
MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 1

Sealing OS Processes to Improve Dependability and Security

Galen Hunt, Mark Aiken, Paul Barham, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson,
James Larus, Steven Levi, Nick Murphy, Bjarne Steensgaard, David Tarditi, Ted Wobber, Brian Zill

Microsoft Research

Abstract

On most modern operating systems, a process is a hardware-protected abstraction for executing potentially
mutable code and data. Common features of processes include: dynamic code loading, dynamic code
generation, access to cross-process shared memory, and a universal API.

This paper argues that many of the dependability and security weaknesses of modern systems are exacerbated
by this open process architecture. Moreover, this architecture impairs the ability of tools to analyze code
statically, to improve its performance or dependability. By contrast, a sealed process architecture prohibits
dynamic code loading, prohibits self-modifying code, prohibits shared memory, and replaces a universal API
with a process-limited API. This paper describes an implementation of a sealed process architecture in the
Singularity operating system, discusses its merits, and evaluates its impact. Among the benefits are:
improved static program analysis, strong security guarantees, elimination of OS redundancies found in
language runtimes such as the JVM and CLR, and better software engineering.

1. Introduction
The process, as a recognized operating system
abstraction, debuted in Multics [52] in the 1960s.
Multics processes included support for dynamic code
loading, dynamic code generation, access to cross-
process shared memory, and a universal API capable
of directly modifying data in another process.

This open process architecture is now nearly
universal. Aspects of this architecture, such as
dynamic code loading and cross-process shared
memory, were not in the early versions of UNIX [38]
or early PC operating systems. However, their
absences reflected limited address spaces and a lack of
dynamic linking technology, and this “weakness” was
quickly remedied. Today, for example, all four aspects
of open processes are found in FreeBSD, Linux,
Solaris, and Windows.

In the beginning, open processes gained popularity
because they improved memory utilization by sharing
library code across processes. Today, open process
architecture’s most characteristic feature is the ease
with which the OS or an application can be extended
with plug-ins. New features and functionality are
routinely loaded directly into these systems’ kernels
and processes. For example, Microsoft Windows
supports over 100,000 in-kernel device drivers, which
enable it to control almost any hardware device. Other
examples of widely used in-process extensions include
dynamic content extensions in web servers (like
ISAPI extensions to Microsoft’s IIS), extended stored
procedures in databases, and web browser plug-ins.

1.1. Disadvantages of Open Processes
Although common, open processes are not “free.”
This architecture has negative consequences for
dependability, correctness, security, and performance.

Almost all open process systems use hardware
protection [41] to ensure process isolation. All of the
systems named above, and many others, rely on paged
memory management and differentiated user and
kernel instructions to ensure process isolation.
Hardware-based process isolation is so common that it
is generally assumed to be a “free” processor feature.
Unfortunately, hardware-based isolation is not free. In
Aiken et al. [3], we demonstrated performance costs
from 2.5% (in a compute-bound task with no paging)
to 33% (in an IPC bound task). Page table
management and cache and TLB misses are
responsible for this increase in execution time.

Moreover, the extension mechanism commonly
associated with open processes is a major cause of
software reliability, security, and backward
compatibility problems. Although extension code is
rarely trusted, verified, or even fully correct, it is
loaded directly into a host’s process with no hard
interface or boundary between host and extension. The
outcome is often unpleasant. For example, Swift
reports that faulty device drivers cause 85% of
diagnosed Windows system crashes [47]. Moreover,
because an extension lacks a hard interface, it can use
private aspects of its host’s implementation, which can
constrain evolution of a program and require extensive
testing to avoid future incompatibilities.

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 2

Dynamic code loading imposes a less obvious tax on
performance and correctness. Software that can load
code is an open environment, in which it is impossible
to make sound assumptions about the system’s states,
invariants, or valid transitions. Consider the Java
Virtual Machine (JVM). An interrupt, exception, or
thread switch can invoke code that loads a new file,
overwrites class and method bodies, and modifies
global state [45]. In general, the only feasible way to
analyze a program running under such conditions is to
start with the unsound assumption that the
environment will not change arbitrarily between any
two operations.

Open processes complicate security. If the code
running in a process is not known a priori, it is
difficult to rationalize subsequent access control
decisions based on code identity. Perhaps for this
reason it is rare for operating systems to provide any
strong guarantees about application identity, relying
instead on the identity of an authenticated user or an
application masquerading as a user. Software
attestation solutions like Terra [20] and NGSCB [35]
must use hardware and virtual machines to prevent
modifications to the code of running processes.

1.2. Contributions
This paper describes a new sealed process
architecture in which the OS guarantees that the code
in a process cannot be altered once the process starts
executing. The architecture prohibits dynamic code
loading, prohibits self-modifying code, prohibits
cross-process sharing of memory, and replaces a
universal API with a process-limited API. Of
particular import, the sealed architecture incorporates
a single extension mechanism for both OS and
applications: extension code executes in a new
process, distinct from its host.

Sealed processes offer many advantages. They
increase the potential of static program analysis to
improve performance and reliability. They enable
stronger security guarantees. They allow the
elimination of duplication of OS-level features in
virtual execution environments such as the Sun’s JVM
and Microsoft’s Common Language Runtime (CLR).
Finally, they encourage better software engineering.

We have implemented sealed process in the
Singularity operating system. Singularity is a new
system being developed as a basis for more
dependable system and application software [28, 29].
Singularity exploits advances in programming
languages and tools to create an environment in which
software is more likely to be built correctly, program

behavior is easier to verify, and run-time failures can
be contained.

The rest of the paper is organized as follows. Section
2 describes the sealed process architecture and
discusses its qualitative merits. Section 3 describes the
implementation of sealed processes in Singularity.
Section 4 contains a quantitative evaluation of the
sealed process architecture in Singularity. Section 5
describes related work and Section 6 contains
conclusions and a discussion of future work.

2. Sealed Process Architecture
A sealed process architecture is an architecture in
which the operating system guarantees that the code of
a process cannot be altered once the process starts
executing and in which the state of a process cannot
be directly modified by another process.

A sealed kernel is an OS kernel whose code cannot be
altered after system boot and whose state cannot be
modified by any process. An operating system with an
open kernel could provide sealed processes. However,
in this paper, we shall assume that a sealed process
architecture also implies a sealed kernel.

We can draw an instructive analogy between sealed
processes and sealed classes in object-oriented
languages. Practice has shown that designers and
implementers of classes need a mechanism to limit
class extension and force extensions to use a declared
interface [8] in order to avoiding errors that typically
appear only at runtime. Similarly, by running dynamic
extensions in a separate process, the sealed process
architecture increases system dependability by forcing
application and system extensions to use declared
interfaces.

2.1. Sealed Process Invariants
The sealed process architecture maintains four
invariants:

 The fixed code invariant: Code within a process
cannot be altered once the process starts
execution.

 The state isolation invariant: Data within a
process cannot be directly accessed by another
process.

 The explicit communication invariant: All
communication between processes must occur
through explicit mechanisms, with explicit
identification of the sender, and explicit receiver
admission control over incoming communication.

