Notes on an implementation of Sugiyama’s scheme

Lev Nachmanson

Microsoft Research, One Microsoft Way, Redmond, WA, USA
| evnach@ri crosoft.com

Abstract. These technical notes are comments on my work on GLEE, Graph
Layout Execution Engine. GLEE is a library developed insMierosoft Re-
search and is written in the C# language. The library hasquitew users in-
side of Microsoft. GLEE implements Sugiyama’s scheme obldyfor directed
graphs, or so-called layered layout. The paper describesne detail efficient
coding of adjacent vertex swaps and spline routing, whezddtter is based on
the b-spline in a channel approach by Lutterkort and Peters.

1 Introduction

Eiglsperger et al [4] mention that most practical implenagions of graph layout en-
gines follow Sugiyama’s scheme, and GLEE is no exceptioe. S¢heme consists of
several consecutive steps [5]. These steps are: cycle ednteyering, vertex ordering,
horizontal coordinate assignment, and, finally, splindingu

1) At the cycle removal step we transform the given directeghly into a DAG by
reverting some edges and thus breaking the cycles.

2) In the layering step we assign each vertex to some layep(iadmtal row), in a
way that each edge goes down from a higher layer to a lowerNow.we are almost
ready for the ordering step, but we make an intermediatesgtepe we create layered
graph We introduce dummy vertices and replace each edge crossing than two
layers by a sequence of connected edges where each edgenjoeselayer down. In
this way we replace the DAG with a layered graph.

3) During the ordering step vertices are swapped within dlyers to reduce edge
crossings.

4) In the next step we fix x-coordinates of the layered grapéitices by shifting
(but not swapping), them within the layers.

5) The last step is spline routing where for each edge weeeespline, trim it with
the source and target node boundaries, and calculate the head positions.

The main result of the paper is a new algorithm for countingeecrossings in the
adjacent swap phase, a sub-step of the ordering step. Tdigcisssed in section 3. The
description of the spline routing step implementation cafdund in section 4. | touch
on some issues concerning layering in section 2. Future igatlscussed in section 6.
All the sections can be read independently.



2 Layering

In spite of the fact that the layering step in GLEE is impleteeraccording to [5], I'd
like to make some remarks about the step. This section shdwstve recipe given in
[5] works. I also point to a possibly better method for sotythe layering problem.

Let V be the set of the DAG vertices, arid be the set of its edges. Every edge
e has weightiV[e] and separatiob[e]. Both vectorsi and S have nonnegative in-
teger values. The weight of an edge defines the importanceegfiikg the edge short.
The separation means the minimal possible span of an edge ip-dlirection. For a
correct layering every edgehas to cross at least(e) + 1 layers. A layering is an
integer valued vectoy defined onV' providing for anyv € V' its layery[v]. We are
required to find a layering, such that[u] — y[v] > S(u,v) for each(u,v) € E and
Z(u,v)eE W(’LL, v)(y[u] - y[’l]]) is minimal.

It is useful to reformulate the layering problem as a lineargpam. LetA be the
vertex-edge adjacency matrix of the DAG. The columnglaforrespond to the edges
and the rows correspond to the vertices. For everyy” and(u,v) € E

1, ifi=u
Afi, (u,v)] =4 -1, ifi=w (1)
0, otherwise.

Let us denote by the vector defined oif, such that
Dlu] = Z W(u,v) — Z W (v, u) (2)

for everyu € V. The layering task can be stated in these terms as the foldpliviear
program: minimizeDy under conditiongyyA > S andy e RI!V|. The dual of this
program can be stated as the following: minimiz&z under conditionsdxz = D,

T € R'X‘, whereR, is the set of nonnegative numbers.

One can see that the last program is the Transshipment Rr¢B8]leUsually prob-
lems of this kind are solved, as it's done in [5], by the Netw&implex method.
Gansner et al [5] knew about the connection, but, to my kndgdehave not mentioned
it in their publications.

The layering step usually takes less than 5% of the totalingrtime. In my opinion,
the version of the algorithm from [3] is easier to implememd anay work even faster.

3 Efficient counting of edge crossings during adjacent swaps

The ordering step starts when we have a layered graph, batdeeof vertices within a
single layer is not yet defined. We traverse the layers up ansh@deveral times apply-
ing the median method of [5], and create some ordering witlérlayers. Counting the
crossings of edges connecting two neighboring layers sistage is done by using the
technique from [1]. The next sub-step of the ordering stehaésswapping of vertices
which are adjacent on the same layer. Gansner et al [5] potrthat the adjacent vertex
swaps reduce the number of edge crossings by 20-50% thuevingtthe layout qual-
ity. If one is not careful enough, counting of edge crossighis phase could become



a bottleneck of the layout calculation. The approach and statictures suggested here
lead to an efficient implementation.

