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Abstract

We present a study of anonymized data capturing a month of high-level communi-
cation activities within the whole of the Microsoft Messenger instant-messaging system.
We examine characteristics and patterns that emerge from the collective dynamics of
large numbers of people, rather than the actions and characteristics of individuals.
The dataset contains summary properties of 30 billion conversations among 240 mil-
lion people. From the data, we construct a communication graph with 180 million
nodes and 1.3 billion undirected edges, creating the largest social network constructed
and analyzed to date. We report on multiple aspects of the dataset and synthesized
graph. We find that the graph is well-connected and robust to node removal. We
investigate on a planetary-scale the oft-cited report that people are separated by “six
degrees of separation” and find that the average path length among Messenger users
is 6.6. We also find that people tend to communicate more with each other when they
have similar age, language, and location, and that cross-gender conversations are both
more frequent and of longer duration than conversations with the same gender.

∗Shorter version of this work appears in the WWW ’08: Proceedings of the 16th international conference

on World Wide Web, 2008.

†This work was performed while the first author was an intern at Microsoft Research.
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1 Introduction

Large-scale web services provide unprecedented opportunities to capture and analyze behav-
ioral data on a planetary scale. We discuss findings drawn from aggregations of anonymized
data representing one month (June 2006) of high-level communication activities of people
using the Microsoft Messenger instant-messaging (IM) network. We did not have nor seek
access to the content of messages. Rather, we consider structural properties of a commu-
nication graph and study how structure and communication relate to user demographic
attributes, such as gender, age, and location. The data set provides a unique lens for study-
ing patterns of human behavior on a wide scale.

We explore a dataset of 30 billion conversations generated by 240 million distinct users
over one month. We found that approximately 90 million distinct Messenger accounts were
accessed each day and that these users produced about 1 billion conversations, with approx-
imately 7 billion exchanged messages per day. 180 million of the 240 million active accounts
had at least one conversation on the observation period. We found that 99% of the conversa-
tions occurred between 2 people, and the rest with greater numbers of participants. To our
knowledge, our investigation represents the largest and most comprehensive study to date of
presence and communications in an IM system. A recent report (6) estimated that approx-
imately 12 billion instant messages are sent each day. Given the estimate and the growth
of IM, we estimate that we captured approximately half of the world’s IM communication
during the observation period.

We created an undirected communication network from the data where each user is
represented by a node and an edge is placed between users if they exchanged at least one
message during the month of observation. The network represents accounts that were active
during June 2006. In summary, the communication graph has 180 million nodes, representing
users who participated in at least one conversation, and 1.3 billion undirected edges among
active users, where an edge indicates that a pair of people communicated. We note that this
graph should be distinguished from a buddy graph where two people are connected if they
appear on each other’s contact lists. The buddy graph for the data contains 240 million
nodes and 9.1 billion edges. On average each account has approximately 50 buddies on a
contact list.

To highlight several of our key findings, we discovered that the communication network
is well connected, with 99.9% of the nodes belonging to the largest connected component.
We evaluated the oft-cited finding by Travers and Milgram that any two people are linked
to one another on average via a chain with “6-degrees-of-separation” (17). We found that
the average shortest path length in the Messenger network is 6.6 (median 6), which is half
a link more than the path length measured in the classic study. However, we also found
that longer paths exist in the graph, with lengths up to 29. We observed that the network
is well clustered, with a clustering coefficient (19) that decays with exponent −0.37. This
decay is significantly lower than the value we had expected given prior research (11). We
found strong homophily (9, 12) among users; people have more conversations and converse for
longer durations with people who are similar to themselves. We find the strongest homophily
for the language used, followed by conversants’ geographic locations, and then age. We
found that homophily does not hold for gender; people tend to converse more frequently
and with longer durations with the opposite gender. We also examined the relation between
communication and distance, and found that the number of conversations tends to decrease
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with increasing geographical distance between conversants. However, communication links
spanning longer distances tend to carry more and longer conversations.