 The closed API invariant: The API between a
process and the system must maintain the fixed

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 3

code, state isolation, and explicit communication
invariants.

The fixed code invariant ensures that sealed processes
are closed code spaces. Code in a process may come
from one executable or from a collection of
executables and libraries, but it is fully linked and
loaded before execution starts. As a consequence, a
process cannot dynamically load or generate code into
its own process. Because code is known a priori, and
can be checked against certificates provided by the
code’s publisher, it is possible to reason about the
access rights of a process using code identity. For
example, the security principal inherent in a process
instance might include an authenticated user, a
program, and/or a publisher.

The state isolation invariant ensures that code in a
process reads and modifies data only in itself. This
invariant disallows communication through shared
memory. Processes can communicate through
memory, but ownership and access to data must be
handed off between the processes so that one process
is not able to change the contents of the memory while
another is reading it.

The explicit communication invariant ensures that all
communication is subject to admission control
policies. Implicit or anonymous communication
channels, such as shared memory or manipulation of a
Windows message pump, are forbidden. Furthermore,
the explicit communication invariant ensures that both
the kernel and recipient process have the ability to
accept or deny requests to establish a communication
channel. These constraints allow a process to create a
communication channel to itself and pass that channel
(and its implicit communication right) to another
process. Similarly, a process can receive a channel
from one process and hand it off to a third process.
Finally, the explicit communication invariant allows a
process to invest one or more communication rights
into a child process at creation time.

In general, the explicit communication invariant
ensures that a process can only communicate with the
transitive closure of processes reachable through its
existing communication graph (or extensions of the
graph caused by creation of child processes). In
practice, intermediate processes (including the kernel)
and the OS communication mechanisms can further
restrict the communication graph. For example, an
intermediate process can refuse to forward a
communication request based on access control.

The closed API invariant ensures that the OS API
provided to an unprivileged process does not include a

mechanism that could subvert the fixed code, state
isolation, or explicit communication invariants. For
example, the closed API invariant ensures that the
base API does not include a mechanism to write to the
memory of any other process.

Most open process systems include debugging APIs
that allow reading and writing of another process’s
memory. Strictly speaking, the closed API invariant
does not prohibit debugging APIs, but it does prohibit
providing debugging APIs to unprivileged processes.
Preferably debugging capabilities should be available
in conjunction with specific communication rights and
only after both the kernel and the target process (or the
certifier of the target process) have agreed that
debugging access is appropriate.

2.2. Qualitative Benefits
The sealed process architecture increases the accuracy
and precision of static program analysis. The fixed
code invariant allows a static analysis tool to safely
assume that it has knowledge of all code that will ever
execute in a process. For example, in a sealed process,
a whole-process optimizing compiler can perform
aggressive inter-procedural optimization, such as
eliminating methods, fields, and even whole classes
that are unreachable within a specific program.

This aggressive optimization cannot be performed
safely in open process architectures. Imagine, for
example, aggressively optimizing an open OS kernel
that support dynamically loaded device drivers. A
compiler might remove an apparently unused data
field, thus reducing the size of a data structure, only to
later have an unfortunate user load a driver that
accesses this field.

The soundness of program correctness tools, such as
Microsoft’s Static Driver Verifier [5], is limited by
open process architectures. Systems of this sort make
an essential assumption that they can soundly
approximate a program’s worst case behavior since
they analyze all of its code. If a tool cannot analyze all
code, its approximations may be incorrect. Open
systems are verifiable only if their extension points are
fully specified so that an analysis tool can
conservatively approximate the behavior of missing
code. The extension points of open processes, because
they expose the entire internal code of a process, are
underspecified and therefore inherently unsound.

Sealed processes enable stronger security guarantees
than open architectures. Code-based security systems
such as Microsoft Authenticode and Java [23] attempt
to make security guarantees by validating the
signature of a program residing on disk. However,

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 4

none of these guarantees hold once the code is loaded
into an open process and mutated. With a sealed
process, the certification of disk contents can be
extended to the executable contents of a process. A
sealed architecture can guarantee that a program will
execute in its certified form because of the state
isolation and closed API invariants. No open process
architecture can make such a claim. When coupled
with hardware protection for external tampering, such
as NGSCB [35], sealed processes enable an execution
model in which a process is a trustable entity.

Sealed processes enable the elimination of the OS
redundancies found in virtual execution environments
such as the JVM and CLR. A sealed process system
needs only one error recovery model, one
communication mechanism, one security policy, and
one programming model because the sealed process
architecture uses a single mechanism for both
protection and extensibility instead of the
conventional dual mechanisms of processes and
dynamic code loading. As a consequence, the
confusing layers of partially redundant mechanisms
and policies found the CLR and JVM can be removed.
For example, our experiments show that the compiled
CLR base class library would be 30% smaller without
the checks and metadata required for its security
model meant to compensate for the weaknesses of
open processes.

Sealed processes encourage—but obviously cannot
guarantee—that programmers practice better software
engineering by encouraging modularity and
abstraction. In a sealed architecture, OS and
application extensions, such as device drivers and
plug-ins, can communicate only through well-defined
interfaces. The process boundary between host and
extension ensures that an extension interface cannot
be subverted.

At least for the kernel, the benefits of a sealed
architecture have long been recognized by the OS
community. For example, microkernels, such as Mach
[2], L4 [24], SPIN [7], VINO [42], and the Exokernel
[12], recognize that an OS kernel would be more
reliable if it was extended in separate processes. These
microkernels realized benefits from closing the kernel,
but none generalized the principle into a sealed
process architecture.

2.3. Limitations
Although a sealed architecture offers benefits, it also
imposes limitations. The set of programs that can
execute on a sealed architecture is limited by design.
For example, the fixed code invariant prohibits self-

modifying code and the state isolation invariant
prohibits communication through shared memory.

2.3.1 Programmability

Communication via memory shared between
processes is notoriously prone to concurrency bugs. A
sealed process OS may prevent this class of errors, but
the message passing is also a common source of
programming errors. These errors include marshalling
code that breaks type-safety properties and
communication protocol violations that lead to
deadlocks and livelocks. These problems can be
mitigated by programming language extensions that
concisely specify communication over channels and
by verification tools [15].

Sealed processes also increase the complexity of
writing program extensions, as the host program’s
developer must define a proper interface that does not
rely on shared data structures. The extension’s
developer must program to this interface and possibly
re-implement some functionality from the parent.
Nevertheless, the widespread problems inherent in
dynamically loaded extensions argue for alternatives
that increase isolation between an extension and its
parent. Singularity’s demonstrates that an out-of-
process extension mechanism works for applications
as well as system code; does not depend on the
semantics of an API, unlike domain-specific
approaches such as Nooks [47]; and provides simple
semantic guarantees that can be understood by
programmers and used by tools.

2.3.2 Dynamic Code Generation

The inability to generate code dynamically into a
running sealed process precludes common coding
patterns such as just-in-time compilation and the
online translation of high-level abstractions such as
regular expression. In a sealed architecture, such
usage must be implemented by generating the code
into a separate process image, starting this process,
and communicating with the process over a well-
defined communication channel. Note that interpreters
for any language can still be written in the sealed
process architectures.