Proposition 1 Swap of vertices, and v can be produced with the amortized cost
O(d(u) + d(v)), whered is the degree of layered graph vertices.

By the cost of a swap we mean the cost of calculating the chanpe number of the
edge crossings after the swap and the updates for the relatadtructures.

Let us show how to achieve proposition 1. To do that we neeetimel some data
structures.

If (u,v) is an edge of the layered graph, then we eadl predecessor af, andv
a successor af. For every vertexw, let P(v) be a sequence of predecessors,aind
S(v) be a sequence of successors oBecause of the fact that the graph is layered, all
vertices ofP(v) belong to the same layer. Itis also true fiw). We will keep elements
of eachS(v) andP(v) ordered according to the orders induced by the layers auntai
them.

For each vertex let Po(v) be a function fromP(v) to the set of integers, such
that for anyu € P(v) value Po(v)(u) is the offset ofu in P(v). In other words,
P(v)[Po(v)(u)] = w. Similarly, we defineSq such thatS(v)[Sdv)(u)] = u holds
for every vertexs and everyu € S(v). In addition, letX be an integer-valued function
defined on the set of graph vertices giving the horizontaitiposof vertices within the
layers; that is, ifL is a layer and) € L, thenL[X (v)] = v. In figure 3Po(u) = {a —

P(u)=la,b,c]

Fig. 1. Sequences(u) and P(u)

0,b — 1,¢ — 2} andSo(u) = {d— 0,e — 1}. This construction helps us to avoid
unnecessary sorting and is easy to update.

Suppose that verticasandv are adjacent on a layer, and we are considering them
for a possible swap. Consider an edgehich is adjacent neither to nor tov. Swap-
ping v andv does not change the number of crossings wfith the rest of the edges.
Therefore, to decide if the swap is beneficial, we only takte actcount intersections
between edges adjacentdmr to v. Let cuv(cvl) be the number of intersections be-
tween edges adjacent toor v whenuw is to the left(right) ofv in the layer. Ifu is to



the left of v, then the swap is beneficial only wheav > cvu Our task is to findcuv
andcovu efficiently. Numbercuvcan be represented as the sum of valygserCuvand
lowerCuy whereupperCuvs the number of crossings of edges incoming iator v,
andlowerCuvis the number of crossings of edges outgoing froor v.

We show how to findupperCuy lowerCuvis calculated similarly. LetP(u) be
[a1,...,ay], andP(v) be[by, ..., by]. The sequenced = [X (aq), ..., X (a,)] @andB =
[X (b1), ..., X (b)] represent horizontal positions of verticesi®fu) and P(v) corre-
spondingly. Note thad and B are increasing sequences since they follow the order
of the layer above. As shown in [1],upperCuvis equal to the number of inversions
betweenA and B: that is, the number of pairs;j, such thatX[a;] > X[b,]. For the
sake of completeness, we provide the procedure calculdtingalue.

ucuv() {
ucuv=0;
i nver si ons=n;
i=1,j=1;
while(i < nandj < n
iF(X[b[j]1]-Xal[i]] > 0){
i =i +1;
i nver si ons=i nver si ons- 1;

el se {
ucuv=ucuv+i nver si ons;
j=+L

}

Lemma 1. Procedurel CUV worksO(m + n) steps.
Proof. In each cycle of increases, of increases.

After swappingu andv we need to update the corresponding structétes Poand
Sa The following observation allows us to do it efficiently:

Lemma 2. The swapping of andv changes”(w) (S(w)) if and only ifw is a common
successor(predecessor)ywandwv.

Proof. Indeed, the swap af andv changes som®&(w) if and only if u,v € P(w). If
vertex! € P(w) then, by definitiony is a successor df The other part of the lemma
is proved similarly.

