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Abstract

This paper proposes a technique to animate a “Chinese style” painting given its image. We
first extract descriptions of the brush strokes that hypothetically produced it. The key to the
extraction process is the use of a brush stroke library, which is obtained by digitizing single
brush strokes drawn by an experienced artist. The steps in our extraction technique are to
first segment the input image, to then find the best set of brush strokes that fit the regions,
and, finally, to refine these strokes to account for local appearance. We model a single
brush stroke using its skeleton and contour, and we characterize texture variation within
each stroke by sampling perpendicularly along its skeleton. Once these brush descriptions
have been obtained, the painting can be animated at the brush stroke level. In this paper, we
focus on Chinese paintings with relatively sparse strokes. The animation is produced using
a graphical application we developed. We present several animations of real paintings
using our technique.

CR Categories and Subject Descriptors:
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding
I.3.3 [Computer Graphics]: Picture/Image Generation
Keywords: Computer animation, non-photorealistic rendering, image editing, image-

based modeling and rendering, image segmentation.

1. INTRODUCTION

What if paintings could move? In this paper, we propose a way of animating Chinese paint-
ings by automatically decomposing an image of a painting into its hypothetical brush stroke
constituents. Most Chinese paintings are typically sparse, with each brush stroke drawn
very purposefully [Smith and Lloyd 1997]. Our method is specifically geared for handling
paintings that employ brush strokes economically; in addition to most Chinese paintings,
other suitable styles include Sumi-e and certain watercolor and oil paintings, such as those
of van Gogh.

In Chinese paintings, each stroke is often introduced to depict something specific in the
real world. Thus, the output of our stroke-based decomposition of these paintings is a set
of graphical objects that are meaningful with regard to the set of real objects the paintings
depict. As a result, animators would likely feel comfortable manipulating these graphical
objects. In addition, the number of strokes in each painting is usually small, and hence
manageable.

Our approach uses segmentation techniques and a library of brush strokes for fitting.
The recovered brush strokes are basically vectorized elements, which are easy to animate
(Figure 1). In addition to animation, the set of recovered brush strokes can be used for
synthesis of paintings or for manipulating images of paintings.

Our automatic stroke decomposition technique has other potential uses. For example,
a system utilizing a camera or scanner along with the traditional media of paper, brush,
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(a) (b) (c) (d)

(e) (f)

Fig. 1. Animating a flower painting. A painting is animated by decomposing it into a set of vectorized brush
strokes. The brush strokes are produced by taking the input image (a) and over-segmenting it initially (b).
These segments are then merged into coherent strokes (c), which are chosen to match strokes in a “brush
stroke library.” These strokes are then textured (d) using the input image as a texture source. Finally, the
strokes are individually animated as vectorized elements (e), (f).

and paint can be thought of as a kind of “natural tablet” (as opposed to a digital tablet).
Another application is compression—an animation sequence of a painting can be more
efficiently represented and transmitted across a network. This is a direct consequence of
the decomposition process producing a set of vectorized stroke elements. The resulting
compressed representation could be used, for instance, to augment a textual chat system
with little additional required bandwidth. Finally, the recovered representation could be
analyzed to identify artistic style and identity.

To our knowledge, there has been little or no work in automatically decomposing images
of paintings into brush strokes. However, several related topics have been explored. One
such example is that of “optical character reader” (OCR) systems, where stroke analysis
techniques are used for segmenting handwriting purely on the basis of shape (e.g., [Wang
and Jean 1993]). Another related line of research is diagram recognition, which includes
recognizing engineering drawings [Joseph and Pridmore 1992], mail pieces [Wang and
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Srihari 1988], sketch maps [Mulder et al. 1988], math expressions [Zanibbi et al. 2002],
and music symbols [Blostein and Haken 1999]. However, the targets in diagram recognition
are usually limited to symbols or objects drawn using thin lines, which are not nearly as
visually rich as brush strokes in paintings.

In computer graphics, electronic virtual brushes have been developed to simulate the
effects of brush painting in a computer. One of the earliest works in this area is that of
Strassman [1986], where paint brushes are modeled as a collection of bristles that evolve
over the course of a stroke. Hsu and Lee [1994] introduced the concept of the “skeletal
stroke,” which allows strokes to be textured. This idea was later used in a 2D stroke-based
animation system called LivingCels [Hsu et al. 1999]. The Deep Canvas system [Daniels
1999] allows brush strokes to be digitally created on 3D surfaces and then animated. The
virtual brush for oil painting was proposed by Baxter et al. [2001]. The virtual hairy brush
for oriental painting was suggested by Xu et al. [2002; 2003; 2004]. Kalnins et al. [2002]
presented a system that supports the drawing of strokes over a 3D model.

Our stroke decomposition work is related to the extensively researched problem of image
segmentation in computer vision (see [Jain 1989] and [Forsyth and Ponce 2002]). One par-
ticularly relevant approach is that of Neumann [2003]. He proposed an image segmentation
technique that uses predefined graphical shape models. However, the technique requires
manual selection of corresponding key points, which is non-trivial for large-scale data
sets. Wang and Siskind [2003] propose the cut ratio method (a graph-based method) for
segmenting images, which supports efficient iterated region-based segmentation and pixel-
based segmentation. Marroquin et al. [2003] propose a Bayesian formulation for modeling
image partitioning and local variation within each region. All these methods either require
manual input or assume non-overlapping regions.

Our brush stroke extraction approach involves over-segmenting the image and incremen-
tally merging parts. This technique is common in computer vision and has been used in
computer graphics as well. For instance, DeCarlo and Santella [2002] progressively group
regions based on similarity of color modulated by region size. Liu and Sclaroff [2001] use
a deformable, model-guided, split-and-merge approach to segment image regions. We use
a similar approach, except that we consider the similarity with brush strokes from a library
as well as color distributions on region boundaries.

There are other object-based editing systems that do not involve brush strokes. In Litwinow-
icz and Williams’s image editing system [1994], users can align features such as points,
lines, and curves to the image and distort the image by moving these features. Salisbury et
al. [1994] developed an interactive image-based non-photorealistic rendering system that
creates pen-and-ink illustrations using a photograph as the reference for outline and tone. In
Horry et al.’s “Tour-into-the-picture” system [1997], the user can interactively create 2.5-
D layers, after which flythrough animations can be generated. Barrett and Cheney [2002]
developed an image editing system that allows the user to interactively segment out objects
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(A) (A)

(B) (B)

(C) (C)
Test Segmentation level (maximum 255) Number of strokes

A 255 1769
B 120 1255
C 25 403

Fig. 2. Stroke extraction results of the fish painting using Gooch’s algorithm. The original painting is Figure
15(a). Three typical segmentation levels are tested: fine (A); medium (B) and coarse (C). The contours of
extracted strokes for each test are shown on the left, while their corresponding rendered results are shown on
the right. The statistics for these results are listed in the table below.

