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Abstract 
 

On most modern operating systems, a process is a hardware-protected abstraction for executing potentially 
mutable code and data. Common features of processes include: dynamic code loading, dynamic code 
generation, access to cross-process shared memory, and a universal API. 

This paper argues that many of the dependability and security weaknesses of modern systems are exacerbated 
by this open process architecture. Moreover, this architecture impairs the ability of tools to analyze code 
statically, to improve its performance or dependability. By contrast, a sealed process architecture prohibits 
dynamic code loading, prohibits self-modifying code, prohibits shared memory, and replaces a universal API 
with a process-limited API. This paper describes an implementation of a sealed process architecture in the 
Singularity operating system, discusses its merits, and evaluates its impact. Among the benefits are: 
improved static program analysis, strong security guarantees, elimination of OS redundancies found in 
language runtimes such as the JVM and CLR, and better software engineering. 

1. Introduction 
The process, as a recognized operating system 
abstraction, debuted in Multics [52] in the 1960s. 
Multics processes included support for dynamic code 
loading, dynamic code generation, access to cross-
process shared memory, and a universal API capable 
of directly modifying data in another process. 

This open process architecture is now nearly 
universal. Aspects of this architecture, such as 
dynamic code loading and cross-process shared 
memory, were not in the early versions of UNIX [38] 
or early PC operating systems. However, their 
absences reflected limited address spaces and a lack of 
dynamic linking technology, and this “weakness” was 
quickly remedied. Today, for example, all four aspects 
of open processes are found in FreeBSD, Linux, 
Solaris, and Windows.  

In the beginning, open processes gained popularity 
because they improved memory utilization by sharing 
library code across processes. Today, open process 
architecture’s most characteristic feature is the ease 
with which the OS or an application can be extended 
with plug-ins. New features and functionality are 
routinely loaded directly into these systems’ kernels 
and processes. For example, Microsoft Windows 
supports over 100,000 in-kernel device drivers, which 
enable it to control almost any hardware device. Other 
examples of widely used in-process extensions include 
dynamic content extensions in web servers (like 
ISAPI extensions to Microsoft’s IIS), extended stored 
procedures in databases, and web browser plug-ins. 

1.1. Disadvantages of Open Processes 
Although common, open processes are not “free.” 
This architecture has negative consequences for 
dependability, correctness, security, and performance.  

Almost all open process systems use hardware 
protection [41] to ensure process isolation. All of the 
systems named above, and many others, rely on paged 
memory management and differentiated user and 
kernel instructions to ensure process isolation. 
Hardware-based process isolation is so common that it 
is generally assumed to be a “free” processor feature. 
Unfortunately, hardware-based isolation is not free. In 
Aiken et al. [3], we demonstrated performance costs 
from 2.5% (in a compute-bound task with no paging) 
to 33% (in an IPC bound task). Page table 
management and cache and TLB misses are 
responsible for this increase in execution time. 

Moreover, the extension mechanism commonly 
associated with open processes is a major cause of 
software reliability, security, and backward 
compatibility problems. Although extension code is 
rarely trusted, verified, or even fully correct, it is 
loaded directly into a host’s process with no hard 
interface or boundary between host and extension. The 
outcome is often unpleasant. For example, Swift 
reports that faulty device drivers cause 85% of 
diagnosed Windows system crashes [47]. Moreover, 
because an extension lacks a hard interface, it can use 
private aspects of its host’s implementation, which can 
constrain evolution of a program and require extensive 
testing to avoid future incompatibilities. 
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Dynamic code loading imposes a less obvious tax on 
performance and correctness. Software that can load 
code is an open environment, in which it is impossible 
to make sound assumptions about the system’s states, 
invariants, or valid transitions. Consider the Java 
Virtual Machine (JVM). An interrupt, exception, or 
thread switch can invoke code that loads a new file, 
overwrites class and method bodies, and modifies 
global state [45]. In general, the only feasible way to 
analyze a program running under such conditions is to 
start with the unsound assumption that the 
environment will not change arbitrarily between any 
two operations. 

Open processes complicate security. If the code 
running in a process is not known a priori, it is 
difficult to rationalize subsequent access control 
decisions based on code identity. Perhaps for this 
reason it is rare for operating systems to provide any 
strong guarantees about application identity, relying 
instead on the identity of an authenticated user or an 
application masquerading as a user. Software 
attestation solutions like Terra [20] and NGSCB [35] 
must use hardware and virtual machines to prevent 
modifications to the code of running processes.  

1.2. Contributions 
This paper describes a new sealed process 
architecture in which the OS guarantees that the code 
in a process cannot be altered once the process starts 
executing. The architecture prohibits dynamic code 
loading, prohibits self-modifying code, prohibits 
cross-process sharing of memory, and replaces a 
universal API with a process-limited API. Of 
particular import, the sealed architecture incorporates 
a single extension mechanism for both OS and 
applications: extension code executes in a new 
process, distinct from its host. 

Sealed processes offer many advantages. They 
increase the potential of static program analysis to 
improve performance and reliability. They enable 
stronger security guarantees. They allow the 
elimination of duplication of OS-level features in 
virtual execution environments such as the Sun’s JVM 
and Microsoft’s Common Language Runtime (CLR). 
Finally, they encourage better software engineering. 

We have implemented sealed process in the 
Singularity operating system. Singularity is a new 
system being developed as a basis for more 
dependable system and application software [28, 29]. 
Singularity exploits advances in programming 
languages and tools to create an environment in which 
software is more likely to be built correctly, program 

behavior is easier to verify, and run-time failures can 
be contained. 

The rest of the paper is organized as follows. Section 
2 describes the sealed process architecture and 
discusses its qualitative merits. Section 3 describes the 
implementation of sealed processes in Singularity. 
Section 4 contains a quantitative evaluation of the 
sealed process architecture in Singularity. Section 5 
describes related work and Section 6 contains 
conclusions and a discussion of future work. 

