
Scenario Search on the Grid of Environmental Data Sources

Mikhail Zhizhin∗ Alexei Poyda† Dmitry Mishin Dmitry Medvedev

Eric Kihn‡ Vassily Lyutsarev§

August 17, 2006

Abstract

We present the Environmental Scenario Search En-
gine (ESSE), a set of algorithms and software tools
for distributed querying and mining large environ-
mental data archives. The principal requirement
of the ESSE system is to allow the user to query
the data in meaningful “human linguistic” terms.
The mapping between human language and com-
puter systems involves fuzzy logic. We use a data
resource web service abstraction layer to virtual-
ize spatio-temporal databases, providing our search
engine with time-series of environmental parame-
ters. The data resource interface is implemented
as a set of OGSA-DAI components with simple in-
put and output XML schemes. Time-series selected
from a data resource in XML format can be mined
for environmental events by the ESSE or used after
XSLT transformation by other clients, Microsoft
Excel 2003 being one of the examples.

1 Introduction and related

work

Environmental informatics combines the research
fields of Artificial Intelligence, Geographical Infor-
mation Systems (GIS) Modeling and Simulation,
and User Interfaces and is a rapidly expanding area
of computer and natural science [1]. The increasing
data volumes from todays collection systems and
the need of the scientific community to include an

∗Geophysical Center, Russian Academy of Sciences,
Moscow, Russia

†Moscow State University, Russia
‡National Geophysical Data Center, NOAA, Boulder,

CO, USA
§Microsoft Research, Cambridge, UK

integrated and authoritative representation of the
natural environment in analysis requires a new ap-
proach to data mining, management and access [2].
The natural environment includes elements from
multiple domains such as space, terrestrial weather,
oceans and terrain. Systems such as the Global
Change Master Directory (GCMD) from NASA1

or the Master Environmental Library (MEL) from
the DMSO2 and others provide the ability to search
metadata by keywords for links to archived envi-
ronmental data sets distributed across the network,
but the ability to search for specific scenarios (sets
of conditions) within the environmental data does
not yet exist outside of systems based on the ESSE
technology.

At the same time, the environmental mod-
eling community has begun to develop several
archives of continuous environmental representa-
tions. These archives contain a complete view of
the Earth system parameters over a regular grid
for a considerable period of time. The numeri-
cal models used to reproduce environmental pa-
rameters take all available observational data as
initial conditions, so the resulting petabyte-size
data sets jointly may be considered an authori-
tative high-resolution representation of terrestrial
weather and the near-Earth space during the last
50 years [3, 4]. For example, the spatial reso-
lution for the NCEP/NCAR Global Circulation
Model (GCM) is 2.5◦(latitude)× 2.5◦(longitude)×
102 (environmental parameters) ≈ 106 grid values.
The high-frequency GCM outputs the data every
six hours of simulation time, resulting in ∼ 400 Mb
of data per simulation day. By contrast, the world-
wide daily meteorological observational data col-
lected over the Global Telecommunications Sys-

1http://gcmd.nasa.gov
2https://mel.dmso.mil/
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tem, is ∼ 200 Mb3. The NCEP/NCAR Reanalysis
project has run the GCM for more than 58 years
providing ∼ 8 Tb of weather data.

In this paper we describe the Environmental Sce-
nario Search Engine (ESSE), a set of algorithms
and software tools for distributed querying and
mining large environmental data archives. The
prime requirement of the ESSE system design is
to allow the user to query the data in meaningful
“human linguistic” terms. Natural language is not
easily translated into the absolute terms of 0 and
1 which make up the digital world. The mapping
between human language and computer systems in-
volves fuzzy logic. Fuzzy logic is a superset of con-
ventional (Boolean) logic that has been extended to
handle the concept of partial truth – truth values
between “completely true” and “completely false”.
It was introduced by L. Zadeh in the 1960’s as a
means to model the uncertainty of natural language
[5].

The ESSE acts as a bridge between questions
a user needs to ask of the environment and the
data which describes it. Imagine for example that
the end user doesn’t need all the weather data
covering Moscow region for the last 50 years, but
rather needs an example of an atmospheric front
near Moscow. Further imagine that the user needs
satellite images of the front and he wants to know
how often such fronts occur or if they have been
increasing in the last 10 years. The ESSE search
engine and the data mining portal are addressing
such enquiries.

The relational data model proposed in 1970 by
E. Codd [6] and its implementation in the form
of SQL DBMS’s with possible fuzzy logic exten-
sions [7], which is so successful in business applica-
tions, is not universally adopted for environmen-
tal data archives. Petabyte sized data products
[3, 4] are still delivered in the form of file collections
because the file structure like NetCDF4 or HDF5

is better for representing a multidimentional array
data model than a set of related rows from two-
dimensional tables. The UNIDATA6 THREDDS
server with OpenDAP network data access proto-
col attempts to aggregate different file formats un-
der a single array-oriented Common Data Model.

