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Abstract. These technical notes are comments on my work on GLEE, Graph
Layout Execution Engine. GLEE is a library developed insideMicrosoft Re-
search and is written in the C# language. The library has quite a few users in-
side of Microsoft. GLEE implements Sugiyama’s scheme of layout for directed
graphs, or so-called layered layout. The paper describes inmore detail efficient
coding of adjacent vertex swaps and spline routing, where the latter is based on
the b-spline in a channel approach by Lutterkort and Peters.

1 Introduction

Eiglsperger et al [4] mention that most practical implementations of graph layout en-
gines follow Sugiyama’s scheme, and GLEE is no exception. The scheme consists of
several consecutive steps [5]. These steps are: cycle removal, layering, vertex ordering,
horizontal coordinate assignment, and, finally, spline routing.

1) At the cycle removal step we transform the given directed graph into a DAG by
reverting some edges and thus breaking the cycles.

2) In the layering step we assign each vertex to some layer ( a horizontal row), in a
way that each edge goes down from a higher layer to a lower one.Now we are almost
ready for the ordering step, but we make an intermediate stepwhere we create alayered
graph. We introduce dummy vertices and replace each edge crossingmore than two
layers by a sequence of connected edges where each edge goes only one layer down. In
this way we replace the DAG with a layered graph.

3) During the ordering step vertices are swapped within the layers to reduce edge
crossings.

4) In the next step we fix x-coordinates of the layered graph’svertices by shifting
(but not swapping), them within the layers.

5) The last step is spline routing where for each edge we create a spline, trim it with
the source and target node boundaries, and calculate the arrow head positions.

The main result of the paper is a new algorithm for counting edge crossings in the
adjacent swap phase, a sub-step of the ordering step. This isdiscussed in section 3. The
description of the spline routing step implementation can be found in section 4. I touch
on some issues concerning layering in section 2. Future workis discussed in section 6.
All the sections can be read independently.



2 Layering

In spite of the fact that the layering step in GLEE is implemented according to [5], I’d
like to make some remarks about the step. This section shows why the recipe given in
[5] works. I also point to a possibly better method for solving the layering problem.

Let V be the set of the DAG vertices, andE be the set of its edges. Every edge
e has weightW [e] and separationS[e]. Both vectorsW andS have nonnegative in-
teger values. The weight of an edge defines the importance of keeping the edge short.
The separation means the minimal possible span of an edge in the y-direction. For a
correct layering every edgee has to cross at leastS(e) + 1 layers. A layering is an
integer valued vectory defined onV providing for anyv ∈ V its layery[v]. We are
required to find a layeringy, such thaty[u] − y[v] ≥ S(u, v) for each(u, v) ∈ E and
∑

(u,v)∈E W (u, v)(y[u] − y[v]) is minimal.
It is useful to reformulate the layering problem as a linear program. LetA be the

vertex-edge adjacency matrix of the DAG. The columns ofA correspond to the edges
and the rows correspond to the vertices. For everyi ∈ V and(u, v) ∈ E

A[i, (u, v)] =







1, if i = u
−1, if i = v
0, otherwise.

(1)

Let us denote byD the vector defined onV , such that

D[u] =
∑

v

W (u, v) −
∑

v

W (v, u) (2)

for everyu ∈ V . The layering task can be stated in these terms as the following linear
program: minimizeDy under conditionsyA ≥ S and y ∈ R|V |. The dual of this
program can be stated as the following: minimize−Sx under conditionsAx = D,
x ∈ R

|V |
+ , whereR+ is the set of nonnegative numbers.

One can see that the last program is the Transshipment Problem [3]. Usually prob-
lems of this kind are solved, as it’s done in [5], by the Network Simplex method.
Gansner et al [5] knew about the connection, but, to my knowledge, have not mentioned
it in their publications.

The layering step usually takes less than 5% of the total running time. In my opinion,
the version of the algorithm from [3] is easier to implement and may work even faster.

