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Abstract— We consider the problem of silent email loss in
the Internet, where neither the sender nor the intended recip-
ient is notified of the loss. Based on a detailed measurement
study over three months, we find the silent email loss rate
to be 0.71 to 0.91%. This suggests that the problem is non-
negligible, especially since silent loss can impose a high cost.

To address this problem, we present SureMail, a system
that augments the existing SMTP-based email system with
a notification overlay to make intended recipients aware of
email they might be missing. A notification is a short, fixed-
format fingerprint of an email message constructed so as to
preserve sender and recipient privacy, and to prevent spoofing
by spammers. Our design also avoids dependence on any
special support from the email infrastructure or modifications
to emails themselves, or on a PKI for email users. It also
places minimal demands on users, by automating the tasks of
generating, retrieving, and verifying notifications, thus only
presenting valid notifications of lost email to users. Based on
our prototype implementation of SureMail, we demonstrate
its effectiveness in notifying recipients when they suffer silent
email loss.

|. INTRODUCTION

The Internet SMTP-based email system does not guaran-
tee the timely or even eventual delivery of messages. Email
can sometimes be delayed by hours or days, or even fail to
be delivered at all to the recipient(s) [12], [25]. The email
sender isn’t always notified when such failures occur, i.e.,
the message is lost without a trace, not merely bounced
back or misrouted to the recipient’s junk mail folder. Such
silent failures, even if rare, impose a high cost on users in
terms of missed opportunities, lost productivity, or needless
misunderstanding. The SureMail system we present seeks
to address this problem.

A few recent measurement studies [12], [25] have re-
ported email loss in the range of 0.5-5%. Our measure-
ments based on a 3-month long experiment indicate a
silent loss rate of 0.71-0.91%. Besides these measurement
studies, anecdotal evidence suggests that email loss is a
non-negligible problem. For instance, consumer ISPs take
the trouble to instruct users on what to do when email
goes missing (e.g., AOL [1]) and there are companies that
offer email monitoring services for businesses concerned
about email loss (e.g., Pivotal Veracity [6]). Finally, the
authors have themselves experienced and/or are aware of
multiple instances of silent email loss recently, including
that of a funding proposal and a job recommendation letter
email sent to a company, a conference program committee
invitation email sent from a company, a decision notification
email for a major conference sent to an author in the U.S.
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from a server in Australia, and possible loss during a recent
IMAP server upgrade at a university.

Since the current SMTP-based email system works most
of the time, the approach we take in SureMail is to
augment the existing system rather than replace it with a
new system of uncertain reliability. SureMail provides a
notification mechanism, overlaid on the unmodified SMTP
email delivery system, to notify intended recipients when
they are missing email. By notifying the intended recip-
ient rather than the sender, SureMail preserves the asyn-
chronous operation of email, together with the privacy it
provides. SureMail is able to operate with the existing
email infrastructure and without requiring a public key
infrastructure (PKI) for email users, attributes which we
believe aid real-world deployment. The additional reliability
of the combination of SMTP-based email with SureMail
arises from the orthogonality of the notification overlay
(and hence its failure independence) with respect to the
email delivery system. We have specifically designed the
notification system to not be vulnerable to spam and virus-
laden messages as the email system is.

This paper builds on a recent 6-page workshop position
paper on SureMail [13]. While we share the same basic
design as in the position paper, the novel contributions of
this paper are:

o A measurement study to characterize and quantify
email loss, while avoiding the shortcomings of prior
measurement studies [12], [25]. (Section I1I)

« A refinement of the design of SureMail presented in
[13], specifically to accommodate the posting of notifi-
cations by first-time legitimate senders. (Section V-G)

o Implementation and experimental evaluation of Sure-
Mail. (Section V1)

The remainder of the paper is organized as follows. We
present background information on the email loss problem
and discuss related work in Section Il. We describe our
email loss measurement study in Section Ill. We list the
design requirements for SureMail in Section IV and present
the design of the system in Section V. Section VI gives the
details of our SureMail implementation and evaluation. We
present a discussion of various issues pertaining to SureMail
in Section VII. Section VIII concludes the paper.

Il. PROBLEM BACKGROUND AND RELATED WORK

A. Nature and Extent of Email Unréliability

Email can be delayed or lost due to overload, failure, or
maintenance (e.g., upgrade) of a server or relay node along
the end-to-end, store-and-forward path from the sender to



the recipient. SMTP is not an end-to-end reliable protocol.
A failed relay node often does not or is not in a position
to send out an indication of the failure. For example, if
the node suffers a disk crash, it will likely not be able to
determine which emails, if any, were lost. Ever increasing
volumes of spam and email-based worm attacks make the
infrastructure highly susceptible to overload and failure.

The widespread use of spam filters also contributes to
email loss by sometimes causing legitimate emails to be
discarded as spam. From conversations with the IT staff
at a major corporation, we learned that an estimated 90%
of incoming email is dropped even before it reaches user
mailboxes or junk mail folders. When IP address-based
white-listing or black-listing is employed, email from legiti-
mate senders may be silently dropped if the relaying SMTP
server is not on the recipient service provider’s whitelist or
is on its black-list. An SMTP server may be automatically
dropped from a whitelist if the volume of email sent by
it falls below a threshold [2]. Email sent by a traveler
can be lost because he/she is forced to use his/her hotel-
provided SMTP server, which may not be on the whitelists
of his/her usual correspondents’ service providers. Given
such extensive filtering of email, it is not surprising that
some legitimate email gets discarded entirely, not merely
misrouted to the user’s junk mail folder (we do not consider
the latter as email “loss”™).

SMTP allows a server to generate non-delivery messages
for emails it cannot deliver. However, the following five
issues reduce the effectiveness of non-delivery messages in
solving the email loss problem: (i) Emails dropped by spam
filters typically do not generate non-delivery messages. (ii)
Spam sent using spoofed source addresses can generate
bogus non-delivery messages to the spoofed source. This
can lead to general apathy toward such messages, or worse,
classification of such messages as spam. (iii) Some cor-
porations prevent generation of non-delivery messages to
safeguard their privacy (e.g., to prevent an external entity
from verifying if an email address is (in)valid). (iv) Servers
sometimes (e.g., in the case of the disk crash noted above)
do not possess enough information to generate non-delivery
messages. (v) Non-delivery messages cannot warn the user
about emails that are lost between the destination email
server and the recipient’s email client.

We are aware of two recent studies aimed at quantifying
the extent of silent email loss. Afergan and Beverly [12]
measure silent email loss by recording the absence of
bounce-back messages for emails sent to non-existent ad-
dresses. Based on a study of 1468 mail servers across 571
domains, they found significant instances of silent email
loss. For instance, 60 out of the 1468 servers exhibited
a silent email loss rate of over 5%, with several others
exhibiting a more modest but still non-negligible loss rate
of 0.1-5%. However, a shortcoming of their methodology is
that bounce-back messages may not reflect the true health
of the email system for normal emails.

Lang [25] used a more direct methodology to measure
email delays and losses. They used 40 email accounts across
16 domains and made direct measurements by repeatedly
sending emails to these accounts over a 3-month period.
They report an overall silent email loss rate of 0.69%, with
the loss rate being over 4% in some cases. While the study
does not depend on bounce-backs, it may be biased by the
use of a single sender for all emails and the use of specially
crafted “non-standard” emails (with an empty body and a
message sequence number in the subject line) that could
increase the likelihood of the email being filtered as spam.
In Section Ill, we describe our measurement study that
addresses some of these shortcomings. We observe a silent
loss rate of 0.71-0.91%.

To put these findings in perspective, a silent loss rate in
the vicinity of 0.5% corresponds to the loss of one email in
200, on average. We believe that this is a non-negligible rate
of loss, especially since a user has little control over which
emails are lost. Loss of important emails (like the funding
proposal and recommendation letter emails mentioned in
Section 1) may have a serious adverse impact on users.