3http://ct.gsfc.nasa.gov/lys/data/question1.html
4http://www.unidata.ucar.edu/software/netcdf/
5http://hdf.ncsa.uiuc.edu/
6http://www.unidata.ucar.edu

This ongoing unification effort currently does not
support an XML format for data export and is not
compatible with the emerging e-Science Data Grid
standards [8, 9, 10].

In this paper we use a data resource web service
abstraction layer to virtualize sequential databases
providing our search engine with a time-series of
environmental parameters. The data resource in-
terface is implemented as a set of OGSA-DAI [8, 11]
components with simple input and output XML
schemas. Time-series selected from the data re-
source in XML format can be mined for environ-
mental events by the ESSE or used after XSLT
transformation [12] by other clients, Microsoft Ex-
cel 2003 being one of the examples. We show that
using XML output format with GZIP data com-
pression [13] requires CPU time and network band-
width comparable to the NetCDF binary file seri-
alization. Compliance with the OGSA-DAI spec-
ification and use of Java/J# language allowed us
to deploy our data source and mining services into
most of the existing web service and grid service
containers including Microsoft ASP.NET7, Apache
Tomcat/Axis8, WSRF Globus Toolkit 49, OMII10,
and EGEE gLite11.

The rest of the paper is organized as follows.
In Section 2 we define the “environmental event
scenario” and introduce mathematics of the ESSE
fuzzy data mining. In Section 3 we present ESSE
toolkit implementation and describe two authorita-
tive data sources for space and terrestrial weather.
In Section 4 we present interactive data mining use
case. Section 5 offers conclusions and directions of
future work.

2 Environmental scenario

The base data model in our study is a vector-valued
time-series

X = {x (t1) , . . . ,x (tN )} ,

x (ti) = (x1 (ti) , . . . , xM (ti)) ,

where N is the number of time samples, and M
is the number of observed parameters. It can be

7http://msdn.microsoft.com/netframework/
8http://ws.apache.org/axis/
9http://www.globus.org/toolkit/

10http://www.omii.ac.uk/
11http://glite.web.cern.ch/glite/
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Figure 1: Time series as a trajectory in the
two-dimensional phase space (P—pressure, T—
temperature)

represented as a trajectory in the M -dimensional
phase space R

M . For example, in Fig. 1 we
have a two-dimensional trajectory in the pressure–
temperature (P–T ) space.

A (fuzzy) state S in a phase space R
M is a fuzzy

set which can be described by fuzzy logic expres-
sion, composed of predicates describing in numeri-
cal or linguistic terms the parameter values in each
of M dimensions. For example, the state S1 corre-
sponding to the red (upper-right) region in Fig. 1
can be described by the fuzzy expression:

S1 = (VeryLarge P ) and(VeryLargeT ),

where the linguistic term “VeryLarge” is a predi-
cate, and the operator “and” stands for the fuzzy
logic conjunction. In the same way, the state S2

corresponding to the cyan (lower-left) region is

S2 = (VerySmall P ) and(VerySmallT ),

Now, combining the descriptions of the states with
the time shift operator shiftdt to describe transi-
tions between the states, we can write the following
symbolic expression for the environmental scenario
“very low temperature and pressure after very high
temperature and pressure”:

(shiftdt=1 S1) andS2.

The only pair of observations in Fig. 1 which fit
the above scenario is the pair (t1, t2). Our environ-

mental scenario search engine, ESSE, is designed
to mine for the phase space transitions like that in
very large scientific databases.

In the following subsections we describe in de-
tail mathematics behind that definition of the fuzzy
event scenario.

2.1 Fuzzy logic expressions

A classical set A in a space of objects U can be
defined by its indicator function IA(u) : U → {0, 1},
which is equal to 1 for all elements u from the set
A and to 0 otherwise. Figure 2 shows the plot of
an indicator function of the segment A = [5, 8] as
a subset of all real numbers R.

� � �

�

IA

u

Figure 2: Indicator function IA(u) for the classical
set A = {x|5 ≤ x ≤ 8}

A fuzzy set expresses the degree to which an ele-
ment belongs to a set. Hence the indicator function
of a fuzzy set is allowed to have values between 0
and 1, which denotes the degree of membership of
an element in a given set. A fuzzy set A in U is
defined by its membership function (or MF for a
short) µA(u) : U → [0, 1], which maps each ele-
ment of U to its membership grade between 0 and
1. Compare graphs of a MF for the fuzzy inter-
val [5, 8] and the indicator function for the classical
segment [5, 8] (Figures 3 and 2 respectively).