in the image and manipulate them to generate animations.
The closest work to ours is probably that of Gooch et al. [2002] because of some simi-

larity with two important parts of our algorithms — image segmentation and medial axis
extraction — and the shared goal of generating brush strokes. However, Gooch et al. ad-
dress a very different problem: they wish to convert one image — photographs or views of
synthetic 3D scenes — to another — a non-photorealistic rendering — without preserving
the image’s exact appearance. Moreover, their system’s output is a static image. As such, it
is not important for them whether or not the extracted strokes are amenable to animation.
Also, correct recovery of overlapping strokes is not an issue for them because they are not
trying to replicate exactly the appearance of the input image. By comparison, we wish to
decompose an image of a painting to separate vectorized elements, or strokes, such that
rendering those strokes reproduces the original image’s appearance. In addition, in order
to facilitate more “natural-looking” animation, the extracted strokes have to be plausible
strokes that the artist may have made. Figures 2 and 3 show the results of applying Gooch
et al. [2002]’s algorithm to two images of paintings. As can be seen, the extracted strokes
do not depict anything that corresponds to the real world. This makes “proper” animation
of the painting significantly more labor-intensive than if the correct original strokes were
extracted. In addition, the original appearance of the painting is not preserved.
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(A) (B) (C) (D)

(A) (B) (C) (D)
Test Segmentation level (maximum 255) Number of strokes

A 255 2982
B 120 2345
C 30 942
D 15 496

(e)

Fig. 3. Stroke extraction results of the flower painting using Gooch’s algorithm. The original painting is
Figure 4. Four typical segmentation levels are tested: A–D. The top row shows the contours of extracted
strokes, while their corresponding rendered results are shown in the second row. The segmentation parameter
and number of strokes extracted are listed in the table below.

2. PAINTING DECOMPOSITION APPROACH

Before we animate a painting, we first decompose its image into a plausible set of brush
strokes. A graphical overview of our decomposition approach is depicted in Figure 4, which
also shows an example image, the intermediate results, and the final output. The basic idea
is simple: we segment the image, use a brush library to find the best fit for each region, and
refine the brush strokes found directly from the input image. The brush library used was
created with the help of a painter who specializes in Chinese paintings.

2.1 Image segmentation

Given an image of a painting, we first segment the image into regions of similar color inten-
sities. This segmentation is done to speed up the processing for brush decomposition. We
tune the mean-shift algorithm [Comaniciu and Meer 2002] to produce an over-segmented
image because similarity of color intensity is a necessary but not sufficient condition for
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Fig. 4. Steps involved in our painting analysis and reconstruction approach.

brush stroke segmentation. The overly conservative segmentation ensures that each region
does not straddle multiple brush strokes unless they overlap.

2.2 Stroke extraction by region merging

After over-segmentation is done, we merge contiguous regions that likely belong to the
same brush strokes. Our merging process is inspired by domain-dependent image segmen-
tation techniques proposed by Feldman and Yakimovsky [1974] and Tenenbaum and Bar-
row [1977] (and more recently, Kumar and Desai [1999] and Sclaroff and Liu [2001]). In
these techniques, the image is initially partitioned without the use of domain knowledge.
Subsequently, pairs of adjacent regions are iteratively merged based on likelihood of being
single world objects.

In our approach, the domain knowledge is derived from two sources: the intuition that
color gradients are low along brush strokes (the directional smoothness assumption), and
a stroke library containing the range of valid stroke shapes (the shape priors). The direc-
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Coefficient κg κc κw κm κo

Value 0.083 0.05 16 5 4.5

Table I. The coefficients used in (1) to decompose the painting shown in Figure 4. The values used for the
other experiments are similar.

tional smoothness assumption was implemented using average gradients and the difference
between the average color intensities along mutual boundaries. The stroke library was ob-
tained by digitizing single strokes drawn by an expert artist, and the resulting shape priors
are used to avoid implausible shapes. The shape priors also handle brush stroke overlap,
and, as such, our technique goes beyond conventional segmentation.

Before merging takes place, the region merging criterion ε (explained shortly) is com-
puted for each pair of adjacent regions. Pairs of adjacent regions are then merged in ascend-
ing order of ε . In addition, we merge (or “steal”) neighboring regions if the best-fit brush
stroke straddles them.

We now define the region merging criterion ε . Suppose we have two adjacent regions
γi and γ j. The boundary region of γi with respect to γ j, denoted as ∂ (γi,γ j), is the set of
pixels in γi that are close to some pixel in γ j. In our work, “close” is defined as within 3 to
5 pixels of the neighboring regions, and adjacency is defined in the 4-connected sense—a
pixel p is adjacent to q if p and q are horizontal or vertical neighbors. Neighboring regions
are merged if the following region merging criterion ε , defined as the sum of five terms, is
negative:

ε � κgεg +κcεc +κwεw +κmεm +κo. (1)

The first two terms, εg and εc, measure differences in the color distributions of the two
regions (gradient and intensity-based measures, respectively), while the next two terms, εw

and εm, measure the shape similarities to those of library brush strokes (the names stand
for “weighted shape similarity” and “maximum shape similarity,” respectively). Figure 5
illustrates why the terms εg, εc, εw, and εm are necessary. The first four constants, κg, κc,
κw, and κm, are all positive, while κo, a threshold offset, is negative. The values of these
coefficients used for decomposing the Chinese painting shown in Figure 4 are given in
Table I. Similar values are used for the other results.

Dividing both sides of (1) by κo yields only 4 independent parameters. Although the ratio
between κg and κc and the ratio between κw and κm have some effect on the decomposition
result, the most significant factor is the ratio between κgκc and κwκm. For paintings with
strong edges in the stroke contours, better results are obtained using relatively high values
of κw and κm. In our experiments, we test the thresholds on a small representative portion
of the painting before using them on the whole image.

2.2.1 Comparing boundary color distributions. To compare two boundary color distri-
butions, we first extract two sets of gradients Gi and G j, and two sets of color values Ci
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(a) (b)

(c) (d)

Fig. 5. Representative cases in the region merging process to illustrate the need for εg, εc, εw and εm. (a) εg:
Regions i and j have the same color values in the boundary pixels, but they should not be merged because
of the sharp difference between the gradients. (b) εc: Regions i and j have the same gradients along their
common boundary, but they should not be merged due to the significant difference between the color values
along the common boundary. (c) εw: Here, the combined shape similarity is good enough to overcome the
color difference. (d) εm: Here, both the component strokes, i and j, and the combined stroke are all good fits
with the strokes in the library. In this case, εm cancels out εw, causing the merging decision to be made based
on the boundary color and gradient distributions instead.

and Cj (ranging from 0 to 255 in each color channel) for the pixels in the boundary regions
∂ (γi,γ j) and ∂ (γ j,γi), respectively. Figure 6 shows the boundary regions considered during
the region merging process. The color distribution criteria in (1) are defined as

εg � ∑
r,g,b

(∣∣Gi −G j
∣∣ arctan

(
λg

( ||Gi||
σ2(Gi)

