HMF': Simple type inference for first-class polymorphism

Daan Leijen

Microsoft Research

daan@microsoft.com

Abstract

HMF is a conservative extension of Hindley-Milner type inference
with first-class polymorphism and regular System F types. The sys-
tem distinguishes itself from other proposals with simple type rules
and a very simple type inference algorithm that is just a small exten-
sion of the usual Damas-Milner algorithm. Given the relative sim-
plicity and expressive power, we feel that HMF can be a very attrac-
tive type system in practice. There is a reference implementation
of the type system available at: http://research.microsoft.
com/users/daan/pubs.html.

1. Introduction

Type inference in functional languages is usually based on the
Hindley-Milner type system (Hindley 1969; Milner 1978; Damas
and Milner 1982). Hindley-Milner has a simple logical specifica-
tion, and a type inference algorithm that can automatically infer
most general, or principal, types for expressions without any fur-
ther type annotations.

To achieve automatic type inference, the Hindley-Milner type
system restricts polymorphism where function arguments and ele-
ments of structures can only be monomorphic. Formally, this means
that universal quantifiers can only appear at the outermost level
(i.e. higher-ranked types are not allowed), and quantified variables
can only be instantiated with monomorphic types (i.e. impredica-
tive instantiation is not allowed). These are severe restrictions in
practice. Even though uses of first-class polymorphism occur infre-
quently, there is usually no good alternative or work around (see
(Peyton Jones et al. 2007) for a good overview).

The reference calculus for first-class polymorphism is System F
which is explicitly typed. As remarked by Rémy (2005) one would
like to have the expressiveness of System F combined with the con-
venience of Hindley-Milner type inference. Unfortunately, full type
inference for System F is undecidable (Wells 1999). Therefore, the
only way to achieve our goal is to augment Hindley-Milner type in-
ference with just enough programmer provided annotations to make
programming with first-class polymorphism a joyful experience.

There has been quite some research into this area (Peyton Jones
et al. 2007; Rémy 2005; Jones 1997; Le Botlan and Rémy 2003;
Le Botlan 2004; Odersky and Laufer 1996; Garrigue and Rémy
1999a; Vytiniotis et al. 2006; Dijkstra 2005) but no fully satisfac-
tory solution has been found yet. Many proposed systems are quite

[Microsoft Research Technical Report: MSR-TR-2008-65, April 2008]

complex, and use for example algorithmic specifications, or intro-
duce new forms of types that go beyond regular System F types.

In this article, we present HMF, a simple and conservative
extension of Hindley-Milner with first-class polymorphism that
needs few annotations in practice. The combination of simplicity
and expressiveness can make HMF a very attractive replacement of
Hindley-Milner in practice. In particular:

e HMF is a conservative extension: every program that is well-
typed in Hindley-Milner, is also a well-typed HMF program and
type annotations are never required for such programs. Through
type annotations, HMF supports first-class polymorphic values
with higher-rank System F types and impredicative instantia-
tion.

In practice, few type annotations are needed for programs
that go beyond Hindley-Milner. Only polymorphic parameters
and ambiguous impredicative instantiations must be annotated.
Both cases can be clearly specified and are relatively easy to
apply in practice.

HMF is robust with respect to abstraction. It has the remarkable
property that whenever the application e; ez is well-typed, so
is the abstraction apply e1 ez. We consider this an important
property as it implies that we can reuse common polymorphic
abstractions over general polymorphic values.

There is a simple and effective type inference algorithm that
infers principal types which is similar to algorithm W (Damas
and Milner 1982).

In the following section we give an overview of HMF in practice.
Section 4 presents the formal logical type rules of HMF followed
by a description of the type inference algorithm in Section 6.
Finally, Section 5 discusses type annotations in more detail.

2. Overview and background

HMF extends Hindley-Milner with regular System F types where
polymorphic values are first-class citizens. To support first-class
polymorphism, two ingredients are needed: higher-ranked types
and impredicative instantiation.

2.1 Higher-rank types

Hindley-Milner allows definitions to be polymorphic and reused at
different type instantiations. Take for example the identity function:

id ::Va. o — o (inferred)
idr ==z

Because this function is polymorphic in its argument type, it can
be applied to any value, and the tuple expression (id 1,d True)
where id is applied to both an integer and a boolean value is well-
typed. Unfortunately, only definitions can be polymorphic while
parameters or elements of structures cannot. We need types of

higher-rank to allow for polymorphic parameters. Take for example
the following program:

poly f = (f 1,f True) (rejected)

This program is rejected in Hindley-Milner since there exists no
monomorphic type such that the parameter f can be applied to both
an Int and a Bool. However, in HMF we can explicitly annotate
the parameter with a polymorphic type. For example:

poly (f :Va.ao —) = (f 1,f True)

is well-typed in HMF, with type (Va. @« — o) — (Int, Bool), and
the application poly d is well-typed. The inferred type for poly is
a higher-rank type since the quantifier is nested inside the function
type. Note that the parameter f can be assigned many polymorphic
types, for example Va.a« — a — «, or Ya. « — Int, where
neither is an instance of the other. Because of this, HMF can
never infer polymorphic types for parameters automatically, and
parameters with a polymorphic type must be annotated.

Higher-rank polymorphism has many applications in practice,
including type-safe encapsulation of state and memory transac-
tions, data structure fusion, and generic programming. For a good
overview of such applications we refer the interested reader to (Pey-
ton Jones et al. 2007).

2.2 Impredicative instantiation

Besides higher-rank types, HMF also supports the other ingredient
for first-class polymorphism, namely impredicative instantiation,
where type variables can be instantiated with polymorphic types
(instead of just monomorphic types). We believe that this is a cru-
cial property that enables the use of normal polymorphic abstrac-
tions over general polymorphic values. For example, if we define:

apply :VapB. (o —) - a — 3 (inferred)
apply fz =[x

then the expression
apply poly id

is well-typed in HMF, where the type variable « in the type
of apply is impredicatively instantiated to the polymorphic type
Va.a — «o (which is not allowed in Hindley Milner). Unfortu-
nately, we cannot always infer impredicative instantiations auto-
matically since this choice is sometimes ambiguous.

Consider the function single :: Va.a — [a] that creates a
singleton list (where we use the notation [«] for a list of elements of
type). In a predicative system like Hindley-Milner, the expression
single id has type Vo. [— «]. In a system with impredicative
instantiation, we can also a give it the type [Va. o — a] where all
elements are kept polymorphic. Unfortunately, neither type is an
instance of the other and we have to disambiguate this choice.

Whenever there is an ambiguous impredicative application,
HMEF always prefers the predicative instantiation, and always intro-
duces the least inner polymorphism possible. Therefore, HMF is by
construction fully compatible with Hindley-Milner and the type of
single id is also Vo [— «] in HMF. If the impredicative instan-
tiation is wanted, a type annotation is needed to make this choice
unambigious. For example, we can create a list of polymorphic
identity functions as:'

ids = (single :: (Va.a — a) — Va. o — @) id

where ids has type [Va. @« — «. Fortunately, ambiguous impred-
icative applications can only happen in few specific cases, namely
when a function with a type of the form Va. « — ... is applied to a

I'We can also write single (id :: Yo o — «) with rigid type annotations
(Section 5.3)

polymorphic argument whose outer quantifiers must not be instan-
tiated (as in single id). In all other cases, the (impredicative) in-
stantiations are always fully determined and an annotation is never
needed. For example, we can create a singleton list with ids as its
element without extra annotations:

idss :: [[Va. e — a]] (inferred)
idss = single ids

Moreover, HMF considers all arguments in an application to disam-
biguate instantiations and is not sensitive to the order of arguments.
Consider for example reverse application defined as:

revapp :: VapB.a — (o —) — B (inferred)
revapp ¢ f = f x

The application revapp id poly is accepted without any annotation
as the impredicative instantiation of the quantifier « in the type of
revapp to Va.. @ — « is uniquely determined by considering both
arguments.

More generally, HMF has the property that whenever an ap-
plication e; ez is well typed, than the expression apply e; ez is
also well typed, and also the reverse application revapp ez ep.
We consider this an important property since it applies more gen-
erally for arbitrary functors (map) applying polymorphic functions
(poly) over structures that hold polymorphic values (ids). A con-
crete example of this that occurs often in practice is the applica-
tion of runST in Haskell. The function runST executes a state
monadic computation in type safe way and its (higher-rank) type
is:

runST :Va. (Vs. ST s a) — «

Often, Haskell programmers use the application operator ($) to
apply runST to a large computation as in:

runST $ computation

Given that ($) has the same type as apply, HMF accepts this ap-
plication without annotation and impredicatively instantiates the «
quantifier of apply to Vs. ST s . In practice, automatic impred-
icative instantiation ensures that we can also reuse many common
abstractions on structures with polymorphic values without extra
annotations. For example, we can apply length to a list with poly-
morphic elements,

length ids

or map the head function over a list of lists with polymorphic
elements,

map head (single ids)
or similarly:
apply (map head) (single ids)

without giving any type annotation.

2.3 Robustness

HMF is not entirely robust against small program transformations
and sometimes requires the introduction of more annotations. In
particular, n-expansion does not work for polymorphic parame-
ters since these must always be annotated in HMF. For example,
Af.poly f is rejected and we should write instead A(f :: Vo a« —
a).poly f.

Moreover, since HMF disambiguates impredicative instantia-
tions over multiple arguments at once, we cannot always abstract
over partial applications without giving an extra annotation. For
example, even though revapp id poly is accepted, the ‘equiva-
lent’ program let f = revapp id in f poly is not accepted

without an extra annotation, since the type assigned to the par-
tial application revapp id in isolation is the Hindley-Milner type
Vaf. ((« — a) —) — [and the body f poly is now rejected.

Nevertheless, we consider the latter program as being quite dif-
ferent from a type inference perspective since the partial appli-
cation revapp id can now be potentially shared through f with
different (polymorphic) types. Consider for example let f =
revapp id in (f poly,f iapp) where iapp has type (Int —
Int) — Int — Int. In this case, there does not exist any Sys-
tem F type for f to make this well-typed, and as a consequence we
must reject it. HMF is designed to be modular and to stay firmly
within regular System F types. Therefore f gets assigned the regu-
lar Hindley-Milner type. If the polymorphic instantiation is wanted,
an explicit type annotation must be given.

3. A comparision with MLF and boxy types

In this section we compare HMF with two other type inference sys-
tems that support first-class polymorphism, namely MLF (Le Bot-
lan and Rémy 2003; Le Botlan 2004; Le Botlan and Rémy 2007;
Rémy and Yakobowski 2007) and boxy type inference (Vytiniotis
et al. 2006).