� � �
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µA

u

Figure 3: Fuzzy membership function µA(u) for the
set A = [5, 8]
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Basic operations of classical set theory (union,
intersection, complement) and corresponding oper-
ations of mathematical logic (or, and, not) can be
generalized for fuzzy sets and fuzzy logic in many
different ways. The fuzzy generalization of intersec-
tion (logical “and”) is usually called T-norm oper-
ator, generalization of union (logical “or”) is called
the T-conorm or S-norm operator, and the general-
ization of logical “not” is called fuzzy complement
operator.

By definition [14], the T-norm operator is a func-
tion T : [0, 1] × [0, 1] → [0, 1] that satisfies the fol-
lowing properties: T (0, 0) = 0, T (1, a) = T (a, 1) =
a (boundary conditions); T (a, b) ≤ T (c, d), if a ≤ c
and b ≤ d (monotonicity); T (a, b) = T (b, a) (com-
mutativity); T (a, T (b, c)) = T (T (a, b), c) (associa-
tivity).

Any T-conorm operator S : [0, 1] × [0, 1] →
[0, 1] has to satisfy the properties: S(1, 1) = 1,
S(0, a) = S(a, 0) = a (boundary conditions);
S(a, b) ≤ S(c, d), if a ≤ c and b ≤ d (monotonicity);
S(a, b) = S(b, a) (commutativity); S(a, S(b, c)) =
S(S(a, b), c) (associativity).

The fuzzy complement operator N : [0, 1] →
[0, 1] can be any continuous function, which meets
the following axiomatic requirements: N(0) = 1
and N(1) = 0 (boundary conditions); N(a) ≥
N(b), if a ≤ b (monotonicity); N(N(a)) = a (in-
volution, optional).

One of the simplest generalizations from classical
to fuzzy set theory for two MFs µA(u), µB(u) is to
use minimum of MFs for the intersection of fuzzy
sets (fuzzy logic “and”)

µA∩B = min(µA, µB),

maximum of MFs for fuzzy sets union

µA∪B = max(µA, µB),

and one complement for fuzzy set complement

µA = 1 − µA.

In 1980 R. Yager introduced a parametric fam-
ily of T-norms, T-conorms [15] and fuzzy comple-
ments [16]. Parameterized by q > 0 a family of
fuzzy “and” aggregations for two MFs is defined
by Yager’s T-norm operator:

TY (µA(x), µB(x), q) =

1 − min
{

1, [(1 − µA(x))
q
+ (1 − µB(x))

q
]
1

q

}

.

µA∩B

µA∪B

µA

Figure 4: Fuzzy logic operations
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A more general formula for the parametric Yager’s
T-norm operator for fuzzy “and” aggregation of any
M > 1 MFs µm(x),m = 1 . . . M is

TY (µm(x), q) =

1 − min







1,

[

M
∑

m=1

(1 − µm(x))
q

]

1

q







.

The resulting surface of values for the multi-
dimensional MF is more smooth than using a sim-
ple minimum of the aggregating MFs, which is the
limiting case of Yager’s T-norm for q = 1.

The parametric family of fuzzy “or” aggregations
for two MFs is described by Yager’s T-conorm op-
erator

SY (µA(x), µB(x), q) =

min
{

1, [(µA(x))
q
+ (µB(x))

q
]
1

q

}

.

A more general formula for Yager’s “or” aggrega-
tion of any M > 1 MFs is

SY (µm(x), q) = min







1,

[

M
∑

m=1

(µm(x))
q

]

1

q







.

Yager’s fuzzy complements are defined by for-
mula

NY (µ(x), q) = (1 − (µ(x))q)
1

q

The ESSE search engine is designed to support
different libraries of T-norm, T-conorm and com-
plement operators. The results below are obtained
using the Yager’s formulas with the order q = 5.

2.2 Fuzzy logic predicates

People often use qualitative notions to describe
such variables as temperature, pressure, wind
speed. In reality, it is difficult to put a single thresh-
old between what is called “warm” and “hot”.
Fuzzy set theory serves as a translator from vague
linguistic terms into strict mathematical objects.

The scenario editor from the ESSE user interface
is used to formulate a set of conditions to be satis-
fied by the candidate events. The search conditions
may be specified in a number of ways depending on
the user’s familiarity with the region/data of inter-
est. An expert user can specify numeric thresholds

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

Very small Small Average

Large Very Large

Figure 5: Membership functions of the ESSE “lin-
guistic terms”

and/or limitations that must be maintained on cer-
tain parameters. Conditions can also be specified
via abstract natural language definitions for each
parameter. For instance, temperature limitations
can be specified as “hot”, “cold”, or“typical”. The
default ESSE library of MFs formed for each vari-
able (phase space dimension) uses the generic bell
“mother” function [14]:

µgbell (x̃; a, b, c) =
1

1 +
∣

∣

x̃−c
a

∣

∣

2b

Here, x̃ stands for normalized for range [0,1] scalar
data variable, c stands for centre of the symmetrical
”bell”, a for its half-width, and b/2a controls its
slope. We use here simple range normalization for
the variable x:

x̃ =
x − xmin

xmax − xmin

,

where xmin and xmax stand for the minimal and
maximal observable values of x, respectively.