2.3.3 Data Sharing

In an open process OS, shared libraries and DLLs are
a common way to reduce the code footprint of the
system. For example, a typical Windows Sever 2003
system running a mix of user applications shows 74
processes using a total of 5.4GB of virtual address
space, but only 760MB of private data/code. In an
open process, the extensions can be co-located into a

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 5

single process, thus sharing both read-only and read-
write data. In a sealed architecture, multiple
extensions may share read-only data and code from a
common library, but they can’t share read-write data.

2.3.4 Scheduling Overhead

Since a sealed process can only be extended by
creating a child process that provides the additional
functionality via an IPC interface, it is expected that
there will be more processes involved in servicing any
given request. These additional processes not only
introduce communication overheads such as data
copying, but exacerbate the scheduling problem faced
by the kernel. The prevalence of server processes
multiplexed between multiple clients could make
resource accounting more difficult, and the increased
number of (non-blocked) threads may preclude
sophisticated scheduling algorithms.

In practice, we have found that a typical Singularity
system contains a large number of threads (hundreds
of threads are not uncommon), but the number of non-
blocked threads at any time is usually quite small.
However, this may not be true for all sealed
architectures.

3. Singularity
Singularity is a new system under development as a
basis for more dependable system and application
software. Singularity incorporates two important
technologies to significantly reduce the cost of a
sealed process architecture: software isolated
processes (SIPs) and first-class language support for
inter-process communication.

SIPs use programming language safety and the
invariants of the sealed process architecture to provide
a less expensive process isolation mechanism than
hardware protection. All untrusted code running in a
SIP must be written in a safe language and statically
verified to be type safe. Due to verified memory
safety, SIPs can share the same hardware protection
domain and in fact execute in privileged mode with
the kernel.

SIPs are inexpensive to create. Low cost makes it
practical to use SIPs as a fine-grain isolation and
extension mechanism. Versions of Singularity with
and without hardware memory protection allow direct
comparison of performance overheads of isolation
mechanisms. Without hardware isolation, system calls
and inter-process communication run significantly
faster (30–500%) and communication-intensive
programs run up to 33% faster [3].

SIPs communicate through a bidirectional type-safe
message-passing mechanism called a channel. Each
channel has exactly two endpoints. At any point in
time, each channel endpoint is owned by at most one
thread. High-level message primitives are provided to
transfer typed data structures from the object space of
one process to another without violating type safety or
compromising the integrity of the respective garbage
collectors and language runtimes. In fact, bulk data
transfer can be achieved without any copying because
static verification (made possible by the sealed
process abstraction) prevents a sending thread from
accessing objects it no longer owns. Fähndrich et al.
[13] contains a full description of the first class
language support and type system for IPC in
Singularity.

The contributions of SIPs and first IPC support make
the sealed process architecture viable. In the
remainder of this section we describe how the
architecture works

Singularity Microkernel

HAL Language Runtime & GC

Scheduler Page Mgr

Security Svc Directory SvcProcess Mgr

I/O Mgr

Plug-Ins Applications Subsystems Device
Drivers

Language
Runtime

& GC

Language
Runtime
& GC

Language
Runtime
& GC

Language
Runtime
& GC

Libraries Libraries Libraries Libraries

ExHeap

Figure 1. Singularity System Architecture.

3.1. Singularity Components
Figure 1 depicts the key components of the Singularity
OS. The microkernel provides the core functionality
of the system, including paged memory management,
process creation and termination, communication
through channels, scheduling, I/O, security, and a
local directory services. Most of the Singularity’s
functionality and extensibility exists in processes
outside of the kernel. In particular, all subsystems and
devices drivers run in separate processes.

Unlike previous systems that relied on language
safety, Singularity SIPs execute independently. Each
SIP contains its own memory pages, language
runtime, and garbage collector. Due to the state
isolation invariant, the language runtime and garbage

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 6

collector can employ data layout and GC algorithms
most appropriate for a particular process. SIPs are
created and terminated by the operating system, so
that on termination, a SIP’s resources can be
efficiently reclaimed.

The Singularity kernel and language runtimes consist
almost entirely of safe code. The rest of the system
consists of only verifiably safe code, including all
device drivers, subsystems, applications, and plug-ins.
While all untrusted code must be verifiably safe, parts
of the Singularity kernel and language runtime, called
the trusted base, are not verifiably safe. Language
safety protects this trusted base from untrusted code.

In addition to the message-passing mechanism of
channels, processes communicate with the kernel
through a limited API that invokes static methods in
kernel code. This interface isolates the kernel and
process object spaces. All parameters to this API are
values, not pointers, so the kernel and process’s
garbage collectors need not coordinate. The
Singularity API maintains the closed API invariant.
Only two API calls affect the state of another process.
The call to create a child process specifies the child’s
code manifest and gives an initial set of channel
endpoints before the child process begins execution.
The call to stop a child process destroys its state after
all threads have ceased execution.

3.1.1 Trusted Base

Code in Singularity is either verified or trusted.
Verified code’s type and memory safety is checked by
at install time. Unverifiable code must be trusted by
the system and is limited to the HAL, kernel, and parts
of the run-time system. Most of the kernel is verifiably
safe, but small portions are written in assembler, C++,
and unsafe C#.

All code outside the trusted base is written in a safe
language, translated to safe Microsoft Intermediate
Language (MSIL)1, and then compiled to x86 by the
Bartok compiler [16] at install time. Currently, we
trust that Bartok correctly verifies and generates safe
code. This is obviously unsatisfactory in the long run
and we are working on using typed assembly language
to verify the output of the compiler and reduce this
part of the trusted computing base to a small verifier
[32]

1MSIL is the CPU-independent instruction set accepted by the
Microsoft CLR. Singularity uses the MSIL format. Features specific
to Singularity are expressed through metadata extensions in the
MSIL.

3.1.2 Scheduler

The Singularity scheduler is optimized for a large
number of threads that communicate frequently. The
scheduler maintains two lists of runable threads. The
first, called the unblocked list, contains threads that
have recently become runable. The second, called the
preempted list, contains runable threads that have been
pre-empted. When choosing the next thread to run, the
scheduler removes threads from the unblocked list in
FIFO order. When the unblocked list is empty, the
scheduler removes the next thread from the preempted
list. Whenever a scheduling timer interrupt occurs, all
threads in the unblocked list are moved to the end of
the preempted list, followed by the thread that was
running when the timer fired. The first thread from the
preempted list is scheduled and the scheduling timer is
reset.

The net effect of the two list scheduling policy is to
favor threads that are awoken by a message, do a
small amount of work, send one or more messages to
other processes, and then block waiting for a message.
This is a common behavior for threads running
message handling loops.

Exchange Heap

Process 1 Process 2 Process 3

Figure 2. The Exchange Heap.