2 Instant Messaging

The use of IM has been become widely adopted in personal and businesss communications.
IM clients allow users fast, near-synchronous communication, placing it between synchronous
communication mediums, such as real-time voice interactions, and asynchronous communi-
cation mediums like email (18). IM users exchange short text messages with one or more
users from their list of contacts, who have to be on-line and logged into the IM system at the
time of interaction. As conversations and messages exchanged within them are usually very
short, it has been observed that users employ informal language, loose grammar, numerous
abbreviations, with minimal punctuation (10). Contact lists are commonly referred to as
buddy lists and users on the lists are referred to as buddies.

2.1 Research on Instant Messaging

Several studies on smaller datasets are related to this work. Avrahami and Hudson (3)
explored communication characteristics of 16 IM users. Similarly, Shi et al. (13) analyzed
IM contact lists submitted by users to a public website and explored a static contact network
of 140,000 people. Recently, Xiao et al. (20) investigated IM traffic characteristics within
a large organization with 400 users of Messenger. Our study differs from the latter study
in that we analyze the full Messenger population over a one month period, capturing the
interaction of user demographic attributes, communication patterns, and network structure.

2.2 Data description

To construct the Microsoft Instant Messenger communication dataset, we combined three
different sources of data: (1) user demographic information, (2) time and user stamped
events describing the presence of a particular user, and (3) communication session logs,
where, for all participants, the number of exchanged messages and the periods of time spent
participating in sessions is recorded.

We use the terms session and conversation interchangeably to refer to an IM interaction
among two or more people. Although the Messenger system limits the number of people
communicating at the same time to 20, people can enter and leave a conversation over time.
We note that, for large sessions, people can come and go over time, so conversations can be
long with many different people participating. We observed some very long sessions with
more than 50 participants joining over time.

All of our data was anonymized; we had no access to personally identifiable information.
Also, we had no access to text of the messages exchanged or any other information that
could be used to uniquely identify users. We focused on analyzing high-level characteristics
and patterns that emerge from the collective dynamics of 240 million people, rather than the
actions and characteristics of individuals. The analyzed data can be split into three parts:
presence data, communication data, and user demographic information:

• Presence events: These include login, logout, first ever login, add, remove and block
a buddy, add unregistered buddy (invite new user), change of status (busy, away,
be-right-back, idle, etc.). Events are user and time stamped.
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• Communication: For each user participating in the session, the log contains the
following tuple: session id, user id, time joined the session, time left the session,
number of messages sent, number of messages received.

• User data: For each user, the following self-reported information is stored: age,
gender, location (country, ZIP), language, and IP address. We use the IP address to
decode the geographical coordinates, which we then use to position users on the globe
and to calculate distances.

We gathered data for 30 days of June 2006. Each day yielded about 150 gigabytes of
compressed text logs (4.5 terabytes in total). Copying the data to a dedicated eight-processor
server with 32 gigabytes of memory took 12 hours. Our log-parsing system employed a
pipeline of four threads that parse the data in parallel, collapse the session join/leave events
into sets of conversations, and save the data in a compact compressed binary format. This
process compressed the data down to 45 gigabytes per day. Processing the data took an
additional 4 to 5 hours per day.

A special challenge was to account for missing and dropped events, and session “id
recycling” across different IM servers in a server farm. As part of this process, we closed a
session 48 hours after the last leave session event. We closed sessions automatically if only
one user was left in the conversation.

3 Usage & population statistics

We shall first review several statistics drawn from aggregations of users and their commu-
nication activities.

3.1 Levels of activity

Over the observation period, 242,720,596 users logged into Messenger and 179,792,538 of
these users were actively engaged in conversations by sending or receiving at least one IM
message. Over the month of observation, 17,510,905 new accounts were activated. As
a representative day, on June 1 2006, there were almost 1 billion (982,005,323) different
sessions (conversations among any number of people), with more than 7 billion IM messages
sent. Approximately 93 million users logged in with 64 million different users becoming
engaged in conversations on that day. Approximately 1.5 million new users that were not
registered within Microsoft Messenger were invited to join on that particular day.

