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Abstract
The use of assertions in software development is thought to help produdg sofare.
Unfortunately, there is scant empirical evidence in commerciawaaddt systems for this
argument to date. This paper presents an empirical case study of two coahrseftware
components at Microsoft Corporation. The developers of these componerisasizstly
employed assertions, which allowed us to investigate the relationshipedretsoftware
assertions and code quality. We also compare the efficacy of assertiong #yatired popular
bug finding techniques like source code static analysis tools. Wevebisem our case study
that with an increase in the assertion density in a file therestastically significant decrease
in fault density. Further, the usage of software assertions in thesparents found a large

percentage of the faults in the bug database.
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1. Introduction

There is much literature that makes a case for the ussatiass and discusses the potential
benefits of using assertions in software development. But to date lires been limited studies
in academia or in industry that empirically address the utilitysegédions. Even when we talk to

developers within Microsoft there are no unified opinions about the ussdubifeassertions.



Some developers use assertions in a very disciplined way and soelepdey don’'t use
assertions at all.

One reason why assertions have not been investigated is due to tbkdackss to industrial
programs and bug databases. Results obtained from benchmark programgscsuftee small
size of these programs. In industry, most of the large applicatitirisase a sizeable amount of
legacy code where the use of assertions is minimal. This tiedls lack of conclusive results in
empirical analysis as it is very rare that software dgerks will go back into code and add
assertions. This causes the analysis to be skewed as size plays a huge factorasuhges

Assertions have been studied for many years [5, 11, 13]. In 1998 there assigation
[14] performed for the NIST (National Institute for Standards anchii@ogy) in order to
evaluate software assertions. This report raised the followingajereel observation regarding
assertions:

... “Interest in using assertions continues to grow, but many practitionershatr sure

how to beqgin using assertions or how to convince their management that assertions

should become a standard part of their testing protess.

In this paper, we focus on addressing the above underlined statemesth@fie been several
research papers on the formal analysis of assertions in code, utiigyr in contracts,
investigations on the placement of assertions etc. but none on thegracgilications of using
assertions in commercial code bases. This paper attempts tesadilise question from an
empirical perspective by investigating the relationship betwesertasns and code quality for
commercial software components at Microsoft Corporation.

We are able to investigate the relationship between softwseetiags and code quality due to

the systematic use of assertions in the Microsoft components andai@c synchronization



between the bug tracking system and source code versions. This me&sg i find for each
fault the number of lines and source code files that are effeEvery fault is associated with the
list of code changes (if any) which are made to fix it. Based onneastigation we find that
there is a statistically significant negative correlation betwthe assertion density and fault
density. Extracting the number of faults related to assertions tlilerbug database indicates a
substantially large number of faults. This indicates the efficacy of using sefassertions.

This paper is organized as follows. Section 2 provides the relatedowadftware assertions.
Section 3 introduces the details of the case study setup and dattiaoll8ection 4 discusses
the results of the case study. Section 5 presents the threattdity wadd Section 6 provides a
discussion of the lessons learned and future work.

2. Related Work

In this section we discuss the related work on the use of sofassegtions in programming.
Assertions have been investigated as a fault detection practic®ftware systems [8].
Rosenblum [12] defines assertions as bémmmal constraints on software system behavior that
are commonly written as annotations of a source text. The primaryirgoalting assertions is
to specify what a system is supposed to do rather than how it is toRts@&nblum’s study [12]
presents a classification of assertions for detecting falifits. assertions are primarily of two
types of specification: specification fafnction interfaces (e.g. consistency between arguments,
dependency of return value on arguments, effect of global state etc.ypecification of
function bodies (e.g. consistency of default branch in switch statement, consisternvegelnet
related data etc.). Rosenblum also shows the need for a high-levelaacédign checkable

specification of the required behavior.



Empirical research into contracts (assertions) [1] focusesagna$ability and robustness.
Diagnosability is the degree to which the software allows easy @uik@ location of a fault
when detected. Robustness is defined as the degree to which safnarecover for internal
faults that would have lead to failures [1]. Baudry et al. [1] eicglly validate such robustness
and diagnosability factors using different measures by applying mutatidgsianan a
telecommunications switching system. They observe that Design byatdatem efficient way
of improving the diagnosability and robustness of a system and its gendigl. Gienilarly,
Briand et al. [2] investigate in detail the impact of contractceteble assertions on
diagnosability. They compare the results of programs instrumented anttacts and programs
that exclusively use test oracles. The ATM case study they uge?l K5_OC in size. Based on
the mutant versions generated (by seeding faults) they compute diaghodabilprogram
versions using only test oracles and by using instrumented versions usiragtsorithe average
diagnosability in the ATM program by using contract is at least ¢igiets better than using just
test oracles and this implication leads to significant effort savings.