3.1.3 Exchange Heap

The Exchange Heap, which underlies efficient
communication in Singularity, holds data passed
between processes. The Exchange Heap is not garbage
collected, but instead uses reference counts to track
usage of blocks of memory (Figure 2). Allocations
within the Exchange Heap are owned by at most one
process at time with ownership enforced by static
verification. Allocations may be split; for example,
protocol processing code in a network stack can strip
protocol headers off a packet and hand the payload to
an application without copying the packet.

3.1.4 Processes

In the most common deployment, a Singularity system
lives in a single address space without virtual memory

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 7

addressing.2 The common address space is logically
partitioned into pages for a kernel object space, pages
for an object space for each process, and pages for the
Exchange Heap. The kernel does not have pointers
into process object spaces, nor does any process have
a pointer to another process’ objects. Adherence to the
state isolation invariance ensures that each process can
be garbage collected and terminated independently.

A process starts with a single thread, enough memory
to hold its code, an initial set of channel endpoints,
and a small heap. It obtains additional memory by
calling the kernel’s page manager, which returns new,
unshared pages. These pages need not be adjacent to
the process’s existing address space, since the garbage
collectors do not require contiguous memory regions.

A process can call kernel APIs functions to create and
start additional threads. Singularity uses linked stacks
to reduce the memory overhead of a thread. These
stacks grow on demand by adding non-contiguous
segments of 4KB or more. Bartok performs static
interprocedural analysis to optimize placement of
overflow tests [51].

To reduce the overhead of API calls, Singularity does
not switch stacks when a process calls the kernel.
Instead, the Singularity runtimes uses stack markers to
track the ownership of stack frames so that the
kernel’s GC can traverse kernel frames and the
process’s GC can traverse process frames. These
markers also facilitate terminating processes cleanly.
When a process is killed, a kernel exception is thrown
in each of its threads, which skips over and frees the
process’s stack frames.

Processes are created from a process manifest [43].
The manifest describes the process in terms of its
code, its resources and its dependencies on the kernel
and on other processes. All code within a Singularity
process must be listed in the process manifest.
Although many existing application setup descriptions
combine declarative and imperative aspects,
Singularity manifests are unique in that they contain
only declarative statements that describe the desired
state of the application after installation or update.

2 Singularity supports multiple address spaces and hardware
protection through user-configurable runtime mechanism called a
protection domain. However, software isolation is preferred in most
cases as it is secure and avoids the penalties (2.5% to 33%) of
hardware protection.

3.1.5 Channels

Singularity processes communicate exclusively by
sending messages over channels. Channel
communication is governed by statically verified
channel contracts that describe messages, message
argument types, and valid message interaction
sequences as finite state machines. Messages are
tagged collections of values or message blocks in the
Exchange Heap that are transferred from a sending to
a receiving process. These primitives enforce much
stronger semantics than the low-level IPC mechanisms
of a typical microkernel.

Channel endpoints can be sent in messages over
channels. Thus, the communication network can
evolve dynamically while conforming to the explicit
communication invariant. Sending and receiving on a
channel requires no memory allocation. Sends are
non-blocking and non-failing; receives block
synchronously until a message arrives or the send
endpoint is closed.

A process creates a channel by invoking a contract’s
static NewChannel method, which returns the
channel’s two endpoints. The process can pass either
or both endpoints to other processes over existing
channels.

When data or endpoints are sent over a channel,
ownership passes from the sending process, which
may not retain a reference, to the receiving process.
This ownership invariant maintains the state isolation
invariant and is enforced by the language using linear
types and by the run-time systems.

3.1.6 Garbage Collection

Garbage collection is an essential component of most
safe languages, as it prevents memory deallocation
errors that can subvert safety guarantees. In
Singularity, kernel and process object spaces are
garbage collected.

Experience and the large number of garbage collection
algorithms strongly suggest that no one garbage
collector is appropriate for all applications [17].
Singularity’s sealed process architecture decouples the
algorithm, data structures, and execution of each
process’s garbage collector. Each process can select a
GC to accommodate its objectives and to run without
global coordination. The three aspects of Singularity
that make this possible are: each sealed process has its
own runtime; pointers do not cross process or kernel
boundaries, so collectors need not consider cross-
space pointers; and messages on channels are not

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 8

objects, so agreement on memory layout is only
necessary for data in the Exchange Heap.

3.1.7 Security and Access Control

Processes receive an immutable security principal
name at creation. A principal name is an ordered list
of applications, each of which can act in specific roles.
The list ordering is intended to reflect the chain of
application invocations that led to the creation of the
named process. Human users are represented as roles
of programs trusted to perform user authentication.
The design for our compound principal grammar has
been previously discussed [1].

Because security principal names have structure, we
cannot use simple integers or groups of names to
specify which principals can access which resources.
Instead, Singularity access control lists are regular
expressions. Common subexpressions (the equivalent
of groups in conventional access control systems) can
be named in and expanded from the Directory Service.
The structure of compound principals makes it
appealing for intermediate nodes in a security-relevant
operation to simply record their participation and let
the ultimate reference monitor decide. Because of this,
impersonation is largely unnecessary and we do not
support it in Singularity.

Access control in Singularity is discretionary.
Programs that control resources do so by means of
explicit access control checks. Since all
communication takes place over controlled channels,
the subject of such access control checks can be
determined by examining the message source
principal associated with the incoming channel.
Access control decisions are implemented by means
of a security library that is bound into every SIP that
guards resources. The Singularity kernel provides
minimal support by way of a service that maps the
shorthand principal identifiers used by the channel
implementation into full names.

One resource of particular interest is the Directory
Service. This service implements a naming tree whose
names are used by applications to establish
communications channels with system components
such as files, services, and devices. The Directory
Service, then, employs access checks to allow system
policy to regulate which principals can register which
names, and, for any given name, which principals can
establish channels to it. Thus, while processes could in
theory authenticate their channel partners for each
new channel, in practice it is sufficient to assume that
the Directory Service is trusted to enforce system
channel establishment policy.

In the current Singularity implementation, any one
process can speak for only one security principal, and
this principal cannot be changed. This model is
appealing in that it leaves little latitude for confused
deputy attacks or other attacks that depend on
security-relevant code dealing (incorrectly) with the
authority of multiple different security principals.
However, even with the low overhead on process
invocation that Singularity provides, it may be over-
optimistic to assume that all code dealing with
multiple principals can be avoided. We expect to
introduce controlled delegation of authority between
processes in the form of specially designated
communications channels. This is the subject of
ongoing research.

4. Quantitative Evaluation
The sealed process architecture represents a
significant change from the open processes generally
in use. In this section we evaluate the merits of the
sealed process architecture by qualitatively comparing
the performance of the current version of Singularity
primarily with Windows Server 2003 R2. It is
important to note that the comparison is not balanced.
Windows is a mature, feature rich system, while
Singularity has been in development as a research
prototype for just over two years. The evaluation in
this section should be considered proof of viability
more than a definitive analysis of the sealed process
architecture.

All experiments were run on an AMD Athlon 64
3000+ (1.8 GHz) CPU with an NVIDIA nForce4 Ultra
chipset, 1GB RAM, a Western Digital WD2500JD
250GB 7200RPM SATA disk (command queuing
disabled), and the nForce4 Ultra native Gigabit NIC
(TCP offload disabled). Versions of systems used
were FreeBSD 5.3, Red Hat Fedora Core 4 (kernel
version 2.6.11-1.1369_FC4), and Windows Server
2003 R2.

