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Abstract
In a spoken dialogue system, the function of a dialogue manager is
to select actions based on observed events and inferred beliefs. To
formalize and optimize the action selection process, researchers
have turned to reinforcement learning methods which represent
the dynamics of a spoken dialogue as a fully or partially observ-
able Markov Decision Process. Once represented as such, optimal
policies prescribing what actions the system should take in order
to maximize a reward function can be learned from data. Formerly,
this task was assigned to the application developer, who typically
hand-crafted rules or heuristics. In this position paper, we assess to
what extent the action selection process can be automated by cur-
rent state-of-the-art reinforcement learning methods for dialogue
management. In examining the strengths and weaknesses of these
methods with respect to practical deployment, we discuss the chal-
lenges that need to be overcome before these methods can become
commonplace in deployed systems.

1. Introduction
In a spoken dialogue system (SDS), the function of a dialogue
manager is to select actions based on observed events and inferred
beliefs. Because these actions directly affect the usability — and
ultimately, the task success of the SDS — researchers have turned
to reinforcement learning to formalize and optimize the action se-
lection process. One approach that has been gaining momentum is
to represent the dynamics of a spoken dialogue as a fully or par-
tially observable Markov Decision Process (MDP) and to derive
an optimal policy that prescribes what actions the system should
take in various states of the dialogue so as to maximize a reward
function. Formerly, this task was assigned to the application de-
veloper, who typically hand-crafted rules or heuristics based on
engineering experience, at best, and intuition, at worst. Authoring
dialogue management strategies was not only time-consuming, but
also prone to human error. With reinforcement learning, applica-
tion developers could now exploit methods for automatically gen-
erating optimal strategies from data. This would render the task an
optimization problem, which, once solved, could remove the “art”
from the process and facilitate rapid application development. In
this position paper, we consider to what extent the action selec-
tion process can indeed be automated by current state-of-the-art
reinforcement learning methods.

This paper divides into three parts. In the first part, we pro-
vide relevant background on reinforcement learning methods that
utilize a fully or partially observable MDP for dialogue manage-
ment. In the second part, we consider the strengths and weak-
nesses of these methods with respect to practical deployment in

non-research settings. In so doing, we discuss the challenges that
need to be overcome before reinforcement learning methods can
become commonplace in deployed systems, as well as opportuni-
ties for research. Finally, in the third part, we attempt to weigh the
strengths against the weaknesses with respect to practical deploy-
ment and arrive at a summary judgment.

2. Background
Reinforcement learning addresses the problem of how an agent
should act in dynamic environments so as to maximize a reward
function [1]. Dialogue management can be construed as a rein-
forcement learning problem in that a SDS needs to take sequential
actions, and those actions should be “optimal” in some way, such
as maximizing a reward function. A central debate in the reinforce-
ment learning literature concerns the use of models. Model-free
approaches do not explicitly represent the dynamics of dialogue,
but instead directly approximate a value function that measures
the desirability of each environment state. These approaches of-
fer near-optimal solutions that depend on systematic exploration
of all actions in all states [2]. On the other hand, model-based ap-
proaches explicitly represent a model of the dynamics of dialogue
to compute an estimate of the expected value of each action. With
a model, the SDS can reduce the number of steps to learn a policy
by simulating the effects of its actions at various states [1]. Perhaps
for this reason, and for the fact that it is possible to derive a policy
that is optimal with respect to the data, dialogue researchers have
by and large pursued model-based reinforcement learning methods
(see e.g., [3, 4]).

The framework underlying model-based reinforcement learn-
ing is that of the MDP, which can be characterized by a tuple
(S, A, T, R), where:

• S is a finite set of states;

• A is a finite set of actions;

• T is a state-transition function such that T (s′, a, s) =
p(s′|s, a); and

• R : S ×A 7→ < is a local reward function.

The objective of the SDS is to maximize its expected cumulative
reward, which for the infinite-horizon, can include a discount fac-
tor to ensure that rewards accrued later are counted less than those
accrued earlier:

E

 
∞X

t=0

γtRt

!
(1)

where γ is a geometric discount factor, 0 ≤ γ < 1. The discount
factor encourages shorter dialogues and can be used to model pro-



cesses that can terminate at any time with probability 1 - γ, such
as a user hanging up.

