and therefore v € H.
Thus we get that TerminalClosure(s) holds at line 13. Consequently, from Inv
we get that s € H at line 13 and the postcondition of Search is satisfied.

Now, we prove the statement of the theorem. If s € H, then s was added to H
by Mark whose precondition gives us that CB(s) < c¢sb. Moreover, Mark is called
either on a terminal state or a prefix of a terminal state. In either case, there is
an execution o with final(a) = s. If there is an execution « with final(a) = s
and CB(s) < csb, then Corollary 1 gives us that s € Reach(sy). From the
postcondition of Search, s; € H when Algorithm 2 terminates. Therefore, at
termination TerminalClosure(sy) holds which implies that TerminalClosure(s)
also holds. From Inv we get s € H. O

Next, we show that the search is never blocked until execution reaches a
terminal state not visited before.

Theorem 4 (Nonblocking search). Whenever Search(s) is invoked either
E(s) = 0 or there is a successor next(s,t) of s such that —(next(s,t) € H V
CB(s,t) > csb).

Proof. Suppose Search(s) is invoked on a state s such that E(s) # 0. From
SR, we get that s ¢ H and CB(s) < csb. Therefore, from Inv, there exists
x € TerminalReach(s) such that x ¢ H. Since s is not a terminal state, there
is a thread ¢ such that CB(s,t) < csb and x € TerminalReach(next(s,t)). From
Inv, we get next(s,t) € H. O

Theorem 4 guarantees that the number of times Search is called is propor-
tional to the sum of the sizes of all terminal states with context-bound at most
csb.

Finally, we show the correctness of Mark by showing that it ensures Inv when
it returns. We need the following lemmas for this proof.

Lemma 1 (Local monotonicity). For all states s and threads t € E(s), we
have CB(s) < CB(s,t).

Proof. Let t € E(s) for some state s. If s = sy, then CB(s) =0 and CB(s,t) =
0 and therfore CB(s) < CB(s,t). Otherwise, there is © € pred(s) such that
CB(s,t) = CB(z,u) +ite(t = uVu & E(s),0,1), which implies that CB(z,u) <
CB(s,t). By the definition of CB(s), we have CB(s) < CB(z,u). Thus we get
CB(s) < CB(s,t). O

Lemma 2 (Progress). For all states s, either E(s) = () or there exists t € E(s)
such that CB(s,t) = CB(s).

Proof. Suppose E(s) # (. If s = sy, then for all t € E(s) we have CB(s,t) =
CB(s) = 0. Otherwise, there is a predecessor x of s and a thread ¢ such that
s = next(x,t) and CB(z,t) = CB(s). If t € E(s), then CB(s,t) < CB(z,t) =



CB(s) and from Lemma 1 we get CB(s,t) = CB(s). If t € E(s), then there
exists u € E(s) and CB(s,u) < CB(z,t) = CB(s) and from Lemma 1 we get
CB(s,u) = CB(s). O

To state the correctness invariant of Mark, we need an auxiliary variable S
that precisely captures the set of states on the stack of Mark. We show that Mark
maintains the following invariant MI at all instants, which by Lemma 3 implies
Inv when Mark returns.

MI = MIa N MIb N Mlc

MIa = Vu € state: uw € H = CB(u) < csb

MIb =Vu € state : w € H =Vt € E(u) : next(u,t) € HV CB(u,t) > csb
E(u) #0

MlIc =Vu € state: | A CB(u) < csb =sueH

AVt € E(u) : next(u,t) € H\ SV CB(u,t) > csb
Lemma 3. S =0 A MI = Inv.

Proof. The proof is by well-founded induction on the on the inverse of the prefix
partial-order <. That is, we show for any state u that if Vo € succ(u) : v € H &
TerminalClosure(v) then u € H < TerminalClosure(u).

For the base case, consider a state u such that E(u) = 0. If u € H, then MlIa
gives us that CB(u) < csb. Moreover, TerminalReach(u) = {u}. Thus, we have
TerminalClosure(u). If TerminalClosure(u) holds then uw € TerminalReach(u)
and therefore v € H.