2. Sealed Process Architecture 
A sealed process architecture is an architecture in 
which the operating system guarantees that the code of 
a process cannot be altered once the process starts 
executing and in which the state of a process cannot 
be directly modified by another process.  

A sealed kernel is an OS kernel whose code cannot be 
altered after system boot and whose state cannot be 
modified by any process. An operating system with an 
open kernel could provide sealed processes. However, 
in this paper, we shall assume that a sealed process 
architecture also implies a sealed kernel.  

We can draw an instructive analogy between sealed 
processes and sealed classes in object-oriented 
languages. Practice has shown that designers and 
implementers of classes need a mechanism to limit 
class extension and force extensions to use a declared 
interface [8] in order to avoiding errors that typically 
appear only at runtime. Similarly, by running dynamic 
extensions in a separate process, the sealed process 
architecture increases system dependability by forcing 
application and system extensions to use declared 
interfaces. 

2.1. Sealed Process Invariants 
The sealed process architecture maintains four 
invariants: 

 The fixed code invariant: Code within a process 
cannot be altered once the process starts 
execution. 

 The state isolation invariant: Data within a 
process cannot be directly accessed by another 
process. 

 The explicit communication invariant: All 
communication between processes must occur 
through explicit mechanisms, with explicit 
identification of the sender, and explicit receiver 
admission control over incoming communication. 

 The closed API invariant: The API between a 
process and the system must maintain the fixed 
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code, state isolation, and explicit communication 
invariants. 

The fixed code invariant ensures that sealed processes 
are closed code spaces. Code in a process may come 
from one executable or from a collection of 
executables and libraries, but it is fully linked and 
loaded before execution starts. As a consequence, a 
process cannot dynamically load or generate code into 
its own process. Because code is known a priori, and 
can be checked against certificates provided by the 
code’s publisher, it is possible to reason about the 
access rights of a process using code identity. For 
example, the security principal inherent in a process 
instance might include an authenticated user, a 
program, and/or a publisher. 

The state isolation invariant ensures that code in a 
process reads and modifies data only in itself. This 
invariant disallows communication through shared 
memory. Processes can communicate through 
memory, but ownership and access to data must be 
handed off between the processes so that one process 
is not able to change the contents of the memory while 
another is reading it. 

The explicit communication invariant ensures that all 
communication is subject to admission control 
policies. Implicit or anonymous communication 
channels, such as shared memory or manipulation of a 
Windows message pump, are forbidden. Furthermore, 
the explicit communication invariant ensures that both 
the kernel and recipient process have the ability to 
accept or deny requests to establish a communication 
channel. These constraints allow a process to create a 
communication channel to itself and pass that channel 
(and its implicit communication right) to another 
process. Similarly, a process can receive a channel 
from one process and hand it off to a third process. 
Finally, the explicit communication invariant allows a 
process to invest one or more communication rights 
into a child process at creation time. 

In general, the explicit communication invariant 
ensures that a process can only communicate with the 
transitive closure of processes reachable through its 
existing communication graph (or extensions of the 
graph caused by creation of child processes). In 
practice, intermediate processes (including the kernel) 
and the OS communication mechanisms can further 
restrict the communication graph. For example, an 
intermediate process can refuse to forward a 
communication request based on access control.  

The closed API invariant ensures that the OS API 
provided to an unprivileged process does not include a 

mechanism that could subvert the fixed code, state 
isolation, or explicit communication invariants. For 
example, the closed API invariant ensures that the 
base API does not include a mechanism to write to the 
memory of any other process. 

Most open process systems include debugging APIs 
that allow reading and writing of another process’s 
memory. Strictly speaking, the closed API invariant 
does not prohibit debugging APIs, but it does prohibit 
providing debugging APIs to unprivileged processes. 
Preferably debugging capabilities should be available 
in conjunction with specific communication rights and 
only after both the kernel and the target process (or the 
certifier of the target process) have agreed that 
debugging access is appropriate.  

2.2. Qualitative Benefits 
The sealed process architecture increases the accuracy 
and precision of static program analysis. The fixed 
code invariant allows a static analysis tool to safely 
assume that it has knowledge of all code that will ever 
execute in a process. For example, in a sealed process, 
a whole-process optimizing compiler can perform 
aggressive inter-procedural optimization, such as 
eliminating methods, fields, and even whole classes 
that are unreachable within a specific program.  

This aggressive optimization cannot be performed 
safely in open process architectures. Imagine, for 
example, aggressively optimizing an open OS kernel 
that support dynamically loaded device drivers. A 
compiler might remove an apparently unused data 
field, thus reducing the size of a data structure, only to 
later have an unfortunate user load a driver that 
accesses this field. 

The soundness of program correctness tools, such as 
Microsoft’s Static Driver Verifier [5], is limited by 
open process architectures. Systems of this sort make 
an essential assumption that they can soundly 
approximate a program’s worst case behavior since 
they analyze all of its code. If a tool cannot analyze all 
code, its approximations may be incorrect. Open 
systems are verifiable only if their extension points are 
fully specified so that an analysis tool can 
conservatively approximate the behavior of missing 
code. The extension points of open processes, because 
they expose the entire internal code of a process, are 
underspecified and therefore inherently unsound. 

Sealed processes enable stronger security guarantees 
than open architectures. Code-based security systems 
such as Microsoft Authenticode and Java [23] attempt 
to make security guarantees by validating the 
signature of a program residing on disk. However, 



MSR-TR-2006-51  
This is a draft paper that is under submission.  Please contact Galen Hunt for citation information. 

 

 4

none of these guarantees hold once the code is loaded 
into an open process and mutated. With a sealed 
process, the certification of disk contents can be 
extended to the executable contents of a process. A 
sealed architecture can guarantee that a program will 
execute in its certified form because of the state 
isolation and closed API invariants. No open process 
architecture can make such a claim. When coupled 
with hardware protection for external tampering, such 
as NGSCB [35], sealed processes enable an execution 
model in which a process is a trustable entity.  