Unfortunately, an MDP requires complete knowledge of S,
which may be intractably large if S encodes all relevant dialogue
history variables [5]. Furthermore, keeping track of unobservable
states such as the user’s intentions and beliefs, which can be in-
ferred from observations such as the user’s utterance, has been
shown to improve performance [6, 7, 8]. If a SDS cannot ob-
serve all states s ∈ S, then the MDP is considered a Partially
Observable MDP (POMDP), and can be characterized by the tuple
(S, A, T, R, O, Z), where:

• S, A, T , R constitute an MDP;

• O is a finite set of observations; and

• Z is the observation function such that Z(o, s, a) =
p(o|s, a).

Because the dialogue system never knows with certainty the cur-
rent state, it maintains a belief state b(s), or a probability distri-
bution over S. The local reward is then computed as the expected
reward ρ over belief states:

ρ(b, a) =
X
s∈S

R(s, a) · b(s) (2)

And the objective of the dialogue system is again to maximize its
expected cumulative reward, as in equation 1.

Once a spoken dialogue has been formalized as above, a num-
ber of algorithms can be exploited to learn an optimal or near-
optimal policy from data [9], where an optimal policy π : S 7→ A
is a mapping from states to actions. With a POMDP, deriving
a policy is more complicated (see [10] for a survey) as the pol-
icy π becomes a mapping from initial beliefs and histories of
actions and observations experienced so far — that is, ht =
〈a0, o1, a1, o2, ..., at−1, ot〉 — to actions. A POMDP policy can
be represented in several ways. Perhaps the most pertinent for di-
alogue management is that of a finite-state controller, which can
be learned when the optimal value function is piecewise linear and
convex [11]. Given that some application developers may already
be familiar with this kind of representation, it has been investigated
for dialogue management [7].

3. Strengths and Weaknesses
The formalization in Section 2 identifies the key concepts for uti-
lizing a fully or partially observable MDP for dialogue manage-
ment. In this Section, we consider the strengths and weaknesses of
these concepts with respect to practical deployment, and discuss
the challenges that need to be overcome.

3.1. Objective Function

The appeal of reinforcement learning for speech research may be
because dialogue management is cast into the same kind of statis-
tical framework for optimization as speech recognition and spoken
language understanding [5]. Unfortunately, whereas speech recog-
nition and spoken language understanding is generally based on a
maximum likelihood approach that essentially minimizes word or
concept error rates, in dialogue management, the objective func-
tion is less clear. Equation 1 states that the SDS should maximize
its expected cumulative reward. However, that objective function
could also be based on post-hoc measures such as usability scores

[4, 12], and construed to reflect whatever qualities application de-
velopers may want the SDS to possess.

The usual practice is to accept the expected cumulative reward,
equation 1, as the objective function, and adjust the reward func-
tion R to modify system behavior. However, the implications of an
objective function for modeling dialogue have not been well inves-
tigated. First, it is unclear whether every dialogue can be viewed
as an optimization problem with a specifiable objective function.
Moreover, it is unclear how the choice of the expected cumula-
tive reward, as opposed to any other objective function, affects the
types of dialogue interaction that can be optimized.

Given an explicit objective function, a promising avenue for
research is to optimize speech recognition and/or spoken language
understanding using the same objective function as dialogue man-
agement. Just as spoken language understanding does not require
correctly recognizing all the words, taking appropriate actions,
in certain contexts, may not require correctly identifying all the
words and concepts; e.g., in more conversational settings where
maintaining social credibility outweighs everything.

For practical deployment, requiring an objective function to be
explicitly specified may be both a strength and a weakness. It can
be a strength in that the objective function can serve as an evalua-
tion metric for controlled experiments. For example, it can be used
to measure the effect of adding or removing features from the SDS.
On the other hand, it can be a weakness in that most application
developers have little to no experience with optimization or even
statistics, and would likely be hard-pressed to specify an objective
function. They may opt with the default setting, not understanding
how it governs dialogue management, and later be puzzled as to
why the SDS behaves as it does.

3.2. Reward Function

In pursuing the expected cumulative reward in equation 1, a local
reward function R must be specified. The typical practice is to
assign a small negative reward for each dialogue turn and a large
positive or negative reward upon completing the interaction suc-
cessfully or unsuccessfully.