B. Prior Work on Addressing Email Unréliability

There have been various proposals to address the email
unreliability problem, ranging from simple augmentation
of the current email system to radical redesign. In the
former category is the message disposition notification
mechanism [17] (i.e. “read receipts”), where the sender
requests the recipient to send an acknowledgment when
an email has been downloaded or read. While many email
clients (e.g., Microsoft Outlook, Thunderbird) support read
receipts, anecdotal evidence shows that most users do not
enable this feature because it exposes too much private
information, viz., how often a user reads email, and whether
and when the user read a particular email. It conflicts with
the inherent “asynchronous” use of email. More impor-
tantly, read receipts — whether sent explicitly through the
email system or implicitly through accesses to embedded
web content — tell spammers whether an email account is
active, thereby making their spamming more “effective”.

There has been work on re-architecting email servers or
the email delivery system to enhance reliability, e.g., Porcu-
pine [31], POST [3], [26]. While improving the reliability
and availability of email systems is certainly desirable, that
alone will not solve the email loss problem because of spam
and the resulting filtering of email. Also, while a public key
infrastructure (PKI) for users, as assumed by POST, can
help with the spam problem, it could be an impediment
for deployment. In contrast, SureMail does not modify the
underlying email delivery system and keeps the notification
layer separate. This avoids the need to build (or modify)
the complex functionality of an email delivery system and
ensures that even in the worst case, the performance of
email delivery with SureMail running on the side is no
worse than with the existing email system.



There has also been much work on improving spam
filtering techniques to reduce or eliminate false positives
while still doing effective filtering (such as [8], [10], [7]).
Although improving the accuracy is certainly useful, we
believe that it is difficult to eliminate false positives entirely
given that spam is constantly evolving to mimic legitimate
traffic. Also, the severity of the spam problem sometimes
necessitates blanket, content-independent filtering (e.g., IP
address blacklisting) to reduce processing load on email
servers. Hence, a notification system such as SureMail
operating outside of the email system is still useful.

Finally, some prior work leverages social networks to
exchange whitelist information or otherwise authenticate
email senders (e.g., [15], [20]). In particular the RE: sys-
tem [20] exploits friend-of-friend relationships among email
correspondents to populate whitelists automatically. This is
similar in spirit to the introduction mechanism in SureMail
presented in Section V. However, there are a number of
differences. First, RE: tries to prevent classifying email
from known senders as spam (and thereby cut down on one
source of email loss) whereas SureMail tries to alert users to
email loss no matter what the cause. Second, RE: needs the
cooperation of the domain administrators both to prevent
discarding of emails by spam filters in the infrastructure
and to run attestation servers. In contrast, SureMail operates
outside of the email system and hence can benefit a group
of cooperating users without the need for infrastructure
modifications or domain participation. SureMail also leaves
the emails themselves untouched, unlike RE:. Third, in
terms of protocol operation, RE: incurs the overhead of
a handshake between the sender and the recipient for each
email whereas SureMail can choose to post notifications
(and incur overhead) selectively, say depending on the im-
portance of an email or whether it has already been replied
to. Finally, SureMail leverages the practical difficulties of
email eavesdropping to provide security no worse than with
the current email system, thereby avoiding the need for
more complex protocols.

I1l. EMAIL LOSS MEASUREMENT

Our design of a system to address silent email loss
was motivated by our own experience with such loss.
Nonetheless, we want to quantify the extent of email loss
to understand the wider impact of our system. Due to
privacy concerns and the logistical difficulty of monitoring
email servers across many different corporations, we have
to resort to sending our own emails and measuring their
loss. We have designed an experiment that is similar to the
one by Lang [25]. However, we improve upon that study
by using multiple sending accounts and email bodies and
subjects from a corpus of email user archives.

A. Experiment Setup

1) Email Accounts. To measure email loss on the
Internet, we obtained several email accounts for sending
email and receiving email, which are listed in Table I. We

Email Addresses Type | Receive | Send
a@microsoft.com | Exchange VA
{a,b}@fusemail.com IMAP v v
{a,b}@aim.com IMAP v v
{a,b}@yahoo.co.uk POP3 V4 VA
{a,b}@yahoo.com POP3 VA v
a@hotmail.com HTTP v X
{a,b}@gawab.com POP3 V4 VA
{a,b}@bluebottle.com POP3 v v
{a,b}@orcon.net.nz POP V4 VA
{a,b}@nerdshack.com POP3 v V4
{a,b}@gmail.com POP3 v VA
{a,b}@eecs.berkeley.edu IMAP V4 VA
{a,b}@cs.columbia.edu IMAP v V4
{a,b}@cc.gatech.edu POP3 v VA
{a,b}@nms.lcs.mit.edu POP3 V4 VA
{a,b}@cs.princeton.edu POP3 v v
{a,b}@cs.ucla.edu POP3 v X
{a,b}@cubinlab.ee.mu.oz.au POP3 V4 X
{a,b}@usc.edu POP3 v VA
{a,b}@cs.utexas.edu POP3 V4 VA
{a,b}@cs.uwaterloo.ca POP3 Va V4
{a,b}@cs.wisc.edu IMAP v v

TABLE | : EMAIL ACCOUNTS USED IN STUDY

obtained accounts from academic, commercial and corpo-
rate systems. Of the non-academic systems, we included
free email providers (such as GMail) and email providers
that charged us for POP or IMAP access (such as Yahoo)
and a private system (Microsoft corporate). Our list includes
systems in different countries, including Australia, Canada,
New Zealand, UK and USA. In most cases, we obtained
two mailboxes - a and b ! - to catch cases where particular
accounts are misconfigured or different email accounts map
to different servers. Most systems allow us POP3 or IMAP
access to retrieve email, with the two exceptions using
Exchange and some form of RPC over HTTP. While all
accounts allowed us to retrieve emails, not all were con-
venient for programatically sending emails - for instance,
some only allowed SMTP connections from the remote
system’s domain. We were unable to send emails from the
Hotmail, UCLA and Cubinlab email accounts. The rest all
provided an SMTP interface for sending emails, most with
password protection over some form of encryption such
as SSL. Overall, we have 42 email accounts for receiving
email, of which 36 can send emails.

2) Email Content: To control the 42 accounts, we rely
on programmatically sending and receiving emails, because
it is difficult to obtain 42 human subjects who need to
communicate with each other. However, we need to use
email content that is typically sent by humans. We consider
the “Enron corpus” - a large set of email messages made
public during the legal investigation around the Enron
corporation. In particular, we use the corpus from the “UC
Berkeley Enron Email Analysis Project” [9]. This is a
subset of about 1700 messages, selected for their business-
related content, while trying to avoid very personal emails
and spam. Of these, we use a subset of 1266 emails where

1\We have anonymized the mailbox names. We were unable to obtain
two mailboxes at microsoft.com and hotmail.com due to non-technical
reasons.



each of the 1266 emails has a uniquely identifiable subject.
This aids us in subsequent matching of sent emails with
received emails. We consider only the body and subject of
the email and ignore the rest of the header.

3) Email Attachments. Even though we use the subject
and body of emails actually sent and received by real
users, the corpus we consider does not have attachments.
To understand the impact, if any, of attachments on email
loss, we include a set of attachments of various types in
our experiments. We consider the set of attachments in
Table Il. We include many attachment types - different
image formats, different document formats and compressed
archives. We also include different content types - mar-
keting material, technical material and humorous material.
We avoid large attachments (over 150KB) since we do
not want to overburden the hosting email domains. The
modest number and types of attachments considered in our
experiment may influence the loss rate observed.

. Seed random number generator

. Pick a sender email address at random

. Pick a receiver email address at random

. Pick an email from corpus at random

. Parse email and use the subject and body

. Flip a coin with certain probability

. If heads, pick an attachment at random

. If such an email has not been sent before, send
. Pick a sleep period at random and sleep

0. Go back to step 2

P OO~NOOUOAWNE

Fig. 1. Pseudo-code for Sending Process .
4) System Setup: With the email accounts, email corpus

and attachments, we use the sending process described in
Figure 1. The sending process runs on a computer running
Microsoft Windows XP SP2 which is part of a network
connected to the Internet via several large ISPs. The sending
process consists of a Perl program that codifies Figure 1,
and a C program that handles SMTP connections to servers
for sending emails. This computer also runs Microsoft
Outlook 2003 which is configured to download emails from
all receiving accounts.