Sealed processes enable the elimination of the OS 
redundancies found in virtual execution environments 
such as the JVM and CLR. A sealed process system 
needs only one error recovery model, one 
communication mechanism, one security policy, and 
one programming model because the sealed process 
architecture uses a single mechanism for both 
protection and extensibility instead of the 
conventional dual mechanisms of processes and 
dynamic code loading. As a consequence, the 
confusing layers of partially redundant mechanisms 
and policies found the CLR and JVM can be removed. 
For example, our experiments show that the compiled 
CLR base class library would be 30% smaller without 
the checks and metadata required for its security 
model meant to compensate for the weaknesses of 
open processes. 

Sealed processes encourage—but obviously cannot 
guarantee—that programmers practice better software 
engineering by encouraging modularity and 
abstraction. In a sealed architecture, OS and 
application extensions, such as device drivers and 
plug-ins, can communicate only through well-defined 
interfaces. The process boundary between host and 
extension ensures that an extension interface cannot 
be subverted. 

At least for the kernel, the benefits of a sealed 
architecture have long been recognized by the OS 
community. For example, microkernels, such as Mach 
[2], L4 [24], SPIN [7], VINO [42], and the Exokernel 
[12], recognize that an OS kernel would be more 
reliable if it was extended in separate processes. These 
microkernels realized benefits from closing the kernel, 
but none generalized the principle into a sealed 
process architecture.  

2.3. Limitations 
Although a sealed architecture offers benefits, it also 
imposes limitations. The set of programs that can 
execute on a sealed architecture is limited by design. 
For example, the fixed code invariant prohibits self-

modifying code and the state isolation invariant 
prohibits communication through shared memory.  

2.3.1 Programmability 

Communication via memory shared between 
processes is notoriously prone to concurrency bugs. A 
sealed process OS may prevent this class of errors, but 
the message passing is also a common source of 
programming errors. These errors include marshalling 
code that breaks type-safety properties and 
communication protocol violations that lead to 
deadlocks and livelocks. These problems can be 
mitigated by programming language extensions that 
concisely specify communication over channels and 
by verification tools [15]. 

Sealed processes also increase the complexity of 
writing program extensions, as the host program’s 
developer must define a proper interface that does not 
rely on shared data structures. The extension’s 
developer must program to this interface and possibly 
re-implement some functionality from the parent. 
Nevertheless, the widespread problems inherent in 
dynamically loaded extensions argue for alternatives 
that increase isolation between an extension and its 
parent. Singularity’s demonstrates that an out-of-
process extension mechanism works for applications 
as well as system code; does not depend on the 
semantics of an API, unlike domain-specific 
approaches such as Nooks [47]; and provides simple 
semantic guarantees that can be understood by 
programmers and used by tools. 

2.3.2 Dynamic Code Generation 

The inability to generate code dynamically into a 
running sealed process precludes common coding 
patterns such as just-in-time compilation and the 
online translation of high-level abstractions such as 
regular expression. In a sealed architecture, such 
usage must be implemented by generating the code 
into a separate process image, starting this process, 
and communicating with the process over a well-
defined communication channel. Note that interpreters 
for any language can still be written in the sealed 
process architectures. 

2.3.3 Data Sharing 

In an open process OS, shared libraries and DLLs are 
a common way to reduce the code footprint of the 
system. For example, a typical Windows Sever 2003 
system running a mix of user applications shows 74 
processes using a total of 5.4GB of virtual address 
space, but only 760MB of private data/code. In an 
open process, the extensions can be co-located into a 
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single process, thus sharing both read-only and read-
write data. In a sealed architecture, multiple 
extensions may share read-only data and code from a 
common library, but they can’t share read-write data. 

2.3.4 Scheduling Overhead 

Since a sealed process can only be extended by 
creating a child process that provides the additional 
functionality via an IPC interface, it is expected that 
there will be more processes involved in servicing any 
given request. These additional processes not only 
introduce communication overheads such as data 
copying, but exacerbate the scheduling problem faced 
by the kernel. The prevalence of server processes 
multiplexed between multiple clients could make 
resource accounting more difficult, and the increased 
number of (non-blocked) threads may preclude 
sophisticated scheduling algorithms. 

In practice, we have found that a typical Singularity 
system contains a large number of threads (hundreds 
of threads are not uncommon), but the number of non-
blocked threads at any time is usually quite small. 
However, this may not be true for all sealed 
architectures. 

3. Singularity 
Singularity is a new system under development as a 
basis for more dependable system and application 
software. Singularity incorporates two important 
technologies to significantly reduce the cost of a 
sealed process architecture: software isolated 
processes (SIPs) and first-class language support for 
inter-process communication.  

SIPs use programming language safety and the 
invariants of the sealed process architecture to provide 
a less expensive process isolation mechanism than 
hardware protection. All untrusted code running in a 
SIP must be written in a safe language and statically 
verified to be type safe. Due to verified memory 
safety, SIPs can share the same hardware protection 
domain and in fact execute in privileged mode with 
the kernel. 

SIPs are inexpensive to create. Low cost makes it 
practical to use SIPs as a fine-grain isolation and 
extension mechanism. Versions of Singularity with 
and without hardware memory protection allow direct 
comparison of performance overheads of isolation 
mechanisms. Without hardware isolation, system calls 
and inter-process communication run significantly 
faster (30–500%) and communication-intensive 
programs run up to 33% faster [3]. 

SIPs communicate through a bidirectional type-safe 
message-passing mechanism called a channel. Each 
channel has exactly two endpoints. At any point in 
time, each channel endpoint is owned by at most one 
thread. High-level message primitives are provided to 
transfer typed data structures from the object space of 
one process to another without violating type safety or 
compromising the integrity of the respective garbage 
collectors and language runtimes. In fact, bulk data 
transfer can be achieved without any copying because 
static verification (made possible by the sealed 
process abstraction) prevents a sending thread from 
accessing objects it no longer owns. Fähndrich et al. 
[13] contains a full description of the first class 
language support and type system for IPC in 
Singularity.  