We consider event distributions on a per-user basis in Figure 1. The number of logins
per user, displayed in Figure 1(a), follows a heavy-tailed distribution with exponent 3.6. We
note spikes in logins at 20 minute and 15 second intervals, which correspond to an auto-login
function of the IM client. As shown in Figure 1(b), many users fill up their contact lists
rather quickly. The spike at 600 buddies undoubtedly reflects the maximal allowed length
of contact lists.

Figure 2(a) displays the number of users per session. In Messenger, multiple people
can participate in conversations. We observe a peak at 20 users, the limit on the number
of people who can participate simultaneously in a conversation. Figure 2(b) shows the
distribution over the session durations, which can be modeled by a power-law distribution
with exponent 3.6.
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Figure 1: Distribution of the number of events per user. (a) Number of logins per user. (b) Number
of buddies added per user.

100
101
102
103
104
105
106
107
108
109

100 101 102

C
ou

nt

Number of users per session

∝  x-3.5

20
102
103
104
105
106
107
108
109

1010
1011

100 101 102

C
ou

nt

Conversation duration

∝  x-3.67

Figure 2: (a) Distribution of the number of people participating in a conversation. (b) Distribu-
tion of the durations of conversations. The spread of durations can be described by a power-law
distribution.

Next, we examine the distribution of the durations of periods of time when people are
logged on to the system. Let (tij , toj) denote a time ordered (tij < toj < tij+1) sequence
of online and offline times of a user, where tij is the time of the jth login, and toj is the
corresponding logout time. Figure 3(a) plots the distribution of toj − tij over all j over
all users. Similarly, Figure 3(b) shows the distribution of the periods of time when users
are logged off, i.e. tij+1 − toj over all j and over all users. Fitting the data to power-law
distributions reveals exponents of 1.77 and 1.3, respectively. The data shows that durations
of being online tend to be shorter and decay faster than durations that users are offline.
We also notice periodic effects of login durations of 12, 24, and 48 hours, reflecting daily
periodicities. We observe similar periodicities for logout durations at multiples of 24 hours.

Weekly dynamics of MSN Messenger is also quite interesting. Figure 4 shows the number
of logins, status change and add buddy events by day of the week over a period of 5 weeks
starting in June 2006. We count the number of particular events per day of the week, and
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Figure 3: (a) Distribution of login duration. (b) Duration of times when people are not logged into
the system (times between logout and login).
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Figure 4: Number of events per day of the week. We collected the data over a period of 5 weeks
starting on May 29 2006.

we use the data from 5 weeks to compute the error bars. Figure 4(a) shows the average
number of logins per day of the week over a 5 week period. Note that number of login events
is larger than the number of distinct users logging in, since a user can login multiple times
a day. Figure 4(b) plots the average number of status change evens per day of the week.
Status events include a group of 8 events describing the current status of the users, i.e.,

away, be right back, online, busy, idle, at lunch, and on the phone. Last, Figure 4(c) shows
the average number of add buddy events per day of the week. Add buddy event is triggered
every time user adds a new contact to their contact list.

3.2 Demographic characteristics of the users

We compared the demographic characteristics of the Messenger population with 2005 world
census data and found differences between the statistics for age and gender. The visualization
of this comparison displayed in Figure 5 shows that users with reported ages in the 15–35
span of years are strongly overrepresented in the active Messenger population. Focusing
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Figure 6: Distribution of self-reported ages of Messenger users and the difference of ages of Mes-
senger population with the world population. (a) Age distribution for all users, females, males and
unknown users. (b) Relative difference of Messenger population and the world population. Ages
15–30 are over-represented in the Messenger user population.

on the differences by gender, females are overrepresented for the 10–14 age interval. For
male users, we see overall matches with the world population for age spans 10–14 and 3539;
for women users, we see a match for ages in the span of 30–34. We note that 6.5% of the
population did not submit an age when creating their Messenger accounts.

To further illustrate the points above Figure 6 shows self-reported user age distribution
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Figure 7: Temporal characteristics of conversations. (a) Average conversation duration per user;
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and the percent difference of particular age-group between MSN and the world population.
The distribution is skewed to the right and has a mode at age of 18. We also note that the
distribution has exponential tails.

4 Communication characteristics

We now focus on characteristics and patterns with communications. We limit the analysis
to conversations between two participants, which account for 99% of all conversations.