MLF

The MLF type system also supports full first-class polymorphism,
and only requires type annotations for parameters that are used
polymorphically. As a consequence, MLF is strictly more powerful
than HMF, and every well-typed HMF program is also a well-typed
MLF program. MLF achieves this remarkable feat by going beyond
regular System F types and introduces polymorphically bounded
types. This allows MLF to ‘delay’ instantiation and give a principal
type to ambiguous impredicative applications. For example, in the
program let f = revapp id in (f poly,f iapp), the type
assigned to f is V(y > Va.a — «).VS3.(y — B) — B, which
can be instantiated to either V3. (Va. v —) —) — [or
VafB. ((a« — a) — B) — (. Since applications never need an
annotation, this makes MLF robust under rewrites. For example,
when the application e; ey is well-typed, than so is apply e1 e
and also revapp ez e1, and partial applications can always be
abstracted by a let-binding.

As shown in Section 2.1, inference for polymorphic parameters
is not possible in general and we can therefore argue that MLF
achieves optimal (local) type inference in the sense that it requires
the minimal number of annotations possible. The drawback of
MLF is that it goes beyond regular System F types which makes
MLF considerably more complicated. This is not only the case
for programmers that have to understand these types, but also for
the meta theory of MLF, the implementation of the type inference
algorithm, and the translation to System F (which is important for
qualified types (Leijen 2007b; Leijen and Loh 2005)).

HMF represents a different point in the design space and only
uses regular System F types. As shown in Section 2.2, HMF does
this at the price of also requiring annotations on ambiguous im-
predicative applications. In return for those annotations, we get a
simpler system than MLF where programmers can work with nor-
mal System F types and where the inference algorithm is a small
extension of algorithm W (which also makes it easier to extend
HMF with qualified types for example).

Boxy type inference

The GHC compiler supports first-class polymorphism using boxy
type inference. This inference system is made principal by distin-
guishing between inferred ‘boxy types’ and checked annotated
types. There are actually two variants of boxy type inference,
namely basic boxy type inference, and the extension with ‘pre-
subsumption’ (Vytiniotis et al. 2006, Section 6). The basic version
is quite weak cannot type simple applications like tail ids or prop-

o= Va.o (quantified type)

| o (type variable)

| cot...on (type constructor application)
pi=al|cor..0n (unquantified types)
Ti=al|cT..Tn (monomorphic types)

Figure 1. HMF types

agate the annotation in single id :: [Va.« — «]. Therefore, we
only discuss the extended version with pre-subsumption (which is
implemented in GHC).

Unfortunately, there are no clear rules for programmers when
annotations are needed with boxy type inference. In general, it is
hard to characterize those situations precisely since they depend on
the typing context, and the details of the boxy matching and pre-
subsumption algorithms.

In general, most polymorphic parameters and impredicative ap-
plications need an annotation with boxy type inference. However,
due to the built-in type propagation, we can often just annotate
the result type, as in (single id) :: [Va.a — «] (which is re-
jected in HMF). Annotations can also be left out when the type is
apparent from the context, as in foo (Af.(f 1,f True)) where
foo has type ((Va.ov — «) — (Int,Bool)) — Int. Nei-
ther HMF nor MLF can type this example and need an annota-
tion on f. Of course, local propagation of types is not robust un-
der small program transformations. For example, the abstraction
let poly = Mf.(f 1,f True) in foo poly is not well-typed and
the parameter f needs to be annotated in this case.

In contrast to HMF, annotations are sometimes needed even if
the applications are unambigious. Take for example the function
choose with type Va.aa — o — «, and the empty list null
with type Va. [«]. Both the applications choose null ids and
choose ids null are rejected with boxy type inference even though
the instantiations are unambigious®. Surprisingly, the abstraction
let f = choose null in f ids is accepted due to an extra gen-
eralization step on let bindings. All of these examples are accepted
without annotations in both HMF and MLFE.

Finally, even if an impredicative application e; ez is accepted,
the abstraction apply e1 ez (and revapp ez e1) is still rejected with
boxy type inference without an extra type annotation. For example,
the application apply runST (return 1) must be annotated as
(apply == (¥Vs.ST s Int) — Int) — (Vs.ST s Int) —
Int) runST (return 1). We feel that this can be a heavy burden
in general when abstracting over common polymorphic patterns.

4. Type rules

HMF uses regular System F types as defined Figure 1. A type o is
either a quantified type Va. o, a type variable «, or the application
of a type constructor c. Since HMF is invariant, we do not treat the
function constructor (—) specially and assume it is part of the type
constructors c. The free type variables of a type o are denoted as

ftu(o):

ftw(e) ={a}
fto(c oy ...on) = ftv(o1)U ... U ftu(on)
fto(Va. o) = ftv(o) — {a}

and is naturally extended to larger constructs containing types.
In the type rules, we sometimes distinguish between polymor-
phic types o and monomorphic types. Figure 1 defines unquanti-

2 GHC actually accepts the second expression due to a left-to-right bias in
type propagation.

fied types p as types without an outer quantifier, and monomorphic
types T as types without any quantifiers at all (which correspond to
the usual Hindley-Milner 7 types).

4.1 Substitution

A substitution S is a function that maps type variables to types.
The empty substitution is the identity function and written as [].
We write Sz for the application of a substitution S to x where
only the free type variables in z are substituted. We often write a
substitution as a finite map [:= 01, ..., i 1= 05| (also written
as [@ := 7]) which maps «; to o; and all other type variables to
themselves. The domain of a substitution contains all type variables
that map to a different type: dom(S) = {a | Sa # a}. The
codomain is a set of types and defined as: codom(S) = {Sa |
a € dom(S)}. We write (o := o) € Sif a € dom(S) and
Sa = o. The expression (S — @) removes & from the domain of
S,ie.(S—a)=[a:=0c|(a:=0) € S A «a ¢ a]. Finally, we
only consider idempotent substitutions .S where S(Sz) = Sz (and
therefore ftv(codom(S)) 7 dom(S)).

4.2 Type instance

We use the regular System F polymorphic generic instance relation
(C) on types, defined as:

B 7 fto(Va. o1)

Va. o1 C V6. [@:=57)o

where we write (1) for disjoint sets. Note that the generic instance
relation can only instantiate the outer bound variables. Here are
some examples:

Va.a —a C Int — Int
Va.a —a C V. Va.a—] = Va.a — f]

Note that HMF is invariant since the instance relation can only
instantiate outer quantifiers. Two types are considered equal if they
are instances of each other:

gr=03 & (61 C o2 Ao2 C o)

This means that we can freely apply a-renaming, reorder quanti-
fiers, and that unbound quantifiers are irrelevant. Finally, we write
[o] for the polymorphic weight of a type, which is defined as the
sum of all (non-instantiable) inner polymorphic types.

va. p] = wi(p)

where
wt(a) =0
wt(c o1 ... on) = wt(o1) + ... + wi(on) +0
wt(Ve. o) = wt(o) iff a¢ fiv(o)
wt(Va. o) = wt(o) +1 otherwise

and extends naturally to structures containing types. For example,
[Va. V8. — f]] is one, while [7], the polymorphic weight of
monomorphic types, is always zero. Note that the polymorphic
weight is monotonically increasing with respect to instantiation, i.e.

Property 1 (Polymorphic weight is stable):
If o1 C o9 then [[0'1]] < [[0'2]]

The polymorphic weight is used in the type rules to restrict deriva-
tions to have a minimal polymorphic weight, effectively preventing
the introduction of arbitrary polymorphic types.

4.3 Type rules

We first describe a simpler version of HMF, called Plain HMF, that
does not consider multiple argument applications. In Section 4.5
we describe the addition of a type rule for N-ary applications that
is used for full HMF.

v z:o€el
AR _—
'tz:0o
I'ke: to(I
- o ¢ fu()
I'Fe:Va.o
. I'kFe:oy o1 C oo
NST
I'ke:o2
. Tx:thke:p
UN -
I'FXze:T7—0p
FUN-A Tixz:okFe:p
-ANN
oN T'EXz:o)eio—p
I'ke:0o1 Tyz:o1Fe2:02
LET Voi.Tke 07 = 01 C o
'k letz=¢e1ines: oo
I'tFer:oo—0 I'kes:oo
(Vo'oh. (TF e :0o5 =0 ATk ex:ob)
App = o2 — o] < Jogz — '])
I'Feiex:o

Figure 2. Type rules for Plain HMF

The type rules for Plain HMF are given in Figure 2. The expres-
sion I' - e : o implies that under a type environment I" we can
assign a type o to the expression e. The type environment I" binds
variables to types, where we use the expression I', z : ¢ to extend
the environment I with a new binding = with type o (replacing any
previous binding for z). Expressions e in HMF are standard and
consist of variables z, applications e; ez, functions Az.e, func-
tions with an annotated parameter A(z :: o).e, and local bindings
let z = €1 in es.

An important property for HMF is the existance of principal
type derivations, i.e. for any derivation I' - e : ¢’, there also exists
a derivation I' - e : o with a unique most general type o such that
o C o'. In Section 6 we describe a type inference algorithm that
infers precisely those principal types and is sound and complete
with respect to the type rules.

The rules VAR and GEN are standard and equivalent to the usual
Hindley-Milner rules. The instantiation rule INST is generalized to
use the System F generic instance relation.

Just like Hindley-Milner, the function rule FuN restricts the type
of the parameter x to a monomorphic type 7. As we have seen in the
introduction, this is essential to avoid guessing polymorphic types
for parameters. Furthermore, the type of the function body must
be an unquantified type p. For example the expression Az.Ay.z
has the principal type Vaf5.a« — S — « in HMF. Without the
restriction to unquantified types, the type Vo. o« — (V3.0 — «)
could also be derived for this expression, and since neither of
these types is an instance of each other, we would no longer have
principal type derivations.

In contrast, rule FUN-ANN binds the type of the parameter to a
given polymorphic type o. Again, the type of the function body
must be an unquantified type p. For simplicity we consider only
closed annotations in Plain HMF but we remove this restriction in
Section 5.1. There is no special rule for type annotations since we
can treat a type annotation (e :: o) as an application to an annotated
identity function: (A(z ::).z) e. Using this encoding, we can

derive the following rule for closed annotations:

I'ke:o
I'k(ezxo):0o

using INST, GEN, FUN-ANN, and APP.