The contributions of SIPs and first IPC support make 
the sealed process architecture viable. In the 
remainder of this section we describe how the 
architecture works  

Singularity Microkernel

HAL Language Runtime & GC 

Scheduler Page Mgr

Security Svc Directory SvcProcess Mgr

I/O Mgr

Plug-Ins Applications Subsystems Device
Drivers

Language
Runtime

& GC 

Language
Runtime
& GC 

Language
Runtime
& GC 

Language
Runtime
& GC 

Libraries Libraries Libraries Libraries

ExHeap

 
Figure 1. Singularity System Architecture. 

3.1. Singularity Components 
Figure 1 depicts the key components of the Singularity 
OS. The microkernel provides the core functionality 
of the system, including paged memory management, 
process creation and termination, communication 
through channels, scheduling, I/O, security, and a 
local directory services. Most of the Singularity’s 
functionality and extensibility exists in processes 
outside of the kernel. In particular, all subsystems and 
devices drivers run in separate processes. 

Unlike previous systems that relied on language 
safety, Singularity SIPs execute independently. Each 
SIP contains its own memory pages, language 
runtime, and garbage collector. Due to the state 
isolation invariant, the language runtime and garbage 
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collector can employ data layout and GC algorithms 
most appropriate for a particular process. SIPs are 
created and terminated by the operating system, so 
that on termination, a SIP’s resources can be 
efficiently reclaimed. 

The Singularity kernel and language runtimes consist 
almost entirely of safe code. The rest of the system 
consists of only verifiably safe code, including all 
device drivers, subsystems, applications, and plug-ins. 
While all untrusted code must be verifiably safe, parts 
of the Singularity kernel and language runtime, called 
the trusted base, are not verifiably safe. Language 
safety protects this trusted base from untrusted code.  

In addition to the message-passing mechanism of 
channels, processes communicate with the kernel 
through a limited API that invokes static methods in 
kernel code. This interface isolates the kernel and 
process object spaces. All parameters to this API are 
values, not pointers, so the kernel and process’s 
garbage collectors need not coordinate. The 
Singularity API maintains the closed API invariant. 
Only two API calls affect the state of another process. 
The call to create a child process specifies the child’s 
code manifest and gives an initial set of channel 
endpoints before the child process begins execution. 
The call to stop a child process destroys its state after 
all threads have ceased execution.  

3.1.1 Trusted Base 

Code in Singularity is either verified or trusted. 
Verified code’s type and memory safety is checked by 
at install time. Unverifiable code must be trusted by 
the system and is limited to the HAL, kernel, and parts 
of the run-time system. Most of the kernel is verifiably 
safe, but small portions are written in assembler, C++, 
and unsafe C#.  

All code outside the trusted base is written in a safe 
language, translated to safe Microsoft Intermediate 
Language (MSIL)1, and then compiled to x86 by the 
Bartok compiler [16] at install time. Currently, we 
trust that Bartok correctly verifies and generates safe 
code. This is obviously unsatisfactory in the long run 
and we are working on using typed assembly language 
to verify the output of the compiler and reduce this 
part of the trusted computing base to a small verifier 
[32] 

                                                           
1MSIL is the CPU-independent instruction set accepted by the 
Microsoft CLR. Singularity uses the MSIL format. Features specific 
to Singularity are expressed through metadata extensions in the 
MSIL. 

3.1.2 Scheduler 

The Singularity scheduler is optimized for a large 
number of threads that communicate frequently. The 
scheduler maintains two lists of runable threads. The 
first, called the unblocked list, contains threads that 
have recently become runable. The second, called the 
preempted list, contains runable threads that have been 
pre-empted. When choosing the next thread to run, the 
scheduler removes threads from the unblocked list in 
FIFO order. When the unblocked list is empty, the 
scheduler removes the next thread from the preempted 
list. Whenever a scheduling timer interrupt occurs, all 
threads in the unblocked list are moved to the end of 
the preempted list, followed by the thread that was 
running when the timer fired. The first thread from the 
preempted list is scheduled and the scheduling timer is 
reset.  

The net effect of the two list scheduling policy is to 
favor threads that are awoken by a message, do a 
small amount of work, send one or more messages to 
other processes, and then block waiting for a message. 
This is a common behavior for threads running 
message handling loops. 

Exchange Heap

Process 1 Process 2 Process 3

 
Figure 2. The Exchange Heap. 

3.1.3 Exchange Heap 

The Exchange Heap, which underlies efficient 
communication in Singularity, holds data passed 
between processes. The Exchange Heap is not garbage 
collected, but instead uses reference counts to track 
usage of blocks of memory (Figure 2). Allocations 
within the Exchange Heap are owned by at most one 
process at time with ownership enforced by static 
verification. Allocations may be split; for example, 
protocol processing code in a network stack can strip 
protocol headers off a packet and hand the payload to 
an application without copying the packet. 

3.1.4 Processes 

In the most common deployment, a Singularity system 
lives in a single address space without virtual memory 
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addressing.2 The common address space is logically 
partitioned into pages for a kernel object space, pages 
for an object space for each process, and pages for the 
Exchange Heap. The kernel does not have pointers 
into process object spaces, nor does any process have 
a pointer to another process’ objects. Adherence to the 
state isolation invariance ensures that each process can 
be garbage collected and terminated independently. 

A process starts with a single thread, enough memory 
to hold its code, an initial set of channel endpoints, 
and a small heap. It obtains additional memory by 
calling the kernel’s page manager, which returns new, 
unshared pages. These pages need not be adjacent to 
the process’s existing address space, since the garbage 
collectors do not require contiguous memory regions.  