Five MFs for a linguistic term set {“very small”,
“small”, “average”, “large”, “very large”} are plot-
ted in Figure 5.

Center, slope, and half-width of the bell func-
tions for these linguistic terms are listed in the Ta-
ble 1.

On the next plot (Fig. 6) we present examples of
four MFs from the ESSE numerical fuzzy term set
{“less than”, “about”, “between”, “greater than”}.

For the the normalized variable x̃ the center,
slope, and half-width of the bell functions for nu-
merical terms are listed in the Table 2.
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Table 1: Parameters of MFs for linguistic terms

Linguistic term Center Slope
Half-
width

Very Small 0 5 0.2
Small 0.25 5 0.2
Average 0.5 5 0.2
Large 0.75 5 0.2
Very Large 1 5 0.2

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1

Less Than 0.2 Between 0.2 and 0.5

About 0.8 Greater Than 1.1

Figure 6: Fuzzy MFs for numerical terms

Table 2: Parameters of MFs for numeric terms

Numerical term Center Slope
Half-
width

Less Than ṽ, ṽ < 0 ṽ 10 0.1
Less Than ṽ, ṽ ≥ 0 0 10 ṽ
About ṽ ṽ 10 0.1
Between ṽ And w̃ (ṽ + w̃)/2 10 |w̃ − ṽ|
Greater Than ṽ, ṽ < 1 1 10 ṽ
Greater Than ṽ, ṽ ≥ 1 ṽ 10 0.1

2.3 Fuzzy event scenario

In the ESSE applications we are searching for
events in the environment where the parame-
ters depend on time, as well as MFs – fuzzy
logic predicates µm(x(t)) and fuzzy expressions
EY (µm(x(t)), q), which are composed of T-norms,
T-conorms and complements over the predicates.
We consider the values of the resulting time series
EY (µm(x(t)), q) as the “likeliness” of the environ-
mental state to occur at the time moment t, or, in
other terms, to visit a sub-region of the phase space
described by the fuzzy expression (see Fig. 1). We
search for the highest values of the EY (µm(x(t)), q)
and consider these to be the most likely candidates
for the environmental event.

We use a simple climatology analysis to obtain
normalization limits xmin, xmax used in calcula-
tions of linguistic predicates like “very large” from
Table 1. The limits are set to the minimum and
maximum parameter values observed within the
continuous or seasonal intervals given by the time
constraints of the fuzzy search.

To be able to search for events like a “cold
day” or a “cold week” we introduce the concept
of event duration which may be any multiple k of
the time step ∆t of the input, k∆t. For exam-
ple, the time step in the NCEP/NCAR reanalysis
is ∆t = 6hours, so the minimum event duration is
also 6 hours, but the event duration may also be
1 day (4∆t), 1 week (28∆t), etc. We do a mov-
ing average of the input parameters with the time
window of the event duration before calculation of
MFs in the fuzzy expression:

x (ti) =
1

k

i+k−1
∑

j=i

x (tj), ti = t0 + i∆t.

For example, when searching for a “cold day”
in the NCEP/NCAR reanalysis, first we have to
smooth the air temperature using a time window
of 1 day (k = 4), then calculate the linguistic
predicate “low” µlow

(

T (ti)
)

, sort the fuzzy scores
in descending order, and finally take the several
first times with the highest scores as the candidate
events.

The important difference of the averaging opera-
tor is the dependence from the input of the neigh-
bour observations in time. Another operator of

6



that class is the time shift, defined by the formula:

shiftk µ (ti) = µ (ti−k) .

The difference between the averaging and the
shift operators is that we average input values, but
we shift in time the values of fuzzy membership
function. Thus we have to investigate the proper-
ties of the time shift in relation to the fuzzy logi-
cal operators T-norm, T-conorm, and complement.
For any fuzzy logic expression E we have:

shiftk shiftl = shiftk+l,

shiftk E (µ1, µ2, . . . ) = E (shiftk µ1, shiftk µ2, . . . ) .

We need the time shift operator to define
multiple-state event scenario. For example, to find
an abrupt air pressure drop, we can use a two-state
scenario with fuzzy “and” of the “very large” and
time-shifted “very small” predicates for pressure
P (t):

S(t) = TY

(

µVeryLarge (P (t)) ,

shift1 µVerySmall (P (t)) , q
)

.