The LET rule and application rule App are standard except for
their extra side conditions. Without these conditions the type rules
are still sound and would reside between HMF and implicitly typed
System F. Unfortunately this system would not have principal type
derivations which precludes efficient type inference. The side con-
ditions are therefore pragmatically chosen to be the simplest condi-
tions such that HMF has principal type derivations, simple rules for
type annotations, and a straightforward type inference algorithm.

The application rule App requires that the argument and pa-
rameter type are syntactically equivalent which can be full poly-
morphic types. Furthermore, the rule requires that the polymor-
phic weight of the function type is minimal, i.e. for any deriva-
tions I' - e : 05 — o' and T F ex : o), we have that
[o2 — o] < oz — o']. For convenience, we often use the short-
hand minimal(Jo2 — o]) to express this condition. Note that for
monomorphic applications, the polymorphic weight is always zero
and therefore always minimal. Effectively, the condition ensures
that predicative instantation is preferred when possible and that no
arbitrary polymorphism can be introduced. Take for example the
derivation of the application single id from the introduction (using
T for a — «):

*

ANN

I+ single : Va. v — [Pkid:Voa.a — «a
Va.a - [a]C(a—a) > [a—a] Va.oa—ala—a

'Hid:a— «

I'F single : (@ — a) — [a — af
minimal ([T — [7]])
I+ single id : [a — o] «a ¢ fto(T)
Ik single id : Va. [a — af

Without the condition for minimal polymorphic weights, the type
[Va. @ — @] could also be derived for the application single id:

I' F single : Va. o — [
Va.ao — [a] C (Va.a — a) — Va.a — q]

I+ single : (Va.a — a) — [Va.a — o]
I'Fid:Vo.a — «

I+ single id : [Va.a — o

wrong!

where we would lose principal type derivations since the types
Va.[a — a] and [Va.a —] are not in an instance relation.
The minimality condition ensures that the second derivation is
disallowed, since the polymorphic weight [Vo. [@ — «]] is smaller
than [[Va. o — a]].

It is important that the minimality condition ranges over the
entire sub derivations of e; and ex since the ‘guessed’ polymor-
phism of the second derivation is introduced higher up the tree in
the instantiation rule. As shown in these derivations, the condition
disambiguates precisely those impredicative applications where a
function of type av — ... is applied to a polymorphic argument. It
is easy to see that the argument is always be (predicatively) instan-
tiated in this case (if no annotation was given).

Just like Hindley-Milner, the LET rule derives a polymorphic
type for let-bound values. In addition, the rule requires that the type
of the bound value is the most general type that can be derived,
i.e. for any derivation I' = e; : o}, we have that o1 C of.
As a convenient shorthand, we often write mostgen(o1) for this
condition.

The condition on let bindings is required to prevent the introduc-
tion of arbitrary polymorphism through polymorphic types in the
type environment I". Without it, we could for example bind single’
to single with the (polymorphically) instantiated type (Vo. v —

a) — [Va.a — «), and derive for the application single’ id the
type [Va. @ —] and lose principal type derivations again.

We cannot just require that the let-bound values are of mini-
mal polymorphic weight as in the application rule, since arbitrary
polymorphism can also be introduced through the sharing of quan-
tified type variables. Consider the expression (let foo =z y =
single y in foo ids id) where ids has type [Va.a — a]. The
principal type for this expression is Va. [@ — «], where the type
for foo is Va8.8 — a — [a]. Without the most general type
restriction, we could also assign the type Vo [a] — a — [¢]
to foo and through arbitrary sharing derive the incomparable type
[Va. a — a] for the expression.

The type rules of HMF allow principal derivations and are sound
where well-typed programs cannot go ‘wrong’. We can prove this
by showing that for every HMF derivation there is a correspond-
ing System F term that is well-typed (Leijen 2007a). Furthermore,
HMF is a conservative extension of Hindley-Milner. In Hindley-
Milner programs rule FUN-ANN does not occur and all instantia-
tions are monomorphic. This implies that the types in an application
are always monomorphic and therefore the minimality restriction
is always satisfied. Since Hindley-Milner programs have principal
types, we can also always satisfy the most general types restric-
tion on let bindings. Finally, it is interesting that if we just restrict
instantiation to monomorphic instantiation, we end up with a pred-
icative type system for arbitrary rank type inference (Peyton Jones
et al. 2007; Odersky and Laufer 1996).

4.4 On the side conditions

The LET rule restriction to most-general types is not new. It has
been used for example in the typing of dynamics in ML (Leroy
and Mauny 1991), local type inference for F< (Pierce and Turner
1998), semi-explicit first-class polymorphism (Garrigue and Rémy
1999b), and more recently for boxy type inference (Vytiniotis et al.
2006). All of these systems require some form of minimal solutions
in order to have principal type derivations.

From a logical perspective though, the conditions on LET and
App are unsatisfactory since they range over all possible derivations
at that point and can therefore be more difficult to reason about
(even though they are still inductive). There exists a straighforward
decision procedure however to fullfill the conditions by always
using most general type derivations. This automatically satisfies the
LET rule side condition, and due to Property 1 will also satisty the
minimality condition on the App rule where only rule INST on e;
and ez needs to be considered (which is a key property to enable
efficient type inference).

It is interesting to note that the type rules without the side
conditions are still sound, but would lack principal derivations,
and the type inference algorithm would be incomplete. This is the
approach taken by Pierce and Turner (1998) for local type inference
for example which is only partially complete.

Even though we are not fully satisfied with the side conditions
from a logical perspective, we believe that the specification is still
natural from a programmers perspective, with clear rules when an-
notations are needed. Together with the use of just regular System F
types and a straightforward type inference algorithm, we feel that
the practical advantages justify the use of these conditions in the
specification of the type rules.

4.5 N-ary applications

Since Plain HMF requires minimal polymorphic weight on every
application node, it is sensitive to the order of the applications. For
example, if e; ez is well-typed, so is apply e1 ez, but the reverse
application, revapp ez e1 is not always accepted. As a concrete
example, revapp id poly is rejected since the principal type of the
application revapp id in Plain HMF is Va3. (o« — «) — 8 —

and we cannot derive the (desired) type V3. (Va. « — o) — 8 —
[since its polymorphic weight is larger.

A solution to this problem is to allow the application rule to have
a minimal polymorphic weight over multiple arguments. In partic-
ular, we extend Plain HMF to full HMF by adding the following
rule for N-ary applications:

APP-N

I'te:or— ... w0, —0 I'Fe:o1 I'kte,:on

VYo'or..00. The: T, 0 ATFer:01 Ao AT e, o
= [0n — o]l < [0 — o]

I'ee..e,:0

where we write 7, for the type o1 — ... — op. With the rule
APP-N, it becomes possible to accept the application revapp id poly
since we can instantiate revapp to (Vo. v —) — (Va.av —
a) — (Int, Bool)) — (Int, Bool) which has a minimal polymor-
phic weight when both arguments are considered.

Even though it is always best to consider the maximal number
of arguments possible, the rule App-N does not require to always
consider all arguments in an application, and derivations for partial
applications are still possible. In fact, it would be wrong to always
consider full applications since functions can return polymorphic
functions that need to be instantiated first using rule INST. As an
example, consider the expression head tds 1. For this application,
it is essential to consider the application head ids first in order to
use INST to instantiate its polymorphic result Va. o« — « to the
required Int — Int type, and we cannot use App-N directly.

5. About type annotations

In principle HMF does not need any special rules for type annota-
tions since we can type an annotation (e :: o) as an application to
a typed identity function: (A\(z :: 0).z) e. However, in practice it
is important to handle annotations with free variables and to prop-
agate type annotation information to reduce the annotation burden.
In this section we discuss these issues in more detail. Note that all
three techniques described in this section are orthogonal to HMF as
such, and can be applied in general to Hindley-Milner based type
inference systems.

5.1 Partial annotations

In order to give types to any subexpression, we need to be able to
give partial type annotations (Rémy 2005). We write e :: Fa. o for
a partial type annotation where the free variables @ in ¢ are locally
bound. We read the annotation as “for some (monomorphic) types
@, the expression e has type ¢” (and therefore call 3 the ‘some’
quantifier). As a practical example of such annotation, consider the
type of runST:

runST :Va. (Vs. ST s a) — «
If we define this function, the parameter needs a partial annotation:
runST (z:: Fa.Vs. ST s o) = ...

Note that we cannot annotate the parameter as Vas. ST s « since
the parameter itself is not polymorphic in a.. For simplicity, we still
require type annotations to be closed but of course it is possible to
extend this with scoped type variables (Peyton Jones and Shields
2004), where annotations can contain free type variables that are
bound elsewhere.

We can formalize partial annotations in the type rules by modi-
fying the annotation rule to assume fresh monotypes for the ‘some’
quantifiers:

oo =[a:=7lor Iyz:o2be:p

FUN-A
UN-ANN ' Xz:Fa.o1).e:0o2 —p

Pl(let z = e in e3) :: Fa. o]

=let z = e; in Plez :: Fa. 0]
Pl(Az.e) :: Fa.VB. 01 — 02

= Mz :: FaB. 01).P[e :: FaB. o2]

Figure 3. Type annotation propagation

Moreover, we can remove the FUN rule since we can encode unan-
noted functions Az.e as A(z :: 3. «).e. Using this encoding, GEN,
and FUN-ANN, we can derive the following rule for unannoted func-
tions:
PEXz:T)e:o

I'EAz.e:o

FUN*

5.2 Type annotation propagation

Another important addition in practice is the propagation of type
annotations. For example, a programmer might write the following
definition for poly:

poly :: (Va. a — o) — (Int, Bool)
poly f = (f 1,f True)

As it stands, this would be rejected by HMF since the parameter f
itself is not annotated (and used polymorphically). We can remedy
this situation by propagating the type annotation down through
lambda and let expressions. Figure 3 defines an algorithm for
propagating type information, where P[e :: o] propagates the type
annotation on e. For example, the above expression would be
transformed into:

poly :: (Va. « — «) — (Int, Bool)
poly (f :Va.a — «) = (f 1,f True) :: (Int, Bool)

and the definition is now well-typed in HMF. Type propagation can
be seen as preprocessing step since it is defined as a separate syn-
tactical transformation, and can be understood separately from the
order independent specification of the type rules. We consider this
an important property since systems that combine type propagation
with type inference lead to algorithmic formulations of the type
rules that are fragile and difficult to reason about (Rémy 2005).