3 Efficient counting of edge crossings during adjacent swaps

The ordering step starts when we have a layered graph, but theorder of vertices within a
single layer is not yet defined. We traverse the layers up and down several times apply-
ing the median method of [5], and create some ordering withinthe layers. Counting the
crossings of edges connecting two neighboring layers at this stage is done by using the
technique from [1]. The next sub-step of the ordering step isthe swapping of vertices
which are adjacent on the same layer. Gansner et al [5] point out that the adjacent vertex
swaps reduce the number of edge crossings by 20-50% thus improving the layout qual-
ity. If one is not careful enough, counting of edge crossingsat this phase could become



a bottleneck of the layout calculation. The approach and data structures suggested here
lead to an efficient implementation.

Proposition 1 Swap of verticesu and v can be produced with the amortized cost
O(d(u) + d(v)), whered is the degree of layered graph vertices.

By the cost of a swap we mean the cost of calculating the changein the number of the
edge crossings after the swap and the updates for the relateddata structures.

Let us show how to achieve proposition 1. To do that we need to define some data
structures.

If (u, v) is an edge of the layered graph, then we callu a predecessor ofv, andv
a successor ofu. For every vertexv, let P (v) be a sequence of predecessors ofv, and
S(v) be a sequence of successors ofv. Because of the fact that the graph is layered, all
vertices ofP (v) belong to the same layer. It is also true forS(v). We will keep elements
of eachS(v) andP (v) ordered according to the orders induced by the layers containing
them.

For each vertexv let Po(v) be a function fromP (v) to the set of integers, such
that for anyu ∈ P (v) value Po(v)(u) is the offset ofu in P (v). In other words,
P (v)[Po(v)(u)] = u. Similarly, we defineSo, such thatS(v)[So(v)(u)] = u holds
for every vertexv and everyu ∈ S(v). In addition, letX be an integer-valued function
defined on the set of graph vertices giving the horizontal position of vertices within the
layers; that is, ifL is a layer andv ∈ L, thenL[X(v)] = v. In figure 3Po(u) = {a →

P (u)=[a,b,c]
z }| {

a b c

u

d e
| {z }

S(u)=[d,e]

Fig. 1.SequencesS(u) andP (u)

0, b → 1, c → 2} andSo(u) = {d→ 0, e → 1}. This construction helps us to avoid
unnecessary sorting and is easy to update.

Suppose that verticesu andv are adjacent on a layer, and we are considering them
for a possible swap. Consider an edgee which is adjacent neither tou nor tov. Swap-
ping u andv does not change the number of crossings ofe with the rest of the edges.
Therefore, to decide if the swap is beneficial, we only take into account intersections
between edges adjacent tou or to v. Let cuv (cvu) be the number of intersections be-
tween edges adjacent tou or v whenu is to the left(right) ofv in the layer. Ifu is to



the left ofv, then the swap is beneficial only whencuv > cvu. Our task is to findcuv
andcvu efficiently. Numbercuvcan be represented as the sum of valuesupperCuvand
lowerCuv, whereupperCuvis the number of crossings of edges incoming intou or v,
andlowerCuvis the number of crossings of edges outgoing fromu or v.

We show how to findupperCuv; lowerCuv is calculated similarly. LetP (u) be
[a1, ..., an], andP (v) be [b1, ..., bm]. The sequencesA = [X(a1), ..., X(an)] andB =
[X(b1), ..., X(bm)] represent horizontal positions of vertices ofP (u) andP (v) corre-
spondingly. Note thatA andB are increasing sequences since they follow the order
of the layer abovev. As shown in [1],upperCuvis equal to the number of inversions
betweenA andB: that is, the number of pairsi,j, such thatX [ai] > X [bj]. For the
sake of completeness, we provide the procedure calculatingthis value.