+
||G j||

σ2(G j)

)))
(2)

εc � ∑
r,g,b

(∣∣Ci −Cj
∣∣ arctan

(
λc

( ||Ci||
σ2(Ci)

+
||Cj||

σ2(Cj)

)))
(3)

where λg and λc are constants, and X , ||X ||, and σ2(X) are the mean, cardinality, and
variance of X , respectively. In the above equations, by ∑r,g,b we mean the two features
are computed for the r, g, and b channels separately and then added together. Note that
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Fig. 6. Boundary region processing. Here, regions i and j are being considered for merging. ∂ (γi,γ j) and
∂ (γ j,γi) are the boundary regions used to partially decide if these regions should be merged. The red curve
is one pixel thick, and consists of pixels common to both regions i and j. The yellow region is inside region
i, adjacent to the red common boundary curve, and 3 to 5 pixels thick. The green region is similarly defined
for region j. ∂ (γi,γ j) consists of yellow and red regions, while ∂ (γ j,γi) consists of green and red regions. Ci

is the set of colors in the yellow region, and Cj, the set of colors in the green region. Gradients Gi and G j

are computed using pixels in ∂ (γi,γ j) and ∂ (γ j,γi), respectively. Note that here we use only the boundary
regions, rather than the entire image region. The local computation strategy is necessary to handle strokes
with significant texture variation, e.g., strokes created by dragging a semi-wet brush along a long trajectory.

||Gi|| = ||Ci||, since both of them refer to the number of pixels in the same boundary re-
gion. Similarly, ||G j|| = ||Cj||. In all our experiments, λg and λc were set to 0.05 and 0.75,
respectively.

The gradient term εg measures the distance between the average local gradients along
the two boundaries modulated by their combined certainties. Each measure of certainty
increases with longer mutual boundaries and smaller variances. The positive coefficient
λg and function arctan() are used to bracket the confidence value to [0,π/2). The color
term εc functions exactly the same way as εg, except that color intensities are compared
instead of local gradients. Both εg and εc measure the homogeneity of the texture variation
within each stroke region; we assume the texture variation within a stroke region to be
homogeneous.

While there are alternatives to comparing boundary color distributions, our design de-
cisions were governed by simplicity and symmetry of measurement. Estimation of εg and
εc is a computational bottleneck because they are estimated for each adjacent region pair.
The Kullback-Leibler divergence (or relative entropy), for example, may be used, but it is
asymmetric with respect to the two probability distributions. The Chernoff distance, which
is another information-theoretic distance measure, may be also be used, but it requires
computation of maxima (a non-trivial optimization problem).

2.2.2 Using the brush stroke library. The key to our decomposition approach is the use
of a brush stroke library. The image of a painting can be segmented in a variety of ways, but
the most natural approach would be to segment the image into hypothetical brush strokes
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that originally generated the painting. Each brush stroke depicts part of the scene; as such,
the output of our segmentation allows the animation of the painting to look more natural.

We generated our brush library by digitizing single brush strokes drawn by an artist with
ten years of experience in Chinese painting. This brush library is by no means exhaustive
(future work is planned in this area); in our case, the artist drew 62 different brush strokes
that he thought were well representative of all the possible ones used in Chinese paintings.
Each brush stroke was then binarized and its skeleton computed. Sample brush strokes from
this library are shown in Figure 7.

The brush stroke library acts as shape priors to guide the segmentation so as to avoid
irregularly-shaped segments. The library also allows us to hypothesize overlaps between
brush strokes, which facilitates their separation. Without the brush stroke library, we can
extract strokes using only the color distribution in the original input image. The decompo-
sition results would likely be irregularly-shaped segments; such segments would be unintu-
itive from the painter’s perspective and thus difficult to animate. (Note that only regions that
are relatively thick are processed using the brush library. Strokes that are thin are processed
differently; see Section 2.4.)

Figure 8 shows the effect of not using our stroke library, i.e., the stroke decomposition
is performed purely based on color distribution without using any shape priors. Stroke de-
composition results at different granularities are shown. (The different granularities refer to
the different levels of coarseness controlled by segmentation parameter settings.) Regard-
less of the granularity, the decomposition results are not satisfactory. Ensuring proper brush
stroke extraction without an explicit library is highly non-trivial. One could, for example,
favor smoothness of the medial axis as well as the radius function along the axis. However,
using such a heuristic would produce mostly symmetric, straight blobs, which would ap-
pear unnatural for Chinese paintings in general. In addition to producing false negatives,
the smoothness preference may also result in strokes that practicing artists would find in-

Fig. 7. Sample library brush shapes. Only 9 out of 62 shown here. The bottom row displays the modeled brush
shapes in the library with their skeletons shown as red curves. The top row shows respective counterparts
collected from real paintings.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8. Stroke decomposition without our stroke library. (a)–(h) show stroke decomposition results at different
granularities (progressively coarser). Without the stroke library to guide the decomposition, stroke decompo-
sition is uneven, resulting in irregular shapes.

appropriate from an aesthetic point of view. Such strokes could very likely cause incorrect
style or artist identification if they were to be analyzed.

2.2.3 Comparing shapes. We compare each region to the model strokes in our brush
stroke library and find the model brush stroke with the highest shape similarity. Since the
scale, orientation, and shift of the observed brush stroke can be arbitrary, we find the best
transform to optimize similarity to each library brush stroke. To compute the best transform,
we first initialize the shift by aligning the centroids, the orientation by aligning the major
axis directions, and the scale by comparing areas. The transform is then refined through
gradient descent to maximize shape similarity. The appropriately transformed library brush
stroke with the highest similarity with the observed brush stroke is then chosen.

There is extensive work on 2D shape matching; a good survey of techniques is given by
Veltkamp [1999]. We chose a simple (but effective) approach to shape similarity in order to
keep the computation cost manageable. Specifically, we define a similarity measure ϕ(γi),
which describes how well a given region γi fits some stroke in the library:

ϕ(γi) = max
k

A(γi ∩Tkiβk)
A(γi ∪Tkiβk)

,

where A(X) is the area of region X , βk is the kth stroke in the brush stroke library, and Tki
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is the optimal transform (shift, rotate, and scale) used to align βk with γi. The functional
ϕ() ranges between 0 and 1—it is 1 when the two shapes are identical. Unlike many shape
comparison approaches that compare contours, our shape-based criterion directly makes
use of areas. Using areas is more reliable because there is high variability in the detail
of the contours of brush strokes. (Pre-smoothing the contour may result in loss of critical
information.)