Following this example, a two-state scenario with
the fuzzy expressions for states E1 and E2 with the
time delay between the steps k∆t can be defined
as a Yager T-norm conjunction of the time-shifted
expressions

S(t) = TY (E1, shiftk E2, q) .

Generalization of the formula for more than two
states is straightforward.

To have the result of the fuzzy search in the form
of a ranked list of the K-most likely dates (times) of
the events, we sort the scenario MF S(t) and select
the times of several maximum values separated in
time by more than the event duration k∆t.

2.4 Importance of the input param-

eters

The fuzzy search request may contain conditions
which never or very rarely take place at the same
time at the specified location, although they can
be observed there separately at different time mo-
ments. For example, very high precipitation rate

and very high air pressure are unlikely to occur si-
multaneously. The fuzzy search for such a combina-
tion of conditions may return an empty set of candi-
date dates and times. We decrease the probability
of the empty fuzzy search results by introducing
the concept of importance of the input parameters.

The importance αn is a constant weight of
a given parameter in the range between 0 and
1. More important parameters are given higher
weight, with the condition that the highest pri-
ority is then normalized to one. Then instead of
MFs µn(x(ti)) in the fuzzy expressions we use “op-
timistic” values max (µn(x(ti)), 1 − αn). For pa-
rameters with the importance 1 we use the original
MFs as before, and the parameters with the impor-
tance 0 are not used in the search at all.

3 Search engine implementa-

tion

At the core of the ESSE architecture is our fuzzy
logic engine that accepts event definitions in the
form of fuzzy expressions, reads the data from one
or more time series streams generated by data re-
sources and performs a search for and statistical
analysis of the distribution of the identified events.
Both the fuzzy logic engine and the data sources are
implemented as web services. This allows parallel
mining of several distributed data archives, possi-
bly from different subject areas and enables third-
party applications to feed their data to the engine
and/or post-process the results of fuzzy search.

The ESSE system includes our own user inter-
face implemented as a web application. In the web
application it is possible:

• to discover data sources by keyword-based
metadata search;

• to define the searching event as a combination
of fuzzy conditions on a set of environmental
parameters (e.g. ”high temperature and low
relative humidity”) for data mining;

• to review the statistics of detected events;

• to visualize data related to the selected event;

• to download the event data in self-describing
format (NetCDF or XML) to the user’s work-
station.

7



Table 3: ESSE data sources
Data
source

Sample
parame-
ters

Temporal
coverage

Spatial
coverage

Size,
Gb

Meteo
NCEP/
NCAR

Wind
speed,
tempera-
ture,
cloud
cover

1948 –
present

Global
@2.5
Deg.

250

Space
SPIDR

Kp index,
sunspot
number

1933 –
present

Global
by
observa-
tory or
satellite

30

Section 4 contains more detailed description of
this web application capabilities.

3.1 Authoritative data sources

The real connection between the ESSE system and
a given user community is a set of data sources
that expose compatible web services interfaces. It
is relatively easy to add a new data source to the
ESSE through the web services interface, so the
list in Table 3 should not be taken as limiting but
rather as a starting point that demonstrates the
ESSE functionality.

The first thing to notice is the relatively large
size of the archives. Using the distributed database
concept allows us to perform interactive mining on
these substantial data sources. The second thing
to notice is the long temporal ranges. The ESSE
is most useful when the size of the archive pro-
hibits or makes impractical searching by hand. As
has already been mentioned, the NCEP/NCAR re-
analysis data archive [3] was derived from numer-
ical weather prediction model runs. It represents
gridded output on a regular time step (6 hours)
and fixed spacial grid step (2.5◦). The model uses
data ingest procedures to assimilate current obser-
vational data into model results to produce a con-
sistent picture of the terrestrial weather since 1948.

To accelerate typical data requests for the ESSE
search engine, we have developed a special paral-
lel database cluster and optimized the database
schema. The year field is used for data parti-
tioning, so each cluster node stores several years

Figure 7: Data stored on the NCEP/NCAR cluster

of NCEP/NCAR reanalysis data. For example in
10-node cluster the first node stores data for years
1950, 1960, . . . ; the second node stores years 1951,
1961, . . . , and so on. For each year we have a sepa-
rate database, one table for one parameter, such as
temperature or pressure. The table has a simple
structure: latitude, longitude, height (optional),
and a blob of data with floating point time series
for one year at one latitude-longitude-height loca-
tion (Fig. 7). The data records are indexed by the
location.

The Space Physics Interactive Data Resource
(SPIDR)12 is an observational data source which
includes the output of numerical models. The
SPIDR system currently handles the following: De-
fense Meteorological Satellite Program (DMSP)
visible, infrared and microwave browse imagery,
ionospheric parameters, geomagnetic variations,
geophysical and solar indices, GOES satellite x-ray,
plasma, and magnetometer data, cosmic rays, and
solar radio telescope data sets.