4.1. SPECweb99
To quantify the overhead of the sealed process
architecture, we measured the performance of
Singularity and Windows running the SPECweb99
benchmark [44]. As designed, the SPECweb99
benchmark measures the maximum number of
simultaneous connections a web server can support,
while maintaining a specified minimum bandwidth on
each connection. The benchmark consists of both
static and dynamic content. Static content is selected
using a Zipf distribution consisting of 35% files
smaller than 1KB, 50% files larger than 1KB and
smaller than 10KB, 14% files larger than 10KB and

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 9

smaller than 100KB, and 1% files larger than 100KB
and smaller than 1MB.

The Singularity implementation uses six sealed
process: a NIC driver, the TCP/IP stack, the HTTP
server, the SPECweb99 content plug-in, the file
system, and a disk driver (see Figure 3). As required
for formal benchmarking, the Singularity
implementation of SPECweb99 is not fully
conformant. In particular, our HTTP server doesn’t
support logging and our TCP/IP stack does not fully
support the IPv4 sliding window protocol. In addition,
we use a smaller execution time on both Windows and
Singularity than is required for formal SPECweb99
results.

disknetwork

HTTP Server

TCP/IP Stack

NIC Driver

Content Plug-In

File System

Disk Driver

Figure 3. SPECweb99 running as six sealed

processes.

The Windows Server 2003 implementation of
SPECweb99 runs on IIS 6.0 and takes advantage of all
optimizations available in an open process architecture
(see Figure 4). In this implementation, the NIC driver,
TCP/IP stack, disk driver, file system, and HTTP
dispatcher code are all loaded into the Windows
kernel using the device driver extension model. The
HTTP dispatcher transfers content directly from the
file system (or file system cache) to the TCP/IP stack
without leaving the kernel. Dynamic content requests
travel directly from the http.sys driver in the kernel
to the IIS worker process, which contains the dynamic
content plug-in running as an ISAPI extension. The
inetinfo.exe controller process is executed only on
the first dynamic content request to start the worker
process.

Singularity achieves 247 ops/second with a weighted
average throughput of 376 Kbits/second. By contrast,
Microsoft Windows 2003 running the IIS web server,
on identical hardware, achieves 761 ops/second with a
weighted average throughput of 336 Kbits/second.
Singularity’s average response time, with 78
connections, of 320 ms/op is comparable to Window’s
time of 304 ms/op. Singularity’s throughput on this

benchmark is not bound by the sealed architecture, but
is disk bound and limited by the caching algorithms in
our experimental file system. In contrast, Windows is
network bound thanks to its highly tuned file caching.
We have an ongoing effort to improve the file system
and expect much closer performance in the future.
While definitely not conclusive, the response time
numbers suggest that the sealed process architecture is
viable.

disknetwork

IIS Controller
(inetinfo.exe)

Windows Kernel

NIC Driver

TCP/IP Stack TCP/IP StackHTTP Dispatch (http.sys)

TCP/IP Stack File System

Disk Driver

HTTP Server
(w3wp.exe)

Content Plug-in

Figure 4. SPECweb99on Windows Server 2003

4.2. Improved Static Analysis
Sealed processes offer improved opportunities for
static analysis because all of the code that will run in a
process is known before the process begins execution.
Static analysis is available to any process architecture,
but sound static analysis of a complete process is
possible only when the entire process code is fixed.

Program Whole w/ Tree
Shake % Reduction

Kernel 2371 KB 1291 KB 46%
Web Server 2731 KB 765 KB 72%
SPECweb99 Plug-in 2144 KB 502 KB 77%
Ide Disk Driver 1846 KB 455 KB 75%

Table 1. Reduction in code size via tree shaking
enabled with seal processes.

One example of the type of static analysis enabled by
sealed processes is whole process tree shaking. The
Bartok compiler creates a tree of all of the code
available within a process. It then safely eliminates
(a.k.a. shakes out) fields, methods, and classes unused
in all possible executions of the process. As shown in
Table 1, tree shaking can reduce program code size by
as much as 75%. Most importantly, tree shaking of
extensible programs, such as the web server can
reduce code size by as much as 72%. The latter is

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 10

important because without sealed processes, the
compiler could not remove code because it wouldn’t
know which code might be required by future plug-
ins. Even though plug-ins must include their own
libraries (as they run in separate processes), the
combined code size of the web server and the
SPECweb99 plug-in with tree shaking is still 54%
smaller than just the web server without tree shaking.

Other static analysis tools and techniques benefit from
sealed processes. For example, Bartok static checks
that methods flagged with [NoAlloc] do not invoke
any code that might perform a heap allocation. This
check is useful for verifying that portions of the
kernel, such as interrupt handlers do not allocate
memory.

4.3. Program Complexity
The sealed architecture replaces access to shared
memory and shared functions with explicit message
passing. Hosts and extensions in sealed processes
must incorporate code for communicating; in an open
architecture they could directly access each other’s
state. Developers must now write contracts, explicit
communication code, and some routines inaccessible
through the host’s published interface. On the other
hand, communication is now sufficiently explicit to be
statically verified.

Code Description Lines % of Orig.

Original web server 1486 100%
New host code 263 18%
New channel contract 52 3%
New extension code 76 5%
Total 1877 126%
Table 2. Added code for explicit communication.

Table 2 shows the additional cost of explicit
communication in the Cassini web server. The original
Cassini web server was implemented on the CLR and
exchanged state with plug-ins through a shared
property bag structure for each HTTP request. On
Singularity, Cassini uses two contracts (one for page
requests and one for the HTTP properties). We added
263 lines of IPC code in the web server, 52 lines of
channel contract, and 76 lines of extension stub, for a
total increase of 391 lines (26%) over the original.

While a 26% increase in code is non-trivial, our
experience suggests that this may be an upper bound.
In practice, the brunt of additional code is paid by the
host developer and re-used across many extensions.
For example, of 9445 lines of device driver code in
Singularity, 1597 lines (17%) are related to

interprocess communication with either client
processes or the I/O subsystem.

Cost (in CPU Cycles)
API
Call

Thread
Yield

Message
Ping/Pong

Create
Process

Singularity 80 365 1,041 388,162
FreeBSD 878 911 13,304 1,032,254
Linux 437 906 5,797 719,447
Windows 627 753 6,344 5,375,735

Table 3. Cost of basic operations.

4.4. Costs of Primitive Operations
Table 3 reports the cost of primitive operations in
Singularity and three other systems. For each system,
we conducted an exhaustive search to find the
cheapest API call [28]. The FreeBSD and Linux
“thread yield” tests use user-space scheduled pthreads
as kernel scheduled threads performed significantly
worse. Windows and Singularity both used kernel
scheduled threads. The “message ping pong” test
measured the cost of sending a 1-byte message from
one process to another. On FreeBSD and Linux, we
used sockets, on Windows, a named pipe, and on
Singularity a channel with a single message argument.