The shape-based criteria in (1) can be defined as:

εw � ϕ(γi)A(γi)+ϕ(γ j)A(γ j)
A(γi ∪ γ j)

−ϕ(γi ∪ γ j) (4)

εm � max{ϕ(γi),ϕ(γ j)}−ϕ(γi ∪ γ j). (5)

Thus, εw compares the area-weighted sum of similarity measures associated with fitting
two brush strokes against the area-weighted similarity measure for a single brush stroke
for the combined regions. A large positive value of εw means that it is better to fit the
two regions with two brush strokes instead of one. The second measure, εm, compares the
similarities of the two strokes versus the combined stroke directly; a large value signifies
that it is better not to merge the regions. Both εw and εm are used in objective function (1)
because we need to balance two conflicting biases: the bias towards fitting a single brush
stroke on the merged regions (εw) versus the bias towards preserving current regions that
have very good fit with the library (εm).

2.3 Stroke refinement and appearance capture

Note that the extracted brush shapes are not the final shapes; the brush strokes in the library
are used merely to guide the segmentation process. After the brush strokes have been iden-
tified, their shapes are refined using the final segmented regions in the image. The shape of
each identified brush stroke is first scaled, shifted, and rotated so as to maximize shape sim-
ilarity with the corresponding stroke region. The modified shape is then dilated to assume
the shape of the brush stroke as much as possible.

Once each shape has been refined, an optimization algorithm is used to produce a maximal-
length skeleton within the region. This is accomplished by searching the positions of the
two ends of the skeleton along the boundary. The search is done within the vicinity of the
skeleton of the best-fit library brush stroke. A piecewise 3rd-degree Bezier curve is used to
fit the skeleton.

The appearance of the brush stroke is then captured by directly sampling texture from
the image. This is necessary in order to reproduce the appearance of the original painting.
Section 3 describes how texture sampling is done.
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2.4 Thin brush strokes

Because thin brush strokes are very difficult to model as part of a library, we treat them
separately. Each region is categorized either as a regular brush stroke or as a thin brush
stroke based on a simple aspect-ratio analysis of the regions. We label a stroke as being
thin if the arc length of its skeleton is at least 10 times longer than its average stroke width.
Adjacent thin strokes will also be merged if the difference between their average intensities
is less than 10 levels and the gradients at their mutual boundaries differ by less than 10%.

Skeletons for thin brush strokes are extracted by using a thinning algorithm [Zhou et al.
1995]. Interval piecewise Bezier splines [Sederberg and Farouki 1992; Su et al. 2002] are
then used to represent the thin strokes. A piecewise Bezier curve is used to fit the skeleton
of the stroke, with local widths (corresponding to local brush thickness) and intensities
recorded at the spline knots. We adapted Schneider’s algorithm [1990] for this purpose. In
addition to placing spline knots uniformly along the skeleton, we place additional spline
knots at locations of high variation of local width or intensity. We resample the width and
intensity until their local variations are within acceptable limits.

At this point, let us discuss two important issues associated with our decomposition al-
gorithm. First, what happens when the artist draws strokes that are not in the database?
Our algorithm will try to force-fit the best brush stroke shape from the library. If the drawn
stroke is only a little different from one of the library strokes and the drawn stroke is close
to being a solid stroke (strong boundary edges with little contrast inside), it is likely that
only one stroke will be extracted. However, if the drawn stroke is dramatically different
from any stroke shape from the library, oversegmentation will likely happen (with possi-
ble overlap) because there is no single brush stroke that can fit it well. The second issue
relates to the background of the painting. The background need not be white or some other
constant color for our algorithm to work; it will work with any uniformly (finely) textured
background. If the background is cluttered, it will be treated the same as the foreground
objects and decomposed in exactly the same way. Our algorithm will work as long as there
is enough contrast between strokes for separation.

3. APPEARANCE CAPTURE AND SYNTHESIS OF SINGLE BRUSH STROKES

3.1 Single-stroke appearance model

Figure 9 shows an overview of how single brush strokes are refined and synthesized (if
necessary).

In the case of thin brush strokes, their skeletons are represented by interval B-splines,
with local brush widths and intensities recorded at the spline knots. They can be directly
rendered using this information.

For regular brush strokes (i.e., those that are not considered thin), we devised a single-
stroke appearance model (Figure 10). With the single-stroke model, each brush stroke un-
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Fig. 9. Steps in analyzing and synthesizing a single brush stroke. (The thin and regular strokes are handled
differently.)

dergoes a more complicated iterative process, which consists of four steps:

(1) Color distribution sampling
Given the shape of the brush stroke (i.e., skeleton and contour), normal lines are com-
puted at regular sample points along its skeleton (Figure 10(c)). The color distribution
in RGB space of the brush stroke is sampled along each normal, and is represented
using a piecewise 3rd-degree Bezier curve. We used Schneider’s algorithm [1990] to
automatically segment the samples. We assume that the error in fitting the color dis-
tribution is Gaussian noise. The modeled Gaussian noise is then added to the fit color
distribution to prevent the synthesized appearance from appearing too smooth.

(a) (b) (c) (d)

Fig. 10. Appearance capture of a single brush stroke. Given an input stroke (a), its contour and skeleton are
initially extracted (b). The skeleton is then smoothed, and lines perpendicular to it are sampled from the input
image (c). The stroke’s appearance can then be generated (d).
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(2) Bezier curve resampling
The number of Bezier segments may differ for a pair of adjacent normal lines. To
simplify the next step of appearance prediction, we resample the number of segments of
adjacent normal lines so that they contain the smallest common multiple of the number
of samples in the originals. We refer to this process simply as Bezier curve resampling.
Note that each sample line has two sets of representative Bezier segments, one to match
the previous neighbor, and the other to match the next neighbor. The exceptions are the
first and last sample lines, which have only one set of Bezier segments.

(3) Color distribution prediction
Given the Bezier approximation of color and noise distributions, we can then synthesize
the appearance of the brush stroke. Every pixel in the brush stroke is filled by linearly
interpolating the nearest two normal lines. This can be easily done because the number
of segments per normal line pair is the same (enforced by Step 2).

(4) Refinement of sampling location
The synthesized brush stroke is used to refine the locations of the sampling lines along
the brush skeleton. We start off with a sufficiently high sampling density along the
skeleton (sampling every pixel is the safest starting point). Sampling lines are chosen
at random and tested to see if the degradation is significant when they are removed. If
so, they stay; otherwise, they are permanently removed. This process (which is a form
of analysis by synthesis) is repeated until either the error between the reconstructed and
actual brush strokes is above a threshold, or the number of iterations exceeds a limit.

3.2 Why direct texture mapping is inadequate

A straightforward method to capture and reproduce the appearance of a brush stroke would
be to triangulate it followed by texture mapping. One possible tessellation strategy for di-
viding the brush stroke area into triangle strips is proposed by Hertzmann [1999]. There
are two main problems with this approach. First, the shape may be significantly distorted
in the process of animation, causing non-uniform warping of texture. Although the texture
deformation within one triangle is uniform, the discontinuity of deformed texture would
become obvious across the edges of adjacent triangles. In contrast, our stroke appearance
model ensures texture smoothness throughout the deformed stroke area because deforma-
tion is continuously distributed according to the skeleton of the stroke. Figure 11 compares
the results of significant shape distortion.