Voas and Miller [15] discuss an interesting approach to placingtiassein code. An
excessive number of assertions slows down the execution speed andigigneot be any cost-
benefits between the performance degradation and the potential defdiiiding faults. Their
work aims to place assertions in locations where traditiesding is unlikely to uncover any
faults via sensitivity analysis. Sensitivity analysis makes ptied& concerning future program
behavior by estimating the effect that (1) an input distributionsyBjactic mutants, and (3)
changed values in data states have on current program behavior [15].

Muller et al. [9] conducted two controlled experiments about asseréisna means for

programming, using graduate students in a university. They investigateatienstip between



assertions and maintenance, reuse and reliability. They observéketipmograms produced by
the group that used assertions were more reliable (though not callyissignificant so)
compared to the programs developed by the group of students not using assertions.

Our contributions are closely related to the previous studiesp@weth to previous empirical
analysis of assertions [1] [2] [15] we take a black box approach tstigagng the relationship
between software assertions and quality. Instead of mutant versions [2] to inedbigefficacy
of assertions we use actual faults extracted from a bug datdbasto deployment of the
software. Our study provides empirical evidence of the relationshigbetassertions and code
guality using commercial software systems. Mining the bug datalssalws us to determine
the number of faults that were related to the usage of assertions.

3. Case Study

In our case study we investigate the relationship between assentisity dad code quality
(measured by post-release fault density). In Section 3.1 we dewilbase study setup and in

Section 3.2 the data collection process for mining the software assertions aimddemhtion.

3.1. Case Study Setup
Our empirical case study was performed on two commercial comsoenticrosoft
Corporation. These two components are software development toolsasmbiphrt of the Visual
Studio™ system at Microsoft Corporation. The reasons for selection of the two compoments ar
 The code base was primarily written using C and C++. The whala terote and
modified unit tests (which are run before any changes to the code) dwiey c
development. On a few occasions the team specifically wektdrat added additional
unit test coverage where new problems were discovered. In additioartip®nent’s test

team ran their automated tests nightly and obtained very high block code coverage.



» ltis a sufficiently mature code base. There wasn't a fostaace on assertions during the
development of components A/B. Developers in these teams recogheeadlue of
assertions. This ensures that our results are not skewed dueetdoarement policy
mandating the use of assertions.

* The components were tested with similar rigor for both the releases asyb&sas were
released to thousands of software developers and partners withimusside the
company.

* There was very accurate synchronization between the bug tracking systesource
code versions. This makes it very easy to find for each fault theerushlines that are
changed and source code files affected. Every fault is associdtedheilist of code
changes which are made to fix it.

For each component, we analyzed two internal releases, thus providingdia sets to

identify the relationship between assertion density and fault dehsityA-1, A-2 and B-1, B-2
denote the two internal releases of components A and B. Figure 1 sivamalysis timeline for

component A-1 and A-2 .
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Figure 1: Analysistimeline for software components



Similarly we investigate a similar analysis timeline émmponent B-1 and B-2. For each
component we measure the number of assertions at the point sereéldi@r each component is
released we measured the faults for the component postereletisthe next version (aftex
time) is released. Using the assertion and fault informatitmtive size of the system (in 1000’s
of lines of code (KLOC)) we compute the assertion density (numbassa#rtions/KLOC) and

fault density (number of faults/KLOC). More formally our research hypothesis is:

Hypothesis: With increase in the assertion density of the code there |is a
decrease in the fault density.

3.2 Data Collection

In this section we describe the data collection process for mthmgassertion and fault
information from the source control system and bug database to aid reigarchers in
replicating our studies. Figure 2 explains the data extraction methodoledynusur case study
to mine the faults from the bug database. We define the extraeils dccording to the IEEE
[6] definition as,when software is being developed, a person makes an error that resalts in
physical fault (or defect) in a software element. When this eleimexecuted, traversal of the
fault/defect may put the element (or system) into an erroneatgs ¥¢hen this erroneous state
results in an externally visible anomaly, we say that a failure has @@turhis definition of
fault is confirmed by verifying if the entry in the bug database rasrasponding source code
changes as shown in Figure 2.