5.3 Rigid annotations

In general, we cannot statically propagate types through application
nodes (since the expression type can be more polymorphic than the
propagated type). This is a serious weakness in practice. Consider
again the definition of ids from the introduction:

(single :: Va. o — @) — ([Va. a — a)) id

In a system that mixes type propagation with type inference, like
boxy type inference (Vytiniotis et al. 2006), we could write instead:

(single id) :: [Va. . — o] (rejected in HMF)

Even though this looks natural and can be implemented for HMF
too, we will not give in to the siren call of mixing type propagation
with type inference and stick with a declarative formulation of the
type rules. Instead, we propose to make type annotations rigid.
In particular, when a programmer writes a type annotation on an
argument or the body of a lambda expression, we will take the type
literally and not instantiate or generalize it further. This mechanism
allows the programmer to write an annotation on an argument
instead of a function, and we can write:

single (id ::Va.a —)

which has type [Va.a — «a]. We believe that rigid annotations
are a good compromise to avoid an algorithmic specification of

FlxIr =z
.7:[/\01.6]]1“ = .7:[[6]][‘
]-'[[e O’]]r = f[[e]]r
FlX(x:0).€]r
=Mz 0).(Flel(rwo) 1 02) iffTFre:o2 Aoa € Q
=AMz 2 0).Fle]r xo) otherwise
Fle1 e2]r
= .'F[[el]]r (.7:[[62]][‘ o 0’2)
= .7:[[61]]1“ _7:[[62]]1“

iff ' Fres:o0 Aos € Q
otherwise

Figure 4. System F to HMF translation

the type system. Moreover, we appreciate the ability to be very
specific about the type of an expression where rigid annotations
give precise control over type instantiation. For example, we can
write a variation of the const function that returns a polymorphic
function:

const’ ::Va.a — (VB.8 —) (inferred)
const' z = Ay —) :: Ja. V8.8 — «

Note that with the type annotation propagation of Figure 3 we can
also write:

const’ :Va.a — (V3.8 —)
const' xy =1z

Note that rigid annotations are generally useful and are not specific
to HMF and we believe that expression annotations in any language
based on Hindley-Milner should be treated rigidly.

Rigid annotations can be formalized with ease using simple syn-
tactic restrictions on the derivations. First we consider an expres-
sion to be annotated when it either has a direct annotation or if it is
alet expression with an annotated body. The grammar for annotated
expressions e, is:

eoi=euno|letz=cine,

Dually, we define unannotated expressions e, as all other expres-
sions, namely:

ewi=z|erex|Aze| ANz uo)e|letz=cine,

We want to treat annotated expressions rigidly and not instantiate
or generalize their types any further. Therefore, our first adaption
to the type rules of Figure 2 is to restrict instantiation and general-
ization to unannotated expressions only:

F'ke,:o aé¢ fiv(l)
I'key,:Va.o

I'tey:01 01 C o2
INST GEN
I'key: oo

Since instantiation and generalization are now restricted to unanno-
tated expressions, we can instantly derive the type [Vo. @ — o] for
the application single (id :: Va.. « — «) since the minimal weight
condition of rule App is now satisfied. At the same time, the appli-
cation (id :: Va. @ — «) 42 is now rejected — indeed, a correct
annotation would rather be (id :: Jov. & —) 42.

Moreover, we can allow lambda bodies to have a polymorphic
type as long as the body expression is annotated, and we add an
extra rule for lambda expressions with annotated bodies:

Tz:o1b eq: o2
FUN-ANN-RIGID

IEXz:o1).e0:01 — 02

Note that we don’t need such rule for unannoted functions as FUN*
can be used with both FUN-ANN and FUN-ANN-RIGID.

unify :: (01,02) — S
where o1 and o3 are in normal form

unify(a, o) =
return ||

unify(a, o) or unify(o,a) =
fail if (a € ftv(o)) (‘occurs’ check)
return [ov := o]

unify(c o1 ... On,c O] oo Oy) =
let S1 = H
let Si+1 = unify(S’iai,Sm{) oS; foriel..n
return Sy, 41

unify(Va. 01,Vp. 02) =
assume c is a fresh (skolem) constant
let S = unify([o := c]o1, [B = clo2)
fail if (¢ € con(codom(S))) (‘escape’ check)
return S

Figure 5. Unification

5.4 Translation of System F to HMF

HMF extended with rigid type annotations can express any Sys-
tem F program. The rigid annotations are required in order to return
polymorphic values from a function. If we would just consider Sys-
tem F programs with prenex types then Plain HMF would suffice
too. Figure 4 defines a translation function F[e]r that translates a
System F term e under a type environent I" to a well-typed HMF
term e. Note that Q denotes the set of quantified types and o € Q
implies that o # p for any p. The expression I' ¢ e : o states that
the System F term e has type o under a type environement I" and is
standard.

To translate a System F term to HMF, we keep variables un-
translated and remove all type abstractions and applications. Pa-
rameters of a lambda expressions are kept annotated in the trans-
lated HMF term. If the body has a polymorphic type in the Sys-
tem F term, we also annotate the body in the HMF term since HMF
cannot derive polymorphic types for unannotated lambda bodies.
Applications are annotated whenever the argument is a quantified
type.

There are of course other translations possible, and in many
cases one can do with fewer annotations in practice. Nevertheless,
the above translation is straightforward and removes most of the
annotations that can be inferred automatically.

Theorem 2 (Embedding of System F):
IfTFre:othenT - Fle]r: o’ whereo' C o

6. Type inference

The type inference algorithm for HMF is a relatively small exten-
sion of algorithm W (Damas and Milner 1982) with subsumption
and unification of quantified types. We first discuss unification and
subsumption before describing the actual type inference algorithm.

6.1 Unification

Figure 5 describes a unification algorithm between polymorphic
types. The algorithm is equivalent to standard Robinson unification
(Robinson 1965) except that type variables can unify with poly-
types and there is an extra case for unifying quantified types. The
unification algorithm assumes that the types are in normal form. A
type o is in normal form when all quantifiers are bound and or-

subsume :: (01,02) — S
where o1 and o3 are in normal form

subsume(Va. p1,VB. p2) =
assume [are fresh, and € are fresh (skolem) constants
let S = unify([@ := €p1, p2)
fail if not (€ 7 con(codom(S — B)))
return (S —)

(‘escape’ check)

Figure 6. Subsumption

dered with respect to their occurrence in the type. For example,
VafB.a — [is in normal form, but VBa. o — [or Va. Int are
not. Implementation wise, it is easy to keep types in normal form by
returning the free variables of a type always in order of occurrence.
Having types in normal form makes it easy to unify quantified
types. In the last case of unify, we replace the quantifiers of each
type with fresh skolem constants in order, and unify the resulting
unquantified types. Afterwards, we check if none of the skolems
escape through a free variable which would be unsound. For ex-
ample, if 3 is a free variable, we need to reject the unification of
Va.a — aand Va. a — . This check is done by ensuring that the
codomain of the substitution does not contain the skolem constant
¢, and the unification fails if ¢ is an element of con(codom(S)))
(where con(+) returns the skolem constants in the codomain).

Theorem 3 (Unification is sound): If unify(o1,02) = S then
SO’l = SO’Q.

Theorem 4 (Unification is complete and most general): If So1 =
Sos then unify(o1,02) = S’ where S = S o S’ for some S”.

6.2 Subsumption

Figure 6 defines subsumption where subsume(o1,02) returns a
most general substitution S such that So2 T So;. Informally, it
instantiates o2 such that it can unify with the (potentially polymor-
phic) type 1. It uses the same mechanism that is usually used to
implement the subsumption relation in type systems based on type
containment (Odersky and Laufer 1996; Peyton Jones et al. 2007).

As shown in Figure 6, the algorithm first skolemizes the quan-
tifiers of o1 and instantiates the quantifiers 3 of oo with fresh
type variables. Afterwards, we check that no skolems escape
through free variables which would be unsound. For example,
subsume(Va. . — a,VafB.«a — [3) succeeds, but it would be
wrong to accept subsume(Vo. « — o, V.o — (3) where [is a
free variable. Note that in contrast with unification, we first remove
the quantifiers 8 from the domain of the substitution since it is fine
for those variables to unify with the skolems ¢.

Theorem 5 (Subsumption is sound): If subsume(oi,02) = S
then Sos C So7y.

Theorem 6 (Subsumption is partially complete and most gen-
eral): If Soo C Soi holds and o1 is not a type variable, then
subsume(oy,02) = S’ where S = S 0 S’ for some S”.

If o is a type variable, we have that subsume(a, V(3. p) equals
[a := p] for some fresh 3. When matching arguments to functions
with a type of the form Va.... — o — ... this is exactly the
disambiguating case that prefers predicative instantiation and a
minimal polymorphic weight, and the reason why subsumption is
only partially complete.

6.3 A type inference algorithm

Figure 7 defines a type inference algorithm for HMF. Given a type
environment I" and expression e, the function infer (T, e) returns a

infer :: (T'ye) — (0,0)
infer(T,z) =
return ([], T'(z))
infer(T, let z = e1 in e2) =
let (01,01) = infer(T, e1)
let (02, 02) = infer((01T,z : 01), €2)
return (62 o 61, 02)
infer(T', Az.e) =
assume « and 3 are fresh
let (8,V3. p) = infer((T,z : @), €)
return (6, generalize(6T, 6(a — p)))
infer(T, Az :: Fa. 0).e) =
assume @ and 3 are fresh
let (0,V3. p) = infer((I',z: o),)
return (0, generalize(6T',0(c — p)))
infer(T, e1 e2) =
assume « are fresh
let (0o, Va. p) = infer(T, e1)
let (01,01 — o) = funmatch(p)
let (02,02) = infer(01T, e2)
let (O3, 03) = split(subsume(f201, 02))
let 04 :03092091
fail if not (dom(©3) A ftv(04))
return (04, generalize(041, ©3040))

Figure 7. Type inference for Plain HMF

funmatch(o1 — o2) =
return ([], o1 — 02)
funmatch(a) =
assume (31 and (32 are fresh
return ([a == B1 — B2], B1 — B2)
generalize(, o) =
leta = ftv(o) — fto(T)
return Va. o
split(S) =
letd, =[a:=0c|(a:=0)€SANceT]
let©1=[a=0c|(a:=0)€SANc¢T]
return (O1, 61)

Figure 8. Helper functions

monomorphic substitution € and type o such that o is the principal
type of e under 6T'.

In the inference algorithm we use the notation 0 € 7 when
o is a monomorphic type, i.e. o = 7. The expression o ¢ 7 is
used for polymorphic types when there exist no 7 such that o = 7.
We use the notation 6 for monomorphic substitutions, where o €
codom(0) implies o € T, and the notation © for polymorphic
substitutions where o € codom(©) implies ¢ ¢ 7. The function
split(S) splits any substitution S into two substitutions 6 and ©
such that S = © 0 6.