UCUV() {
ucuv=0;
inversions=n;
i=1,j=1;
while(i ≤ n and j ≤ m)

if(X[b[j]]-X[a[i]] ≥ 0){
i=i+1;
inversions=inversions-1;

}
else {

ucuv=ucuv+inversions;
j=j+1;

}
}

Lemma 1. ProcedureUCUV worksO(m + n) steps.

Proof. In each cycle ori increases, orj increases.

After swappingu andv we need to update the corresponding structuresP, S, Poand
So. The following observation allows us to do it efficiently:

Lemma 2. The swapping ofu andv changesP (w) (S(w)) if and only ifw is a common
successor(predecessor) ofu andv.

Proof. Indeed, the swap ofu andv changes someP (w) if and only if u, v ∈ P (w). If
vertexl ∈ P (w) then, by definition,w is a successor ofl. The other part of the lemma
is proved similarly.

The procedure below updatesS andSoafter swappingu andv whenu is located to
the left ofv. StructuresP andPoare treated similarly.

foreach (w ∈ P(u)){
let s=S(w);
let r=So(w);
if( v ∈ domain(r){



//here we know that w is a common predecessor of u and v
let vOffset=r(v);
s(vOffset-1)=v;
s(vOffset)=u;
r(v)=vOffset-1;
r(u)=vOffset;

}
}

If we implementSo(w) as a hash table for everyw, then the amortized cost of the
routine above is|P (u)|. Indeed, the loop itself works|P (u)| times, and the queryv ∈
domain(r) has amortized costO(1) for a hash tabler. The updating ofX and the layer
can be done inO(1) since we know the old and the new positions ofu andv. The amor-
tized cost of all required updates after swappingu, v is thenO(min(|S(u)|, |S(v)|) +
min(|P (u)|, |P (v)|)). The minimum comes from the fact that we could have started the
loop above fromP (v) if it had fewer elements thanP (u). That, together with Lemma 1,
proves Proposition 1.

We have avoided sorting while doing adjacent swaps, and, in fact, we can avoid it
completely. The initialization step can also be done without sorting, since we can fillP
andS by walking over the layers in their order and adding a new element at the first
unoccupied position of the array.

One can achieve the same performance bound as stated in Proposition 1 by using
the radix sort; however, as my experiments show, the suggested method is about 3-5
times faster.

4 Spline routing

In the heart of the spline routing in GLEE lies the method of [6]. Here we explain the
way we apply this method. The idea of [6] is to build a channel,an area bounded by two
polylines, and create a b-spline fitting into the channel. More formally, the boundaries
of the channel are given by real-valued, piecewise linear functionsl andh. The both
functions are defined on the same domain, a segment[a, b] wherea < b. The curvel is
the low boundary andh is the upper boundary of the channel: for everyx ∈ [a, b] the
inequalityl(x) ≤ h(x) holds. See figure 4 for a channel sample. A curveb defined on
[a, b] fits into the channel if for everyx ∈ [a, b] we havel(x) ≤ b(x) ≤ h(x). When
we find b fitting into the channel, we create a curvebp in the planeR2 which is also
defined on the segment[a, b], andbp(x) = (b(x), x) for x ∈ [a, b]. We are looking for a
b-spline of the third degree that can be conveniently represented as a sequence of cubic
Bezier segments and rendered by a graphics library.

We need to give some minimal information about b-splines, just enough for sketch-
ing of how GLEE deals with routing. A b-spline is completely defined by two sequences
of real numbers: knots and control points. One can think about knots as of a partition of
the spline domain. We need a notion of a Greville abscissa. For a spline of the degreed
and the knot sequence[ti] Greville abscissas are numbers of the form1/d

∑i+d

i=k+1 ti.
As shown in [6], for an increasing sequenceg of real numbers one can find a sequence
of knots, such that their Greville abscissas containg.



Fig. 2.A channel with a spline

Now we are ready to describe the algorithm. The core of the algorithm is in finding a
spline by a given knot sequence,l andh. It is done as in [6], by solving a linear program.
Let’s call this linear programL(k, l, h), wherek is the knot sequence. The solution of
the program gives us a sequence of control points and we construct the spline from the
knots and the control points. The program constraints forcethe spline to fit into the
channel, and by minimizing the cost we make the spline straight. OftenL(k, l, h) is
infeasible. This brings us to an iterative process:

Create an initial knot sequence k.
do{ Try to solve L(k, l, h).