We follow an interactive procedure for mining the faults and asaer{Figure 2 describes
this process in detail). We extract all the bug information penigitd a component (post-
release). For each entry in the bug database we check ifare@ny associated source code
changes. If not we ignore the bug otherwise we classify the bugaadt arid extract the list of

files associated with the change from the source control syskemge logs. From this



information we check if there were any executable lines changest e ignore the bug (as
sometime only comments might have changed). If there are execsaipt® code changes we
extract the lines of code in the file(s) and the number of assertWe iterate this process until
all the post-release bug information associated with a componertdcissped. We then merge
the number of assertions, faults and size information to computessieetion density and fault

density on a per file basis.
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Figure 2: Data extraction methodology
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The extraction of the assertions and faults described in Figure 2omapletely automated via
a parser written in C#. An example of the usage of invariants, pretiomsdiand post-
conditions is also shown in Appendix A.
4. Case Study Results

To evaluate the relationship between assertion density and faultydems extract the
software assertions and fault information for all the four relegé-1, A-2, B-1, B-2). We

evaluate the relationship between the fault density and theiassgensity using a Spearman



rank correlation. The Spearman rank correlation is a commonly-usedt robuelation

technique [4] because it can be applied even when the associaticeebetlements is non-
linear; the Pearson bivariate correlation requires the data atisbébuted normally and the
association between elements to be linear. Since we use eoragliatton technique we remove
from the analysis all the files that have no assertions andutts.f&uch files can skew the
results because they cannot be used to evaluate the efficacyrtibassend inflate the size of
the study. We do include files that have faults but no assertionslhaasifiles with assertions
but no faults. We remove only the files that don’'t have both faults amdtiass. Table 1

describes the sizes of components A and B. The total teanminsieems of personnel for
components A and B was on the order of 14-18 software developers. Thgeaassertion

density values for the four analyzed components are also shown in Table 1.

Table 1. Componentssize

Component| Size in terms of Number of Assertion density
lines of code | source files
A-1 104.03 KLOC 140 26.63 assertions/KLOC
A-2 105.63 KLOC 124 33.09 assertions/KLOIC
B-1 372.04 KLOC 931 37.09 assertions/KLOC
B-2 365.43 KLOC 853 39.49 assertions/KLOC

Figure 3 presents the scatter plots of the assertion densitidaidt densities for the files that
comprise of the components A and B. The axes for the fault denkaie been removed to
protect proprietary information. In Figure 3 we indicate a point arést in components A-1
and B-1 by “1” and in components A-2 and B-2 by “2”. Each dot in theesqgalbt represents a

unique file.
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Figure 3: Scatter plots between assertion density and fault density for components A, B

Point “1” indicates the vertical trend for files that haveozassertion density indicating that
there is a high fault density. Similarly point “2” indicates tloeizontal trend that shows that the
files with a low fault density have a higher assertion density. rtferoto quantify the
relationships shown in Figure 3 we analyze the data using Speaamagarrelation. Table 2
shows the correlation results for components A and B. From thesresfuthe correlation
analysis we observe a statistically significant negative oglstiip between the assertion density
and the fault density. This indicates that with an increase iraggertion density there is a

decrease in the fault density and vice versa.



Table 2: Spearman rank correlation coefficients

Component Spearman correlation
(significance)
A-1 - 0.320 (p<0.0005)
A-2 - 0.209 (p<0.0020)
B-1 - 0.384 (p<0.0005)
B-2 - 0.295 (p<0.0005)

We then mined all the faults from the bug database to determine how of these were
caused by assertions (e.g. assertion failures). The utility oftiagsecan be evaluated by their
ability to detect faults [1, 2, 15]. Upon analyzing the faults we obskareon an average 14.5%
of the faults for component A and 6.5% of the faults for component Bekated to assertions
(Figure 4). These percentages are substantially large considegisgzé and complexity of the
components. We then calculated the percentage of faults found by sodecetatic analysis
tools. Static analysis tools are cheap to run and have low overheadd&h#fyierrors such as
buffer overflows, null pointer dereference, the use of uninitializethbies etc. Using static
analysis tools within Microsoft (FxCop, PREfast, and PREfix) [3, 7, 1®]obtain the faults
from the bug database for components A and B to present a rel@iveof the percentage of
faults found due to assertions. Figure 4 describes the relative vidve giercentage of faults
found by the static analysis tools and by assertions. From Figure 4nvdeg@onstrate the
significance of the large percentage of faults found using asseNiEnare not comparing the
utility of static analysis tools and using assertions but just wapresent a relative view to
understand the scale and complexity of the systems. Based ongbeptacentage of faults
found using assertions we see that there is a potentially huge hane$ing assertions for

software development.
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Figure 4: Fault per centages via assertions and static analysistools