The rules for variables and let expressions are trivial. In the
rules for lambda expressions, we first instantiate the result type of
the body and than generalize over the function type. For unanno-

tated parameters, we can assume a fresh type « in the type environ-
ment while annotated parameters get their given type.

The application rule is more involved but still very similar to the
usual application rule in algorithm W (Damas and Milner 1982). In-
stead of unifying the argument with the parameter type, we use the
subsume operation since we may need to instantiate the argument
type. The polymorphic substitution S returned from subsume is
split in a monomorphic substitution 83 and a polymorphic substitu-
tion Oz, such that S = O3 o 3. Next, we check that no polymor-
phic types escape through free variables in the type environment by
ensuring that dom(©3) 7 ftv(64I"). This is necessary since rule
FUN can only assume monotypes 7 for parameters, and without the
check we would be able to infer polymorphic types for parameters.
Since the domain of ©3 does not occur in the type environment, we
can apply the polymorphic substitution to the result type, and return
the generalized result together with a monomorphic substitution.

We can now state our main theorems that type inference for
(Plain) HMF is sound and complete:

Theorem 7 (Type inference is sound): If infer(T', e) = (0, 0) then
OI' - e : o holds.

Theorem 8 (Type inference is complete and principal): If 0T - e :
o, then infer(T, e) = (6',0") where § =~ 6" 0§’ and 0”0’ C 0.

Following Jones (1995), we use the notation S; ~ S2 to
indicate that S1a = Sz« for all but a finite number of fresh type
variables. In most cases, we can treat S; ~ S2 as S; = S since
the only differences between substitutions occur at variables which
are not used elsewhere in the algorithm. We need this mechanism
because the algorithm introduces fresh variables that do not appear
in the hypotheses of the rule or other distinct branches of the
derivation.

6.4 Optimizations

In practice, inference algorithms tend to use direct updateable refer-
ences instead of using an explicit substitution. This works well with
HMEF too, but certain operations on substitutions must be avoided.
When unifying quantified types in the unify algorithm, the check
(¢ € con(codom(S))) can be implemented more effectively when
using references as (¢ € con(S(Va.o1))U con(S(VB.02)) (and
similarly in subsume).

In the application case of infer, we both split the substitution
and there is a check that (dom(©s) 7 ftv(64I")) which ensures
that no poly type escapes into the environment. However, since let-
bound values in the environment always have a generalized type,
the only free type variables in the environment are introduced by
lambda-bound parameter types. Therefore, the check can be de-
layed, and done instead when checking lambda expressions. Effec-
tively, we remove the split and move the check from the application
rule to the lambda case:

infer(T', Az.e) =
assume o and 3 are fresh
let (S,VB.p) = infer((T,z:), e)
fail if (S ¢ T)
return (S, generalize(ST', S(a — p)))

This change makes it directly apparent that only monomorphic
types are inferred for lambda bound parameters. Of course, it also
introduces polymorphic substitutions everywhere, but when using
an updateable reference implementation this happens anyway. Note
that this technique can actually also be applied in higher-rank
inference systems (Peyton Jones et al. 2007; Odersky and Léufer
1996) removing the ‘escaping skolem’ check in subsumption.

6.5 Rigid annotations

It is straightforward to extend the type inference algorithm with
rigid type annotations, since expressions can be checked syntac-
tically if they are annotated or not. In the application case of the
algorithm specified in Figure 7, we use unify instead of subsume
whenever the argument expression ez is annotated, which effec-
tively prevents the instantiation of the argument type. Finally, we
adapt the case for lambda expressions to not instantiate the type of
an annotated body.

6.6 N-ary applications

Implementing inference that disambiguates over multiple argu-
ments using rule AppP-N is more involved. First we need to extend
subsumption to work on multiple arguments at once:

subsumeN (01 ... Op,0Y ... Op) =
leti =ifo; € {o1,...,0n} Aoy &V then ielse 1
let S = subsume(o;, 07})
if n = 1 then return S
else return S o subsumeN (S(01 ... 0i—1 Cit1 ... On),
S(0] ... 0i_1 Ciyq - On))

The function subsumeN applies subsumption to n parameter types
01 ...0, with the supplied argument types o7 ... o,. Due to sharing,
we can often infer a polymorphic type after matching some argu-
ments, as happens for example in revapp id poly where the poly
argument is matched first. The trick is now to subsume the parame-
ter and argument pairs in the right order to disambiguate correctly.
Since subsumption is unambigious for parameter types that are not
a type variable (o; ¢ V), we first pick these parameter types. Only
when such parameters are exhausted, we subsume the rest of the
parameters, where the order does not matter and we arbitrarily pick
the first. In a previous version of the system, we subsumed in or-
der of dependencies between parameter and argument types, but
one can show that this is unnecessary — if there is any type variable
shared between parameter and argument types, it must be (lambda)
bound in the environment, and in that case, we cannot infer a poly-
morphic type regardless of the order of subsumption.

Secondly, we extend function matching to return as many
known parameter types as possible, where we pass the number
of supplied arguments n:

funmatchN(n,o1 — ... > om — 0) =
where m is the largest possible with 1 < m < n
return ([], 01 ... om, 0)

funmatchN (n, o) =
assume (1 and (s are fresh

return ([o 1= B1 — B2], b1, B2)

During inference, we now consider all arguments at once, where we
first infer the type of the function, and then call the helper function
inferapp with the found type:

infer(T,e e1 ... en) =
assume n is the largest possible with n > 1
let (01,01) = infer(T, e)
let (02, 02) = inferapp(6:T, 01, €1 ... en)
return (62 0 01, 02)

The inferapp function is defined separately as it calls itself recur-
sively for each polymorphic function result until all n arguments
are consumed:

inferapp(I',Va. p, e1 ... en) =
assume o is freshand n > 1
let (0o, 01 ... Om,0) = funmatchN (n, p)
let (0;,0%) = infer(0;—1T,e;) forl<i<m

let 6; = 09: 06;_1

let (©,0") = split(subsumeN (0., (01 .. ,

Ol - o))

let 6 =606,

fail if not (dom(©) ¢ ftv(6T'))

if m < n then return inferapp (6T, ©00, em1 ... €n)
else return (6, generalize(6T", ©60))

First, funmatchN is used to consider as many arguments m as pos-
sible. Note that m is always smaller or equal to n. Next, the types
of the next m arguments are inferred, and the subsumeN function
applies subsumption to all the parameter types with the found argu-
ment types. Afterwards we check again that no polymorphic types
escape in the environment. Finally, if there are still arguments left
(as in head ids 1 for example), inferapp is called recursively with
the remaining arguments and the found result type. Otherwise, the
generalized result type is returned.

7. Related work

In Section 3 we already discussed MLF and boxy type inference.
MLF was first described by by Rémy and Le Botlan (2004; 2003;
2007; 2007). The extension of MLF with qualified types is de-
scribed in (Leijen and Loh 2005). Leijen later gives a type directed
translation of MLF to System F and describes Rigid-MLF (Lei-
jen 2007b), a variant of MLF that does not assign polymorphically
bounded types to let-bound values but internally still needs the full
inference algorithm of MLE.

Vytiniotis et al. (2006) describe boxy type inference which is
made principal by distinguishing between inferred ‘boxy’ types,
and checked annotated types. A critique of boxy type inference is
that its specification has a strong algorithmic flavor which can make
it fragile under small program transformations (Rémy 2005).

To the best of our knowledge, a type inference algorithm for the
simply typed lambda calculus was first described by Curry and Feys
(1958). Later, Hindley (1969) introduced the notion of principal
type, proving that the Curry and Feys algorithm inferred most gen-
eral types. Milner (1978) independently described a similar algo-
rithm, but also introduced the important notion of first-order poly-
morphism where let-bound values can have a polymorphic type.
Damas and Milner (1982) later proved the completeness of Mil-
ner’s algorithm, extending the type inference system with poly-
morphic references (Damas 1985). Wells (1999) shows that general
type inference for unannotated System F is undecidable.

Jones (1997) extends Hindley-Milner with first class polymor-
phism by wrapping polymorphic values into type constructors. This
is a simple and effective technique that is widely used in Haskell but
one needs to define a special constructor and operations for every
polymorphic type. Garrigue and Rémy (1999a) use a similar tech-
nique but can use a generic ‘box’ operation to wrap polymorphic
types. Odersky and Léufer (1996) describe a type system that has
higher-rank types but no impredicative instantiation. Peyton Jones
et al. (2007) extend this work with type annotation propagation.
Dijkstra (2005) extends this further with bidirectional annotation
propagation to support impredicative instantiation.

8. Future work

We feel that both HMF and MLF present interesting points in the
design space of type inference for first-class polymorphism. MLF is
the most powerful requiring only annotations on parameters that are
used polymorphically, but also introduces more complexity with
the introduction of polymorphically bounded types. On the other
end is HMF, which is more pragmatic and uses just System F
types, but also requires annotations on ambiguous impredicative
applications. Currently, we are working on a third system, called

HML, that resides between these design points (Leijen 2008). This
system is a simplification of MLF that only uses flexible types. The
addition of flexible quantification leads to a very simple annotation
rule where only function parameters with a polymorphic type need
an annotation.

9. Conclusion

HMF is a conservative extention of Hindley-Milner type inference
that supports first-class polymorphism, is specified with logical
type rules, and has a simple and effective type inference algorithm
that infers principal types. Given the relative simplicity combined
with expressive power, we feel that this system can be a great
candidate as the basic type system for future languages or even
Haskell.

Acknowledgements

The author would like to thank Dimitrios Vytiniotis and Simon
Peyton Jones for their feedback on an earlier version of the type
rules, and to Didier Remy who suggested the extension of HMF to
N-ary applications. Thanks also to Edsko de Vries for his feedback
and for implementing a full version of the HMF inference algorithm
in the Morrow compiler.

References

H. Curry and R. Feys. North-

Holland, 1958.

Luis Damas. Type Assignment in Programming Languages. PhD
thesis, University of Edinburgh, April 1985. Technical report
CST-33-85.

Luis Damas and Robin Milner. Principal type-schemes for func-
tional programs. In 9th ACM symp. on Principles of Program-
ming Languages (POPL’82), pages 207-212, 1982.

Atze Dijkstra. Stepping through Haskell. PhD thesis, Universiteit
Utrecht, Nov. 2005.

Jacques Garrigue and Didier Rémy. Semi-explicit first-class poly-
morphism for ML. Journal of Information and Computation,
155:134-169, 1999a.