The second problem with direct texture mapping is that separate tessellation of the source
and destination brush stroke shapes would introduce the non-trivial problem of establish-
ing a one-to-one correspondence between the two tessellation results to map the texture.
It is possible to handle this problem using a dynamic tessellation algorithm that gener-
ates consistent tessellation results, e.g., [Alexa et al. 2000]. However, that would introduce
significant additional complexity at the expense of speed. In addition, ensuring minimum
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(a) (b) (c) (d) (e) (f) (g)

Fig. 11. Comparison of distortion effects on texture mapped brush stroke and our appearance model. Given
the original stroke (a) and triangulation for texture mapping (b), significant deformation may result during
animation (c). Compare the distorted strokes using texture mapping (d) and our appearance model (e). The
close-up views of the two respective approaches, (f) and (g), demonstrate that the texture mapped version
cannot handle this type of significant distortion as well as our appearance model.

distortion in the brush texture is not obvious. As a result, it is also very hard to guarantee
temporal coherence during animation if direct texture mapping is used. Our appearance
model does not suffer from these problems.

Our appearance model also naturally supports level-of-detail (LOD) for strokes, and has
the capability of predicting appearance of areas that may be partially occluded. This pre-
dictive power is used for producing good initial appearances in the process of separating
overlapping brush strokes (Section 4).

Although our appearance model outperforms texture mapping in terms of rendering qual-
ity, rendering through direct texture mapping is much faster, typically at interactive speeds.
Also when the brush shape deformation is not too significant, establishing the one-to-one
correspondence between tessellation results for the initial and deformed brush shapes is not
very challenging. Thus, we provide two rendering modes in generating an animation clip
from a collection of brush strokes extracted from paintings. During the on-line authoring
process, texture mapping is used for rendering. This is to enable the animator to manipulate
the brush strokes and preview the results in real-time. Once the on-line authoring stage is
accomplished, the actual animation clip is generated using our brush appearance model.

4. SEPARATING OVERLAPPING BRUSH STROKES

Brush strokes typically overlap in paintings (see, for example, Figure 12(a)). In order to
extract the brush strokes and animate them in a visually plausible way, we have to provide
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(a) (b)

(c) (d) (e)

Fig. 12. Separation of overlapping brush strokes. Given the original image of three overlapping strokes (a),
we obtain the separate strokes (b), with close-up views (c). These strokes can then be easily animated (d), (e).

a mechanism to separate the recovered brush strokes at the overlap regions. Techniques for
separation of transparent layers exist in the computer vision literature. For example, Farid
and Adelson [1999] show how to separate reflections off a planar glass surface placed in
front of a scene. Their method can restore the image of the scene behind the glass by re-
moving the reflections. Unfortunately, their algorithm does not handle the more general
problem of image separation, i.e., under arbitrary motion and using only one image (as in
our work). Another two-layer separation technique is that of Szeliski et al. [2000]. How-
ever, they use multiple input images, assume planar motion for the two layers, and apply
an additive model with no alpha.

Levin and Weiss [2004] and Levin et al. [2004] also studied the problem of separating
transparent layers from a single image. In the first approach, gradients are precomputed,
following which users are required to interactively label gradients as belonging to one of
the layers. Statistics of images of natural scenes are then used to separate two linearly su-
perimposed images. It is not clear if such an approach would work for typical Chinese
paintings (which are not photoreal), even with the benefit of manual labeling. The second
approach uses a similar framework, except that it minimizes the total number of edges and
corners in the decomposed image layers. However, the minimal edge and corner assump-
tions are not valid for typical Chinese paintings due to the sharp edges of brush strokes. By
comparison, our assumption of minimum variation on the texture of brush strokes along



18 · Animating Chinese Paintings through Stroke-Based Decomposition

the stroke direction is more appropriate for our domain, and turns out to be effective for
automatically separating overlapping brush strokes.

The overlap regions can be easily identified once we have performed the fitting process
described in Section 2.3. Once the library brush strokes have been identified, their con-
tours are refined using a similarity transform (scaling, shifting, and rotating) to maximize
shape similarity with their corresponding stroke regions. The transformed brush strokes
are further dilated enough to just cover the observed strokes in the image, after which the
overlapping areas are identified.

We then apply an iterative algorithm to separate the colors at the overlap region. To
initialize the separate color distributions, we use the same strategy described in Step 3 of
Section 3 to interpolate the colors in the overlap regions using neighboring Bezier functions
with known color distributions.

In real paintings, the color distribution at the overlap region is the result of mixing
those from the separate brushes. We adapted the mixture model proposed by Porter and
Duff [1984] to model overlapping strokes as matted objects because the combination color
in the overlapping brush region is generally the result of mixing and optical superimpo-
sition of different pigment layers. We did not use more sophisticated models such as the
Kubelka-Munk model ([Judd and Wyszecki 1975], pages 420-438) because the problem of
extracting all the unknowns from only one image is ill-posed. While the problem is similar
to matting (e.g., [Chuang et al. 2001]), matting does not explicitly account for brush stroke
texture and orientation. Currently, we separate only pairs of brushes that overlap. Extend-
ing our method to handle multiple overlapping strokes is possible at higher computational
cost.

Let ψi(p) and ψ j(p) be the colors of two overlapping brush strokes at a given pixel
location p, with brush stroke i over brush stroke j; let αi(p) be the transparency of brush
stroke i at p; and let ψr(p) be the resulting color at that pixel. We model the appearance of
these overlapping strokes using the (“unpremultiplied”) compositing equation [Porter and
Duff 1984]:

ψr(p) = αi(p)ψi(p) +
(
1−αi(p)

)
ψ j(p). (6)

In our case, ψr(p) is observed, and so our goal will be to solve for αi(p), ψi(p), and ψ j(p)
at each pixel p for which the strokes overlap. This problem is, of course, underconstrained
by this single equation. Thus, we will solve for the values of these three variables that
minimize a certain expression encoding some additional assumptions about the appearance
of the strokes. In particular, we will assume that the colors ψi and ψ j vary minimally along
the lengths of their strokes, and that the transparency αi varies minimally along both the
length and breadth of the upper stroke.

Our objective function, which we will minimize using gradient descent subject to (6), is
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as follows:

∑
p∈γi∩γ j

(
Vi(p)+Vj(p)+λtTi(p)

)
. (7)

Here, Vi can be thought of as the “excess variation” of the color of stroke i along its length,
while Ti is the variation of the transparency of stroke i along both its length and breadth.