A process can call kernel APIs functions to create and 
start additional threads. Singularity uses linked stacks 
to reduce the memory overhead of a thread. These 
stacks grow on demand by adding non-contiguous 
segments of 4KB or more. Bartok performs static 
interprocedural analysis to optimize placement of 
overflow tests [51].  

To reduce the overhead of API calls, Singularity does 
not switch stacks when a process calls the kernel. 
Instead, the Singularity runtimes uses stack markers to 
track the ownership of stack frames so that the 
kernel’s GC can traverse kernel frames and the 
process’s GC can traverse process frames. These 
markers also facilitate terminating processes cleanly. 
When a process is killed, a kernel exception is thrown 
in each of its threads, which skips over and frees the 
process’s stack frames. 

Processes are created from a process manifest [43]. 
The manifest describes the process in terms of its 
code, its resources and its dependencies on the kernel 
and on other processes. All code within a Singularity 
process must be listed in the process manifest. 
Although many existing application setup descriptions 
combine declarative and imperative aspects, 
Singularity manifests are unique in that they contain 
only declarative statements that describe the desired 
state of the application after installation or update. 

                                                           
2 Singularity supports multiple address spaces and hardware 
protection through user-configurable runtime mechanism called a 
protection domain. However, software isolation is preferred in most 
cases as it is secure and avoids the penalties (2.5% to 33%) of 
hardware protection.  

3.1.5 Channels 

Singularity processes communicate exclusively by 
sending messages over channels. Channel 
communication is governed by statically verified 
channel contracts that describe messages, message 
argument types, and valid message interaction 
sequences as finite state machines. Messages are 
tagged collections of values or message blocks in the 
Exchange Heap that are transferred from a sending to 
a receiving process. These primitives enforce much 
stronger semantics than the low-level IPC mechanisms 
of a typical microkernel. 

Channel endpoints can be sent in messages over 
channels. Thus, the communication network can 
evolve dynamically while conforming to the explicit 
communication invariant. Sending and receiving on a 
channel requires no memory allocation. Sends are 
non-blocking and non-failing; receives block 
synchronously until a message arrives or the send 
endpoint is closed. 

A process creates a channel by invoking a contract’s 
static NewChannel method, which returns the 
channel’s two endpoints. The process can pass either 
or both endpoints to other processes over existing 
channels.  

When data or endpoints are sent over a channel, 
ownership passes from the sending process, which 
may not retain a reference, to the receiving process. 
This ownership invariant maintains the state isolation 
invariant and is enforced by the language using linear 
types and by the run-time systems. 

3.1.6 Garbage Collection 

Garbage collection is an essential component of most 
safe languages, as it prevents memory deallocation 
errors that can subvert safety guarantees. In 
Singularity, kernel and process object spaces are 
garbage collected. 

Experience and the large number of garbage collection 
algorithms strongly suggest that no one garbage 
collector is appropriate for all applications [17]. 
Singularity’s sealed process architecture decouples the 
algorithm, data structures, and execution of each 
process’s garbage collector. Each process can select a 
GC to accommodate its objectives and to run without 
global coordination. The three aspects of Singularity 
that make this possible are: each sealed process has its 
own runtime; pointers do not cross process or kernel 
boundaries, so collectors need not consider cross-
space pointers; and messages on channels are not 
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objects, so agreement on memory layout is only 
necessary for data in the Exchange Heap. 

3.1.7 Security and Access Control 

Processes receive an immutable security principal 
name at creation. A principal name is an ordered list 
of applications, each of which can act in specific roles. 
The list ordering is intended to reflect the chain of 
application invocations that led to the creation of the 
named process. Human users are represented as roles 
of programs trusted to perform user authentication. 
The design for our compound principal grammar has 
been previously discussed [1]. 

Because security principal names have structure, we 
cannot use simple integers or groups of names to 
specify which principals can access which resources. 
Instead, Singularity access control lists are regular 
expressions. Common subexpressions (the equivalent 
of groups in conventional access control systems) can 
be named in and expanded from the Directory Service. 
The structure of compound principals makes it 
appealing for intermediate nodes in a security-relevant 
operation to simply record their participation and let 
the ultimate reference monitor decide. Because of this, 
impersonation is largely unnecessary and we do not 
support it in Singularity.  

Access control in Singularity is discretionary. 
Programs that control resources do so by means of 
explicit access control checks. Since all 
communication takes place over controlled channels, 
the subject of such access control checks can be 
determined by examining the message source 
principal associated with the incoming channel. 
Access control decisions are implemented by means 
of a security library that is bound into every SIP that 
guards resources. The Singularity kernel provides 
minimal support by way of a service that maps the 
shorthand principal identifiers used by the channel 
implementation into full names. 

One resource of particular interest is the Directory 
Service. This service implements a naming tree whose 
names are used by applications to establish 
communications channels with system components 
such as files, services, and devices. The Directory 
Service, then, employs access checks to allow system 
policy to regulate which principals can register which 
names, and, for any given name, which principals can 
establish channels to it. Thus, while processes could in 
theory authenticate their channel partners for each 
new channel, in practice it is sufficient to assume that 
the Directory Service is trusted to enforce system 
channel establishment policy. 

In the current Singularity implementation, any one 
process can speak for only one security principal, and 
this principal cannot be changed. This model is 
appealing in that it leaves little latitude for confused 
deputy attacks or other attacks that depend on 
security-relevant code dealing (incorrectly) with the 
authority of multiple different security principals. 
However, even with the low overhead on process 
invocation that Singularity provides, it may be over-
optimistic to assume that all code dealing with 
multiple principals can be avoided. We expect to 
introduce controlled delegation of authority between 
processes in the form of specially designated 
communications channels. This is the subject of 
ongoing research. 

4. Quantitative Evaluation 
The sealed process architecture represents a 
significant change from the open processes generally 
in use. In this section we evaluate the merits of the 
sealed process architecture by qualitatively comparing 
the performance of the current version of Singularity 
primarily with Windows Server 2003 R2. It is 
important to note that the comparison is not balanced. 
Windows is a mature, feature rich system, while 
Singularity has been in development as a research 
prototype for just over two years. The evaluation in 
this section should be considered proof of viability 
more than a definitive analysis of the sealed process 
architecture. 