Jaques Garrigue and Didier Rémy. Semi-expicit first-class poly-
morphism for ML. Journal of Information and Computation,
151:134-169, 1999b.

J.R. Hindley. The principal type scheme of an object in combina-
tory logic. Transactions of the American Mathematical Society,
146:29-60, Dec. 1969.

Mark P. Jones. First-class polymorphism with type inference. In
24th ACM Symposium on Principles of Programming Languages
(POPL’97), January 1997.

Mark P. Jones. Formal properties of the Hindley-Milner type
system. Unpublished notes, August 1995.

Combinatory Logic, volume 1.

Didier Le Botlan. ML : Une extension de ML avec polymorphisme
de second ordre et instanciation implicite. PhD thesis, INRIA
Rocquencourt, May 2004. Also in English.

Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power
of System-F. In The International Conference on Functional
Programming (ICFP’03), pages 27-38, aug 2003.

Didier Le Botlan and Didier Rémy. Recasting MLF. Research
Report 6228, INRIA, Rocquencourt, France, June 2007.

Daan Leijen. HMF: Simple type inference for first-class poly-
morphism. Extended version with proofs, 2007a. URL http:
//research.microsoft.com/users/daan/pubs.

Daan Leijen. Flexible types: robust type inference for first-class
polymorphism. Technical Report MSR-TR-2008-55, Microsoft
Research, March 2008.

Daan Leijen. A type directed translation from MLF to System F.
In The International Conference on Functional Programming
(ICFP’07), Oct. 2007b.

Daan Leijen and Andres Loh. Qualified types for MLF. In The In-
ternational Conference on Functional Programming (ICFP’05).
ACM Press, Sep. 2005.

Xavier Leroy and M Mauny. Dynamics in ML. In ACM confer-
ence on Functional Programming and Computer Architecture
(FPCA’91). Springer-Verlag, 1991. volume 523 of LNCS.

Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:248-375, 1978.

Martin Odersky and Konstantin Laufer. Putting type annotations
to work. In 23th ACM symp. on Principles of Programming
Languages (POPL’96), pages 54—67, January 1996.

Simon Peyton Jones and Mark Shields. Lexically scoped type
variables. Draft, March 2004.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types.
Journal of Functional Programming, 17(1):1-82, 2007.

Benjamin C. Pierce and David N. Turner. Local type inference.
In 25th ACM symp. on Principles of Programming Languages
(POPL’98), pages 252-265, 1998.

Didier Rémy. Simple, partial type-inference for System-F based
on type-containment. In The International Conference on Func-
tional Programming (ICFP’05), September 2005.

Didier Rémy and Boris Yakobowski. A graphical presentation of
MLEF types with a linear-time unification algorithm. In TLDI’07,
pages 27-38, 2007.

J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, January 1965.

Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones.
Boxy types: type inference for higher-rank types and impredica-
tivity. In The International Conference on Functional Program-
ming (ICFP’06), September 2006.

J.B. Wells. Typability and type checking in System-F are equivalent
and undecidable. Ann. Pure Appl. Logic, 98(1-3):111-156,
1999.

B 7 ftv(va. o)

GEN-INST — —
Va.oc CVB. [@:=7lo ~ Ae:Va.o).AB.ec

Figure 9. System F transformation function for generic instantia-

tion.
v rz:0€l
AR —_—
'kx:0~x
I'Fe:o~e tv(T
s ~e agfu()
T'ke:Va.o~ Aa.e
| I'Fe:op~e orCog~f
NST I'Fe:og~fe
Tx:the:p~e
FuN
F'FXze:T—p~ Ax:7). e
FUNA Iz:okFe:p~e
UN-ANN
'EXz:o)e:og—p~ Ax:0).e
PF€1202—>UW61 FF@QZO’QWGQ
minimal([oz — o)
APP
I'tees:o~ e e
I'kei:01~e1 INx:otkex:o2~ e
mostgen(o1)
LET n
'k letz=-eine:o2~ (Ax:01).€2) €1

Figure 10. Type directed translation to System F.

v x:o0 €Tl
ARF I'Fex:o
F I',x:01Fre: o2
UN
F F'FeA(x:01).e:01 — 02
A I'tFrei:09 —0 TI'Fres:oo
PP
F FFFelegca
T'kre:o a¢ fto(l)
TYPE-FUN
F I'FrAa.e:Va.o
T A I'Fge:Va.oq
YPE-APP
F Phreo:[a:=0c]o:

Figure 11. System F type rules

A. A type directed translation to System F

Instead of directly defining a semantics for HMF expressions, we
define the semantics in terms of a type directed translation to
System F. Figure 9 defines the System F transformation terms for
instantiation. The instantiation rule o1 C o2 ~~ f states that when
o2 is an F-generic instance of o1, than f is a System F term of type
o1 — o2. We can see f as the System F witness of the instantiation.

Figure 10 defines the type directed translation to System F. The
expression I' - e : ¢ ~~ e states that an expression e has type o
under the environment I" with an equivalent System F term e. It is
easy to check that whenever I' - e : o ~ e, than e is a well-typed
System F term with type o.

v rz:0€l
ARs I'tsz:0o
I'kser:o1 INx:o1Fsex:o2
mostgen(o1)
LETs n
I'ts let z =e1in €3 : 02
. Tyz:thkse:o0 oCp anfiv(l)
Ut Th e Va.r —p
Dz:oibse:o ocCp @ fiu(l)
FUN-ANNs
'k XNz o1).e:Va.o1r — p
I'tser:01 T'ksex:og
c1Co3—0 o2C03 @ fiv(l)
App, minimal([[agj a])
I'kselex:Va.o

Figure 12. Syntax directed type rules

Theorem 9 (The type directed translation is sound):
IfI’'+e:0~ ethenI' f e: o also holds.

Moreover, the type directed translation is faithful in the sense that
the type erasure of the System F term is equivalent to the erasure of
the original HMF term. Specifically, if we remove all types from
the System F and original HMF term, and replace let-bindings
(let © = €1 in ep) with applications ((Az.e2) e1), we end up
with equal lambda terms up to witness applications resulting from
instantiation. However, as we can see in Figure 9, those witness
terms always type erase to the identity function and can be removed
through (-reduction. We can state this formally as:

Theorem 10 (The type directed translation is faithful):
WhenT' | e : 0 ~ e, then (e* = €'**).

where we write e* for the type erasure of e and e'*** for the type
and let-binding erasure of e. Therefore, every well-typed term in
HMF corresponds with an equivalent well-typed System F term.
Since System F is sound, this implies that HMF is sound too.

B. Syntax directed rules

We can also give syntax directed type rules for HMF where all rules
have a distinct syntactical form in their conclusion. Figure 12 gives
the syntax directed rules for HMF. The syntax directed rules do
not contain separate rules for INST and GEN, but instantiate and
generalize before and after lambda abstractions and applications
(in the next section we show how we can reduce the number of
generalizations by parameterizing whether a generalized type is
required or not).

The following theorems state that the syntax directed rules are
sound and complete with respect to the logical type rules:

Theorem 11 (The syntax directed rules are sound): If I' -5 e : o
holds then we can also derive ' - e : o.

Theorem 12 (The syntax directed rules are complete): If ' - e : o
holds then we can also derive I -5 e : o’ where o’ C o.

C. Minimizing generalizations

Figure 13 defines alternative syntax directed rules that minimize
the number of generalizations and instantiations. In particular, for
normal Hindley-Milner programs this reduces the generalizations
to let bindings only. The expression I ¢ e : o states that e has
type o under type environment I'. Furthermore, the € ‘argument’
gives the expected form of o, if ¢ = true than o is generalized,

VAR z:0€el
AR
s It¢z:gen(T,0)
P e o1 (D,z:01)FS ea: o2
. mostgen(o1)
LETS - -
't let z =ein ez : 02
r . l_false .
b (Cain) e
' Az.e: gen (T, 7 — p)
(D,z:0)Ff™ e:p
FUN-ANN;
UNZANNS P Xz o).e: gen (T, 0 — p)
T anlse e1 03 —o0 I F;’3€Q € : 02
Appe o2 C o3 minimal([os — o])
PP
s Dk el ex: gen®(T,0)
gen™(T, o) =Va.o where @ = ftv(o) — ftv(T)
gen™=(I'\Va.p) = [@ :=737]p

Figure 13. Alternative syntax directed type rules that reduce the
number of generalizations and instantiations.

otherwise o is instantiated to a p type. The function gen®(T’, o)
instantiates or generalizes depending on ¢, and most rules call this
function in their conclusion.

The VARS rule returns gen® (T, o) which potentially instantiates
the type. The LET: passes true to the inference of e; so that a
polymorphic type is derived. The expected form of the body is
determined by the expected form of the entire let expression (i.e.
€). In contrast to LETs, FUN¢ passes false to the body of the lambda
expression to derive an instantiated p type. Rule APP¢ is the most
interesting. It passes false to the function derivation since it requires
an instantiated function type. Application only needs the argument
to be generalized if the expected parameter is a polymorphic type,
and App¢ passes o3 € Q for the expected form to the derivation
of the argument, where we write o € Q if there exists no p such
that o = p. We still need to instantiate the result in case 03 € Q
since the type of ez could be more general. Note that in the case
where o3 ¢ Q, we know that o2 is an unquantified type and that
no further instantiation can be done, i.e. o2 = 03.

D. Soundness and completeness results

D.1 General properties

Theorem 13 (Robustness): If (e1 e2) is well typed, than so is
(apply €1 e2).

Proof of Theorem 13: Since e; e is an application, we must have that:

'kel:oa—0 I'ker:oa minimal(foz — o])
I'Fee:o @

for some environment I'. Moreover, there exists a principal derivation where
'k e :Va.o, — o',and Va.o), — o/ T 02 — o (2). Assuming that
« are fresh (3), we can derive:

'k apply : Vap.(aa — B) - a—

VaB.(a = f) —a— BC (04 —o') = ah — o

T apply : (6 — 0') — oh — o @)

T'ke:Va.ohb —» o Va.oh—o Cob—o
F)—elzaéﬂa/ 5)

and thus
(4) (®)
Tkapply: (0ch—0o')—oh—0o Thre:oh—o
minimal([(ch — o) — oby — o'])

T+ apply e1 : 05 — o'

Note that to match the required parameter type of apply, we must instan-
tiate V. o, — o atleast to o, — ¢, which does not increase the poly-
morphic weight of the type. Furthermore, the most general type of apply
is minimally instantiated to just those types needed to match the type of
e1 . Therefore, no arbitrary polymorphism is introduced and the minimality
condition is satisfied. Since @ 7 ftv(I") (by (3)), we can use GEN to de-
rive I' - apply e1 : Va. o, — o’ and by (2), we can use INST again to
derive I" F apply e1 : o2 — o. We can now use derivation (1) to derive
T+ (apply e1) ez : 0. 0

D.2 Syntax-directed type rules

Proof of Theorem 11: We prove soundness of the syntax directed rules, i.e.
whenI' s e : othen I F e : o also holds.