The sending program also logs all emails sent as well
as any error codes reported by the SMTP connection, if
any. We use a program to feed these logs to a database
on another computer running Microsoft SQL Server 2005.
It also reads the received emails in Outlook 2003 via the
MAPI interface and feeds them into the same database. We
include emails that are in the inbox of each account, as well
as any junk mail or spam folders exposed through the POP3
or IMAP interface. The program also parses the contents
of any bounceback messages to determine which original
email bounced. In some cases, not enough information is
present in the bounceback to uniquely identify the lost
email - we handle these cases separately. We issue SQL
queries to match sent emails with received emails, and
calculate email loss statistics. The matching is done based
on the following fields : sender email address, receiver
email address, subject, attachment name, date. We use a 48

hour window from the sending time to look for a matching
received email. We do not use the body of the email for
matching, because certain email providers, such as Yahoo,
insert advertisements into the body of the email.

Sending Accounts 36
Receiving Accounts 42
Email Corpus Enron
Unique Emails 1266
Wait Time Between Sending  2-15 secs
Attachment Probability 0.3
TABLE Ill © EXPERIMENT SETUP

The main features of the experiment are described in
Table I1l. We now present the general loss statistics from
the experiment as well as detailed loss statistics by subject
and attachment and email account. While this experiment
occurred over 2 months, in Section VI we describe results
from a final third month.

B. Email Loss Statistics

Start Date 11/18/2005
End Date 01/11/2006
Days 54
Emails Sent 138944
Emails Received 144949
Emails Lost 2530
Total Loss Rate 2530/138944 = 1.82%
Bouncebacks Received 982
Matched Bouncebacks 878
Un-Matched Bouncebacks 104

2530-982 = 1548
1548/138944 = 1.11%

Emails Lost Silently
Silent Loss Rate
Hard Failures

a@gmail.com — a@gmail.com 90
a@orcon.net.nz — a@orcon.net.nz 93
a@orcon.net.nz — b@orcon.net.nz 90
b@gmail.com — b@gmail.com 71
b@orcon.net.nz — a@orcon.net.nz 93
b@orcon.net.nz — b@orcon.net.nz 128
Total 565
Conservative Silent Loss Rate 0.71%

TABLE IV | EMAIL LOSS STATISTICS, PHASE 1

The general statistics from our experiment are in Ta-
ble 1V. The number of emails received is higher than the
ones sent, primarily due to spam, but in some cases, also
due to administrative announcements such as department
announcements in the case of university email accounts.
Our SQL queries for matching sent emails with received
emails ignore these extraneous emails. A total of 2530
emails were lost either silently or with failed delivery at-
tempts (bouncebacks), resulting in a total loss percentage of
1.82%. While we received 982 emails informing us of failed
delivery, not all of them contained enough information
for us to uniquely identify the email we sent that failed.
We were unable to identify 104. Even if we include all
the bouncebacks, the silent loss rate is 1.11%. However,
certain account pairs experienced “hard failures” - i.e., no
emails sent from a@orcon.net.nz to b@orcon.net.nz were
received by b@orcon.net.nz. The table lists these 6 account
pairs. If we remove these account pairs and calculate the



File Name Size Type Description | Emails | Emails | Loss

(B) Sent Lost %

(no attachment) 96631 1062 11

1nag-jpg2.jpg 48634 JPEG Image Comic book cover 1489 28 1.9

Nehru_01.jpg 21192 JPEG Image Picture of Jawaharlal Nehru 2632 55 21

home_main.gif 35106 GIF Image T-shirt design 2723 65 2.4

phd050305s.gif 65077 GIF Image Comic strip 2905 43 15

ActiveXperts_Network_Monitor2.ppt | 105984 | MS PowerPoint Marketing information 2935 43 15

vijay.ppt 48640 | MS PowerPoint Slides from technical presentation 1327 18 14

CfpA4v10.doc 55808 MS Word IEEE Conference CFP 2900 43 15

CHANG_1587051095.doc 25088 MS Word Book description 2711 15 0.6

SSA_PRODUCTSTRATEGY final.doc 91136 MS Word Marketing information 2822 33 1.2

34310344.pdf 32211 PDF Bandwidth estimation paper 2867 25 0.9

f1040v.pdf 47875 PDF US IRS 1040-V Form with PDF DRM 2805 42 15

CHANG_1587051095.zip 4987 Zip Has CHANG_1587051095.doc 2940 19 0.6

SSA_PRODUCTSTRATEGY final.zip 43511 Zip | Has SSA_.PRODUCTSTRATEGY _final.doc 2776 64 2.3

IMC_2005_-_Call_for_Papers.htm 10377 HTML CFP for IMC 2005 2773 32 1.2
ActivePerl_5.8_-_Online_

Docs___Getting-Started.htm 24598 HTML Perl documentation 2757 23 0.8
BBC_NEWS___Entertainment___Space

_date_set_for_Scotty’s_ashes.htm 32776 HTML News article 2951 42 1.4

TABLE Il . EMAIL ATTACHMENTS USED IN STUDY AND TOTAL LOSS STATISTICS

conservative silent loss rate, we arrive at 0.71% or or 983
lost emails.

We also want to understand if the type of attachment or
its content influences the total loss rate. Table Il presents
the total email loss percentage by attachment. The majority
of emails did not have attachments, given our attachment
probability of 0.3. Of the rest, we do not observe a sig-
nificant deviation from the total loss percentage of 1.82%.
While a more extensive study needs to be conducted to
fully characterize the impact of attachment types on email
loss, they did not influence the outcome of our experiment.
Note that we did not consider executable files and scripts
for our attachments, which may potentially increase loss
due to email virus and trojan scanners.
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Fig. 2. Total Loss Statistics by Email Subject and Body

In Figure 2, we show the loss percentage by the email
body and subject. Recall that our corpus of 1266 email
bodies was selected by us such that each email has a unique
subject. We sort the emails by the total loss percentage and
plot them in this graph. We see that one particular email
stands out with a significantly higher loss percentage - 36%
loss rate for the email with the subject “CONFIDENTIAL
BUSINESS PROPOSAL”. We notice that this email has
various properties reminiscent of the Nigerian email scam.

A total of 117 emails with this subject and body were sent
- if we remove this email from the total loss statistics, we
are left with 2488 lost emails out of 138827 sent emails,
giving us a loss percentage of 1.79%.

In this section, we presented the results of our email
loss study. We found a significant total loss percentage
of 1.82%, with a silent loss percentage of 0.71%. That
is, out of 10,000 emails, 71 get silently lost - if a user
sends about 30 emails a day, over the course of a year,
over two days worth of emails get silently dropped. Even
if we remove email domains with significantly higher than
average loss rates or emails with significantly higher than
average loss probability, the overall loss percentage does
not significantly decrease. Thus we believe that a system
for addressing lost email will be of significant benefit to
users.

IV. DESIGN REQUIREMENTS

We list here the requirements of a solution to email
unreliability that we believe will lead to the most rapid
adoption.

1) Cause minimal disruption: The current system works
for the majority of email. So rather than replace it with a
new system of uncertain reliability, we should augment the
system to improve its reliability. We want to inter-operate
seamlessly with the existing email infrastructure (i.e., un-
modified servers, mail relays, etc.), with additions restricted
to software running outside the email infrastructure, e.g., on
end-hosts. Users should benefit from the system without
requiring any cooperation from the administrators of their
email domain. In addition to minimizing disruption, we
believe that these guidelines also ease the deployment of
such a system.

2) Place minimal demands on the user: The solution
should minimize demands placed on the user’s time. Ideally,
user interaction should be limited only to actual instances
of email loss; otherwise, the user should not be involved
any more than he/she is in the current email system.