All experiments were run on an AMD Athlon 64 
3000+ (1.8 GHz) CPU with an NVIDIA nForce4 Ultra 
chipset, 1GB RAM, a Western Digital WD2500JD 
250GB 7200RPM SATA disk (command queuing 
disabled), and the nForce4 Ultra native Gigabit NIC 
(TCP offload disabled). Versions of systems used 
were FreeBSD 5.3, Red Hat Fedora Core 4 (kernel 
version 2.6.11-1.1369_FC4), and Windows Server 
2003 R2.  

4.1. SPECweb99 
To quantify the overhead of the sealed process 
architecture, we measured the performance of 
Singularity and Windows running the SPECweb99 
benchmark [44]. As designed, the SPECweb99 
benchmark measures the maximum number of 
simultaneous connections a web server can support, 
while maintaining a specified minimum bandwidth on 
each connection. The benchmark consists of both 
static and dynamic content. Static content is selected 
using a Zipf distribution consisting of 35% files 
smaller than 1KB, 50% files larger than 1KB and 
smaller than 10KB, 14% files larger than 10KB and 
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smaller than 100KB, and 1% files larger than 100KB 
and smaller than 1MB. 

The Singularity implementation uses six sealed 
process: a NIC driver, the TCP/IP stack, the HTTP 
server, the SPECweb99 content plug-in, the file 
system, and a disk driver (see Figure 3). As required 
for formal benchmarking, the Singularity 
implementation of SPECweb99 is not fully 
conformant. In particular, our HTTP server doesn’t 
support logging and our TCP/IP stack does not fully 
support the IPv4 sliding window protocol. In addition, 
we use a smaller execution time on both Windows and 
Singularity than is required for formal SPECweb99 
results. 

disknetwork

HTTP Server

TCP/IP Stack

NIC Driver

Content Plug-In

File System

Disk Driver

 
Figure 3. SPECweb99 running as six sealed 

processes. 

The Windows Server 2003 implementation of 
SPECweb99 runs on IIS 6.0 and takes advantage of all 
optimizations available in an open process architecture 
(see Figure 4). In this implementation, the NIC driver, 
TCP/IP stack, disk driver, file system, and HTTP 
dispatcher code are all loaded into the Windows 
kernel using the device driver extension model. The 
HTTP dispatcher transfers content directly from the 
file system (or file system cache) to the TCP/IP stack 
without leaving the kernel. Dynamic content requests 
travel directly from the http.sys driver in the kernel 
to the IIS worker process, which contains the dynamic 
content plug-in running as an ISAPI extension. The 
inetinfo.exe controller process is executed only on 
the first dynamic content request to start the worker 
process.  

Singularity achieves 247 ops/second with a weighted 
average throughput of 376 Kbits/second. By contrast, 
Microsoft Windows 2003 running the IIS web server, 
on identical hardware, achieves 761 ops/second with a 
weighted average throughput of 336 Kbits/second. 
Singularity’s average response time, with 78 
connections, of 320 ms/op is comparable to Window’s 
time of 304 ms/op. Singularity’s throughput on this 

benchmark is not bound by the sealed architecture, but 
is disk bound and limited by the caching algorithms in 
our experimental file system. In contrast, Windows is 
network bound thanks to its highly tuned file caching. 
We have an ongoing effort to improve the file system 
and expect much closer performance in the future. 
While definitely not conclusive, the response time 
numbers suggest that the sealed process architecture is 
viable. 

disknetwork

IIS Controller
(inetinfo.exe)

Windows Kernel

NIC Driver

TCP/IP Stack TCP/IP StackHTTP Dispatch (http.sys)

TCP/IP Stack File System

Disk Driver

HTTP Server 
(w3wp.exe)

Content Plug-in

 
Figure 4. SPECweb99on Windows Server 2003 

4.2. Improved Static Analysis 
Sealed processes offer improved opportunities for 
static analysis because all of the code that will run in a 
process is known before the process begins execution. 
Static analysis is available to any process architecture, 
but sound static analysis of a complete process is 
possible only when the entire process code is fixed.  

 

Program Whole w/ Tree 
Shake % Reduction 

Kernel 2371 KB 1291 KB 46% 
Web Server 2731 KB 765 KB 72% 
SPECweb99 Plug-in 2144 KB 502 KB 77% 
Ide Disk Driver 1846 KB 455 KB 75% 

Table 1. Reduction in code size via tree shaking 
enabled with seal processes. 

One example of the type of static analysis enabled by 
sealed processes is whole process tree shaking. The 
Bartok compiler creates a tree of all of the code 
available within a process. It then safely eliminates 
(a.k.a. shakes out) fields, methods, and classes unused 
in all possible executions of the process. As shown in 
Table 1, tree shaking can reduce program code size by 
as much as 75%. Most importantly, tree shaking of 
extensible programs, such as the web server can 
reduce code size by as much as 72%. The latter is 
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important because without sealed processes, the 
compiler could not remove code because it wouldn’t 
know which code might be required by future plug-
ins. Even though plug-ins must include their own 
libraries (as they run in separate processes), the 
combined code size of the web server and the 
SPECweb99 plug-in with tree shaking is still 54% 
smaller than just the web server without tree shaking. 

Other static analysis tools and techniques benefit from 
sealed processes. For example, Bartok static checks 
that methods flagged with [NoAlloc] do not invoke 
any code that might perform a heap allocation. This 
check is useful for verifying that portions of the 
kernel, such as interrupt handlers do not allocate 
memory. 