We first examine the distributions over conversation durations and times between con-
versations. Let user u have C conversations in the observation period. Then, for every
conversation i of user u we create a tuple (tsu,i, teu,i, mu,i), where tsu,i denotes the start
time of the conversation, teu,i is the end time of the conversation, and mu,i is the number of
exchanged messages between the two users. We order the conversations by their start time
(tsu,i < tsu,i+1). Then, for every user u, we calculate the average conversation duration
d̄(u) = 1

C

∑
i teu,i − tsu,i, where the sum goes over all the u’s conversations. Figure 7(a)

shows the distribution of d̄(u) over all the users u. We find that the conversation length can
be described by a heavy-tailed distribution with exponent -3.7 and a mode of 4 minutes.

Figure 7(b) shows the intervals between consecutive conversations of a user. We plot the
distribution of tsu,i+1 − tsu,i, where tsu,i+1 and tsu,i denote start times of two consecutive
conversations of user u. The power-law exponent of the distribution over intervals is − 1.5.
This result is similar to the temporal distribution for other kinds of human communication
activities, e.g., waiting times of emails and letters before a reply is generated (4). The
exponent can be explained by a priority-queue model where tasks of different priorities
arrive and wait until all tasks with higher priority are addressed. This model generates a
task waiting time distribution described by a power-law with exponent −1.5.

However, the total number of conversations between a pair of users (Figure 8(a)), and
the total number of exchanged messages between a pair of users (Figure 8(b)) does not seem
to follow a power law. The distribution seems still to be heavy tailed but not power-law.
The fits represent the MLE estimates of a log-normal distribution.
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Figure 8: Conversation statistics: (a) Number of conversations of a user in a month; (b) Number
of messages exchanged per conversation;

5 Communication demographics

Next we examine the interplay of communication and user demographic attributes, i.e., how
geography, location, age, and gender influence observed communication patterns.

5.1 Communication by age

We sought to understand how communication among people changes with the reported
ages of participating users. Figures 9(a)-(d) use a heat-map visualization to communicate
properties for different age–age pairs. The rows and columns represent the ages of both
parties participating, and the color at each age–age cell captures the logarithm of the value
for the pairing. The color spectrum extends from blue (low value) through green, yellow,
and onto red (the highest value). Because of potential misreporting at very low and high
ages, we concentrate on users with self-reported ages that fall between 10 and 60 years.

Let a tuple (ai, bi, di, mi) denote the ith conversation in the entire dataset that occurred
among users of ages ai and bi. The conversation had a duration of di seconds during which
mi messages were exchanged. Let Ca,b = {(ai, bi, di, mi) : ai = a ∧ bi = b} denote a set of
all conversations between users of ages a and b, respectively.

Figure 9(a) shows the number of conversations among people of different ages. For
every pair of ages (a, b) the color indicates the size of set Ca,b, i.e., the number of different
conversations between users of ages a and b. We note that, as the notion of a conversation
is symmetric, the plots are symmetric. Most conversations occur between people of ages 10
to 20. The diagonal trend indicates that people tend to talk to people of similar age. This
is true especially for age groups between 10 and 30 years. We shall explore this observation
in more detail in Section 6.

Figure 9(b) displays a heat map for the average conversation duration, computed as
1

|Ca,b|

∑
i∈Ca,b

di. We note that older people tend to have longer conversations. We observe

a similar phenomenon when plotting the average number of exchanged messages per conver-
sation, computed as 1

|Ca,b|

∑
i∈Ca,b

mi, displayed in Figure 9(c). Again, we find that older

people exchange more messages, and we observe a dip for ages 25–45 and a slight peak
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Figure 9: Communication characteristics of users by reported age. We plot age vs. age and the
color (z-axis) represents the intensity of communication.

for ages 15–25. Figure 9(d) displays the number of exchanged messages per unit time; for
each age pair, (a, b), we measure 1

|Ca,b|

∑
i∈Ca,b

mi

di
. Here, we see that younger people have

faster-paced dialogs, while older people exchange messages at a slower pace.
We note that the younger population (ages 10–35) are strongly biased towards com-

municating with people of a similar age (diagonal trend in Figure 9(a)), and that users
who report being of ages 35 years and above tend to communicate more evenly across ages
(rectangular pattern in Fig. 9(a)). Moreover, older people have conversations of the longest
durations, with a “valley” in the duration of conversations for users of ages 25–35. Such a dip
may represent shorter, faster-paced and more intensive conversations associated with work-
related communications, versus more extended, slower, and longer interactions associated
with social discourse.