If no solution exists, refine k. }
while(there is no solution)

We try to keep the knot sequence short as we iterate. There aretwo reasons for
doing it.

a) Usually splines with small number of knots are more aesthetic than the ones with
large number of knots.

b) The size ofL(k, l, h) grows quadratically with the length ofk and the program
takes much longer time to solve.

Intuitively, Greville abscissas are spline parameters where the knots have the most
influence on the spline behavior. While iterating we keep around a vectorg of parame-
ters where we would like to constrain the spline. All values of g belong to the segment
[a, b]. The knot sequence is calculated based ong, as mentioned above, in a way that
all components ofg are Greville abscissas of the knots. Let’s denote byk(g) such a
sequence. The initial value ofg is {g[0] = a, g[1] = b}. If L(k(g), l, h) does not have a
solution we refineg. To find new members ofg we create a spline which is in an approx-
imation of the solution ofL(k(g), l, h), cross this spline withl andh, and insert intog
the spline parameters corresponding to the intersection points. To keepg short we fix
some numberd > 0 and avoid the insertion when the distance between two members of
g becomes smaller thand. This measure also bounds the growth of the knot sequence.
In the current implementationd = (b − a)/240.



Let’s explain how we find an approximate solution of an infeasible L(k(g), l, h).
The linear program can be represented in the standard form: minimize cx under condi-
tion Ax = b, x ≥ 0, whereA is a matrix andx,b andc are vectors. For an approximate
solution we takex∗ ≥ 0 minimizing ||Ax− b|| for x ≥ 0. Such anx∗ is the closest tob
point of the set{Ax : x ≥ 0}. Problems of this kind are called quadratic programs, and
they can be solved by most of solvers. A simple to implement but not a very efficient
approach to this problem can be found in [9].

Because of the limitations of the current linear program solver in GLEE we divide
the problem in two when the matrixA becomes too large. We split the channel in its
narrowest place and thus create two new tasks. Usually it produces an undesirable effect
on the spline which is now a concatenation of two splines and is not optimized. Luckily,
the division does not happen too often.

5 Samples of graph layouts created by GLEE
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Fig. 3. World dynamic model [8]
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Fig. 4.An hierarchy

The graph displayed in figure 3 comes from [8]. Figure 4 exposes a complex hier-
archy of relations between entities. The graph at figure 5 is the control flow graph of a
program.

6 Future work

Inspite of the fact that GLEE is used successefully by several Microsoft groups, there
are several aspects of GLEE that need improvement. Among them are performance, the
quality of the splines and support for different constraints on the layout.

The performance bottleneck for GLEE is the step of assigninghorizontal coordi-
nates. This step is done by reducing the problem to the layering and then reusing the
Network Simplex method to solve it. There are two papers [2, 4] suggesting more effi-
cient approaches. The authors of [2] found out a linear time method of assigning hor-
izontal coordinates. From the other side, [4] concentrateson introducing fewer addi-
tional dummy vertices thus making the size of the problem of the total layout solvable
in O(|V |+ |E|)log(E) time while requiringO(|V |+ |E|) space. GLEE will be adapted
to use these approaches. The approach of [2, 4] will introduce more horizontal balance
into GLEE layouts.

Splines of GLEE have the limitation of being graphs of functions from the real line
y to the real line x. In other words, when layout is done top to bottom, a GLEE spline
intersects a horizontal line at most at one point. This restriction forces GLEE to leave a
gap between the lowest bottom of a node on a layer and the highest top of a node on the
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layer below. Sometimes it creates graphs which are unnecessarily tall. The limitation
can be removed by using the technique from [7] where the authors show how to fit
splines into “winding” channels.
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