4.3. Program Complexity 
The sealed architecture replaces access to shared 
memory and shared functions with explicit message 
passing. Hosts and extensions in sealed processes 
must incorporate code for communicating; in an open 
architecture they could directly access each other’s 
state. Developers must now write contracts, explicit 
communication code, and some routines inaccessible 
through the host’s published interface. On the other 
hand, communication is now sufficiently explicit to be 
statically verified.  

 

Code Description Lines % of Orig. 

Original web server 1486 100% 
New host code 263 18% 
New channel contract 52 3% 
New extension code 76 5% 
Total 1877 126% 
Table 2. Added code for explicit communication. 

Table 2 shows the additional cost of explicit 
communication in the Cassini web server. The original 
Cassini web server was implemented on the CLR and 
exchanged state with plug-ins through a shared 
property bag structure for each HTTP request. On 
Singularity, Cassini uses two contracts (one for page 
requests and one for the HTTP properties). We added 
263 lines of IPC code in the web server, 52 lines of 
channel contract, and 76 lines of extension stub, for a 
total increase of 391 lines (26%) over the original. 

While a 26% increase in code is non-trivial, our 
experience suggests that this may be an upper bound. 
In practice, the brunt of additional code is paid by the 
host developer and re-used across many extensions. 
For example, of 9445 lines of device driver code in 
Singularity, 1597 lines (17%) are related to 

interprocess communication with either client 
processes or the I/O subsystem. 

 

Cost (in CPU Cycles)  
API 
Call 

Thread 
Yield 

Message 
Ping/Pong 

Create 
Process 

Singularity  80 365 1,041 388,162 
FreeBSD 878 911 13,304 1,032,254 
Linux 437 906 5,797 719,447 
Windows 627 753 6,344 5,375,735 

Table 3. Cost of basic operations. 

4.4. Costs of Primitive Operations 
Table 3 reports the cost of primitive operations in 
Singularity and three other systems. For each system, 
we conducted an exhaustive search to find the 
cheapest API call [28]. The FreeBSD and Linux 
“thread yield” tests use user-space scheduled pthreads 
as kernel scheduled threads performed significantly 
worse. Windows and Singularity both used kernel 
scheduled threads. The “message ping pong” test 
measured the cost of sending a 1-byte message from 
one process to another. On FreeBSD and Linux, we 
used sockets, on Windows, a named pipe, and on 
Singularity a channel with a single message argument.  

 

CPU Cycles Message 
Size (bytes) Singularity Linux Windows 

4 1316 5544 6641 

16 1267 5379 6600 

64 1282 5549 6999 

256 1271 5519 7353 

1024 1267 5971 10303 

4096 1274 8032 17875 

16384 1275 19167 47149 

65536 1268 87941 187439 
Table 4. IPC costs. 

A basic thread operation, such as yielding the 
processor, is roughly three times faster on Singularity 
than the other systems. ABI calls and cross-process 
operations run significantly faster (5 to 10 times 
faster) than the mature systems because of 
Singularity’s SIP architecture.  

Singularity’s process creation time is significantly 
lower than the other systems because SIPs don’t need 
MMU page tables and because Singularity does not 
need to maintain extra data structures for dynamic 
code loading. Process creation time on Windows is 
significantly higher than other systems because of its 
extensive side-by-side compatibility support for 
dynamic load libraries. 
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Singularity use first class language support to achieve 
zero-copy communication between SIPs [14]. 
Soundness of zero-copy semantics are verified by 
static analysis on the entire contents of sealed process. 
Table 4 shows the cost of sending a payload message 
from one process to another on Singularity, Linux, and 
Windows for comparison.  

5. Related Work 
The large amount of related work can be divided to 
two major areas: extension isolation and OS 
architecture and. 

5.1. Extension Isolation 
Short of providing sealed processes, there have been 
many attempts to alleviate problems caused by open 
processes, through providing protection and isolation 
mechanisms within a process, most typically for 
extensions. 

Device drivers are both the most common operating 
system extension and the largest source of defects [10, 
33, 47]. Nooks provides a protected environment in 
the Linux kernel to execute existing device drivers 
[46, 47]. It uses memory management hardware to 
isolate a driver from kernel data structures and code. 
Calls across this protection boundary go through the 
Nooks runtime, which validates parameters and tracks 
memory usage. Singularity, without the pressure for 
backward compatibility, provides mechanisms (SIPs 
and channels) that are general programming 
constructs, suitable for application and system code, 
as well as for device drivers.  

Software fault isolation (SFI) isolates code in its own 
domain by inserting run-time tests to validate memory 
references and indirect control transfers, a technique 
called sandboxing [53]. Sandboxing can incur high 
costs and only provides memory isolation between a 
host and an extension. It does not offer the full 
benefits of language safety for either the host or 
extension. Sandboxing also does not control data 
shared between the two, so they remain coupled in 
case of failure. 

Sun’s JVM and Microsoft’s Common Language 
Runtime (CLR) are virtual execution environments 
that attempt to compensate for some weaknesses of 
open processes by using fine-grain isolation and 
security mechanisms. Both are open environments that 
encourage dynamic code loading (e.g., Applets) and 
run-time code generation. They use language safety as 
their protection mechanism, but must introduce 
complex security mechanisms and policies, such as 
Java’s fine grain access control or the CLR’s code 

access security, to prevent code from accessing system 
internals and expressive interfaces [34]. These 
mechanisms are difficult to use properly and impose 
considerable overhead. Singularity runs extensions in 
separate sealed processes, which provide a stronger 
assurance of isolation and a more tractable security 
problem that does not entail a large number of fine 
grain policy decisions. 

Computations sharing an execution environment are 
not isolated upon failure. A shared object can be left 
in an inconsistent or locked state when a thread fails 
[18]. When a program running in a JVM fails, the 
entire JVM process typically is restarted because it is 
difficult to isolate and discard corrupted data and find 
a clean point to restart the failed computation [9]. 