5.2 Communication by gender

We report on analyses of properties of pairwise communications as a function of the self-
reported gender of users in conversations in Table 1. Let Cg,h = {(gi, hi, di, mi) : gi =
g ∧ hi = h} denote a set of conversations where the two participating users are of genders g
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Unknown Female Male
Unknown 1.3 3.6 3.7
Female 21.3 49.9
Male 20.2

Unknown Female Male
Unknown 277 301 277
Female 275 304
Male 252

(a) Conversations (b) Conversation duration

Unknown Female Male
Unknown 5.7 7.1 6.7
Female 6.6 7.6
Male 5.9

Unknown Female Male
Unknown 1.25 1.42 1.38
Female 1.43 1.50
Male 1.42

(c) Exchanged messages per conversation (d) Conversation intensity

Table 1: Cross-gender communication. Data is based on all two-person conversations from June
2006. (a) Percentage of conversations among users of different self-reported gender; (b) average
conversation length in seconds; (c) number of exchanged messages per conversation; (d) number of
exchanged messages per minute of conversation.

and h. Note that g takes 3 possible values: female, male, and unknown (unreported).
Table 1(a) relays |Cg,h| for combinations of genders g and h. The table shows that approx-

imately 50% of conversations occur between male and female and 40% of the conversations
occur among users of the same gender (20% for each). A small number of conversations
occur between people who did not reveal their gender.

Similarly, Table 1(b) shows the average conversation length in seconds, broken down by
the gender of conversant, computed as 1

|Cg,h|

∑
i∈Cg,h

di. We find that male–male conver-

sations tend to be shortest, lasting approximately 4 minutes. Female–female conversations
last 4.5 minutes on the average. Female–male conversations have the longest durations,
taking more than 5 minutes on average. Beyond taking place over longer periods of time,
more messages are exchanged in female–male conversations. Table 1(c) lists values for

1

|Cg,h|

∑
i∈Cg,h

mi and shows that, in female–male conversations, 7.6 messages are exchanged

per conversation on the average as opposed to 6.6 and 5.9 for female–female and male–male,
respectively. Table 1(d) shows the communication intensity computed as 1

|Cg,h|

∑
i∈Cg,h

mi

di
.

The number of messages exchanged per minute of conversation for male–female conversa-
tions is higher at 1.5 messages per minute than for cross-gender conversations, where the
rate is 1.43 messages per minute.

We examined the number of communication ties, where a tie is established between
two people when they exchange at least one message during the observation period. We
computed 300 million male–male ties, 255 million female–female ties, and 640 million cross-
gender ties. The Messenger population consists of 100 million males and 80 million females
by self report. These findings demonstrate that ties are not heavily gender biased; based
on the population, random chance predicts 31% male–male, 20% female–female, and 49%
female–male links. We observe 25% male–male, 21% female–female, and 54% cross-gender
links, thus demonstrating a minor bias of female–male links.

The results reported in Table 1 run counter to prior studies reporting that communication
among individuals who resemble one other (same gender) occurs more often (see (9) and
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Figure 10: Number of users at a particular geographic location. Color represents the number of
users. Notice the map of the world appears.

references therein). We identified significant heterophily, where people tend to communicate
more with people of the opposite gender. However, we note that link heterogeneity was very
close to the population value (8), i.e., the number of same- and cross-gender ties roughly
corresponds to random chance. This shows there is no significant bias in linking for gender.
However, we observe that cross-gender conversations tend to be longer and to include more
messages, suggesting that more effort is devoted to conversations with the opposite sex.