CPU Cycles Message
Size (bytes) Singularity Linux Windows

4 1316 5544 6641

16 1267 5379 6600

64 1282 5549 6999

256 1271 5519 7353

1024 1267 5971 10303

4096 1274 8032 17875

16384 1275 19167 47149

65536 1268 87941 187439
Table 4. IPC costs.

A basic thread operation, such as yielding the
processor, is roughly three times faster on Singularity
than the other systems. ABI calls and cross-process
operations run significantly faster (5 to 10 times
faster) than the mature systems because of
Singularity’s SIP architecture.

Singularity’s process creation time is significantly
lower than the other systems because SIPs don’t need
MMU page tables and because Singularity does not
need to maintain extra data structures for dynamic
code loading. Process creation time on Windows is
significantly higher than other systems because of its
extensive side-by-side compatibility support for
dynamic load libraries.

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 11

Singularity use first class language support to achieve
zero-copy communication between SIPs [14].
Soundness of zero-copy semantics are verified by
static analysis on the entire contents of sealed process.
Table 4 shows the cost of sending a payload message
from one process to another on Singularity, Linux, and
Windows for comparison.

5. Related Work
The large amount of related work can be divided to
two major areas: extension isolation and OS
architecture and.

5.1. Extension Isolation
Short of providing sealed processes, there have been
many attempts to alleviate problems caused by open
processes, through providing protection and isolation
mechanisms within a process, most typically for
extensions.

Device drivers are both the most common operating
system extension and the largest source of defects [10,
33, 47]. Nooks provides a protected environment in
the Linux kernel to execute existing device drivers
[46, 47]. It uses memory management hardware to
isolate a driver from kernel data structures and code.
Calls across this protection boundary go through the
Nooks runtime, which validates parameters and tracks
memory usage. Singularity, without the pressure for
backward compatibility, provides mechanisms (SIPs
and channels) that are general programming
constructs, suitable for application and system code,
as well as for device drivers.

Software fault isolation (SFI) isolates code in its own
domain by inserting run-time tests to validate memory
references and indirect control transfers, a technique
called sandboxing [53]. Sandboxing can incur high
costs and only provides memory isolation between a
host and an extension. It does not offer the full
benefits of language safety for either the host or
extension. Sandboxing also does not control data
shared between the two, so they remain coupled in
case of failure.

Sun’s JVM and Microsoft’s Common Language
Runtime (CLR) are virtual execution environments
that attempt to compensate for some weaknesses of
open processes by using fine-grain isolation and
security mechanisms. Both are open environments that
encourage dynamic code loading (e.g., Applets) and
run-time code generation. They use language safety as
their protection mechanism, but must introduce
complex security mechanisms and policies, such as
Java’s fine grain access control or the CLR’s code

access security, to prevent code from accessing system
internals and expressive interfaces [34]. These
mechanisms are difficult to use properly and impose
considerable overhead. Singularity runs extensions in
separate sealed processes, which provide a stronger
assurance of isolation and a more tractable security
problem that does not entail a large number of fine
grain policy decisions.

Computations sharing an execution environment are
not isolated upon failure. A shared object can be left
in an inconsistent or locked state when a thread fails
[18]. When a program running in a JVM fails, the
entire JVM process typically is restarted because it is
difficult to isolate and discard corrupted data and find
a clean point to restart the failed computation [9].

Other projects have implemented OS-like
functionality to control resource allocation and sharing
and facilitate cleanup after failure in open
environments. J-Kernel implemented protection
domains in a JVM process, provided revocable
capabilities to control object sharing, and developed
clean semantics for domain termination [25]. Luna
refined the J-Kernel’s run-time mechanisms with an
extension to the Java type system that distinguishes
shared data and permits control of sharing [26].
KaffeOS provides a process abstraction in a JVM
along with mechanisms to control resource utilization
in a group of processes [4]. Java has incorporated
many of these ideas into a new feature called isolates
[36] and Microsoft’s CLR has had a similar concept
called AppDomains since its inception.

Singularity eliminates the duplication between an
operating system and these run-time systems by
providing a consistent mechanism across all levels of
the system. Singularity’s SIPs are sealed and non-
extensible, which provides a greater degree of
isolation and fault tolerance than Java or CLR
approaches.

5.2. OS architecture
Singularity is a microkernel operating system that
differs in many respects from previous microkernel
systems, such as Mach [2], L4 [24], SPIN [7], VINO
[42], Taos/Topaz [50], and the Exokernel [12].
Microkernel operating systems partition the
components of a monolithic operating system kernel
into separate processes, to increase the system’s
failure isolation and reduce development complexity.
Singularity generalizes this sound engineering
methodology (modularity) to the entire system, by
providing lightweight processes and inexpensive
interprocess communication, which enable an

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 12

application to be partitioned and still communicate
effectively.

Previous systems did not seal the kernel or processes.
Hardware-enforced process isolation has considerable
overhead, and so microkernels evolved to support
kernel extensions, while developing mechanisms to
protect system integrity. SPIN was closest to our
approach, as its extensions were written in a safe
language and relied on language features to restrict
access to kernel interfaces [7]. Vino used sandboxing
to prevent unsafe extensions from accessing kernel
code and data and lightweight transactions to control
resource usage [42]. However, both systems allowed
extensions to directly manipulate kernel data, which
left open the possibility of corruption through
incorrect or malicious operations and inconsistent data
after extension failure. Exokernel defined kernel
extensions for packet filtering in a domain-specific
language and generated code in the kernel for this
safe, analyzable language [19].

Other operating systems have been written in safe
programming languages. Early “open” systems [30]
were diametrically opposed to Singularity, as they
encouraged dynamic code loading. These systems
were developed as “single user” systems, and
consequently paid little attention to security, isolation,
or fault tolerance. Smalltalk-80 and Lisp Machine
Lisp used dynamic typing and run-time checking to
ensure language safety, but isolation depended on
programmer discipline and could be subverted through
introspective and system operations [21, 54]. Pilot and
Cedar/Mesa were single-user, single-address space
systems implemented in Mesa, a statically typed, safe
language [37, 48]. More recently, Inferno is a single
address space operating system that runs programs
written in a safe programming language (Limbo) [11].

More recent safe systems provided processes. RMoX
is an operating system partially written in occam [6].
Its architecture is similar to Singularity, with a system
structured around message-passing between processes.
However, RMoX uses a kernel written in C and only
its device drivers and system process are written in a
safe language.

Taos/Topaz [49] was a multiple address space,
microkernel operating system written in Modula2+
[39]. Taos could emulate a Unix interface for
programs written in unsafe languages [31], but a rich
set of APIs as well as a lightweight RPC mechanism
were available for the type-safe environment. Shared-
memory artifacts were apparent in several aspects of
the Taos implementation. In contrast to synchronous
RPC, Singularity uses asynchronous message passing

over strongly typed channels, which is more general
(RPC is a special case) and permits verification of
communication behavior and system-wide liveness
properties.