To evaluate the excess variation, we will refer to the “average variation” Vi(p) of the
color ψi(p) in the parts of the stroke that do not overlap j in which that same color appears.
We will call this “exposed” region γi\ j(ψi(p)). Let � be the direction that is parallel to the
length of the stroke at p. Then the average variation of the color ψi is given by

Vi(p) =
1

A(γi\ j(ψi(p))) ∑
p∈γi\ j(ψi(p))

‖∂ψi(p)/∂�‖ . (8)

The excess variation Vi(p) is then given by the amount to which the derivative of the
color of stroke i at p along its length exceeds the average variation of that color in other
parts of the stroke:

Vi(p) = max
{

0, ‖∂ψi(p)/∂�‖−Vi(p)
}

. (9)

Finally, the variation of the transparency is given by the sum of the derivatives of the
transparency both along and across the stroke:

Ti(p) = ‖∂αi(p)/∂�‖+‖∂αi(p)/∂b‖ (10)

where b is the direction perpendicular to �.
We generally set λt to a small number, around 0.05, since minimizing color variation

appears to be more important than transparency variation, in most cases. An example of
brush separation is shown in Figure 12. The original brush strokes are shown in (a), and the
separated brush strokes are shown in (b).

Our compositing model is related to the Kubelka-Munk model [1975], which assumes
that additivity is valid for the absorption and scattering coefficients in the overlapping
pigment layers. In other words, Kr = ciKi + (1− ci)Kj and Sr = ciSi + (1− ci)S j, where
Kr,Ki,Kj are the absorption coefficients in the overlapping area, brush stroke i, and brush
stroke j, respectively. Sr,Si,S j are the respective scattering coefficients. ci,(1− ci) are the
percentages of the amounts of pigment carried by the brush strokes i and j respectively. It
is easy to see that our additive compositing equation is a highly simplified version of the
Kubelka-Munk model.

The stroke decomposition and animation results show that the simple additive composit-
ing model (6) is rather effective. Our compositing model is significantly less complex than
the Kubelka-Munk model. In addition, it is not clear how the Kubelka-Munk model can be
reliably used, as it requires the simultaneous recovery of multiple transparent layers from
only one image.
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A straightforward method for separating overlapping strokes would be to simply discard
color information at the region of overlap and reconstruct via smooth interpolation from
neighboring regions. However, when an artist paints a single stroke, the color distribution
within that stroke is typically not uniform and not smooth. Reconstructing the missing
overlap regions by just smoothly interpolating from neighboring regions will not only result
in an overly smooth appearance, but also a visually incorrect one. By comparison, our
technique accounts for the non-uniformity in color distribution.

5. DECOMPOSITION AND RECONSTRUCTION RESULTS

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. The stroke decomposition process. We illustrate the decomposition process for input (a) by focus-
ing on three brush strokes delineated in red (b). After over-segmentation (c), candidate stroke regions are
extracted (d), followed by fitting the best library strokes (e). However, the best fit strokes typically do not
completely cover the observed strokes (f), with blue contours representing the fit strokes and red contours
representing the observed strokes. To correct the problem, we search (through gradient descent) the scaled
rigid transform necessary for each fit stroke to minimally cover the observed stroke (g,h).

Figure 13 shows step by step the process of our stroke decomposition approach on a
flower painting. Here, for ease of illustration, we focus on only three extracted brush
strokes. Another illustrative example is given in Figure 14(a-i); here, both successful and
failed stroke decomposition cases are shown. These cases are discussed in Section 7. De-
composition results for entire paintings are shown in Figures 4 (a different flower painting)
and 15 (fish painting). As can be seen in all these examples, the appearance of these paint-
ings have been very well captured using our brush stroke library and appearance model.
In the stroke decomposition result shown in Figure 15(e), most parts of the fish body
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 14. Stroke decomposition example for shrimp painting. Given the input (a), we limit our analysis to
three segments of the shrimp’s body, delineated in red (b). From (c) to (f), respectively: close-up of original,
after over-segmentation, after extracting candidate strokes, and after fitting library strokes. As expected, the
best-fit library strokes (in blue) do not completely cover the observed strokes (in red) (g). The refined best-fit
library strokes that minimally cover the observed stroke region are shown in (h) and (i). These results are a
little different from the manual decomposition results (j), done by the original painter. By superimpositing
both results (k), we see that the large brush strokes have been correctly extracted (in green); those that were
incorrect were caused by oversegmentation (in purple). The enlarged views of the overly-segmented regions
are shown in (l).

that animators would like to manipulate have been extracted as separate strokes. This de-
composition is more convenient for animation than the results obtained without using our
stroke library (Figure 8). Without using the stroke library, regions are either over-segmented
(Figure 8(a-c)), under-segmented (Figure 8(g-h)) or inconveniently segmented (recovered
strokes straddling multiple actual strokes, Figure 8(d-f)).

There are three reasons why stroke decomposition using only a simple shape smoothness
assumption instead of our stroke library (Section 2.2.3) produces less desirable results.
First, strokes with large variations in width and skeleton shape tend to be segmented in-
correctly due to the violation of the smoothness assumption. Second, irregular contours
of brush strokes (which occur rather often) would be similarly penalized, especially when
overlapping occurs. Third, the smoothness assumption is intolerant to noisy or incomplete
skeletons. Unfortunately, skeletons are noisy or incomplete in the initial stages of stroke de-
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h) (i)

Fig. 15. Chinese painting of a fish. The input image (a) is first over-segmented (b). Candidate stroke regions
are extracted (c) and fitted with library strokes (d). Note that the thin strokes are represented by their skele-
tons to distinguish them from regular brush strokes. The fitted regular library strokes are then refined through
dilation (e). The dilation effect can be seen by superimposing the strokes (f). The painting can then be syn-
thesized (g). Close-up views of the original (h) and synthesized (i) show the slight blurring effects. Selected
keyframes of the animated fish painting are shown in Figure 16.

composition, especially in the vicinity of overlaps. By comparison, our stroke-library-based
approach is more robust because it incorporates more accurate domain-specific knowledge
in the form of commonly used stroke shapes.
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(a) (b)

(c) (d)

Fig. 16. Animated fish painting. Out of 150 frames in the animation clip, we show (a) the 1st frame, (b) the
20th frame, (c) the 60th frame, and (d) the 90th frame.

In the example of reconstructing strokes from a Chinese fish painting (Figure 15), it
may seem surprising to observe that the eye of the fish is captured in our brush stroke
decomposition even though it has not been segmented correctly. (It is difficult to segment
correctly here because the size of the eye is very small.) The reason this “works” is that
everything within the boundary of the refined brush stroke is considered its texture, and is
thus sampled. Note that if overlapping brush strokes are detected, the algorithm described
in Section 4 will automatically recover the appearances of the separated brush strokes. It is
possible for a refined brush stroke shape to be bigger than it should be, and thus cover a little
of the background or other brush strokes (as is in the case of the fish’s eye in Figure 15).
While an imperfect segmentation will usually not affect the synthesized appearance of a
still image, it will however introduce more sampling artifacts during animation.

We have also compared the results of our automatic stroke decomposition with those
manually extracted by experts. Figure 17 shows such an example. Typically, while our re-
sults are not identical to their manually extracted counterparts, the differences are minor in
places where the brush strokes are obvious to the eye. Most of the differences are in loca-
tions of significant ambiguity, where even experts have trouble separating brush strokes.