Case z: Immediate by VAR.

Case let z = e; in e2: Immediate by induction and LET.

Case Az.e: By induction I’z : 7 F e : o, and since ¢ C p we can use
INST to derive 'z : 7 - e : pand by FUN,I' - Az.e : 7 — p. By
assumption &@ (A ftv(T") and we can apply GEN multiple times to derive
I'FXz.e:Va.r— p.

Case \(z :: 0).e: Similar to the previous case.

Case (e; e2): By induction' F e; : o1 and ' F ez : o2. Since
o1 C 03 — oand oo C o3, wecanderive I' - e; : 03 — o and
T'kes:os.

By assumption the o3 — o] is minimal for the syntax directed
derivations (1). Suppose there exist non-syntax directed derivations for ey
and ez where [0z — o] would be lower. By induction over the number of
applications and by Theorem 12, we would also have an equivalent syntax
directed derivation which contradicts the assumption (1). Therefore, the
polymorphic weight of 3 — o is minimal for the non-syntax directed
rules too, and we can use APP to derive I' - e; ez : o. Finally, using
a 7 fto(T"), we apply GEN multiple times to derive I' - e1 ez : Va. 0.

Proof of Theorem 12: We prove completeness of the syntax directed rules,
i.e. whenI' - e : o holds, we can also derive I' -5 e : o/ where o/ C 0.
Before proving completeness, we first need to establish that the syntax
directed rules can always derive fully generalized types. We show that for
any derivation I' 5 e : o there also exists a derivation I s e : ¢’ such
that o/ = V. o forany « ¢ fto(T') (1).
Case z: Since for any « ¢ ftv(T"), it must be that o ¢ ftv(c) since
(z : o) € . Therefore 0/ = Vav. 0 = o which is the expected result.
Case let z = e in ep: By induction on the derivation of the body, there
also exists a derivation ', z : 01 Fs eg : Ué satisfying 0’2 = Va. o2 which
is the expected result.
Case (A\z.e): Since we can derive Va. ™ — p for any & (A ftv(T'), the
result is immediate.
Case (A\(z :: 0).e: Same as the previous case.
Case (e1 e2): Same as the previous case.
Now that we proved (1), we can prove completeness by induction over
the syntax directed rules:
Case z: Immediate by VARs.
Case GEN: By induction, I 5 e : o1 where o1 C o (2). Moreover, by
(1), there also exists a derivation I' s e : 02 where o2 = Va. o7 for any
a ¢ ftv(T), and therefore by (2), o2 C Va. 0.
Case INST: By induction " ¢ e : o/ where o’ C o7. Since o1 C o3, we
also have o/ C o2 which is the expected result.
Case let z = e; in ey: Immediate by induction and LETs.
Case A\z.e: By induction, we have I';z : 7 Fs e : o where 0 C p,
and we can use FUNs directly to derive I' s Az.e : Va. 7 — p, where
Va.r—>pET—0p
Case A\(z :: 0).e: Similar to the previous case.
Case (e1 e2): By induction, I" -5 e; : o} holds where o] T o2 — o, and
I' ks ez : ol where ¢y C o3. By assumption [o2 — o] is minimal for the
type derivations of e; and ez (3). Suppose we would be able have syntax-
directed derivations for e; and e2 with a lower weight. By induction on the

number of applications and Theorem 11 this would imply that there also
exist non-syntax directed derivations with equal weight contradicting the
assumption (3). Therefore, the weight is minimal under the syntax directed
rules too and we can use APPs to derive I' ¢ e1 e2 : Va.o where
Va.o C o. O

D.3 Substitution properties

Properties 14

i. Ifoy1 C o2 then So; C So, for any substitution S.

ii. If o1 = o2, then So1 = So, for any substitution S.

iii. If.S=5"05, then[S'o] < [So].

We write ftv(S) as a shorthand for dom(S)U ftv(codom(S)).
When composing to independent substitutions we write S - S2
where S 0 Sy = Sz 0 S1. It follows that dom(S1) 7 ftv(S2) and
dom(Sz2) 7 ftv(S1). Note that we can split any substitution S as
S1 - S2 where dom/(S1) 7 dom(S2) and dom(S1) U dom(S2) =
dom(S).

D.4 Unification

Properties 15
i. IfS = unify(o1,02) then S is idempotent.

Proof of Theorem 3: (Unification is sound) When unify(o1,02) = S,
then So1 = So2 holds too.

Case unify(o, «): Immediate.

Case unify(c,o): We have that o ¢ ftv(o) and S = [:= o], and
therefore, S« = 0 = So.

Case unify(c o1 ... on, c oy ... o,): . With S! = unify(S;o4, S;0}),
we have S; 11 = S} o S;, and by induction S;41S;0; = Si115i0] (1).
By Property 15.i, Si11 09 = S} 05508 = S} 05; = Si41, and we
can restate (1) as S;jy10; = i+10'1/-- Due to Property 14.ii, we also have
Sn410; = Sny10;. By definition of substitution, Sy11(¢ 01 ... on) =
c/()5n+10'1).,.(5n+1an) = ¢ (Sn4101)...(Snt10n) = Snt1(cof...
ol).

Case unify(Va. 01, V3. o2): By induction on unify([a := clo1, [8 =
clo2), we have S[a := c]o1 = S[B := clo2 (2). Since unification
does not introduce new type variables and « and 3 are fresh, we have
a ¢ ftu(S) 3) and B8 ¢ ftv(S) (4). We can treat c as a type variable
with out loss of generality, and by assumption ¢ ¢ ftv(codom(S)), we
also have ¢ ¢ ftv(S) (5), ¢ ¢ ftv(So1) and ¢ ¢ ftv(So2) (6). We can
now derive:

SVa.o1) =(3)

Va. Soq = (6), (c-renaming)

Ve.[a = c]So1 = (3),(5)

Ve. S[la = clor = (2)

Ve. S[B = clo2 = (3),(5)

Ve. [B := c]Soa = (6), (a-renaming)

V3. Soz =(4)

S(VB. 02)

which is the expected result. O

Proof of Theorem 4: (Unification is complete and principal) We prove
whenever So1 = Sog then unify(o1,02) = S’ where S = S o S’
for some substitution S”’. The proof is done by induction over the shape of
types in normal form.

Case Sa = So: If & = o the result is immediate through unify(c, «).
Otherwise, we have o ¢ ftv(o) (by an inductive argument on the size of
o), and unify(a, o) returns [« := o] which is most general.

Case So = Sa: As the previous case.

Case S(c 01 ... on) = S(c o ... 0,): By definition of substitution, we
have So; = So. We proceed by induction on 4. If 4 = 0 then unification
succeeds with S; = [] where S = S| o S and therefore S{S10; =
S S;o!. If it holds for ¢ — 1, we have by induction that unify(S;o;, Sio})
succeeds with SZf_H where S = 5" o Sz{-&-l 0S; = 5" 0.8;41. Therefore
unification succeeds with Sy, +1 and S = S’ 0 .S, +1 which is the expected
result.

Case S(Va.o1) = S(VB.02): We can assume that « ¢ ftv(S) and
B ¢ ftv(S) (1). We also assume a fresh ¢ such that ¢ ¢ ftv(S, o1, 02) (2).
Since the types are in normal form and by (1) and (2), we must have
Sla := c]o1 = S[B := c]o2. By induction, unify([a := c]o1, [B =
cloz) = S’ succeeds where S = S” o S/, and by (2) ¢ ¢ ftv(S’) and
unification does not fail.

Case S(c1 01...0n) = S(c2 0 ...07,): Cannot be equal when c1 # ca.
Case S(Va. o) = Sp: Cannot be equal since types are in normal form.

D.5 Subsumption

Proof of Theorem 5: (Subsumption is sound) When subsume(o1,02) =
S, then So2 C So; holds too. By definition of subsumption, S =
S1 — B, where S1 = unify([@ := €]p1, p2). Therefore, we can write
S1 as S - Sy (1) where dom(S,) = $ (2). By Theorem 3, we have
Si[a = ¢]p1 = Sip2 (3) where Sp is most general. Also, we have
T A con(codom(S)) (4) (or otherwise subsume fails). Without loss of
generality, we treat as type variables, and we have € (A ftv(p1) (5), and
T (7 ftv(oz2) (6). We now derive:

Soo =

S(VB. p2) C (6),(2)

S(Ve. Spp2) =(4)

Ve. SSpp2 = (1)

Ve. S1p2 =(3)

ve. Sila:=¢lpp = (1)

Ve SSy[a = = (B 7 fov([@:=7¢lp1))
ve. S[a: = (4)

S(Ve. [@:=7¢]p1) = (5), a-renaming

S (Ve p1 =

Soq

and therefore Sog C Soy. O

Proof of Theorem 6: (Subsumption is partially complete and principal) We
prove that when So2 C Soyp (1) and when o7 is not a type variable (2),
then the algorithm subsume (o1, o2) succeeds with S’ where S = S’ 0 S’
for some S’/. We assume o1 = Va. p1 and o2 = V. pa for some fresh @
and B such that@ 7 B, @ (i ftv(oz) and B 7 ftv(o1) (3). We also have
(@UpB) 7 ftu(S) @) (or otherwise the substitution would capture bound
variables).

By definition of generic instance and (3), we have S(Vf.p2) C
S(Va.[B = o|p2) = S(Va.p1) for some . Therefore, by (2)
and (4), S[B = Tlp2 = Sp1. By Property 14.i, it also holds that
[@ := ¢]S[B = Fp2 = [@ = €]Sp1 for some fresh ¢ (5), and us-
ing (4), we can rewrite this as: SSy[@ := C|p2 = S[@ := ¢]p1where
Sy = [B := S[a :="<¢|7],and S0 S, = S, 0 S (6). Since @ i ftv(p1)
(by (3)), SSpp2 = SSp[@ := ¢]p1 (7) holds.