For the inductive case, suppose u is a state such that E(u) # @ and Vv €
succ(u) : v € H < TerminalClosure(v). Suppose u € H. From Mla, CB(u) <
csb. We now show for an arbitrary x € TerminalReach(u) that x € H. Since
E(u) # 0, we have x # u. Therefore, there is a thread ¢ and a state v such
that CB(u,t) < csb, next(u,t) = v, and © € TerminalReach(v). From MIb,
we get v = next(u,t) € H and the induction hypothesis gives us =z € H.
Suppose TerminalClosure(u) holds. We show that V¢ € E(u) : next(u,t) €
HV CB(u,t) > csb. Consider an arbitrary ¢t € E(u) such that CB(u,t) < csb.
Since TerminalClosure(u) holds TerminalClosure(next(u,t)) also holds. By the
induction hypothesis, we have nezt(u,t) € H. Thus, Mlc and S = () gives us
that E(u) =0 or u € H. Since we are in the inductive case, we get u € H. O

Lemma 4. MI holds initially and Mark satisfies its preconditions and postcon-
dition and preserves MI.

Proof. [MI at Line 2] Since H is empty initially, MIa and MIb hold trivially. We
now show that MIc holds initially. Consider a state u such that F(u) # () and
CB(u) < c¢sb. By Lemma 2, there exists t € E(u) such that CB(u,t) = CB(u) <
csb. Therefore MIc holds.

Since Search does not modify H or S, MI trivally holds whenever the control

is in Search. We only need to show that MI is preserved whenever the control is
in Mark.



[MRa at Line 5] SR = MRa
[MRb at Line 5] From the guard at line 4, F(s) = ). This trivially implies MRb.
[MRa at Line 19] Let ¢ be such that next(z,t) = s. We know that at line 16, both
MRa and MIb hold. MRa gives us s ¢ H at line 16. Since next(x,t) = s ¢ H
and CB(x,t) < csb, MIb gives us that = ¢ H at line 16. Furthermore, a call
Mark(z") at line 19 for some predecessor z’ of s different from x cannot add
x to H. Therefore, x ¢ H at line 19. The set constructor on line 17 ensures
CB(z,t) < csb. From Lemma 1, we get that CB(z) < CB(z,t) < csb holds at
line 19.
[MRb at Line 19] The final precondition of Mark is ensured by the guard on
line 18.

We now argue that MT is preserved by each statement in the body of Mark.
[MIa at Line 17] The statement on line 16 adds s to H. MRa = Mla
[MIb at Line 17] MRb = MIb
[MIc at Line 17] Since s is added to S and H simultaneously at line 16, Mlc
trivally follows.
[MIa A MIb at Line 22] At line 22, state s is removed from S. Both MIa and
MIb are not affected by S and thus preserved.
[MIc at Line 22] Let w be an arbitrary state such that V¢ € E(u).next(u,t) €
H\ (S\ {s})V CB(u,t) > csb holds at line 22. We now prove that v € H.
Suppose for all ¢t € E(u), we had that next(u,t) = s implied CB(u,t) > csb.
Then the condition V¢ € E(u).next(u,t) € H\(S\{s})VCB(u,t) > csb simplifies
to Vt € E(u).next(u,t) € H\ SV CB(u,t) > csb and we are done. Otherwise
there exists ¢ € E(u) such that next(u,t’) = s and CB(u,t’) < csb. Therefore
u will be considered on line 18. Moreover, the existence of such a t' means that
the condition Vt € E(u).next(u,t) € H\ (S\{s})V CB(u,t) > csb simplifies to
Vt € E(u).next(u,t) € HVCB(u,t) > csb. If the condition V¢t € E(u).next(u,t) €
HV CB(u,t) > csb holds at line 22, then it also holds at line 18 because once s is
added to H at line 16, every other state added to H during the execution of this
call to Mark is different from next(u,t). Therefore, Mark(u) is called on line 19.
The postcondition of Mark ensures that u € H after this call. Since states are
never removed from H, we get that v € H at line 22.
[ME at Line 22] The postcondition trivally follows from the fact that line 16
adds s to H. O

3.2 Context-bound computation

In this section, we present a method to calculate the context-bound of a state.
This computation is required in both Algorithms 1 and 2. Unfortunately, the
following theorem shows that estimating the context-bound of a state is an NP-
complete problem.

Theorem 5. Given a state s and an integer ¢ > 0, the problem of determining
whether CB(s) < ¢ is NP-complete.

Proof. The proofis by reduction from the minimum feedback-vertex set problem:
Given a directed graph G(V, E), find a subset V' of V' of size ¢ such that every



directed cycle of G contains at least one vertex in V’. This problem is known to
be NP-complete.