3) Preserve asynchronous operation: The email system
provides a loose coupling between senders and recipients.
The sender does not know whether or when an email is
downloaded or read by the recipient. Potential recipients do
not know whether a sender is “online”, i.e., actively sending
emails to others. The proposed system should preserve such
asynchronous operation, which is in contrast to other forms
of communication such as telephony, instant messaging and
the use of “read receipts” for email.

4) Preserve privacy: The solution should not reveal any
more about a user’s email communication behavior than
the current system does. For instance, it should not be
possible for a user to determine the volume or content of
emails sent/received by another user, the recipients/senders
of those emails, how often that user checks email, and so
on. However, email, as it stands today, is vulnerable to
snooping, whether on the wire or at the servers. SureMail
does not seek to address this issue.

5) Preserve repudiability: It is recognized that repudi-
ability is a key element of email and other forms of casual
communication such as instant messaging [14], [11]. There
is a distinction between repudiability (i.e., the ability of a
sender to deny having authored an email) and forgeability
(i.e., the ability of an attacker to send email purporting to be
from a particular sender). The former is desirable while the
latter is not, and SureMail seeks to satisfy this requirement.
Note that PKI-based authentication of email users, or even
authentication based on a decentralized approach like PGP,
is unsuitable from the viewpoint of providing repudiability.

6) Maintain defenses against spam and viruses: The
proposed system should not make it any easier for spam and
email viruses to circumvent the defenses that are in place
or make it easier for spammers to determine the validity of
an email address. All email should continue to be routed
through spam filters.

7) Minimize overhead: The proposed system should
minimize the amount of overhead imposed, in terms of
additional traffic and messaging. In particular, we would
like to avoid duplicating the work done by the current email
system on the data path, i.e., in conveying the (potentially
voluminous) message bits from the sender to the recipient.

V. SUREMAIL DESIGN

We now describe the design of SureMail to satisfy the
requirements listed above. We continue to use the current
email system for message delivery. However, we augment
it with a separate overlay based notification system. The
notification system allows the intended recipient of an email
to determine if he/she is missing any emails that were sent
to him/her. Depending on the recipient’s policy and the
identity of the sender, the recipient can choose to request
the sender (via email or out-of-band) to resend the lost
information/email. Thus SureMail tries to assure senders
that either email is delivered or the intended recipients will
discover that it is missing.

1. S sends

@ @ email E to R

5 S5

Sender S v < S & ient R
0

DHT Node
H(R)

4. R contacts S to retrieve missing information
Fig. 3. Overview of SureMail

The basic idea shown in Figure 3 is as follows. When
a sender sends an email to a recipient, it also stores a
hash of the email contents in a DHT (Distributed Hash
Table), indexed by a key derived from the recipient’s email
address. The recipient looks up the DHT periodically to
see if there are any notifications that were sent to it. If so,
the recipient compares the message hashes obtained from
the DHT with hashes computed locally on messages it has
received. Any hashes present in the former but not in the
latter may indicate missing email. The recipient does not
remove notifications from the DHT, but rather lets them
expire based on a TTL.

The DHT system for notifications could be run on
dedicated servers and/or on the client computers of the
participating users (e.g., office computers that are mostly
online). While we are agnostic to the choice of the DHT
system, we assume that the DHT nodes support SureMail-
specific operations, in addition to the standard put()/get()
operations for storing/retrieving (key, value) pairs. It may
be possible to leverage a system like OpenDHT [30] or
Chord for this purpose. Our implementation described in
Section VI is integrated with Chord.

While their scalability and availability [30], [18] makes
DHTs attractive for SureMail, an alternative would be to
have each organization set up dedicated servers to receive
notifications for its users and advertise these servers through
DNS (akin to MX records for mail servers). However, this
would require cooperation of the domain administrators,
which may be an impediment to initial deployment.

A key challenge is to prevent subversion of the system
by bogus notifications generated by spammers or malicious
DHT nodes. Indeed, notification spam would lead to user
apathy and severely diminish the utility of SureMail. Our
design of SureMail defends against notification spam with-
out depending on a PKI (whether centralized or PGP-like)
for email users, which eases deployment and also preserves
the repudiability of email. The key idea is to leverage the
implicit trust established when users exchange email. We
describe the design of SureMail in more detail below.

A. Security Assumptions

We make the following security assumptions:
1) We assume that an email sent from a sender to a
recipient is not available to potential attackers, except of



course if the attacker is itself the sender or the recipient.
We believe that this is a reasonable assumption given the
practical difficulties of eavesdropping on a remote user’s
email. While the email delivery infrastructure, including
the routers on the network path, are in a position to
eavesdrop (given that the vast majority of email today goes
in the clear), we do not consider it as a potential attacker.
Furthermore, if an attacker is somehow able to eavesdrop on
email communication, the compromise of the user privacy
is likely to be a far graver threat than the ability to subvert
the SureMail notification system.

2) We do not assume that the notification infrastructure
(e.g., the DHT nodes) is entirely trustworthy. In particular,
a DHT node could try to spy on a user’s email traffic
(e.g., learn which senders email a recipient) or generate
spurious notifications. Note that spurious notifications are
a more serious problem than dropped notifications (which
a malicious DHT node can always cause), since the former
imposes a cognitive load on users while the latter leaves
users no worse off than the current email system.

3) Although some DHT nodes may be untrustworthy,
we assume that the majority of the nodes are trustworthy.
Also, we assume limited collusion among the untrustworthy
nodes. Although the SureMail protocols can be modified
to accommodate any fixed limit on collusion (with a
corresponding increase in protocol overhead), for ease of
exposition we assume no collusion in our presentation.

B. Notation

Unless otherwise stated, we use S and R to represent
the sender and the recipient, respectively, of an email.
(We use these symbols to represent both the sending and
receiving users and their email clients.) We assume that all
nodes agree on a cryptographically-secure one-way hash
function H (M) that operates on message M to produce
a short, fixed-length digest (e.g., a 20-byte digest with
SHAL). We make the standard assumption that it is hard to
reverse the function, i.e., retrieve M given H(M). We also
assume that all the nodes agree on a message authentication
code (essentially a keyed hash function), M AC(M, k), that
operates on message M and key k to produce a short,
fixed-length digest (e.g., a 20-byte digest with HMAC-
SHA1). A MAC can be used with various well-known
key values to generate new one-way hash functions. For
example, we can define a new one-way hash function as
H' (M) = MAC(M, k"), where k£’ is a well-known key
that all nodes agree on. Finally, we assume that all nodes
agree on a symmetric encryption function, E(M, k), that
operates on message M and key k. All DHT operations
are represented using the syntax func(keyID, [ --]), where
keyID is the lookup key.

C. Basic Operation

When S sends an email M to R, it also posts a notifica-
tion N into the SureMail DHT. N is a digest (e.g., H(M))
that uniquely identifies the email. The DHT responsible

for the lookup key H(R) 2 stores the notification until its
expiration, as indicated by a time-to-live (TTL) 7. T is
specified by S when it posts the notification but is subject
to a policy limit set by the DHT (to prevent storage resource
exhaustion). Periodically, each email recipient, including R,
retrieves the notifications intended for it from the DHT;
R does so by presenting the lookup key H(R). R then
compares the digests contained in the notification with
messages it has actually received to determine if it is
missing any email.

This basic approach raises a number of issues, which we
address in turn:

1) An attacker should not be able to retrieve the no-
tifications intended for another user R. We present
an email-based handshake registration procedure to
ensure this.

2) An attacker should not be able to post notification
spam (e.g., H(Mg), where Mg is a spam message)
and thereby mislead R about email it is missing. We
present a reply-based shared secret scheme to identify
legitimate natifications, and thereby block spam.

3) The natification N should reveal the identity of S
to R but not to any attacker (e.g., the DHT node
H(R)) who has somehow obtained N. The reply-
based shared secret scheme also ensures this.