5.3 World geography and communication

We now focus on the influence of geography and distance among participants on communica-
tions. Figure 10 shows the geographical locations of Messenger users. The general location
of the user was obtained via reverse IP lookup. We plot all latitude/longitude positions
linked to the position of servers where users log into the service. The color of each dot
corresponds to the logarithm of the number of logins from the respective location, again
using a spectrum of colors ranging from blue (low) through green and yellow to red (high).
Although the maps are built solely by plotting these positions, a recognizable world map is
generated. We find that North America, Europe, and Japan are very dense, with many users
from those regions using Messenger. For the rest of the world, the population of Messenger
users appears to reside largely in coastal regions.

We can condition the densities and behaviors of Messenger users on multiple geographical
and socioeconomic variables and explore relationships between electronic communications
and other attributes. As an example, harnessed the United Nations gridded world population
data to provide estimates of the number of people living in each cell. Given this data,
and the data from Figure 10, we calculate the number of users per capita, displayed in
Figure 12. Now we see transformed picture where several sparsely populated regions stand
out as having a high usage per capita. These regions include the center of the United States,
Canada, Scandinavia, Ireland, Australia, and South Korea.

Figure 13 shows a heat map that represents the intensities of Messenger communications
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Figure 11: Number of users at particular geographic location superimposed on the map of the world.
Color represents the number of users.

Figure 12: Number of Messenger users per capita. Color intensity corresponds to the number of
users per capita in the cell of the grid.

on an international scale. To create this map, we place the world map on a fine grid, where
each cell of the grid contains the count of the number of conversations that pass through
that point by increasing the count of all cells on the straight line between the geo-locations
of pairs of conversants. The color indicates the number of conversations crossing each point,
providing a visualization of the key flows of communication. For example, Australia and New
Zealand have communications flowing towards Europe and United States. Similar flows hold
for Japan. We see that Brazilian communications are weighted toward Europe and Asia.
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Figure 13: A communication heat map.
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Figure 14: (a) Communication among countries with at least 10 million conversations in June 2006.
(b) Countries by average length of the conversation. Edge widths correspond to logarithms of
intensity of links.

We can also explore the flows of transatlantic and US transcontinental communications.

5.4 Communication among countries

Communication among people within different countries also varies depending on the loca-
tions of conversants. We examine two such views. Figure 14(a) shows the top countries by
the number of conversations between pairs of countries. We examined all pairs of countries
with more than 10 million conversations per month. The width of edges in the figure is
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Country Fraction of population

Iceland 0.35
Spain 0.28

Netherlands 0.27
Canada 0.26
Sweden 0.25
Norway 0.25

Bahamas, The 0.24
Netherlands Antilles 0.24

Belgium 0.23
France 0.18

United Kingdom 0.17
Brazil 0.08

United States 0.08

Table 2: Top 10 countries with most the largest number of Messenger users. Fraction of country’s
population actively using Messenger.

Country Conversations per user per day

Afghanistan 4.37
Netherlands Antilles 3.79

Jamaica 2.63
Cyprus 2.33

Hong Kong 2.27
Tunisia 2.25
Serbia 2.15

Dominican Republic 2.06
Bulgaria 2.07

Table 3: Top 10 countries by the number of conversations per user per day.

proportional to the logarithm of the number of conversations among the countries. We find
that the United States and Spain appear to serve as hubs and that edges appear largely
between historically or ethnically connected countries. As examples, Spain is connected
with the Spanish speaking countries in South America, Germany links to Turkey, Portugal
to Brazil, and China to Korea.

Figure 14(b) displays a similar plot where we consider country pairs by the average
duration of conversations. The width of the edges are proportional to the mean length of
conversations between the countries. The core of the network appears to be Arabic countries,
including Saudi Arabia, Egypt, United Arab Emirates, Jordan, and Syria.

Comparing the number of active users with the country population reveals interesting
findings. Table 2 shows the top 10 countries with the highest fraction of population using
Messenger. These are mainly northern European countries and Canada. Countries with
most of the users (US, Brazil) tend to have smaller fraction of population using Messenger.