The local reward function is perhaps the most hand-crafted
aspect of the reinforcement learning framework for dialogue man-
agement. The overall behavior of the system, as dictated by the
policy, is very sensitive to changes in R, yet R is almost always
set by intuition, not data. For practical deployment, application
developers may find it too difficult to assign R, as that entails hav-
ing a good understanding about how the relative values of R(s, a)
for particular states and actions influence each other as well as the
overall behavior of the system. Although application developers
may be fine, for the most part, to go with reasonable defaults, if
they are ever asked to modify the SDS so that it behaves in a cer-
tain way, this will be hard to do without conceptually understand-
ing R very well. They may be better off coding heuristics they
understand than to try to tweak R.

Another problem is that R is typically set so that it is static.
However, it may be beneficial to have R adapt to the user type
and/or goal [13]. For example, for airline ticket reservation, with-
out knowing anything about the user, a SDS may initially take ac-
tions that minimize penalties for turns. When it becomes clear
that the user is more interested in exploring prices for vacations
than purchasing a ticket, it may be worthwhile to increase the re-
ward for engaging in longer dialogues and decrease the penalties
for not being in a termination state. Of course, R could just be
construed to be a function of user type or goal. Depending on the



size of the state space S, that may or may not be feasible. Alter-
natively, different policies could be learned for different user types
and alternated based upon the likelihood of a different user type.
This kind of approach is similar to those that have been taken with
adapting system and mixed initiative [14].

Finally, a promising avenue for future research is to learn the
local reward function by watching a system behave according to
its optimal policy and inferring R. This line of research is called
“inverse reinforcement learning” [15]. For dialogue management,
it may be possible to learn R by observing human interlocutors
engage in dialogue, allowing the SDS to mimic the human agent.

3.3. State Space and Transition Function

So far, the discussion has focused on local and cumulative rewards,
but R is a function of S. Modeling the state space S is the most
fundamental aspect of reinforcement learning, as it affects how the
dynamics of the SDS operate, how rewards are assigned, and how
tractable policy learning will be. For systems that currently utilize
reinforcement learning, researchers have limited the state space to
just a handful of variables, which constrains the kinds of domains
and interactions that can be handled by the SDS. Furthermore, be-
cause T is Markovian, state space variables must be selected so
as to support the Markov assumption, which may not always be
the best option [16]. To deal with scalability, researchers have
exploited factored representations of T to reduce the number of
parameters that need to be estimated [7, 17] and introduced meth-
ods to scale POMDP dialogue managers to slot-filling problems
of realistic size [18]. However, the state space still needs to be
delineated up front. This is for the most part a manual task. One
exception is research in learning the structure of the state space au-
tomatically from a myriad of candidate variables using Bayesian
model selection techniques for factored representations [17]. But
again, selecting candidate variables requires manual selection.

For practical deployment, it is unclear that application devel-
opers should accept whatever S researchers utilize in their sys-
tems. First of all, the research community has not established best
practices for modeling S, nor agreed upon a domain-independent
set of variables that could be utilized in any SDS — which, by the
way, constitutes an interesting challenge for the field. In extending
S to new domains, application developers may find that they need
to model domain-dependent variables to improve the performance
of the SDS. Alternatively, after the system has been deployed, they
may find that they need to add new state variables. Unfortunately,
adding new variables is not a minor fix. The entire policy has to
be re-learned. As noted above, modeling the state space is funda-
mental, and affects everything.

3.4. Policy

The ultimate product of utilizing reinforcement learning methods
for dialogue management is a policy that is optimal with respect
to the data. Suppose that somehow tractability ceased to be a lim-
iting factor, and that an optimal policy could be learned for arbi-
trarily large state and action spaces. Even in this ideal situation,
the question of how beneficial an optimal policy is for application
developers still remains.

Consider the issue of representation. As mentioned before,
the policy can be represented in various ways, but all ways pre-
scribe an optimal action that the SDS should take. Although it
might seem as if this is what developers want — namely, a black
box which tells the system what to do — it fundamentally wrests

control of the dialogue flow from their hands, something that de-
velopers generally resist, for good reason. Of all the black boxes in
a SDS (and there could be several, such as the speech recognizer),
the one that affects the users the most is the dialogue manager be-
cause that is where all system actions are decided. Because the
business of application developers revolves around satisfying the
needs of their customers, if their customers tell them, for exam-
ple, that they tried the SDS and was puzzled about how the sys-
tem took a particular action after having gone through a series of
exchanges, the developer better know how to fix that one partic-
ular action. This kind of fix, which would be relatively straight-
forward with dialogue strategies explicitly written out in code as
conditional statements, is much harder to implement within the
reinforcement learning framework because everything is interwo-
ven. To get an action to change, and moreover, to change several
turns into the dialogue, may entail modifying R, S, T , equation
1, and/or γ. In short, a fair amount of expertise in reinforcement
learning is required to do the job.