3.2 OGSA-DAI framework

The implementation of the environmental data ac-
cess system that incorporates the ESSE engine is
based on the OGSA-DAI framework [10, 8], the
emerging standard for representing databases in
Grids. OGSA-DAI is a middleware product which
supports the representation of various data re-
sources, such as relational or XML databases, on

12http://spidr.ngdc.noaa.gov/
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to Internet and Grids. The basic abstraction intro-
duced in OGSA-DAI is the notion of a data resource
which is able to perform data access and data trans-
formation activities. Typically each database is
represented as a separate data resource, but the
concept is general enough to represent heteroge-
neous databases as well. Data resources may dif-
fer in a set of activities they are able to perform.
For example, a data resource representing a re-
lational database may execute SQL queries while
XPath queries may be submitted to a data resource
representing an XML database. The advantage of
OGSA-DAI is that clients use standard Web ser-
vices/Grid service protocols to submit queries and
obtain results. Additionally data resources may be
orchestrated in such a way that result set from one
of it goes as an input data directly to another data
resource.

For each data resource OGSA-DAI exposes a web
service endpoint, to which Web service messages
can be addressed. The message with a “perform”
operation contains XML perform document as its
parameter and returns XML response document as
a result. The perform document describes one or
more activities. Data resource performs different
kinds of query, transformation, delivery or manip-
ulation operations depending on the activities types
and parameters. Each activity may have input and
output channels that may be linked with each other
within one perform document. Thus OGSA-DAI
perform document describes a simple workflow to
be performed by the data resource. Special types
of delivery activities enable linking channels on re-
mote OGSA-DAI servers.

Along with the web service interface OGSA-DAI
offers an easily extensible object-oriented program-
ming framework. Each data resource and each ac-
tivity is represented by a single object with a simple
interface. The OGSA-DAI middleware engine dis-
patches processing over these objects as described
by the perform document and outputs the result of
this processing to the response document.

3.3 Data source API

The interface to data archives created for geo-
physics and other environmental sciences can not
easily and efficiently utilise standard query lan-
guages like SQL or XQuery due to the fact that
these languages do not directly support multidi-

Table 4: Data resource and activity components
added to the OGSA-DAI framework by the ESSE
system

Component Description

EsseDataResource Represents environ-
mental database

GetMetadataActivity Query activity. Re-
turns the descrip-
tion of the data
maintained by the
EsseDataResource.

GetXmlDataActivity Query activity. Re-
turns one or several
time series from the
EsseDataResource.

GetNetCdfActivity Query activity. Serial-
izes a data subset into
a NetCDF file and re-
turns a URL to that
file.

FuzzySearchActivity Transformation activ-
ity. Receives one or
more time series from
GetXmlData and re-
turns fuzzy member-
ship function values.

mensional array data type. Thus we had to create a
separate OGSA-DAI data resource object and a set
of corresponding activity objects (Table 4). This
API to the virtual environmental data sources has
a higher-level query language compared to the ar-
ray subsetting and hyper-slabbing implemented in
the OpenDAP protocol13.

First three activities mentioned above expose a
specialized environmental database query capabil-
ities. In a real system the portal application that
has the user interface creates perform document,
invokes it to remote OGSA-DAI server and displays
the result to a user.

The data from the OGSA-DAI service may come
to a user in different formats. We’ve implemented
the binary NetCDF format4 commonly used in
environmental sciences and more general purpose
XML format. Unlike business environments, in en-

13http://www.opendap.org/
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vironmental sciences domain the XML format is
not yet recognized as a standard for data trans-
fer. This is due to generally observed higher file
sizes and larger processing times for XML data
compared to data in binary format. File sizes are
even more important in distributed systems where
large transfers may easily saturate the network.
The solution adopted in the present paper is in
the use of compression algorithms for XML data
transfer. The table below compares the amount of
data transferred from the server to the client for
the same query. We compare the NetCDF file with
data, serialized to temporary directory, and XML
document sent over the OGSA-DAI output data
channel and saved to a file at client side. In both
cases the client requests one month of data for one
parameter with 1 min time step (Table 5).

Table 5: Data load for binary and XML data seri-
alization

Activity Description Load, Kb

getNetCdfData Binary
NetCDF
file

924.5

getXmlData Response
document con-
taining data in
XML format

1,771.1

getXmlData+
gzipCompression

Response
document con-
taining base64
encoded and
GZIP com-
pressed XML
data

123.5

The ESSE engine is wrapped with the
FuzzySearchActivity, the data transforma-
tion activity which is not linked to a specific type
of data resource. This makes the whole data
mining system extremely flexible. One can search
an environmental scenario over several parameters
stored in a local database. This is accomplished
by combining several query activities with the
fuzzySearch activity in a single workflow within a
single perform document (Fig. 8).