Similarly, Table 3 shows the top 10 countries by the number of conversations per user per
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Country Messages per user per day Minutes talking per user per day

Afghanistan 32.00 20.91
Netherlands Antilles 24.12 17.43

Serbia 22.41 12.01
Bosnia and Herzegovina 22.40 11.41

Macedonia 19.52 10.46
Cyprus 19.33 12.37
Tunisia 19.17 13.54
Bulgaria 18.94 11.38
Croatia 17.78 10.05

Table 4: Top 10 countries by the number of messages and minutes talking per user per day.

day. Here the countries are very diverse with Afghanistan topping the list. The Netherlands
Antilles appears on top 10 list for both the fraction of the population using Messenger and
the number of conversations per user.

Last, Table 4 shows the top 10 countries by the number of messages and minutes talking
per user per day. We note that the list of the countries is similar to those in Table 3.
Afghanistan still tops the list but now most of the talkative counties come from Eastern
Europe (Serbia, Bosnia, Bulgaria, Croatia).

5.5 Communication and geographical distance

We were interested in how communications change as the distance between people increases.
We had hypothesized that the number of conversations would decrease with geographical
distance as users might be doing less coordination with one another on a daily basis, and
where communication would likely require more effort to coordinate than might typically be
needed for people situated more locally. We also conjectured that, once initiated, conversa-
tions among people who are farther apart would be somewhat longer as there might be a
stronger need to catch up when the less-frequent conversations occurred.

Figure 15 plots the relation between communication and distance. Figure 15(a) shows
the distribution of the number of conversations between conversants at distance l. We
found that the number of conversations decreases with distance. However, we observe a
peak at a distance of approximately 500 kilometers. The other peaks and drops may reveal
geographical features. For example, a significant drop in communication at distance of 5,000
km (3,500 miles) may reflect the width of the Atlantic ocean or the distance between the
east and west coasts of the United States. The number of links rapidly decreases with
distance. This finding suggests that users may use Messenger mainly for communications
with others within a local context and environment. We found that the number of exchanged
messages and conversation lengths do not increase with distance (see plots (b)–(d) and
(f) of Figure 15). Conversation duration decreases with the distance, while the number
of exchanged messages remains constant before decreasing slowly. Figure 15(f) shows the
communications per link versus the distance among participants. The plot shows that longer
links, i.e., connections between people who are farther apart, are more frequently used than
shorter links. We interpret this finding to mean that people who are farther apart use
Messenger more frequently to communicate.
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Figure 15: Communication with the distance. (a) Number of links (pairs of people that commu-
nicate) with the distance. (b) Number of conversations between people at particular distance. (c)
Average conversation duration. (d) Number of exchanged messages per conversation. (e) Number
of conversations per link (per pair of communicating users). (f) Number of exchanged messages per
unit time.
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Correlation Probability
Attribute Rnd Comm Rnd Comm
Age -0.0001 0.297 0.030 0.162
Gender 0.0001 -0.032 0.434 0.426
ZIP -0.0003 0.557 0.001 0.23
County 0.0005 0.704 0.046 0.734
Language -0.0001 0.694 0.030 0.798

Table 5: Correlation coefficients and probability of users sharing an attribute for random pairs of
people versus for pairs of people who communicate.

In summary, we observe that the total number of links and associated conversations
decreases with increasing distance among participants. The same is true for the duration
of conversations, the number of exchanged messages per conversation, and the number of
exchanged messages per unit time. However, the number of times a link is used tends to
increase with the distance among users. This suggests that people who are farther apart
tend to converse with IM more frequently, which perhaps takes the place of more expensive
long-distance voice telephony; voice might be used more frequently in lieu of IM for less
expensive local communications.

6 Homophily of communication

We performed several experiments to measure the level at which people tend to communicate
with similar people. First, we consider all 1.3 billion pairs of people who exchanged at
least one message in June 2006, and calculate the similarity of various user demographic
attributes. We contrast this with the similarity of pairs of users selected via uniform random
sampling across 180 million users. We consider two measures of similarity: the correlation
coefficient and the probability that users have the same attribute value, e.g., that users come
from the same countries.