To get a better idea of how resistant application developers
may be to reinforcement learning, and statistical methods for dia-
logue management in general, consider the case of the statistical
language model (SLM). If prevalence is any indication of pref-
erence, then context-free grammars are much more prevalent and
preferred, in the commercial world than SLMs, despite the fact that
SLMs have been around longer historically. Although application
developers may be aware of the benefits of statistical modeling,
they often prefer the deterministic character of context-free gram-
mars because they know how to control and modify it. And when
they modify it, they can predict exactly what the results will look
like. This is not so clear with statistical dialogue management.
Reinforcement learning strikes at something application develop-
ers want to maintain control of, at least as much as, if not more so,
than language models. Worse, reinforcement learning has an even
more complicated set of parameters to adjust in order to obtain the
behavior they want.

Of course, the minute any change is made to an optimal pol-
icy, it ceases to be optimal with respect to the data. However, this
may not be so bad if all that an application developer really wants
is a first stab at a reasonable policy, to reduce design time. Further-
more, if the data was limited in some fashion, then it really does
not matter if the policy is no longer optimal because it was only
optimal with respect to the data on which it was learned anyway.

Online policy learning for dialogue management holds great
promise in this regard. As mentioned in section 2, dialogue
researchers have mostly focused on model-based reinforcement
learning approaches. Although online policy learning algorithms
exist for model-based approaches [19], model-free approaches are
more commonly utilized [2]. Online policy learning is a promising
area because the SDS would not be limited by the data on which it
was trained. Without having explored all actions in all states, the
system could engage in the type of exploration versus exploitation
dilemma that characterizes classical reinforcement learning [1]. To
date, very few dialogue researchers have investigated online policy
learning [17].

Another promising avenue of research is the pursuit of
domain-independent mechanisms for spoken dialogue, such as
clarification strategies and error handling (see e.g., [20]). By sepa-
rating out decisions or actions that application developers may not
be interested in controlling, such as confirmations, it may be possi-
ble to design policies based upon state spaces and reward functions
that are reusable.



3.5. Evaluation

The evaluation of reinforcement learning techniques for spoken di-
alogue systems has mostly centered on user simulation. Ever since
researchers began examining reinforcement learning for dialogue
management, they have realized that obtaining data to learn a pol-
icy would be problematic [21]. Because it is impractical, time-
consuming and burdensome to have a SDS explore all different
types of actions with real users, the idea was to learn a generative
model of the user so that user actions could be simulated in re-
sponse to system actions. With good user modeling, a SDS could
be rapidly prototyped and evaluated. Although this line of research
is very promising and would greatly benefit practical deployment,
the challenge of making sure that the user model truly reflects what
real users are likely to do, which oftentimes is dependent on very
subtle aspects of the dialogue design and task domain, is a daunt-
ing task.

As noted in section 3.1, having an explicit objective function
can be advantageous in that it can serve as an evaluation metric.
Oftentimes, that metric is difficult to realize without the aid of
user simulation. User simulation provides a testing environment
for conducting controlled experiments which might be too bur-
densome for real users. Unfortunately, just because a SDS does
well with respect to average or total reward in simulations does
not guarantee that real users will “reward” the system accordingly.
In fact, although the objective function is supposed to globally op-
timize the dialogue, it has never really been empirically evaluated
against systems that optimize local (myopic) decisions. Local opti-
mization may provide a better user experience in cases where users
unexpectedly change their approach to responding to the system;
that is, when local rewards change. For example, when users be-
come suddenly frustrated, a SDS that is focused on local decisions
may be better prepared to take actions that mollify and keep them
engaged. Of course, R can be a function of user frustration as
well, but, as we discussed in section 3.2, that may or may not be
feasible.

The question is, how well do the simple reward functions that
are commonly used within the reinforcement learning framework
reflect real users’ reaction to a SDS? After all, depending on the
objective function, which itself can be suspect, the cost of some
types of errors, such as misunderstandings, can be worse than oth-
ers, such as false rejections [22]. The best practice of course is to
conduct user studies in addition to simulation experiments, which,
because of lack of time and resources, is not often pursued by re-
searchers, with notable exceptions [4].