In a more advanced scenario it is possible to
combine data search from several OGSA-DAI re-
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Figure 8: OGSA-DAI activities on a single server
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Figure 9: Distributed OGSA-DAI queries

sources. Figure 9 illustrates the situation when part
of the scenario is queried and evaluated on a remote
server, the resulting fuzzy membership function is
transferred using OGSA-DAI data transport opera-
tions where it is combined with the rest of the data
and produces the final mining results.

3.4 Cross-platform portability

The original OGSA-DAI framework is written in
Java and has open source code. There are flavours
of the product providing slightly different external
interfaces, the WS-I compatible interface when run
in Jakarta Tomcat environment and WSRF inter-
face when deployed in Globus 4.0 container.

In order to enable true platform indepen-
dence the team has created OGSA-DAI.NET, a
lightweight OGSA-DAI compatible component us-
ing Microsoft ASP.NET web services infrastruc-
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ture. OGSA-DAI.NET and OGSA-DAI have the
same external and internal interfaces. The same
portal user interface can consume either of imple-
mentations. The same Java/J# code for ESSE spe-
cific activities run on the Open Source and on the
Microsoft platform.

The Microsoft .NET Framework includes a com-
prehensive set of classes that supersedes many of
the commonly used open source libraries. This is
especially true for XML processing libraries and
enables easy creation of wrapper classes ensuring
the portability of the source code created in this
project.

4 Data mining portal

A web-portal serves as an agent between the user
and the ESSE framework. It performs two main
functions. The first function is metadata manage-
ment, which allows for fast and efficient collection-
level metadata search. Here by metadata we mean
general descriptions of data resources, stored as a
managed set of XML documents (owner info, geo-
graphic coverage, time coverage, data description,
etc.). The web-portal called the Integrated Dis-
tributed Environmental Archive System (IDEAS)
allows users to register new data resources by
adding their own metadata. The metadata is be-
ing constantly updated both manually and auto-
matically (see Fig. 10). Our metadata collection
works much the same as other similar resources, like
GCMD1 or MEL2. For more detailed discussion of
the role of metadata in distributed data networks
see [9]. The second function of the web-portal is
data access. In Fig. 10 the IDEAS web-portal is
shown as a client, which connects to numerous data
sources, retrieves the requested data, and delivers
it back to the user.

The typical workflow of the IDEAS web-portal is
shown in Fig. 11. This figure shows the two com-
ponents: the IDEAS Portal and the ESSE Grid
framework. During the workflow the IDEAS por-
tal dynamically generates requests to ESSE Grid
components. Some of the metadata, like the list of
available parameters, is also retrieved from ESSE
data sources.

All user operations on the IDEAS web-portal are
accomplished via interactive web forms. The inter-
face is flexible and easy to use.
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Figure 10: IDEAS web-portal as a client for ESSE
services
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Figure 11: IDEAS Web-portal workflow
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The next subsection provides an example of a
typical ESSE workflow, performed via the web-
portal.

4.1 Use case

In the following example we will search for a E-W
atmospheric front near Moscow described by three
parameters “air pressure”, “E-W wind speed” (U-
wind) and “N-S wind speed” (V-wind) with subse-
quent fuzzy states:

1 : (Small pressure) and(Large V-wind-speed)
2 : (Large pressure) and(Small U-wind speed)

and(Small V-wind-speed).

The typical data mining protal use case involves 3
actors, namely a user, the web application, and the
fuzzy search engine web service, and consists of the
following steps:

1. The user logs in to the IDEAS portal and
receives a list of the currently available (dis-
tributed) data sources. For each data source
the list has abridged metadata like name, short
description, spatial and temporal coverage, pa-
rameters list and link to full metadata descrip-
tion.

2. The user selects environmental data source
based on the short description or by metadata
keyword search (e.g. NCEP/NCAR Reanaly-
sis). The portal stores the data source selec-
tion on the server side in the persistent “data
basket” and presents a GIS map with the spa-
tial coverage of the data source (Fig. 12).

Figure 12: Selecting probe near Moscow using GIS
map

3. The user selects a set of “probes” (represent-
ing spatial locations of interest, e.g. Moscow)
for the the searching event. IDEAS stores the
selected set of ”probes” and presents a list
of all the environmental parameters available
from the selected data source and a fuzzy con-
straints editor on the parameters values which
represent the event (Fig. 13).

Figure 13: ESSE fuzzy state editor

4. The user selects some of the environmental
parameters and sets the fuzzy constraints on
them for the searching event (e.g. low pres-
sure, high V-wind speed).

5. Multiple subsequent environment states can be
grouped to form the actual environmental sce-
nario. For example, we need to define the two
different states mentioned above. Adding and
removing fuzzy states is done via a Web-form
shown in Fig. 14.