4) A legitimate first-time sender (F) who has never
before communicated with R before should still be
able to post notifications for R that are not mistaken
for notification spam. We present an introduction
mechanism to enable this.

D. Email-based Handshake for Registration

Although the notifications do not reveal message content
and hence are not very sensitive, it is still undesirable for
an attacker to be able to retrieve notifications intended for
another user R. An attacker with access to R’s notifications
may learn something about the volume of emails sent to R,
or even just that R is an active email recipient.

To make it hard for an attacker to retrieve R’S noti-
fications, we use a registration procedure to establish a
shared secret between R and the DHT node H(R). Upon
system initialization, R, initiates registration by contacting
the DHT node H(R). To prevent an attacker from mas-
querading as R and registering on its behalf, DHT node
H(R) initiates a simple handshake via email to confirm
that the node purporting to be R can in fact receive email
sent to R and to defend against replay attacks. (This is
a commonly-used procedure for authenticating users, for
example, when they sign up for online services [21].) The
challenge email sent by H(R) contains the registration
secret, kr. R saves kgr for future use and responds to
the node H(R) (using direct communication, not email)
to complete the registration.

2In the remainder of the paper, we use the term “node z” synonymously
with “the node responsible for lookup key z”.



At this stage, the DHT node H(R) has reasonable
assurance of R’s identity and shares a secret with R (namely
kgr) that it can use to authenticate future requests from
R. The relatively heavy-weight email-based handshake is
invoked just once, viz., at the time of initial registration.
The limited use of the email-based handshake also limits
the impact of email unreliability. R would have to retry its
registration attempt only if the one-time challenge email is
lost.

E. Decoupling Registration and Natification Posting

The DHT node H (R) knows the identity of R and is in a
position to monitor the volume of notifications posted for R.
To prevent this, we decouple registration from the storage of
notifications. While notifications are still posted to the DHT
node H(R), registration is performed at two (or more) other
nodes, H1(R) = H'(H(R)) and H2(R) = H"(H(R)),
such that each of H,(R) and Hz(R) only holds part of
the registration secret kr. When it receives a request to
retrieve the notifications corresponding to the lookup key
H(R), the DHT node H(R) contacts H; (R) and Hz(R) to
authenticate the requester; H, (R) and H»(R) learn nothing
about the notifications intended for R. Also, note that
by construction, the node H(R) finds H;(R) and Hy(R)
without learning the identity of R.

Under the assumption that the nodes H(R), H1(R), and
H>(R) are non-colluding, no single node is in a position
to link R’s identity with the notifications intended for R.

F. Reply-based Shared Secret

Now we turn to the problem of constructing notifications
in a way that blocks notification spam and protects the
identity of the sender S who posts the notification. Clearly,
just posting a notification N = H(M) does not suffice.
Although an attacker may not directly benefit from notifica-
tion spam (unlike email spam, that can generate additional
traffic and business for the spammer), he/she may indirectly
benefit from discrediting the notification mechanism.

We seek a solution that requires little or no human in-
volvement. We make the observation that an email exchange
between two users provides an opportunity for establish-
ing a shared secret between them without requiring any
additional messaging or even modifications to the emails.
Furthermore, users rarely, if ever, exchange emails with a
spammer.

Thus, if S sends an email M; to R and receives a
reply M, from R, the SureMail software running on S
can conclude that M, (or H(M,), for compactness) is a
shared secret between S and R. The SureMail software on
R remembers M, (or simply H(M;) and a second hash
H'(My), as explained below). It can also conclude that the
user R cares about email from S, i.e., S is a legitimate
sender from the viewpoint of R. We use this reply-based
shared secret both to authenticate notifications posted by S
and to securely convey S’s identity to R.
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SS(S—-R)=X,7 My 4 SS(S—R) = X,?
SS(R—8)=Y,? 1 12 SS(R—S)=Y?
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Fig. 4. Shared secret (SS) evolution between S & R in reply-based scheme

The notification for a new message, M,ew
from S to R is constructed as follows: N =
[T, H(Myew), H(My), MAC([T, H(Mpew)], H (M1))].
T is the time-to-live for the notification. H(M,..) (the
bodyHash) is the hash of the contents of the new message
for which the notification is being constructed. H (M)
(the shared secret identifier (ssld)) implicitly identifies .S
to R and R alone. Basically, R can look up H (M) in
its cache and verify that it corresponds to a shared secret
that it had established with .S, and thus identify S. Finally,
MAC(|T, H(Mye.)], H' (M;)) (the authenticator) proves
to R that this is a genuine notification generated by S.
Only S and R are in a position to (pre)compute the key
H'(M,) used in the MAC. Possession of H(M;) alone,
say from a prior notification, does not permit an attacker
(e.g., the DHT node H(R)) to compute H'(M;) and hence
post a fake notification.

Upon retrieving notifications, the SureMail software at
R checks each notification to see if it is valid. If it finds
any valid notifications that point to missing email, it alerts
the user, presenting him/her the corresponding sender email
addresses. SureMail leaves it to the user to decide the
recovery action to be taken (e.g., contacting the sender(s)
out-of-band). Notifications that are found to be invalid are
ignored.

We now briefly discuss various issues pertaining to this
reply-based shared secret scheme:

1) Shared Secret Maintenance: An email such as M is
used as the basis of a shared secret only if there is reason to
believe that it is a secret between S and R. In SureMail, we
deem a message to be a candidate for a shared secret only
if R is the sole addressee on the message, a determination
that can be made automatically without requiring human
intervention. We believe that users do not publicly or widely
share such directly addressed email (as opposed to mailing
list emails that are often archived on the Web).

In terms of state, each node needs to remember two sets
of shared secrets for each email address it corresponds with
— one for posting notifications and the other for validating
notifications it receives. The shared secrets are updated
with each new email exchange, as shown in Figure 4. S
remembers the hashes of all messages sent by it since the
most recent one replied to by R. Likewise, R remembers
the hashes of all emails from S (which it had replied to)



since the most recent one that S used as a shared secret in
a notification. This constant renewing of the shared secret
helps to age out old shared secrets that may have been
inadvertently leaked. It also naturally supports user migra-
tion, i.e., when a user moves to a new client (say because
of a change of location or computer failure) and needs to
reestablish shared secrets with his/her correspondents.

2) Reply Detection: For S to conclude that M is a
shared secret with R, it needs to determine that a subsequent
message M received from R is in fact a reply to M;. In
some cases, this can be done by matching the “In-Reply-
To” header field in My with the “Message-ID” field of
M. However, in other settings, the Message-ID is inserted
by the server and hence is unknown to the sending client
S. Nevertheless, the reply often contains remnants of the
original message in the form of quoted text, which can be
used for reply detection. We describe and evaluate such a
heuristic in Section VI-B.

3) Comparison with PKI/PGP-based approaches. The
reply-based shared secret scheme preserves the repudiabil-
ity of email, which is one of the design requirements listed
in Section IV. The shared secret between S and R is not
meaningful to any other party. So although R can satisfy
itself with the authenticity of a notification N from S, it
cannot use N to prove to any other party that the message
M e, Was authored by S. In contrast, if .S had a well-
known public key and it were to sign the notification N
with the corresponding private key, it would not be able to
repudiate its authorship of M,,c.,.

On the flip side, the reply-based shared secret scheme is
susceptible to eavesdropping, unlike a PKI-based scheme.
However, as discussed in Section V-A, eavesdropping on
another user’s email is difficult in practice.

G. First-time Sender

In the design of SureMail presented thus far, the sender
uses a reply-based shared secret established via prior email
exchange with the intended recipient to mark its notification
as authentic. Consequently, a legitimate first-time sender
(FTS for short) who has not exchanged email with the
recipient previously would not be in a position to mark its
notification as authentic. On the other hand, it is conceivable
that FTS emails are more prone to being dropped by exist-
ing spam filtering systems, making it especially important
that SureMail works well in the FTS scenario.