Given a directed graph G(V, E) build a state (A, H) as follows. For every
vertex v € V, create a thread that contains two actions v, followed by vgs: and
add the intra-thread edge (vsre, vdst) to H. For every edge (u,v) € E, create an
inter-thread edge (usre, vVdst) to H.

We claim that G contains a feedback-vertex set of size c iff there is a lin-
earization of (A, H) with context-bound c¢. Suppose V' is a feedback-vertex set
of G of size c. Then G — V"’ is a directed acyclic graph. We can construct a lin-
earization of (A, H) with a context-bound ¢ as follows. The linearization starts
by scheduling v, for every v € V’. Then, we schedule (v, v4s) for every
v € V\ V' in the order of some linearization of G — V. Finally, we schedule vs;
for every v € V'. The linearization contains ¢ context switches for every vertex
in V’. Similarly, we can show that starting from a linearization of (A, H) with
context-bound ¢, we can construct a feedback-vertex set of size ¢ by adding all
the threads that got preempted in V. a

Given our NP-completeness result, it is unlikely that there is a polynomial-
time algorithm for calculating the context-bound of a state. We use the recursive
definition of CB(s,t) presented in Section 2 to derive an algorithm based on
dynamic programming and memoization that could take exponential time and
space in the worst case.

Let p be the number of prefixes of s and f be the maximum frontier size
among all prefixes of s. Then, the complexity of computing CB(s) is proportional
to p- f. While f is bounded by the number of threads involved in s, p may be
exponential in the number of actions in s.

In Algorithms 1 and 2, the context-bound is computed for all prefixes of the
visited states. By memoizing the value returned by a call to CB, work performed
during its computation can be reused across context-bound computations. As a
result, the amount of performed work amortized across all context-bound calcu-
lations is proportional to the number of prefixes of visited states.

3.3 Canonical representation of states

In this section, we present an efficient method for implementing the hashtable
operations needed in Algorithms 1 and 2. Towards this end, we introduce more
structure into the actions of Act. An action a € A is a tuple (o, t,n,v, m), where
o €€{R,W},t€ Tid,neN,v e Var, and m € N. If o = W, then this action
is the m-th write to the variable v and is the n-th action performed by thread
t. If o = R, then this action is a read of the value written by the m-th write
to variable v and is the n-th action performed by thread ¢. For consistency, we
require that T'({o,t,n,v,m)) =t.

A state (A, H) is now canonically represented by the set A; the edge infor-
mation in H is automatically encoded in the structure of the actions in A. We
now show how we can recover H given the set A. Let OP({o,t,n,u,m)) = o,
TC({o,t,n,v,m)) = n, and VC({(o,t,n,v,m)) = m. Then, H is the transitive



closure of the set (J,c g TE: UU VE, of edges, where TE; and VE, are

defined below.

ve Var

TE, = {(a,b)C Ax A| TC(a) < TC(b)}
VE, = {(a,b)C Ax A| OP(a) =W A VC(a) < VC(b)} U
{(a,b) CAx A| OP(b) =W A VC(a) < VC(b)}

Let h be a universal hashing function that maps an action (o, t,n,v, m) to a
32-bit integer. We lift h to a set of actions A by applying h to each element of
A and then performing the bitwise XOR operation @ on the results. Since & is
commutative and associative, this lifting procedure defines a function. Note that
this hash function is incremental by design. During program execution, suppose
a thread takes a step to extend the state s by a single action a into s’. Then
h(s") = h(s) ® h(a) and h(s) = h(s') @ h(a). These observations are used in
Search and Mark for incremental hash computation.

3.4 Complexity analysis

This section presents the asymptotic complexity of Algorithm 1 and Algorithm 2.
Given a terminating multithreaded program with n threads, each executing at
most k steps, let NCB(n,k,c) be the number of terminal executions of the
program with a context-bound c. Each of these executions has at most n.k steps,
resulting in at most n.k.NCB(n, k, ¢) states that have a context-bound less than
or equal to c.