5. Threatsto Validity

In controlled studies say using students one can use the resultsdafrdized tests, GPA etc.
to quantify the “effectiveness” of the subjects. Unlike controlledissud is not possible to
measure the “effectiveness” of professional developers. It couthdmble that the developers
in our study were better programmers than the average programmedre inndustry.
Unfortunately this is a threat we cannot address. But we canhatydsed on policies for
recruitment at Microsoft to a large degree most programmers will havelar skill levels.

We measure the assertions at one point in time, the releastohvef the component. It is
possible that developers might have removed assertions during the develdjpmeeframe
which could have also improved the quality of the components but cannotdserret as we

take only one snapshot of the component. Though it is highly unlikely that degeloiiego



back to code to remove working assertions we plan on addressing thisrendutdies by using
a moving average of the assertion numbers.
6. Lessons L earned and Future Work

Based on our empirical analysis across two large components sisbficwe observe a
similar statistically significant negative trend betweenféhdt density and the assertion density.
This indicates the uniformity of results across the components A aSthtistically we can say
that with higher assertion density there is a corresponding lowerdiensity. But the levels of
statistical significance are not high (around 0.3’s) but are in theopypgie negative direction
indicating the desired trend.

This brings us to an important issue: what are the implicatiorieesétresults and what action
can we take based on them? We believe enforcing the use ofcassertiuld not work well. For
example, mandating that developers should have an assertion density cér8JKISSC may
not lead to an effective use of assertions. We can build crosk-ofeasures like code coverage
to tie back to the assertions, i.e. when there is an increase assbdion density is there an
increase in the code coverage numbers to make sure that the ngigrassee exercising new
code etc.

Based on talking to different developers and managers across Mi@osofiservation is that
unless there is a culture of using assertions, such mandatestyloduce the desired results. If
the developers are mature enough to understand the code base and fulit@sssgions, it is
highly likely that they understand the code base, which will lead to a fawk density. We feel
there is an urgent need in educating students about the utility whsefassertions. We plan to

collaborate with academics to help drive some of these results in the classroom



Ideally our future work would be a planned controlled case study thatigates two teams
(> 10 people in size) under the same organization. One team would use assertionsde #melc
the other team would not. We intend to compare their fault dengtssrelease to assess the
stability of the code base and indirectly their quality. The second anel important aspect is
what is the cost benefit trade-off? If using assertions is goibg cost-ineffective then it would
be very hard to get teams to adopt this kind of results. At a veryldughwe should consider
this a first study to address some of the concerns of the N§®Wtr[14]. Towards this end we
intend that our case study contributes towards strengthening the existpigcal body of
knowledge in this field [1, 2, 12, 14, 15]. Another point would be to repeasthdy at a finer
lever of granularity (say at the function level) to compare ttemgth of the correlation results to
identify if there exists a stronger relationship between the assertiotydmmdicode quality.
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Appendix A: Example usage of assertionsin C#
Figure A.1 below represents a trivial function in C# which adds a rotieetlinked list. This

example demonstrates the usage of invariants, pre-conditions, and post-conditions.

/Il <summary>
/Il Add given node to the linked list. This method is private and therefore
/Il we use assertions to do the error checking as the caller should never
/Il pass in invalid information.
Il <[summary>
/Il <param name="node">Node to add.</param>
/Il <returns>The count of items in linked list.</returns>
private int AddNodeToList(Node node)
{
/I Check the preconditions.
Debug.Assert(null != node);
Debug.Assert(!String.IsNullOrEmpty(node.ld));
Debug.Assert(0 <= _count);
Debug.Assert(null '= _head);
Il First item to be added to the list.
if (null == _head)
{

}

else

{

_head = node;

/I List isn't empty, therefore walk to the end of the list and
/[ add the new node.
Node currentNode = _head;

while (null != currentNode.Next)
/I Check the validity of the nodes in list.

Debug.Assert(!String.IsNullOrEmpty(currentNode.ld));
currentNode = currentNode.Next;

}

currentNode.Next = node;

}

_count++;

/I Check the postcondition.
Debug.Assert(0 < _count);

return _count;