Although at first glance it might seem that a legiti-
mate first-time sender is indistinguishable from a spammer,
in practice, there are social links that may set apart a
legitimate FTS from a spammer. [16] shows that email
networks exhibit small-world properties. This implies that,
although the FTS may never have communicated with the
intended recipient, with high probability, he/she may have
communicated with an intermediary who may have in turn
communicated with the recipient. For example, such an
intermediary may be a colleague of the intended recipient at
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the same institution. The intermediary is thus in a position
to “introduce” the FTS to the recipient.

Consider an FTS, F, who is trying to communicate with
R. Assume that there is an intermediary I with whom both
F and R have communicated in the past (we call I a
correspondent of F' and R). Our goal is to enable F' to
post a notification for an email it sends R such that R does
not discard the notification as spam. Although we wish to
leverage the relationship that 7' and R both have with I, we
would like to prevent any adverse impact on privacy. ldeally,
we would like to (a) prevent I from learning that F' intends
to communicate with R, (b) prevent F' from learning that
I and R have previously communicated, and (c) prevent R
from learning that £ and I have previously communicated.
In the event that (c) cannot be satisfied, we also consider
a diluted form of (c), termed (c’), which requires that R
should not learn about any of F’s correspondents other than
those it shares in common with F'.

There has been prior work on similar problems in the
context of exchanging email white-lists. LOAF [15] uses
Bloom filters to exchange address books. To each email it
sends to R, I attaches a Bloom filter containing addresses to
which it has sent email in the past. If I trusts F', F' will be
included in this Bloom filter and therefore F' is introduced
to R through I. This scheme satisfies property (a), but not
(b), (c) or (c”).

RE: [20] uses the friend-of-friend (FOF) approach in
which I can attest to R that £ is not a spammer. Using
a homomorphic encryption-based private matching protocol
[19], RE: ensures that F' does not learn the identities of R’s
friends and that R does not learn the identities of any of
Fs friends except those in common with its own friends.
Thus this scheme satisfies properties (a), (b), and (c’), but
not (c).

The introduction mechanism we present also satisfies
properties (a), (b), and (c’), but is simpler than RE:’s
mechanisms in terms of the cryptographic operations and
in not requiring a two-way handshake between the sender
and the recipient for each email.

1) SureMail Introduction Mechanism: In the SureMail
introduction mechanism, each node such as I establishes a
common secret, Sy, with all of its correspondents. When-
ever I exchanges email with a new correspondent C' and
establishes a pairwise reply-based shared secret (S7¢) with
it, I also conveys S; to C. It does so by posting this
information, encrypted with the pairwise shared secret S ¢,
to the DHT node H(C). Thus, all correspondents of I
share a common secret, S;. One correspondent, say F', can
use Sy to authenticate notifications it may post for another
correspondent, say R, even if F' is a first-time sender with
respect to R.

A notification from an FTS, F, for an email
M that it has sent to R takes the form N =
[T,F,H(M),H(S1), MAC(|T, S, H(M)],H'(S1))].

As before, this construction prevents an attacker who is in



possession of IV from learning the secret Sy or constructing
fake notifications. The main difference compared to the
non-FTS construction presented in Section V-F is that the
identity of F' needs to be included explicitly, either in the
clear as shown above or encrypted with the secret, S.

A key question is how F' knows to use S rather than
a secret S, obtained from another correspondent (and
potential intermediary), I’. Clearly, satisfying property (b)
requires that F' not know whether a particular intermediary,
such as I, has been a correspondent of R. We believe that
it is appropriate to rely on human input, since the FTS
scenario occurs relatively infrequently. When SureMail at
F detects that it is an FTS with respect to the intended
recipient R, it alerts the user and asks for a recommendation
of one or more intermediaries from among F’s corre-
spondents. The human user can often make an informed
choice, say by picking a colleague of the intended recipient,
R, as the intermediary. SureMail can aid the process by
automatically listing correspondents who are in the same
email domain as R and hence are likely to be suitable
intermediaries.

In the extreme case, F' can include shared secrets ob-
tained from all of its correspondents in the notification. R
can determine if any are in common with the set of shared
secrets it has obtained from its correspondents. If so, it
deems the introduction as valid and honors the notification.
Given that the shared secrets are opaque quantities, R does
not learn anything from the shared secrets that originated
from correspondents of F' that are not common to R. Thus
property (c’) is satisfied. Note that including shared secrets
from all correspondents generates notification traffic vol-
ume that is proportional to the number of correspondents.
Schemes such as RE: incur a similar overhead to satisfy
properties (a), (b), and (c’).

2) Leakage of Shared Secret: What happens if a cor-
respondent of I such as F' passes on the secret S; to
spammers? In general, shared secrets in SureMail are set
up and shared only with “trusted” peers, where trust is
established based on email exchange. There is always an
element of risk that a peer may not be worthy of this trust.
The introduction mechanism carries the added risk that
the identity of the untrustworthy peer may not be readily
apparent (since all such peers hold the same secret, S;).

We make a few remarks in this context. First, the damage
done by accidental leakage can be limited by updating the
shared secret periodically. Second, a recipient such as R can
accord lower priority to notifications authenticated using
a common shared secret such as S; compared to those
authenticated using a pairwise shared secret such as Syg.
Third, if property (c) is not satisfied, R can at least identify
I or one of its correspondents as the source of the leak. If
this is a frequent occurrence, the user R could be alerted
to reconsider its trust of 7. So in practice, property (c’),
which provides a weaker assurance of privacy, may be more
desirable than (c).
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V1. IMPLEMENTATION AND EVALUATION

In this section, we describe our implementation of the
SureMail notification system. We also repeat our email loss
experiment to demonstrate the effectiveness of the notifica-
tion system for catching lost emails. Since our test involved
programmatically sending emails from the Enron corpus
and do not have an automatic system for email reply, we
do not include shared secret generation in this experiment.
Instead, we separately describe our implementation of reply
detection for shared secret generation and evaluate it by
testing it on a corpus of emails.

A. SureMail Notification System

1) Implementation: We implemented the SureMail no-
tification system in approximately 4000 lines of C++. The
system consists of two components - SureMailServer and
SureMailClient. SureMailServer exposes a put/get interface
and runs on a single remote machine.

SureMailClient runs on a user’s computer and snoops
on incoming and outgoing emails without requiring any
modifications to the user’s email client software or the
email delivery infrastructure. In our implementation with
Microsoft Outlook, we snoop on emails by registering
extended MAPI[24] callbacks with the email servers. For
email systems (like UNIX mail) which store emails in
text/mbox files, we could continuously monitor the files for
new emails.

<SureMailMsg
type="post_not"
foAddrHash= " 1251de1ab4532dd06851ac3ed237f809dcaall126

il ="(43200s "

bodyHash =*|56893db1ea38600dbaeef123765098ad96ef9ddd |"
ssid “| 89d03ccaddbadT91abed498dB876ca0023abeefdl |”
auth = “[_ab11211189defa3d45c09268daaaedbc32a1223a | -

f=
Fig. 5.

natifieation
4+20%3
= 64 bytas

Post Notification Message Format

The messages exchanged between an SureMailClient and
SureMailServer are in XML format. Figure 5 shows a sam-
ple post notification message. The bodyHash, shared secret
identifier (ssld), authenticator (auth) and ttl fields represent
H(]\/[new): H(Mold): MAO([T7H(Mnew)]aH/(]\/[old))
and T of the notification, as defined in Section V-
F. H(Mpew) and H(M,q) are 20-byte SHAL hashes.
MAC(T, H(Mpew)], H (Moq)) is a 20-byte HMAC-
SHA1 hash. T is 4 bytes long. The total notification size
is thus 64 bytes. We used the OpenSSL[5] library for
all cryptographic and hash operations. The total size of
the notification message, including the overheads for the
verbose XML text and the hash of the recipient email
address is 166 bytes. Although a binary message format
would reduce the message size to 85 bytes, we used the
larger XML messages due to the flexibility provided by
XML.