The procedure below update§sandSoafter swapping: andv whenu is located to
the left ofv. Structures? andPo are treated similarly.

foreach (w € P(u)){
let s=S(w);
et r=So(w);
if( v € domain(r){



/!l here we know that wis a commopn predecessor of u and v
let vOfset=r(v);
s(vO fset-1)=v;
s(vOF fset)=u;
r(v)=vdfset-1;
r(u)=vfset;

}

¥

If we implementSqw) as a hash table for every, then the amortized cost of the
routine above i$P(u)|. Indeed, the loop itself workid(u)| times, and the query €
domain(r) has amortized cogd(1) for a hash table. The updating ofX and the layer
can be done i¥(1) since we know the old and the new positionsi@ndv. The amor-
tized cost of all required updates after swapping is thenO(min(|.S(w)|, |S(v)|) +
min(|P(u)|, |P(v)])). The minimum comes from the fact that we could have started th
loop above fromP(v) if it had fewer elements thaR(u). That, together with Lemma 1,
proves Proposition 1.

We have avoided sorting while doing adjacent swaps, andidt) e can avoid it
completely. The initialization step can also be done witrsauiting, since we can filP
and.S by walking over the layers in their order and adding a new elanat the first
unoccupied position of the array.

One can achieve the same performance bound as stated insRiapa by using
the radix sort; however, as my experiments show, the sugdesethod is about 3-5
times faster.

4 Spline routing

In the heart of the spline routing in GLEE lies the method gf fere we explain the
way we apply this method. The idea of [6] is to build a chanaelarea bounded by two
polylines, and create a b-spline fitting into the channelrédformally, the boundaries
of the channel are given by real-valued, piecewise lineactians/ andh. The both
functions are defined on the same domain, a segmebjtwherea < b. The curve is
the low boundary and is the upper boundary of the channel: for everg [a, b] the
inequalityl(z) < h(z) holds. See figure 4 for a channel sample. A curdefined on
[a, ] fits into the channel if for every € [a,b] we havel(x) < b(z) < h(z). When
we find b fitting into the channel, we create a cuyein the planeR? which is also
defined on the segmeft, b], andbp(x) = (b(x), z) for z € [a, b]. We are looking for a
b-spline of the third degree that can be conveniently repriesi as a sequence of cubic
Bezier segments and rendered by a graphics library.

We need to give some minimal information about b-splinest, gmough for sketch-
ing of how GLEE deals with routing. A b-spline is completebfithied by two sequences
of real numbers: knots and control points. One can think tkwoots as of a partition of
the spline domain. We need a notion of a Greville abscissaa Bpline of the degre
and the knot sequengg] Greville abscissas are numbers of the farfa EZ;’ZH ti.

As shown in [6], for an increasing sequengcef real numbers one can find a sequence
of knots, such that their Greville abscissas contain



Fig. 2. A channel with a spline

Now we are ready to describe the algorithm. The core of theréthgn is in finding a
spline by a given knot sequenéandh. Itis done as in [6], by solving a linear program.
Let’s call this linear progrank(k, I, h), wherek is the knot sequence. The solution of
the program gives us a sequence of control points and wercohgte spline from the
knots and the control points. The program constraints ftiteespline to fit into the
channel, and by minimizing the cost we make the spline ditai@ften L(k, [, h) is
infeasible. This brings us to an iterative process:

Create an initial knot sequence k.
do{ Try to solve L(k,h).

If no solution exists, refine k. }
whil e(there is no solution)

We try to keep the knot sequence short as we iterate. Therevareesasons for
doing it.

a) Usually splines with small number of knots are more adisttigan the ones with
large number of knots.

b) The size ofL(k, 1, h) grows quadratically with the length éfand the program
takes much longer time to solve.

Intuitively, Greville abscissas are spline parametersresige knots have the most
influence on the spline behavior. While iterating we keeuadba vectoy of parame-
ters where we would like to constrain the spline. All valuég delong to the segment
[a, b]. The knot sequence is calculated based;poas mentioned above, in a way that
all components of; are Greville abscissas of the knots. Let's denoté:fy) such a
sequence. The initial value gfis {¢[0] = a, g[1] = b}. If L(k(g),!, h) does not have a
solution we refing. To find new members gf we create a spline which is in an approx-
imation of the solution of.(k(g), [, h), cross this spline witlh andh, and insert intgy
the spline parameters corresponding to the intersectiontgodo keepy short we fix
some numbed > 0 and avoid the insertion when the distance between two mesatber
g becomes smaller thah This measure also bounds the growth of the knot sequence.
In the current implementatioh= (b — a)/240.