6. ANIMATING PAINTINGS

Figure 18 shows a screen shot of the user interface of our application program designed for
animation. The animator can select and move any control point of either the skeleton or the
contour of the stroke to be animated. The appearance of the modified stroke is automati-
cally generated by rendering our single-stroke appearance model. The key-frames for the
animation can thus be produced through very simple user manipulation.

The in-betweens are generated through interpolation. Note that our animation is done
at the brush-stroke level. Our brush appearance and mixture models allow the animated
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(a) (b) (c)

Fig. 17. A comparison between our decomposition result with manual stroke decomposition. (a) The flower
portion of Figure 1. (b) The decomposition result (candidate stroke regions). (c) The result of manual decom-
position by an experienced Chinese painter who did not create the painting. The blue lines are the edges of
strokes extracted with high confidence while lines in yellow are extracted with much less confidence (i.e.,
deemed ambiguous). Although (b) is different from (c) in a number of places, the major differences are
mostly on the yellow lines, where multiple interpretations exist. Our recovered brush strokes agree well in
areas where the brush strokes are distinguishable by eye.

painting to be visually acceptable.
Our animation system has the following important features that make it fast and easy to

use:

—Addition and removal of brush strokes. Brush strokes from other paintings can be im-
ported and used.

—Grouping of brush strokes for simultaneous manipulation or editing.

—Ability to edit shape and location of the common boundary between two adjacent strokes
or to manually decompose a stroke into multiple separate strokes. The latter feature is
useful if parts of the decomposition results are not considered fine enough.

—Preservation of stroke connectivity, so that changes to any brush stroke will be appropri-
ately propagated.

—Shape interpolation using critical points (points with locally maximal curvature) on the
stroke boundary to better preserve the local shape characteristics during animation.

—Timeline support for editing motion trajectories (e.g., changes in speed or phase). The
motion trajectory for each brush stroke can be modified independently.

—The shapes of the brush contour and its skeleton are directly linked; if one of them is
manipulated, the other is automatically updated.

—The user can operate directly on either the candidate strokes (Figure 15(c)) or the refined
strokes (Figure 15(e)). Note that in Figure 18, groups of candidate strokes are manipu-
lated.
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Fig. 18. Graphical user interface for animation. This interface uses as input the vectorized strokes generated
by our decomposition algorithm. The blue dots are the control points of Bezier curves associated with the
groups of brush strokes representing the fish’s tail. There are four groups shown here. Note that each group
is represented by a different line color, and each group’s contour is that of the union of its constituent brush
strokes. The shape of each group is manipulated by moving the control points. The top and bottom fish images
are generated before and after manipulation, respectively.

Snapshots of animations can be seen in Figures 1 and 19.
It is possible for our stroke decomposition algorithm to make mistakes. It may over-

segment (requiring more work to animate), under-segment (resulting in inadequate degrees
of freedom for animation), or even produce segments straddling multiple actual strokes.
Some of the features in our authoring tool are designed specifically to allow users to man-
ually touch up the decomposition results or correct mistakes.

7. DISCUSSION

There are other possible methods for extracting brush strokes. The simplest is to have the
artist draw directly using an interface to the computer, e.g., a haptic interface [Baxter et al.
2001]. Another method would be to record the painting process and infer the brush strokes.
The idea would be to digitize the intermediate results of the painting after every stroke or
groups of strokes. This may be accomplished by using an overhead camera that sees the
entire painting. To avoid the problem of occlusion, the artist could leave the field of view
of the camera after each stroke or a small number of strokes. However, the painting process
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(a) (b)

(c) (d)

Fig. 19. Animated lotus pond painting. Out of the 580 frames in the animation clip, we show the 1st frame (a),
the 196th frame (b), the 254th frame (c), and the 448th frame (d). The 1st frame corresponds to the original
painting.

is no longer natural. The artist has to adapt to the change in the conditions for painting,
be it using the haptic interface or (worse) with the stop-and-paint approach. Furthermore,
existing paintings could not be handled.

Another straightforward (but more manually intensive) alternative is to design an author-
ing tool that allows users to merge small stroke segments into meaningful ones or have
users roughly delineate the boundaries of strokes. This solution would provide a higher
degree of control but comes at the cost of extensive manual effort. Automatic color sepa-
ration such as ours would have to be incorporated in such a tool (common image editing
tools such as PhotoshopTM do not have such a feature).

For the animation example shown at Figure 19, it took a single animator 40 hours to use
our authoring system to produce a 40-second clip. While there is no record of the exact
cost of making the famous 18-minute 1988 video, “Shan Shui Qing” (“Love for Mountains
and Rivers”), descriptions of the work involved (e.g., [Chen 1994; Chen and Zhang 1995])
suggest that it required dozens of people working for about a year.

As shown in Section 5, the reconstructed images look very close to the original ones
(e.g., Figure 15). On closer examination, however, we can see artifacts introduced by our



Animating Chinese Paintings through Stroke-Based Decomposition · 27

brush stroke representation (Figure 15 (h) and (i)). In all our examples, we see that the
reconstructed paintings appear fuzzier and the boundaries of the brush strokes are more
irregular. This is due to the discrete sampling of the appearance along the brush skeleton
(with intermediate areas merely interpolated). In addition, the sampling along the brush
skeleton is done independently, i.e., there is no spatial coherence between samples. We
plan to investigate sampling techniques that better handle spatial continuity along the brush
stroke skeleton.

While many brush strokes appear to be correctly extracted, our algorithm did make mis-
takes, especially in areas where brush strokes overlap significantly and where the strokes
are thick and short. One way of improving this is to extract the brush strokes globally, e.g.,
ensuring better continuity in the brush stroke direction. In addition, our overlap separation
algorithm is currently applicable to overlaps between two brush strokes only. It is not clear
how robust our current algorithm is to overlaps of an arbitrary number of brush strokes, but
this is a topic we intend to investigate further.

(a) (b) (c) (d)

Fig. 20. The effect of different library sizes on decomposition. The example in Figure 17 is used for compari-
son. (a) is the result using the full library (62 brush strokes), (b) is the result using 31 brush strokes, (c) with
16 brush strokes, and (d) with 8 brush strokes. The brush stroke shapes in the libraries used for (b–d) were
randomly chosen from the full library.

What happens if we were to use only a subset of brush stroke library for the decompo-
sition process? Figure 20 shows that the effect is over-segmentation, which worsens as the
size of the library is decreased. This is not surprising, as the impoverished versions of the
brush stroke library are unable to adequately account for the rich variety of stroke shapes
in the painting.