2) Evaluation: To evaluate SureMailClient and Sure-
MailServer, we continue our experiment from Section IlI
for a third month. This time, in addition to sending and



receiving emails, we also use SureMailClient in the send-
ing process to post notifications to a centralized Sure-
MailServer, running on a remote machine that is not in the
same network as the email sending machine. We modified
our sending program to also generate notification XML
messages and invoke SureMailClient to post them to the
SureMailServer. In this experiment, we did not use the ssid
and auth fields. In addition, we had SureMailClient retrieve
notifications for each receiving account every 2 hours.

Start Date 01/11/2006
End Date 02/08/2006
Days 29
Emails Sent 19435
Emails Lost 653
Total Loss Rate 653/19435 = 3.36%
Bouncebacks Received 406
Matched Bouncebacks 378

Un-Matched Bouncebacks 28
Emails Lost Silently 653-406 = 247
Silent Loss Rate 247/19435 = 1.27%
Hard Failures

a@gmail.com — a@gmail.com 13
a@orcon.net.nz — a@orcon.net.nz 8
a@orcon.net.nz — b@orcon.net.nz 11
b@gmail.com — b@gmail.com 13
b@orcon.net.nz — a@orcon.net.nz 15
b@orcon.net.nz — b@orcon.net.nz 10
Total 70
Conservative Silent Loss Rate 0.91%
Notifications Received 19435

TABLE V . EMAIL LOSS AND NOTIFICATION STATISTICS, PHASE 2

In Table V, we present the results of this second exper-
iment, which ran for almost a month. 19435 emails were
sent and the corresponding notifications were posted. As
before, bounceback messages were received, most of which
were matched to sent emails and some were not. After we
account for the un-matched bounceback emails and email
accounts with hard failures, we arrive at a silent email
loss rate of 0.91%, which is similar to our finding from
Phase 1 of the experiment. Regardless of whether an email
was received, lost silently or lost with a bounceback, all
notification messages were received. Thus despite a 0.91%
silent loss rate, the receiving accounts were notified of every
loss. This demonstrates the effectiveness of our notification
system for addressing email loss.

Furthermore, the overhead of our notification system is
minimal, specifically with respect to generating notification
messages. On a 3GHz Pentium-D computer running Linux
kernel 2.6.14, notification generation for email messages of
sizes 1000B, 10000B and 100000B took 94s, 832us and
7438 respectively (averaged over 10000 trials).

3) DHT Implementation: Despite the effectiveness of
our central implementation of SureMailServer, a system for
use by large numbers of users, say the entire Internet, would
warrant a more scalable solution. An implementation on top
of a DHT (distributed hash table) can allow the system to
scale more easily. Prior work [29] has demonstrated get()
latencies of under 200ms on average, and under 2s for
the 99th percentile for the OpenDHT system running on
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PlanetLab.

One issue is how difficult it is to implement a notification
server on top of a DHT. Since our SureMailServer exposes
a put/get interface, we can plug in any existing DHT
algorithm with little effort. We plugged in the Chord DHT
implementation available from the i3[33] project using just
60 lines of C++. In our implementation, an SureMailClient
uses a nearby SureMailServer as a first hop gateway to post
and retrieve notifications from the notification overlay. This
first hop SureMailServer forwards the client post/retrieve
request to the SureMailServer responsible for storing the
notification using the Chord DHT protocol. The response
to the request is sent back to the client via the first
hop SureMailServer. In ongoing work, we are evaluating
SureMail on PlanetLab.

B. Reply Detection

1) Implementation: Accurate reply detection can be
performed by matching the Message-ID and In-Reply-To
fields of emails. However, RFC 2822[28] does not mandate
these fields to be present in all messages. In most email
systems[32] (for example, in the case of Microsoft Outlook
mail user agents (MUA) and Microsoft Exchange mail
transfer agents (MTA)), the Message-ID is inserted by the
MTA and hence is unknown to the MUA sending the email.
Even if inserted by the sending MUA, the Message-ID may
be modified by the MTA[28]. Hence, we cannot solely
rely on the Message-ID and In-Reply-To fields for reply
detection.

We implemented an alternate reply detection algorithm
which does not use the Message-1D and In-Reply-To fields.
Our algorithm marks an email A as the reply of an email B
if: (i) The subjects of A and B are identical after removing
any prefixes of the form “Re:”, and (ii) The bodies of A and
B pass the k-gramg[22] text similarity test. In the k-grams
test, we calculate the number of common subsequences of
k words (k-grams) in the bodies of emails A and B. If
the number of common k-grams is greater than a threshold
(M), the two emails pass the test. The k-grams of an email
constitute its signature and are stored for performing reply
detection tests on incoming email. In order to reduce storage
space, we store 4-byte hashes of the k-grams, instead of the
full k-grams.

2) Evaluation: We evaluated our reply detection algo-
rithm on emails obtained from multiple IETF mailing list
archives[4]. These email messages contained the Message-
ID and In-Reply-To fields. We used these fields to automat-
ically pair up an email and its reply, and thus generate the
ground truth against which we evaluated the performance
of our reply detection algorithm. We were unable to include
the Enron corpus in our evaluation set as the In-Reply-To
field was absent, and hence it was impossible to automat-
ically generate the ground truth. Due to privacy concerns,
we were unable to obtain another suitable non-mailing-list
corpus for this analysis.



Our algorithm performed best when & = 5 and M = 15.
In the 2232 emails in our evaluation set, 615 emails were
replies to some other emails in the set. Our algorithm
successfully detected 475 of these, yielding a false negative
rate of 22.7%. Although replies often include remnants of
the original email, this is not always the case, hence the
false negatives. We also tested the algorithm against pairs
of emails in which none of the two mails was a reply to
the other. Among the 24799 pairs tested, only 47 pairs were
wrongly determined as sharing a ‘reply’ relationship, thus
yielding a very low false positive rate of 0.02%, which is
desirable for SureMail. The few false positives arise from
messages in the same discussion thread that include snippets
of text from emails they are not direct replies to. This is
unlikely to be as common with the non-mailing-list emails
that would be used by SureMail’s reply-based shared secret
scheme. The high false negative rate implies that some
replies will not be detected. This leads to (a) unnecessary
posting of notifications for emails that have been replied
to, and (b) missed opportunities for renewing the reply-
based shared secret, both of which are not critical for our
system. Hence, our reply detection algorithm is adequate
for SureMail.

VII.

We briefly discuss several issues pertaining to SureMail,
including enhancements to the basic design. To quantify
some of our arguments, we present data derived from the
analysis of the mailboxes of 15 users in a large corporation
(termed the “mailbox data set” for short). These mailboxes
resided on a Microsoft Exchange mail server and contained
a total of 113,365 emails. This data set gives us a real-
world data point on metrics of interest such as the email
size distribution and the email replying behavior of users,
something that the measurement experiment described in
Section Il is unable to provide. However, this data set is
limited in size and diversity because it is difficult to recruit
users due to their privacy concerns. Also, since we analyzed
a snapshot of the users’ mailboxes at only one point in time,
we have no knowledge of emails that users either deleted
or moved to offline folders outside of our reach. So we use
this data set only to suggest (in)appropriateness of various
design choices rather than as definitive findings.

A. Reducing DHT Overhead

Since the SMTP-based email infrastructure works fine
most of the time, posting a notification in SureMail for
every email sent could add up to significant and unnecessary
overhead. To reduce overhead, a sender could hold off on
posting a notification for a while, in the hope that an “ACK”
in the form of a reply or a “NACK” in the form of a
bounce-back (both detected automatically, without human
involvement) would obviate the need for the notification.
Holding off also provides the opportunity to coalesce no-
tifications for multiple messages to a recipient, to further
reduce overhead.
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We consider the email replying behavior of users derived
from the mailbox data set, based on the relevant MAPI
(Messaging API) properties (e.g., time when a reply mes-
sage was sent) as recorded by the Exchange server when an
email is replied to. Although only 15% of incoming emails
were replied to, 30% of incoming emails that were directly
addressed to the user (i.e., where the user’s email address
was listed on the “To:” or “cc:” lines) were replied to.3
This suggests that the implicit “ACK” provided by email
replies has the potential of reducing notification workload
by a non-trivial amount.