When the Search procedure is called on a state s in Algorithm 1, the guard
in line 6 ensures that the recursive call of Search happens only when there is
an enabled thread t such that CB(s,t) < ¢. By definition, CB(next(s,t)) <
CB(s,t). Also, CB(sy) = 0 < c¢. Therefore, Algorithm 1 calls Search(s) only
when CB(s) < ¢. Moreover, maintaining the hash table ensures that Search
is called for each state at most once. Thus, the number of calls to Search is
O(n.k.NCB(n,k,c)). Each such call to a state s involves at most n operations
on the hashtable H and the computation of C'B(s,t) for every enabled thread
t. While the hash computation of a state can be done incrementally in constant
time, we need to check equality of two states. Assuming that hash-collisions are
rare, the cost of the hash table operations is O(n?.k). In addition, the computa-
tion of C'B(s,t) can visit all prefixes of s, requiring a total of O(k™) cost, which
dwarfs the cost of hash table operations.

Thus, Algorithm 1 has a complexity of O(n.k"*1.NCB(n, k,c)). Finally, in
our previous work [14], we show that NCB(n,k,c) = O((n.k).(n + ¢)!) for
nonblocking programs. This results in a bound of O(n¢Tt.kmTetl (n 4 ¢)!).

The complexity analysis for Algorithm 2 is similar. The additional observa-
tion required is that the Mark procedure is only called for prefixes of a terminal
state with context-bound less than or equal to ¢. Thus there are k™. NCB(n, k, ¢)
calls to Mark. Also, as the calls to C'B are amortized over prefixes, the cost of CB
computation is constant for each call to Mark. There are at most n? hash com-
putations in Mark resulting in a complexity of n3.k" . NCB(n, k, c). In contrast



Number of terminal executions

Context| size =3 size = 4 size = 5
Bound [cb-dfs|cb-por|cb-dfs|cb-por| cb-dfs |cb-por

0 2 2 2 2 2 2

1 46 46 54 54 67 67

2 756 | 713 | 898 | 853 | 1197 | 1136

3 8918 | 7838 [12711| 8458 | 19460 | 14563

4 66374| 48828 19593552572 [161637| 95068

Table 1. Experimental evaluation of Algorithm 2 for a work-stealing queue concurrent
data structure implementation.

to Algorithm 1, the number of calls to Search is bounded by n.k. NCB(n,k,c),
which is small compared to the complexity of Mark. Thus the complexity of
Algorithm 2 is O(n¢*3.k" T (n + o)!).

4 Experimental Evaluation

We have implemented the algorithms discussed in Section 3 in the CHESS model
checker. CHESS is a stateless model checker akin to Verisoft [7], and is designed
for systematically exploring the behaviors of a multi-threaded software imple-
mentations.

For the evaluation in this section, we used an implementation [12] of the
work-stealing queue for the Cilk multithreaded programming system [6]. The
implementation consists of a queue of work items in a bounded circular buffer
and is around 1000 lines of C++ code. The test driver used in our experiments
involves a main thread that enqueues jobs into the queue and later dequeues
them. Concurrently, a stealer thread that accesses the queue to steal jobs for
processsing.

Table 1 shows the results of our experiments for various sizes of the work-
stealing queue. We compared Algorithm 2, labeled cb-por in the table, with a
basic context-bounding algorithm that prunes executions exceeding the bound
while performing a depth-first search. The latter is labeled cb-dfs in the table.
For each experiment, the table reports the number of terminal executions of the
program for each context-bound.

From Table 1, we see that for small context-bounds, there is negligible differ-
ence between the number of executions with and without partial-order reduction.
This reflects a nice property of context-bounded search — for small context-
bounds, the search does not explore redundant behaviors of the program. For
larger context-bounds however, we see the benefit of performing partial-order
reduction. For instance, with a context-bound of 4 around 40% of the execu-
tions performed by cb-dfs are redundant. The cb-por algorithm, in contrast,
is guaranteed to never produce two partial-order equivalent executions.

Encouraged by our initial results, we are currently evaluating the algorithms
presented in this paper on larger programs. We believe that incorporating partial-



order reduction is very crucial to scaling context-bounded explorations for large
context-bounds.