We currently used Chinese-style and watercolor paintings for our work. There are in-
stances where our algorithm did not work well, e.g., Figure 21, where there are extensive
overlaps between many short brush strokes. Our brush appearance model is also no longer
a good fit when there is large color variation along the brush strokes. Because the decompo-
sition for such a painting would result in a large number of small brush strokes, the process
of animating the painting would be very labor-intensive. We have plans to work on images
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(a) (b)

(c) (d)

Fig. 21. A failure example. One painting that our algorithm failed to decompose properly is “The Seine at La
Grande” by Georges Seurat in 1888 (a). The stroke decomposition algorithm resulted in a very large number
of small brush strokes. (b) is the close-up view of the area enclosed by the red box in (a). Its corresponding
decomposition result is shown in (c), with the final refined brush strokes shown at (d). (Here we do not
include the stroke skeletons in the stroke regions for ease of visualization.) Obviously, animating paintings of
this kind using our current algorithm would be very labor-intensive. Secondly, our brush appearance model
is also no longer a good fit since there is large color variation along the brush strokes. This makes our stroke
extraction less accurate.

of paintings with significantly different styles (e.g., Renaissance oil paintings). It is likely
that we will need to expand our brush stroke library to handle the different brush stroke
styles available in different types of paintings.

Our algorithm can fail even for some Chinese paintings; more specifically, it is unable to
decompose paintings drawn in a realistic style. Figure 22 shows such a failure case. In such
paintings, both the shapes and the color of brush strokes are deposited strictly according
to the actual appearance and geometry of real-world objects. This makes our brush appear-
ance model no longer a good fit since there can be large color variations along the stroke
skeletons. In addition, our stroke library would no longer be adequate because the shapes
of brush strokes are drawn more arbitrarily to resemble the shapes of real-world objects.
To make the painting as realistic as possible, many tiny strokes (which may significantly
overlap with each other) are often drawn. This style of painting violates the mainstream



Animating Chinese Paintings through Stroke-Based Decomposition · 29

principle of “economical use of brush strokes” for Chinese paintings.

(a) (b)

Fig. 22. A failure case for Chinese painting. Our decomposition algorithm usually fails for realistic Chinese
paintings such as this one (a). The right side of the figure shows a close-up of the painting, the decompo-
sition result (candidate stroke regions), and the result of superimposing the decomposition result onto the
original painting. Note the over-segmentation effect due to the original’s arbitrarily shaped brush strokes and
significant color variation.

Unfortunately, even a reasonable decomposition may not always be amenable to anima-
tion. This is especially true if the painting involves many small objects clustered closely
together and if the animation requires complex interacting motions. A good example of
such a case is shown in Figure 23. While the decomposition of the grape painting looks
reasonable, animating each grape and leaf relative to other objects would be challenging.
For such complicated paintings, it is not clear what a good solution would be.

Currently, our stroke model extracts transparency only at overlapping regions. The proper
procedure would be to calculate transparency throughout the overlapping stroke region.
Unfortunately, the separation of colors using a single image is ill-posed. We handle this
by specifying relative transparency at the overlap regions with spatial regularization. One
possible solution is to allow users to manually (locally or globally) specify the natural
transparency of a stroke. In our current implementation, equation (6) assumes an additive
color model, while ink tends to be subtractive. We would like to explore more sophisticated
pigment mixing models in the future.

Another limitation of our algorithm lies in the stroke separation and texture model-
ing steps being independent. As Figure 14(k-l) shows, our algorithm resulted in over-
segmentation. This is caused by significant texture changes within the failed regions. Our
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(a) (b) (c)

Fig. 23. A decomposition result unsuitable for animation. The input image of a grape painting (a), the initial
segmented image regions (b), and the extracted candidate strokes with skeletons (c).

current stroke decomposition algorithm is designed under the assumption that texture vari-
ation within a stroke region is approximately homogeneous. Unfortunately, for paintings
whose pigment/ink diffusion effect is significant, the uniform texture variation assump-
tion no longer holds, leading to the failure cases in Figure 14. To handle such a problem,
we would have to incorporate texture modeling in the stroke decomposition process and
replace the uniform texture variation assumption with the step of directly fitting a texture
model. This would obviously increase the computational cost of the decomposition process.

Our current implementation is unoptimized. For the flower example shown in Figures 1
and 4 (with resolution 560× 1080), the times taken for each step on a Pentium III 1.2
GHz computer are: image segmentation (10 secs), region merging (5 hrs), regular stroke
refinement (40 mins), regular stroke appearance capture (35 mins), thin stroke detection
(10 mins) and interval spline fitting (1 min). We plan to optimize our code to speed up the
performance. Note that these steps are done off-line and executed only once. During the
actual on-line editing process, rendering of manipulated brush strokes is at interactive rates
(30 fps when simple texture-mapping is used for previewing).

Once the brush strokes have been identified, it is entirely possible to analyze the painting
by analyzing the brush strokes themselves. By looking at the distribution of directions,
stroke thickness, variation of thickness along each stroke, and the color distribution along
each stroke and within the painting, the task of identifying the painting style and even the
artist may be easier.

Decomposition results with arbitrarily shaped segments complicate the process of ani-
mation, and would very likely adversely affect the final visual output quality. Overly small
segments increase the amount of effort involved in specifying their motion trajectories.
(This effort can be reduced by grouping the small segments, but the grouping operation
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can be laborious and tedious as well.) On the other hand, overly large segments straddle
multiple brush strokes (wholly or partially), which severely limits the degrees of freedom
in animating. In addition, in cases where the large segments straddle partial brush strokes,
it is very difficult to ensure correct appearance if the large segments are manipulated inde-
pendently because the separated brush strokes are distorted differently.

Our current decomposition algorithm does not handle very closely drawn brush strokes
very well. In such cases, it may create overly large refined strokes. It is possible to improve
the decomposition process by looking at boundary concavities and hypothesizing those to
be boundaries of at least two strokes. This is a difficult problem that we intend to investigate
further.

Our current rendering implementation uses a simplistic approach to handling overlap-
ping normal lines (which occur when the user puts a sharp kink into the edited stroke, for
example). The renderer merely averages the color distributions of the overlapping normal
lines. It is not clear what the right solution to this situation is, but the technique used by Hsu
and Lee [1994] may be better. Another failure mode occurs when the brush stroke is too
distorted, causing severe deformation of the local appearance. Fortunately, these problems
do not occur very often.

8. CONCLUSIONS

We have shown a new technique for animating paintings from images. What is particularly
interesting is that the animation is done at the brush-stroke level.

In order to decompose the image of a painting into hypothesized strokes, we proposed an
approach that uses a library of brush stroke shapes to aid region segmentation. Our brush
stroke model plays a critical role in allowing the painting’s appearance to be captured and
subsequently rendered with good fidelity. Finally, our overlap separation algorithm allows
full appearance of strokes to be extracted despite the presence of overlaps.

A key contribution of our work is the automatic recovery of separate, vectorized brush
strokes. This is a tremendous time saver compared to manual segmentation, especially
when the painting has hundreds of brush strokes. In addition, proper automatic color sep-
aration in the overlap regions is not trivial and is not a feature in common image editing
tools such as PhotoshopTM. The animation is significantly easier once the segmentation is
done.

Experimental results show that our method of decomposition is capable of producing
high-quality reconstructions of paintings. The quality of the sample animations also serves
to illustrate the effectiveness of our decomposition approach.
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