The next question is if a sender does hold off posting a
notification in the hope that a reply would obviate the need
for a notification, how long should it should hold off for?
Based on the mailbox data set, we find that assuming that
an incoming email is replied to, the median delay between
the receipt of the incoming email and the reply is 3,807
seconds (i.e., just over an hour) and the 75th percentile is
36,365 seconds (i.e., just over 10 hours, which corresponds
roughly to a reply within the same day or after an overnight
wait). This suggests that a significant fraction of replies can
be taken advantage of if we are willing to wait for one to
several hours, which may be reasonable given the timescales
of email communication.

Finally, to cut down the volume of notifications, the
sender could decide whether to delay posting a notification
or whether to post it at all based on the importance of the
email. The importance could be determined automatically,
say based on a preconfigured list of recipients that the
sender cares about or based on a per-message indication
such as the “importance” header field [23]. As a data point,
only 1.78% of the emails in the mailbox data set had the
importance field set to “high”. So there is a significant
opportunity for cutting down the volume of notifications
if we decide that only the “Importance: high” emails need
the additional assurance provided by SureMail. However,
this assumes that in our data set, users always manually set
the importance flag on all important emails.

B. When Should a User Act on Loss Notification?

A user that receives a notification that email to him/her
from another user got lost is left with a dilemma - should
he or she contact the sender, and if so, when? The first
question will likely depend on the individual user’s policy
and perception of whether an email from the sender would
be important. However, we can help answer the second
question. In the email loss experiment from Section IlI,
we sent and received over 130000 emails across about 40
accounts. By correlating the sent email with the received
email, we can calculate the delay between sending and
receiving. For the sent time, we use the actual time that our
sending process initiated the outbound SMTP connection.

SWhile this fraction still seems low, a manual examination indicates
that spam and bulk emails (which nevertheless are addressed directly to
the user) account for many of the directly addressed emails that were not
replied to.



For the received time, we use the timestamp embedded by
the receiving SMTP daemon in the received email’s header.
Almost a third of the non-lost emails have slightly negative
delays, most likely due to lack of clock synchronization
between our sending machines and the various SMTP
servers for our email accounts. Of the remaining emails,
the median delay is 26 seconds, the mean is 276 seconds,
the standard deviation is 55 minutes and the maximum is
36.6 hours. Thus we believe that if a user waits a couple of
hours before acting on a notification, they can be reasonably
certain that the email has been lost and not simply delayed.

C. Supporting Mailing Lists

Notifications are posted as usual for emails sent to
mailing lists. The only difference is that the optimizations
listed above involving holding back on notifications would
not apply. The notification for an email sent to mailing list
M would be sent to H (M ). It would be the responsibility
of individual recipients to look up the DHT periodically
for notifications of emails sent to mailing lists that they are
members of.

D. Should emails themselves be delivered via SureMail?

Delivering emails themselves through the SureMail over-
lay is problematic for several reasons. First, emails are
typically much larger than notifications, so transporting
them through the overlay incurs a much larger overhead. For
instance, the median email size (including attachments) in
the mailbox data set was 3,973 bytes and the 95th percentile
was 44,079 bytes.* In contrast, notifications are much
smaller in size (85-166 bytes) as reported in Section VI.
Second, it is still desirable for emails sent via the overlay
to be routed through spam filters, virus scanners, etc.,
which leaves open the possibility of email loss. In contrast,
notifications are fixed-sized, fixed-format entities that do not
pose the same threat as malicious email content and hence
need not be filtered the same way. Finally, using the overlay
alone for delivering the emails themselves (i.e., instead of
using the current SMTP-based email system) is potentially
disruptive and runs the risk of under-performing the current
email system.

E. Should SureMail be integrated with email infrastruc-
ture?

We consider whether SureMail’s notification mechanism
should be integrated directly into the existing email in-
frastructure, for example, by having the receiving email
server or spam filter generate natifications locally for emails
that are dropped.

We believe that there are several reasons why such
integration could be problematic and so having SureMail

4There is likely a bias toward smaller emails in this data set since users
often file away email with large attachments in offline folders to comply
with their quota on the server. So the actual distribution of the sizes of
emails sent or received is likely to have been larger than these numbers
indicate.
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operate separately would be advantageous. First, since the
email server by itself cannot distinguish dropped emails
originated by senders that the recipient trusts from other
email (e.g., spam), the server is forced to generate notifica-
tions (including computing a hash of the message content)
for all dropped emails. This can place a significant burden
on the email server, with potentially negative impact on
normal email delivery. Second, even if load were not an
issue, a recipient’s email server cannot by itself generate
notifications that allow the recipient to distinguish between
dropped emails from trusted senders from other dropped
emails, resulting in burden on the user to sort through them.
Avoiding this problem would require support at the sender
end, as in SureMail. Third, often spam is dropped without
even looking at the email content, e.g., by blacklisting
certain IP addresses. According to the IT staff of a major
corporation, over 90% of dropped emails are estimated to
be due to such steps. It is impossible for the email server
to generate meaningful notifications in such cases. Finally,
to the extent that email loss happens not because of a
conscious decision to drop email but due to failure, it would
be hard for the (failed) infrastructure to generate meaningful
notifications.

Thus we believe that keeping the SureMail notification
layer separate is advantageous since it avoids burdening the
email delivery infrastructure and is less prone to correlated
failures of both the email delivery and notification systems.

F. What if emails could be modified?

We have designed SureMail to avoid modifying emails
S0 as not to alter the behavior of email delivery (e.g., the
likelihood of an email being classified as spam) in any
way and allow users to use any email client unaltered. If
we were to relax this requirement and permit user-defined
email headers [28] to be inserted by customized clients,
we could optimize the operation of SureMail. First, the
sending client could explicit insert the message ID or an
equivalent user-defined field to obviate the need for content-
based reply detection (Section VI-B). Second, a notification
could include the (unique) message ID instead of a hash of
the message contents. Finally, the sending client could insert
notifications of recently sent emails in subsequent emails,
thus enabling the recipient to determine if it is missing any
of those emails. However, loss detection based on such in-
band notifications would work only when there is sporadic
loss in an otherwise steady stream of emails. Also, in-band
notifications run the risk of being lost because of email
spam filtering. So an out-of-band mechanism for posting
notifications is still needed as a fall-back.

G. Attacks on SureMail

Despite the steps taken by SureMail to protect the privacy
of both senders and recipients, an attacker could try indirect
means to glean information. For instance, a (trusted) sender
could post spurious notifications with carefully controlled
TTLs and then infer a recipient’s email checking (or at least



notification checking) habits based on which emails, if any,
the recipient asks for a retransmission of. However, a re-
cipient could watch out for and choose to ignore suspicious
patterns of natifications (e.g., frequent notifications from a
sender indicating apparent email loss).

A DHT node could use knowledge of the IP addresses
from which notifications are being posted for a recipient
to reverse-engineer information about the senders. This
threat can be alleviated by passing the notification through
a forwarding chain (as in standard DHT routing or in
anonymous communication systems such as Crowds [27])
instead of directly sending it to the H(R) node.

VIII. CONCLUSION

In this paper, we show that silent email loss is a signif-
icant problem. Our measurement study indicates that, on
average, 0.71 to 0.91% of email gets lost silently, without
any indication to either the sender or the intended recipient.
To address this problem, we have designed and prototyped
SureMail, a notification system to complement the current
email infrastructure by notifying recipients about email
loss. SureMail does not require any changes to the existing
email infrastructure or emails themselves, and is easy for
a group of users to deploy and use without requiring
the cooperation of their domain administrators. SureMail
includes mechanisms to defend against attackers who may
seek to subvert the system by posting notification spam
or intrude on the privacy of users. In our evaluation of
the prototype system, SureMail ensured that the recipient
was notified about every instance of loss of email sent to
the recipient, thus qualitatively improving the reliability of
email communication.
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