Let's explain how we find an approximate solution of an infielesL(k(g),!, k).
The linear program can be represented in the standard formmiae cx under condi-
tion Az = b,x > 0, whereA is a matrix andr,b andc are vectors. For an approximate
solution we taker* > 0 minimizing || Az — b|| for x > 0. Such anc* is the closest td
point of the se{ Az : = > 0}. Problems of this kind are called quadratic programs, and
they can be solved by most of solvers. A simple to implemebhnbtia very efficient
approach to this problem can be found in [9].

Because of the limitations of the current linear progranvesoin GLEE we divide
the problem in two when the matrix becomes too large. We split the channel in its
narrowest place and thus create two new tasks. Usuallydiymes an undesirable effect
on the spline which is now a concatenation of two splines amai optimized. Luckily,
the division does not happen too often.

5 Samples of graph layouts created by GLEE

Fig. 3. World dynamic model [8]



Data
Context

scopes

initiates

scopes Erocess scopes

contains

carries

scopes

refers to

deeomposes

Dynamic
Role

uses permissions

Fig. 4. An hierarchy

The graph displayed in figure 3 comes from [8]. Figure 4 exp@seomplex hier-
archy of relations between entities. The graph at figure Béscbntrol flow graph of a
program.

6 Future work

Inspite of the fact that GLEE is used successefully by séwierosoft groups, there
are several aspects of GLEE that need improvement. Amomngdne performance, the
quality of the splines and support for different constraim the layout.

The performance bottleneck for GLEE is the step of assighorizontal coordi-
nates. This step is done by reducing the problem to the lagemd then reusing the
Network Simplex method to solve it. There are two papers][8uggesting more effi-
cient approaches. The authors of [2] found out a linear tinethod of assigning hor-
izontal coordinates. From the other side, [4] concentrategitroducing fewer addi-
tional dummy vertices thus making the size of the problenheftbtal layout solvable
in O(|V |+ |E|)log(FE) time while requiringD(|V| + | E|) space. GLEE will be adapted
to use these approaches. The approach of [2, 4] will intredicre horizontal balance
into GLEE layouts.

Splines of GLEE have the limitation of being graphs of fuant from the real line
y to the real line x. In other words, when layout is done topdttdm, a GLEE spline
intersects a horizontal line at most at one point. This iet&in forces GLEE to leave a
gap between the lowest bottom of a node on a layer and thedtiggpeof a node on the



A
g

Y

\

Fig. 5. A control flow graph




layer below. Sometimes it creates graphs which are unnadgszll. The limitation
can be removed by using the technique from [7] where the asitsloow how to fit
splines into “winding” channels.

References

1. W. Barth, M. Junger, and P. Mutzel. Simple and efficietdy@r cross counting. In M. T.
Goodricht and S. G. Kobourov, editoGraph drawing: 10th International Symposium, GD
2002, Irvine, CA, USA, August 2002, Revised Papersime 2528 of_ecture Notes in Com-
puter Sciencegpages 130-141, New York, NY, USA, 2002. Springer-Verlag In

2. U. Brandes and B. Kopf. Fast and simple horizontal coadi assignment. In P. Mutzel,
M. Junger, and S. Leipert, editoiGyaph drawing: 9th International Symposium, GD 2001,
Vienna, Austria, September 2001, Revised Papetame 2265 of ecture Notes in Computer
Sciencepages 31-44, New York, NY, USA, 2002. Springer-Verlag Inc.

3. V. Chvatal.Linear Programming A Series of Books in the Mathematical Sciences. Freeman,
1983. ChVA v 83:1 P-Ex.

4. M. Eiglsperger, M. Siebenhaller, and M. Kaufmann. An é&fi¢ implementation of
sugiyama’s algorithm for layered graph drawing. In J. Pa&gditor, Graph Drawing, New
York, 2004 pages pp. 155-166. Springer, 2004.

5. E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. Ahféque for Drawing Directed
Graphs.IEEE Transactions on Software Engineerin§(3):214-230, Mar. 1993.

6. D. Lutterkort and J. Peters. Smooth paths in a polygorahihl. InSymposium on Compu-
tational Geometrypages 316-321, 1999.

7. A. Myles and J. Peters. Threading splines through 3d adaniComputer-Aided Design
37(2):139-148, 2005.

8. L. A. Rowe, M. Davis, E. Messinger, C. Mayer, C. Spirakiggda\. Tuan. A Browser for
Directed GraphsSoftware — Practice and Experiencer(1):61-76, Jan. 1987.

9. P. Wolfe. The simplex method for quadratic programmiigonometrica1959.