Figure 14: Environmental scenario states form
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6. ESSE stores the searching environment states
and sends them to the fuzzy search web-service
in the XML format.

7. The fuzzy search web-service collects data
from the data source for the selected parame-
ters and time interval, performs the data min-
ing, and returns to the IDEAS web application
a ranked list of candidate events with links to
the event visualization and data export pages
(Fig. 15).

Figure 15: List of event candidates

8. The user visualizes interesting events and re-
quests the event-related subset of the data for
download from the data source in the pre-
ferred scientific format (XML, NetCDF, CSV
table). Currently there are three visualization
types available: time series (Fig. 16), animated
volume rendering using Vis5D (Fig. 17), and
DMSP satellite images (Fig. 18).

In Figure 16 rectangles show the two environ-
mental states within the found event on October 26,
2005: (low pressure - high wind) and (high pressure
- low wind).

Vis5D14 is a system for interactive visualization
of large 5-D gridded data sets such as those pro-
duced by numerical weather models. One can make
isosurfaces, contour line slices, colored slices, vol-
ume renderings, etc of data in a 3-D grid, then
rotate and animate the images in real time.

In the associated day-time DMSP satellite im-
ages in IR and visible bands (Fig. 18) we can clearly
see the E-W front passing above Moscow. There are
two types of DMSP images available: visible and in-
frared images. Images are shown together with the

14http://www.ssec.wisc.edu/ billh/vis5d.html

1 2

Figure 16: Air temperature (top) and pressure
(bottom) in Moscow for the event of June 13–14,
2002

actual satellite orbit and visibility sector. Satel-
lite images along with other kinds of visualization
may serve as an additional means of verification for
query results.

The use case variations include data mining for
the environmental events, described by parameters
from multiple data sources, which may consist of
multiple states (e.g., extremely cold day followed
by magnetic storm).
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Figure 17: Animated volume rendering using
Vis5D

Figure 18: DMSP weather images

5 Conclusions and future

work

As more and more data archives become available
through projects like Earth System Grid15 of DOD,
Comprehensive Large Array-data Stewardship Sys-
tem16 of NOAA, Earth Observing System Data and
Information System17 of NASA and other network
accessible data systems, the tools to extract infor-
mation from them become more important. ESSE
can help users sift through the vast quantities of
data available online and point at the interesting
bits. This means that even with the volume of data
increasing so rapidly and the number of researchers
remaining relatively level we can hope to extract
the most valuable information from the observa-
tions and carry that back to the relevant scientific
communities.

The application of fuzzy logic based data tools
goes far beyond simple event selection. For exam-
ple an ever present issue when dealing with these
large data sets is quality control. There is simply
too large a volume to reasonably screen by hand.
Using techniques such as peer-matching and expert
systems we can extend the ESSE to monitor data
and alert data managers to changes and anoma-
lies. As the computational power available expands
we can extend the system into areas such as data
classification whereby we can identify modes of the
environment and perhaps identify new unknown re-
lations in specific regions.

Finally the emergence of a network infrastruc-
ture for data access is providing new opportunities
for the scientific researcher. It is now fairly trivial
to reach out across discipline boundaries and access
data in an immediately useable format. This is true
for example in the case of the terrestrial weather
community being able to make use of the space
data made available through SPIDR. With these
opportunities come challenges. As researchers ex-
pand into domains in which they may not be expert
they will come to rely on intelligent tools to support
them.

The mission of the ESSE is fundamentally to help
a user distil the vast amount of available data down
to a manageable amount of information. The in-

15http://www.earthsystemgrid.org/
16http://www.class.noaa.gov
17http://nasadaacs.eos.nasa.gov/
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creasing data volumes available in the future de-
mand different techniques to handle it and the
ESSE framework is one exceptional method for a
user to handle it.
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7 Appendix

Table 6: Properties of the classical and fuzzy logic operators
classical min-max Yager +

set theory fuzzy logic N(a) = 1 − a

A ∩ ¬A = ∅ yes no no

A ∪ ¬A = X(universe) yes no no

A ∩ A = A,
A ∪ A = A

yes yes no

¬¬A = A yes yes yes

A ∩ B = B ∩ A,
A ∪ B = B ∪ A

yes yes yes

(A ∩ B) ∩ C = A ∩ (B ∩ C),
(A ∪ B) ∪ C = A ∪ (B ∪ C)

yes yes yes

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

yes yes no

A ∪ (A ∩ B) = A,
A ∩ (A ∪ B) = A

yes yes no

A ∪ (A ∩ B) = A ∪ B,
A ∩ (A ∪ B) = A ∩ B

yes no no

(A ∪ B) = A ∩ B,
(A ∩ B) = A ∪ B

yes yes yes
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