Several operating systems have been written in Java.
JavaOS is a port of the Java virtual machine to bare
hardware [40]. It replaces a host operating system
with a microkernel written in an unsafe language and
Java code libraries. JavaOS supports a single open
process shared between all applications.

The JX system is similar to Singularity in many
respects. It is a microkernel system written almost
entirely in a safe language (Java) [22]. Processes on
JX do not share memory and run in a single hardware
address space using language safety instead of
hardware protection for process isolation. However,
JX employs an open process architecture since, like
Java, it allows dynamic code loading.

6. Conclusions and Future Work
In a quest to improve system dependability, we have
defined a new sealed process architecture, which
offers a number of important advantages. It creates
explicit interfaces between a program and its
extensions and prohibits sharing of memory. This can
improve the reliability of systems in the presence of
extension failures, a well-known source of failure in
operating systems and applications. It allows defect
detection tools and tools that verify partial program
correctness to make sound assumptions about program
behavior. It also increases the precision and accuracy
of static analysis, which is a key component of code
optimization and defect detection tools. It enables an
operating system to provide stronger security
guarantees than open processes and code-based
process identity. It allows the elimination of
redundancies between an OS and language runtimes
such as the JVM and CLR. And, it encourages
applications and systems programmers to practice
better software engineering.

We have implemented sealed processes in the
Singularity operating system. Preliminary results
suggest that the restrictions imposed by sealed
processes are not overly burdensome and are at least
partially compensated by improved detection of
coding errors. When combined with software isolated
processes (SIPs), sealed processes also enable static
analysis that significantly improves microbenchmark
performance. It is too early to quantify the eventual
impact of these improvements on macro-throughput.

We believe the sealed architecture shows sufficient
promise to merit further consideration by the research

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 13

community. We see two important avenues of future
research. The first is implementing a larger class of
extensible programs on the architecture to further
evaluate its validity. For example, we believe porting
a large database server would be a valuable
experiment. The second is evaluating the sealed
architecture in a hardware-protected operating system,
such as Windows, Linux, or MINIX 3 [27].

7. References
1. Abadi, M., Birrell, A. and Wobber, T. Access Control in

a World of Software Diversity. in Proceedings of the
10th Workshop on Hot Topics in Operating Systems
(HotOS X), Santa Fe, NM, 2005.

2. Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid,
R., Tevanian, A. and Young, M. Mach: A New Kernel
Foundation for UNIX Development. in Summer
USENIX Conference, Atlanta, GA, 1986, 93-112.

3. Aiken, M., Fähndrich, M., Hawblitzel, C., Hunt, G. and
Larus, J., Deconstructing Process Isolation. Technical
Report MSR-TR-2006-43, Microsoft Research, 2005.

4. Back, G., Hsieh, W.C. and Lepreau, J. Processes in
KaffeOS: Isolation, Resource Management, and Sharing
in Java. in Proceedings of the 4th USENIX Symposium
on Operating Systems Design & Implementation
(OSDI), San Diego, CA, 2000.

5. Ball, T., Bounimova, E., Cook, B., Levin, V.,
Lichtenberg, J., McGarvey, C., Ondrusek, B., Rajamani,
S.K. and Ustuner, A. Thorough Static Analysis of
Device Drivers in Proceedings of the EuroSys 2006
Conference, Leuven, Belgium, 2006.

6. Barnes, F., Jacobsen, C. and Vinter, B. RMoX: A Raw-
Metal occam Experiment. in Communicating Process
Architectures, IOS Press, Enschede, the Netherlands,
2003, 269-288.

7. Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G.,
Fiuczynski, M., Becker, D., Eggers, S. and Chambers, C.
Extensibility, Safety and Performance in the SPIN
Operating System. in Proceedings of the Fifteenth ACM
Symposium on Operating System Principles, Copper
Mountain Resort, CO, 1995, 267-284.

8. Biberstein, M., Gil, J. and Porat, S. Sealing,
Encapsulation, and Mutability. in Proceeedings of the
15th European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer
Science, Springer-Verlag, Budapest, Hungary, 2001.

9. Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G. and
Fox, A. Microreboot—A Technique for Cheap
Recovery. in Proceedings of the Sixth Symposium on
Operating Systems Design and Implementation (OSDI
'04), San Francisco, CA, 2004, 31-44.

10. Chou, A., Yang, J., Chelf, B., Hallem, S. and Engler, D.
An Empirical Study of Operating Systems Errors. in
Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP '01), Alberta, Canada, 2001,
73-88.

11. Dorward, S., Pike, R., Presotto, D.L., Ritchie, D.M.,
Trickey, H. and Winterbottom, P. The Inferno Operating
System. Bell Labs Technical Journal, 2 (1). 5-18.

12. Engler, D.R., Kaashoek, M.F. and O'Toole, J., Jr.
Exokernel: an Operating System Architecture for

Application-Level Resource Management. in
Proceedings of the Fifteenth ACM Symposium on
Operating System Principles, Copper Mountain Resort,
CO, 1995, 251-266.

13. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O.,
Hunt, G., Larus, J.R. and Levi, S. Language Support for
Fast and Reliable Message Based Communication in
Singularity OS. in To appear: EuroSys2006, Leuven,
Belgium, 2006.

14. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O.,
Hunt, G., Larus, J.R. and Levi, S. Language Support for
Fast and Reliable Message Based Communication in
Singularity OS. in Proceedings of the EuroSys 2006
Conference, Leuven, Belgium, 2006.

15. Fähndrich, M. and Larus, J.R. Language Support for
Fast and Reliable Message Based Communication in
Singularity OS. in Submitted to EuroSys2006, 2005.

16. Fitzgerald, R., Knoblock, T.B., Ruf, E., Steensgaard, B.
and Tarditi, D. Marmot: an Optimizing Compiler for
Java. Software-Practice and Experience, 30 (3). 199-
232.

17. Fitzgerald, R. and Tarditi, D. The Case for Profile-
directed Selection of Garbage Collectors. in Proceedings
of the 2nd International Symposium on Memory
Management (ISMM '00), Minneapolis, MN, 2000, 111-
120.

18. Flatt, M. and Findler, R.B. Kill-safe Synchronization
Abstractions. in Proceedings of the ACM SIGPLAN
2004 Conference on Programming Language Design
and Implementation (PLDI 04), Washington, DC, 2004,
47-58.

19. Ganger, G.R., Engler, D.R., Kaashoek, M.F., Briceño,
H.M., Hunt, R. and Pinckney, T. Fast and Flexible
Application-level Networking on Exokernel Systems.
ACM Transactions on Computer Systems, 20 (1). 49-83.

20. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M. and
Boneh, D. Terra: A Virtual-Machine Based Platform for
Trusted Computing in Proceedings for the 19th ACM
Symposium on Operating System Principles (SOSP),
Bolton Landing, NY, 2003.

21. Goldberg, A. and Robson, D. Smalltalk-80: The
Language and Its Implementation. Addison-Wesley,
1983.

22. Golm, M., Felser, M., Wawersich, C. and Kleinoeder, J.
The JX Operating System. in Proceedings of the
USENIX 2002 Annual Conference, Monterey, CA, 2002,
45-58.