By Theorem 4 and (7), unify([@ := €]p1, p2) succeeds with a most
general S’ where S-S, = 5" 0 S’ for some S”'. We can split S as S - S}
where dom(S;) 7 B (8),and S - S, = S o (S, - S{))‘ By (6), we have
dom(S) 7 B, and together with (8), this implies S = (S”" — 3) o Sy (9).
Finally, by (5), we also have € (i con(S) and by (9) € A con(.S,) which
means that subsumption does not fail. Together with (9) this is the expected
result. O

D.6 Type inference

Properties 16

i. IfI'Fs e: othen 0T s e :
assume closed annotations).

ii. If infer(T, e) = (0,0) then fo = o.

iii. If infer(T, e) = (6, 0) then 6 is idempotent, i.e. § 0 6 = 6.

iv. If infer(T', e) = (0, 0) then ftv(c) C ftv(6T).

Note that in Hindley-Milner, we also have that property that if
o1 CosandI',z:02Fs e:o,thenalsol’,;z:01 ks e : 0.1In
our case though, this does not hold since instantiation could create
extra sharing or polymorphic types which would make type infer-
ence incomplete. Therefore, the environment always contains most

Oo holds for any 60 (since we

general types for each binding which is ensured by the minimality
condition on let-bindings.

We prove soundness and completeness of the type inference al-
gorithm (Theorem 7 and Theorem 8) as a direct corollary of the
soundness and completeness of the syntax directed rules (Theo-
rem 11, Theorem 12), and the following theorems that state that
the type inference algorithm is sound and complete with respect to
the syntax directed rules:

Theorem 17 (Type inference is sound with respect to the syntax
directed rules): If infer (T, e) = (0, 0) then T I e : o holds.

Theorem 18 (Type inference is complete and principal with respect
to the syntax directed rules): If 0" ks e : o then infer(I';e) =
(0',0") such that § ~ 6" o 6’ for some 0", and 8" ¢’ C o.

As a corollary we have that every expression has a principal type,
i.e. for any derivation I' - e : ¢’ there also exists a derivation
I e : o with a unique most general type o such that o C o.
By Property 1 it follows that every expression also has a type of
minimal polymorphic weight since [o] < [o'].

Proof of Theorem 17: We prove soundness of type inference, i.e. if
infer(I',e) = (0,0) then 6" ks e : o is derivable, by induction over
the syntax of e.

Case z: This implies @ = [] and o = I'(z) where (z : o) € dom(T"). By
VARs, we can now derive I' s z : o directly.

Case let z = e; in ex: This results in (02 o 61, 02). By induction, we
know 61T ks e : o1 (1) and 0201 (T, z : 01) b5 e2 : o2. Property 16.i
implies 026011 s e1 : O207 also holds where 6201 is most general (by
Theorem 18), and by Property 16.iii we have 02601 (I, z:0201) bs €2 : 02
too. Now we can use LETs to derive 02011 ¢ let £ = e1 in e : 02.
Case \z.e: We write o for generalize(0T', (o — p)) (2). By induction,
we have 6(T", z : @) ks e : V(3. p, and by Property 16.i also O(T', z : «) b
e : 0(VB.p) (3). We can instantiate 0(V3. p) C 0p (4). Writing @ for
ftv(0(a — p)) — ftv(T), we have o = Va. 0(a — p) = Va. 0o — Op.
Since @ 7 ftv(T), we can use (3) and (4) with FUNs to derive 01" F
Az.e: 0.

Case \(z :: 0).e: As the previous case.

Case (e1 e2): By induction 011" s e; : Va. o1 — o (5) holds, where &
is fresh, and 0201 s ez : o2 (6). Also, split(subsume(6201,02)) =
©3 003, and by Theorem 5, ©30302 C ©36030201 where O3 o 03 is most
general (7). By Property 16.i, we have 6101 = o1 by (5), and 620102 =
og by (6). Using (5) and (6) we know that ©360402 C ©30401 (8)holds.

The escape check ensures that dom(©3) 7 ftv(I") (9). Combining
this with Property 16.i and (5), we can derive 04T s e1 : 04 (Va. o1 —
o) (10) and 64T s ez : 0402 (11). Moreover, by (9) and Property
16.iv we have that dom(©3) 7 ftv(0sVa.o1 — o) and dom(©3) #A
ftv(0a02) (12). Therefore, 04(Va. o1 — o) = O304(Va.o1 — o) C
030401 — B3040 (13), and by (8), Os02 = O360402 C O36401 (14).

By Theorem 18 we have that V&. 07 — o and o9 are most general
types under a minimal subtitution 626;. Together with (7) we have that
©3 o 64 is a minimal substitution such that ©30402 T ©36407. Since
©364 is minimal, it introduces the minimal polymorphism necessary to
match the argument types (by Property 14.iii. Since V&v. 01 — o is most
general, it now follows that [©3604(c1 —)] is minimal (15).

Finally, the result o’ is defined as generalize (64", ©3040) and equals
V3.036040 where 3 = ftv(©3040) — ftv(041) which ensures 3 (A
041" (16). Using (10), (11), (13), (14), (15), and (16), we can use APPg
to derive 94T k5 e1 e2 : o’ which is the expected result. O

Proof of Theorem 18: (Inference is complete and principal) We prove that
if 0T s e : o, than also infer(D, e) = (0’,0”) such that 6 = 6" o ¢’ for
some 6/, and 6"’ 0’ C o. We proceed by induction on the syntax of e.
Case z: By assumption z:0 € 0T and therefore z:0/ € T where 0 = o”.
Now, infer (T, z) succeeds with ([],0’) where @ = 6 o [] and 0’ C o.
Case let z = e; in ex: By induction infer(L', e;) = (61,07) holds
where § = 6 o 61 (1) and 6} ¢ T o1. Actually, since by assumption o'y
is the most general type derivable for eq, it must be the case that 8’0} =
o1 (2). Therefore, we can rewrite the assumption (T, z : 1) Fs e2 : 02
t0 0] (01T, z:07) bs ez : o2 using (2) and Property 16.i. By induction, we
now have infer((01T,z : 01), e2) = (02, 0%), where 6] ~ 05 o 62 and

040, T o2 (3). By (1), we now have § ~ 67 0 61 = 07 06} 0 (62 0 61),
and by (3) and Property 14.i we have 670507 T 002 = o2 which is the
expected result.

Case A\z.e: Wehave ',z : 7 s e: 0,0 C p(@) anda@ (A ftv(OT) (5).
Let « be a fresh variable and let 8/ = [a := 7] o 6 (6) such that the
derivation for e can be written as 0'(I',z : @) ks e : o. By induction
we now have infer((I',z : @), e) = (61,01) where 8’ = 6] o 6, (7),
0lo1 Co(8).

From (8) and (4), we know that 9’101 C p. Therefore, o1 = VB. p1
where 0] Syp1 = p (9) for some S, = [B := 7] (10), where 3 are
fresh (11). Here we assume we instantiate all 3 and S}, does not have to
be idempotent. Since 6101 = o1, we also have 81 p1 = p1 (12). The result
typeis V7. 01 (o — p1) wherey = ftv(01(av — p1))—ftv(6:T) (13) and
B C 75 (14) (by (10)). Moreover, taking 77 = 7 — 3, we have 71 C @ (15)
(by (5)). We can now derive:

9:1(V7~ 61(a — p1))
07 (Vy. 01 — p1)
05 (V1. 01cc — Spp1)
VAT. 016100 — 01 Spp1)
VAT 0’0 — 01Spp1
V1.7 — p
Va.r —p
which is the expected result.
Case A\(z :: 0).e: Similar to the previous case.
Case (e1 e2): Since OT' ks e; : o1 holds we have by induction that
infer(T, e1) = (01, 07) where 6 = 67 06, (16) and 0707 C o1 (17). By
assumption 01011 b ez : oo implies infer(011, e2) = (62, o) where
0 ~ 0, 0 0 (18) and 0,0, T o (19).

Also, 01 C o3 — o holds and therefore of = Var.o} — o’ (20)
where @t is fresh (21). By (17) , we can derive 0} (Va1.0f — o) =
Var.0) (o4 — o') C Sabi (0} — o’) = 03 — o where dom(Sa) C
ay. Writing S’ = S, 0 0%, (22), we have 503 (05 — 0') = 03 — 0 (23),
and S’020’ = o (24). By assumption, we have o2 C o3. By (19), we have
040, C o3, and by (22) and (21), S’cf, T 3. Together with (23) we have
S’} C S'620% (25).

Given that [o3 — o] is minimal, [S'62(c% — o”)] is minimal too
(by (23)) (26). Since 62 is minimal, it follows that S’ must introduce the
minimal amount of polymorphism to fullfil (25). We distinguish now two
cases depending on whether 0207 is a type variable or not.

If 0207 is not a type variable, then it folllows by Theorem 6 that
subsume(f20%,04) = S with a most general S where S’ = S” o S
for some S’’. If we write S”” as ©’' 00", we have S’ = ©" 00" 0 S. Since
S is the most general substitution such that So/, T S6207%, it must be that
©' is empty to make the polymorphic weight of S’ minimal. Therefore,
S”" =60"and S’ =60"0S.

In the other case 6207 is equal to some type variable «. In that case
subsume (0204, 04) = S where S = [a := p] assuming o}, = Va. p for
some fresh @. If S’ can be written as S’ 0 S, we have S’0, C S'a = S"p
(by (25)) which implies that S’ must be monomorphic substitution 6"
in order to make the polymorphic weight of S’ minimal. If we cannot
write S’ in the form S” o S, it must be by (25) that S’ is a composition
S o [a := o2] (where o2 is a polymorphic type). But in that case the
weight of S'6’(cf — o) is at least one higher than in the other case
where S = [a := p], which contradicts that S’ introduces minimal
polymorphism (26).

As a result, we have in both cases that S’ can be written as 6’/ o S
where subsume(f20%,05) = S. We also have split(S) = (©3,03)
where S = O3 o #3. Also, we can write S, as ©4 o 6,, and we have
S = 0" 003003 = O4 00, 00, which can be rewritten as (8" 0 ©3) o
0" 003 = ©q 0 8, o 6. This implies that dom(©3) C dom(©,) C @
and therefore dom(©3) 7 ftv(04T") (27). Since 84 = 03 o 62 o 01, we
have 6 ~ 6" o 64 (28) by (16) and (18).

The returned type is V7. ©3040’ where 7 = ftv(©36040’) — ftv(T),
and ¥ C @. We can derive 0" (V5.0©3040') C V7.0"03040" =
V7. S5'02010' = V5. 5020’ = V4.0 C Va. o. Together with (27), this
is the expected result. O

(12)
(10), (14)

e

~ e~
= o
T ==
~

—~

o

=

I