5 Related work

Context-bounded verification. Context-bounding was introduced by Qadeer
and Wu [18] as a technique for transforming the problem of verifying multi-
threaded programs to that of verifying sequential programs. Later, Qadeer and
Rehof [17] showed that context-bounded verification of concurrent boolean pro-
grams is decidable; Bouajjani et al. [1] improved their result. Musuvathi and
Qadeer [14] showed that context-bounding increases the efficacy of explicit-state
model checking in finding concurrency errors. None of the aforementioned papers
have considered the problem of incorporating partial-order reduction in context-
bounded reachability analysis. Context-bounding for multithreaded software is
also analogous to bounded model checking [2] for synchronous hardware.
Partial-order reduction. A variety of partial-order reduction techniques
have been proposed in the literature. The guarantees provided by Algorithm 1
is closest in spirit to that of the sleep set algorithm [8] in that each prefix of
a partially-ordered execution is visited precisely once. However, the algorith-
mic mechanisms are completely different. Our algorithm performs caching and
context-bound calculation for happens-before graphs, whereas the sleep set al-
gorithm only needs to maintain a sleep set for each element in the search stack.
Other algorithms [21,16, 15] attempt more aggressive state-space reduction by
avoiding visiting many prefixes. However, these algorithms are based on stati-
cally computed independence relations which are usually imprecise for software
implementations. On the other hand, our algorithm is based on the happens-
before graphs of dynamic executions. In this respect, Algorithm 2 is similar
in spirit to recent work on dynamic partial-order reduction for multithreaded
software [5,11,20]. As far as we know, none of these previous works have con-
sidered the subtle issues that arise when partial-order reduction is performed in
context-bounded search, which is the main focus of this paper.

References

1. A. Bouajjani, J. Esparza, S. Schwoon, and J. Strejcek. Reachability analysis of
multithreaded software with asynchronous communication. In FSTTCS 05: Foun-
dations of Software Technology and Theoretical Computer Science, volume 3821 of
Lecture Notes in Computer Science. Springer, 2005.

2. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7-34, 2001.

3. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branch-
ing time temporal logic. In Logic of Programs, LNCS 131, pages 52—71. Springer-
Verlag, 1981.

4. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In ICSE 00: In-
ternational Conference on Software Engineering, pages 439-448. ACM, 2000.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In POPL 05: Principles of Programming Languages, pages 110-121. ACM
Press, 2005.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of
the Cilk-5 multithreaded language. In PLDI 98: Programming Language Design
and Implementation, pages 212-223, 1998.

P. Godefroid. Model checking for programming languages using Verisoft. In POPL
97: Principles of Programming Languages, pages 174-186, 1997.

. Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Sys-

tems: An Approach to the State-Explosion Problem. LNCS 1032. Springer-Verlag,
1996.

Gerard J. Holzmann and Margaret H. Smith. An automated verification method
for distributed systems software based on model extraction. IEEE Transactions
on Software Engineering, 28(4):364-377, 2002.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, 1978.

Yu Lei and Richard H. Carver. Reachability testing of concurrent programs. IEEE
Transactions on Software Engineering, 32(6):382—403, 2006.

Daan Leijen. Futures: a concurrency library for C#. Technical Report MSR-TR-
2006-162, Microsoft Research, 2006.

M. Musuvathi, D. Park, A. Chou, D. Engler, and D. L. Dill. CMC: A pragmatic
approach to model checking real code. In OSDI 02: Operating Systems Design and
Implementation, 2002.

Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In PLDI 07: Programming Language Design
and Implementation, 2007.

Ratan Nalumasu and Ganesh Gopalakrishnan. An efficient partial order reduction
algorithm with an alternative proviso implementation. Formal Methods in System
Design, 20(3):231-247, May 2002.

Doron Peled. Partial order reduction: Model-checking using representatives.
In MFCS 96: Mathematical Foundations of Computer Science, pages 93-112.
Springer-Verlag, 1996.

S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS 05: Tools and Algorithms for the Construction and Analysis of Systems,
volume 3440 of Lecture Notes in Computer Science, pages 93—107. Springer, 2005.
S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In PLDI 04: Program-
ming Language Design and Implementation, pages 14-24. ACM, 2004.

J. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, Fifth International
Symposium on Programming, Lecture Notes in Computer Science 137, pages 337—
351. Springer-Verlag, 1981.

Koushik Sen and Gul Agha. A race-detection and flipping algorithm for automated
testing of multi-threaded programs. In Haifa Verification Conference, 2006.

Antti Valmari. A stubborn attack on state explosion. In CAV 91: Computer Aided
Verification, pages 156—165. Springer-Verlag, 1991.

W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In ASE
00: Automated Software Engineering, pages 3—12, 2000.