23. Gosling, J., Joy, B. and Steele, G. The Java Language
Specification. Addison Wesley, 1996.

24. Härtig, H., Hohmuth, M., Liedtke, J. and Schönberg, S.
The Performance of µ-kernel-based Systems. in
Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles (SOSP '97), Saint Malo,
France, 1997, 66-77.

25. Hawblitzel, C., Chang, C.-C., Czajkowski, G., Hu, D.
and Eicken, T.v. Implementing Multiple Protection
Domains in Java. in Proceedings of the 1998 USENIX
Annual Technical Conference, New Orleans, LA, 1998,
259-270.

26. Hawblitzel, C. and Eicken, T.v. Luna: A Flexible Java
Protection System. in Proceedings of the Fifth ACM
Symposium on Operating System Design and

MSR-TR-2006-51
This is a draft paper that is under submission. Please contact Galen Hunt for citation information.

 14

Implementation (OSDI '02), Boston, MA, 2002, 391-
402.

27. Herder, J.N., Bos, H., Gras, B., Homburg, P. and
Tanenbaum, A.S. Modula System Programming in
MINIX 3. USENIX ;login, April, 2006.

28. Hunt, G., Larus, J., Abadi, M., Aiken, M., Barham, P.,
Fähndrich, M., Hawblitzel, C., Hodson, O., Levi, S.,
Murphy, N., Steensgaard, B., Tarditi, D., Wobber, T.
and Zill, B., An Overview of the Singularity Project.
Technical Report MSR-TR-2005-135, Microsoft
Research, 2005.

29. Hunt, G.C., Larus, J.R., Tarditi, D. and Wobber, T.
Broad New OS Research: Challenges and Opportunities.
in Proceedings of the 10th Workshop on Hot Topics in
Operating Systems (HotOS X), Santa Fe, NM, 2005.

30. Lampson, B.W. and Sproull, R.F. An Open Operating
System for a Single-user Machine. in Proceedings of the
Seventh ACM Symposium on Operating Systems
Principles (SOSP), Pacific Grove, CA, 1979, 98-105.

31. McJones, P.R. and Swar, G.F. Evolving the UNIX
system interface to support multithreaded programs. in
Proceedings of the Winter 1989 USENIX Conference,
1989.

32. Morrisett, G., Walker, D., Crary, K. and Glew, N. From
System F to Typed Assembly Language. ACM
Transactions on Programming Languages and Systems,
21 (3). 527-568.

33. Murphy, B. and Levidow, B. Windows 2000
Dependability. in Proceedings of the IEEE International
Conference on Dependable Systems and Networks, New
York, NY, 2000.

34. Paul, N. and Evans, D. NET Security: Lessons Learned
and Missed from Java. in 20th Annual Computer
Security Applications Conference (ACSAC), Tucson,
AZ, 2004, 272-281.

35. Peinado, M., Chen, Y., England, P. and Manferdelli, J.
NGSCB: A Trusted Open System. in Proceedings of the
9th Australasian Conference on Information Security
and Privacy (ACISP), Sydney, Australia, 2004.

36. Process, J.C. Application Isolation API Specification
Java Specification Request, 2003, JSR-000121.

37. Redell, D.D., Dalal, Y.K., Horsley, T.R., Lauer, H.C.,
Lynch, W.C., McJones, P.R., Murray, H.G. and Purcell,
S.C. Pilot: An Operating System for a Personal
Computer. Communications of the ACM, 23 (2). 81-92.

38. Ritchie, D. and Thompson, K. The UNIX Time-Sharing
System. Communications of the ACM, 17 (7). 365-375.

39. Rovner, P., Levin, R. and Wick, J., On Extending
Modula-2 for Building Large, Integrated Systems.
Technical Report SRC-3, DEC SRC, 1985.

40. Saulpaugh, T. and Mirho, C. Inside the JavaOS
Operating System. Addison-Wesley, 1999.

41. Schroeder, M.D. and Saltzer, J.H. A Hardware
Architecture for Implementing Protection Rings in
Proceedings of the Third ACM Symposium on Operating
Systems Principles (SOSP), ACM, Palo Alto, CA, 1971.

42. Seltzer, M.I., Endo, Y., Small, C. and Smith, K.A.
Dealing with Disaster: Surviving Misbehaved Kernel
Extensions. in Proceedings of the Second USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 96), Seattle, WA, 1996, 213-227.

43. Spear, M.F., Roeder, T., Levi, S. and Hunt, G. Solving
the Starting Problem: Device Drivers as Self-Describing
Artifacts. in Proceedings of the EuroSys 2006
Conference, Leuven, Belgium, 2006.

44. SPEC SPECweb99 Release 1.02. Standard Performance
Evaluation Corporation Warrenton, VA, 2000.

45. Sreedhar, V.C., Burke, M. and Choi, J.-D. A Framework
for Interprocedural Optimization in the Presence of
Dynamic Class Loading. in Proceedings of the ACM
SIGPLAN '00 Conference on Programming Language
Design and Implementation (PLDI 00), Vancouver, BC,
2000, 196-207.

46. Swift, M.M., Annamalai, M., Bershad, B.N. and Levy,
H.M. Recovering Device Drivers. in Proceedings of the
Sixth Symposium on Operating Systems Design and
Implementation (OSDI '04), San Francisco, CA, 2004, 1-
16.

47. Swift, M.M., Bershad, B.N. and Levy, H.M. Improving
the Reliability of Commodity Operating Systems. in
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP '03), Bolton Landing, NY,
2003, 207-222.

48. Swinehart, D.C., Zellweger, P.T., Beach, R.J. and
Hagmann, R.B. A Structural View of the Cedar
Programming Environment. ACM Transactions on
Programming Languages and Systems, 8 (4). 419-490.

49. Thacker, C., Stewart, L.C. and Satterthwaite, E., Firefly:
A multiprocessor workstation. . Technical Report SRC-
023, DEC SRC, 1987.

50. Thacker, C.P. and Stewart, L.C. Firefly: a
Multiprocessor Workstation. in Proceedings of the
Second International Conference on Architectural
Support for Programming Languages and Operating
Systems, Palo Alto, CA, 1987, 164-172.

51. von Behren, R., Condit, J., Zhou, F., Necula, G.C. and
Brewer, E. Capriccio: Scalable Threads for Internet
Services. in Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP
'03), Bolton Landing, NY, 2003, 268-281.

52. Vyssotsky, V.A., Corbató, F.J. and Graham, R.M.
Structure of the Multics supervisor. in AFIPS
Conference Proceedings 27, 1965 Fall Joint Computing
Conference (FJCC), Spartan Books, Washington, DC,
1965, 203-212.

53. Wahbe, R., Lucco, S., Anderson, T.E. and Graham, S.L.
Efficient Software-Based Fault Isolation. in Proceedings
of the Fourteenth ACM Symposium on Operating System
Principles, Asheville, NC, 1993, 203-216.

54. Weinreb, D. and Moon, D. Lisp Machine Manuel.
Symbolics, Inc, Cambridge, MA, 1981.