Other projects have implemented OS-like 
functionality to control resource allocation and sharing 
and facilitate cleanup after failure in open 
environments. J-Kernel implemented protection 
domains in a JVM process, provided revocable 
capabilities to control object sharing, and developed 
clean semantics for domain termination [25]. Luna 
refined the J-Kernel’s run-time mechanisms with an 
extension to the Java type system that distinguishes 
shared data and permits control of sharing [26]. 
KaffeOS provides a process abstraction in a JVM 
along with mechanisms to control resource utilization 
in a group of processes [4]. Java has incorporated 
many of these ideas into a new feature called isolates 
[36] and Microsoft’s CLR has had a similar concept 
called AppDomains since its inception. 

Singularity eliminates the duplication between an 
operating system and these run-time systems by 
providing a consistent mechanism across all levels of 
the system. Singularity’s SIPs are sealed and non-
extensible, which provides a greater degree of 
isolation and fault tolerance than Java or CLR 
approaches. 

5.2. OS architecture 
Singularity is a microkernel operating system that 
differs in many respects from previous microkernel 
systems, such as Mach [2], L4 [24], SPIN [7], VINO 
[42], Taos/Topaz [50], and the Exokernel [12]. 
Microkernel operating systems partition the 
components of a monolithic operating system kernel 
into separate processes, to increase the system’s 
failure isolation and reduce development complexity. 
Singularity generalizes this sound engineering 
methodology (modularity) to the entire system, by 
providing lightweight processes and inexpensive 
interprocess communication, which enable an 
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application to be partitioned and still communicate 
effectively. 

Previous systems did not seal the kernel or processes. 
Hardware-enforced process isolation has considerable 
overhead, and so microkernels evolved to support 
kernel extensions, while developing mechanisms to 
protect system integrity. SPIN was closest to our 
approach, as its extensions were written in a safe 
language and relied on language features to restrict 
access to kernel interfaces [7]. Vino used sandboxing 
to prevent unsafe extensions from accessing kernel 
code and data and lightweight transactions to control 
resource usage [42]. However, both systems allowed 
extensions to directly manipulate kernel data, which 
left open the possibility of corruption through 
incorrect or malicious operations and inconsistent data 
after extension failure. Exokernel defined kernel 
extensions for packet filtering in a domain-specific 
language and generated code in the kernel for this 
safe, analyzable language [19].  

Other operating systems have been written in safe 
programming languages. Early “open” systems [30] 
were diametrically opposed to Singularity, as they 
encouraged dynamic code loading. These systems 
were developed as “single user” systems, and 
consequently paid little attention to security, isolation, 
or fault tolerance. Smalltalk-80 and Lisp Machine 
Lisp used dynamic typing and run-time checking to 
ensure language safety, but isolation depended on 
programmer discipline and could be subverted through 
introspective and system operations [21, 54]. Pilot and 
Cedar/Mesa were single-user, single-address space 
systems implemented in Mesa, a statically typed, safe 
language [37, 48]. More recently, Inferno is a single 
address space operating system that runs programs 
written in a safe programming language (Limbo) [11].  

More recent safe systems provided processes. RMoX 
is an operating system partially written in occam [6]. 
Its architecture is similar to Singularity, with a system 
structured around message-passing between processes. 
However, RMoX uses a kernel written in C and only 
its device drivers and system process are written in a 
safe language. 

Taos/Topaz [49] was a multiple address space, 
microkernel operating system written in Modula2+ 
[39]. Taos could emulate a Unix interface for 
programs written in unsafe languages [31], but a rich 
set of APIs as well as a lightweight RPC mechanism 
were available for the type-safe environment. Shared-
memory artifacts were apparent in several aspects of 
the Taos implementation. In contrast to synchronous 
RPC, Singularity uses asynchronous message passing 

over strongly typed channels, which is more general 
(RPC is a special case) and permits verification of 
communication behavior and system-wide liveness 
properties. 

Several operating systems have been written in Java. 
JavaOS is a port of the Java virtual machine to bare 
hardware [40]. It replaces a host operating system 
with a microkernel written in an unsafe language and 
Java code libraries. JavaOS supports a single open 
process shared between all applications. 

The JX system is similar to Singularity in many 
respects. It is a microkernel system written almost 
entirely in a safe language (Java) [22]. Processes on 
JX do not share memory and run in a single hardware 
address space using language safety instead of 
hardware protection for process isolation. However, 
JX employs an open process architecture since, like 
Java, it allows dynamic code loading. 

6. Conclusions and Future Work 
In a quest to improve system dependability, we have 
defined a new sealed process architecture, which 
offers a number of important advantages. It creates 
explicit interfaces between a program and its 
extensions and prohibits sharing of memory. This can 
improve the reliability of systems in the presence of 
extension failures, a well-known source of failure in 
operating systems and applications. It allows defect 
detection tools and tools that verify partial program 
correctness to make sound assumptions about program 
behavior. It also increases the precision and accuracy 
of static analysis, which is a key component of code 
optimization and defect detection tools. It enables an 
operating system to provide stronger security 
guarantees than open processes and code-based 
process identity. It allows the elimination of 
redundancies between an OS and language runtimes 
such as the JVM and CLR. And, it encourages 
applications and systems programmers to practice 
better software engineering. 

We have implemented sealed processes in the 
Singularity operating system. Preliminary results 
suggest that the restrictions imposed by sealed 
processes are not overly burdensome and are at least 
partially compensated by improved detection of 
coding errors. When combined with software isolated 
processes (SIPs), sealed processes also enable static 
analysis that significantly improves microbenchmark 
performance. It is too early to quantify the eventual 
impact of these improvements on macro-throughput.  

We believe the sealed architecture shows sufficient 
promise to merit further consideration by the research 
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community. We see two important avenues of future 
research. The first is implementing a larger class of 
extensible programs on the architecture to further 
evaluate its validity. For example, we believe porting 
a large database server would be a valuable 
experiment. The second is evaluating the sealed 
architecture in a hardware-protected operating system, 
such as Windows, Linux, or MINIX 3 [27].  
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