In general, current practices for evaluating reinforcement
learning-based systems need to be scrutinized more carefully. A
big concern is the common practice of testing policies that have
been trained on a simulated user using the same simulated user.
This is essentially cheating. As pointed out in [23], policies trained
with a poor user simulation model may appear to perform well
when tested on the same model, but fail when tested on a better
user simulation model. Fortunately, the converse was not true:
policies learned with a good model will still perform well when
tested on a poor model. Another common practice is to evalu-
ate reinforcement learning policies against hand-crafted solutions
(e.g., from an existing SDS) using average or total reward as a met-
ric. The problem is that the hand-crafted solutions are not typically
optimized according to same objective function, so it is not a fair
comparison. If, for example, a learned policy is evaluated against
a hand-crafted confidence threshold, then that threshold should be
tuned to maximize the expected cumulative reward.

4. Discussion
In this section, we attempt to weigh the strengths described in sec-
tion 3 against the weaknesses, and arrive at a summary judgment.
We note that the opinions expressed here are exactly that, opinions,
and nothing more.

Perhaps the strongest argument for the reinforcement learning
approach to dialogue management is that it is statistically driven
and theoretically principled. The approach models the uncertain-
ties of spoken dialogue (which compared to non-statistical ap-
proaches, offers benefits in-and-of-itself), makes explicit exactly
what is being optimized, and applies mathematically rigorous tech-
niques to derive an optimal policy. As the approach evolves and
dialogue optimization is tightly coupled with speech recognition
and spoken language understanding, it is likely that performance
will greatly increase and a stronger push will be made to make
the various “manual” aspects, such as state space selection, more
standardized. Even with the current state-of-the-art, given that ap-
plication developers accept the “default” settings, what they have
to gain — namely, a first stab at a policy, is tremendous. Hand-
crafting rules or heuristics for dialogue management is very diffi-
cult and time consuming. Even if application developers choose
not to use the generated policy, it is certain to give them insight
into how they should craft their own strategies. Of all the ap-
proaches to dialogue management out there, we believe that the
reinforcement learning approach offers the best hope of automat-
ing dialogue management.

On the other hand, perhaps the strongest argument against the
reinforcement learning approach with respect to practical deploy-
ment has little to do with the approach and more to do with the
business of building a commercial SDS. Even with many of the
challenges described in the previous sections solved, it is unlikely
that application developers will quickly move to adopt the ap-
proach. After all, they have customers to please, and modifying
policies while still remaining within the reinforcement learning
framework is currently overly complex and inaccessible to most
application developers. The only way application developers will
give up their control over a fundamental aspect of their business
is to be empirically convinced that the approach always creates
policies that outperform their human-engineered policies for every
domain. This is a tall order and requires winning over the trust of
not only the developers, but their customers as well. That way, if a
customer ever wants to modify a SDS so that it behaves differently
than what would be prescribed by the optimal policy, the devel-
oper could always show them empirically that the preferred way
results in better performance, and ultimately, more revenue for the
customer.

So, is reinforcement learning currently ready for practical de-
ployment? Probably not. Could it ever be? Yes, but it seems to
be a long road ahead. That said, there remains one more criticism
that can be leveled against the reinforcement learning approach.
Unlike many dialogue management models based upon discourse,
the reinforcement learning approach offer no theoretical insight
into how various processes and phenomena of discourse, such as
pronoun resolution, operate. All that the approach does is learn an
optimal controller for whatever data it receives. Linguistic theory
is mostly absent, or stuffed into the selection of the state space
or reward function, which may be disadvantageous in the long
run as the types of dialogues that application developers want to
build systems for involve greater and greater task complexity and
discourse structure. Because similar criticisms had been leveled
against statistical approaches to speech recognition decades ear-



lier, perhaps the only response possible at this point is that only
time, and verifiable results, will tell.

5. Conclusion
In this paper, we investigated reinforcement learning methods that
utilize a fully or partially observable MDP for dialogue manage-
ment. We assessed the strengths and weaknesses of these meth-
ods with respect to practical deployment and discussed challenges
that need to be overcome before these methods can become com-
monplace in deployed systems. Finally, we compared the primary
strength of these methods against its primary weakness and con-
cluded that the current state-of-the-art is not quite ready for prac-
tical deployment.
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