Table 5 compares correlation coefficients of various user attributes when pairs of users are
chosen uniformly at random with coefficients for pairs of users who communicate. We can
see that attributes are not correlated for random pairs of people, but that they are highly
correlated for users who communicate. As we noted earlier, gender and communication are
slightly negatively correlated; people tend to communicate more with people of the opposite
gender.

Another method for identifying association is to measure the probability that a pair of
users will show an exact match in values of an attribute, i.e., identifying whether two users
come from the same country, speak the same language, etc. Table 5 shows the results for
the probability of users sharing the same attribute value. We make similar observations as
before. People who communicate are more likely to share common characteristics, including
age, location, language, and they are less likely to be of the same gender. We note that the
most common attribute of people who communicate is language. On the flip side, the amount
of communication tends to decrease with increasing user dissimilarity. This relationship is
highlighted in Figure 15, which shows how communication among pairs of people decreases
with distance.

Figure 16 further illustrates the results displayed in Table 5, where we randomly sample
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Figure 16: Numbers of pairs of people of different ages. (a) Randomly selected pairs of people; (b)
people who communicate. Correlation between age and communication is captured by the diagonal
trend.

pairs of users from the Messenger user base, and then plot the distribution over reported
ages. As most of the population comes from the age group 10–30, the distribution of random
pairs of people reaches the mode at those ages but there is no correlation. Figure 16(b) shows
the distribution of ages over the pairs of people who communicate. Note the correlation,
as represented by the diagonal trend on the plot, where people tend to communicate more
with others of a similar age.

Next, we further explore communication patterns by the differences in the reported ages
among users. Figure 17(a) plots the number links in the communication network vs. the age
difference of the communicating pair of users. Similarly, Figure 17(b) plots on a log-linear
scale the number of conversations in the social network with participants of varying age
differences. Again we see that links and conversations are strongly correlated with the age
differences among participants. Figure 17(c) shows the average conversation duration with
the age difference among the users. Interestingly, the mean conversation duration peaks
at an age difference of 20 years between participants. We speculate that the peak may
correspond roughly to the gap between generations.

The plots reveal that there is strong homophily in the communication network for age;
people tend to communicate more with people of similar reported age. This is especially
salient for the number of buddies and conversations among people of the same ages. We also
observe that the links between people of similar attributes are used more often, to interact
with shorter and more intense (more exchanged messages) communications. The intensity of
communication decays linearly with the difference in age. In contrast to findings of previous
studies, we observe that the number of cross-gender communication links follows a random
chance. However, cross-gender communication takes longer and is faster paced as it seems
that people tend to pay more attention when communicating with the opposite sex.

Recently, using the data we generated, Singla and Richardson further investigated the
homophily within the Messenger network and found that people who communicate are also
more likely to search the web for content on similar topics (14).



20 Leskovec & Horvitz

0 20 40 60 80 100
10

2

10
4

10
6

10
8

10
10

age difference

nu
m

be
r 

of
 fr

ie
nd

sh
ip

s

0 20 40 60 80 100
10

3

10
4

10
5

10
6

10
7

10
8

10
9

age difference

nu
m

be
r 

of
 c

on
ve

rs
at

io
ns

(a) Number of links (b) Number of conversations

0 20 40 60 80
4.4

4.6

4.8

5

5.2

5.4

age difference

tim
e 

pe
r 

co
nv

er
sa

tio
n 

[m
in

]

0 20 40 60 80
6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

age difference

ex
ch

an
ge

d 
m

es
sa

ge
s

(c) Conversation duration (d) Exchanged messages

0 20 40 60 80
5.5

6

6.5

7

7.5

8

age difference

co
nv

er
sa

tio
ns

 p
er

 fr
ie

nd
sh

ip

0 20 40 60 80
0.021

0.022

0.023

0.024

0.025

0.026

0.027

0.028

age difference

ex
ch

an
ge

d 
m

es
sa

ge
s 

pe
r 

un
it 

tim
e

(e) Conversations per link (f) Messages per unit time

Figure 17: Communication characteristics with age difference between the users. (a) Number of
links (pairs communicating) with the age difference. (b) Number of conversations. (c) Average
conversation duration with the age difference. (d) Average number of exchanged messages per
conversation as a function of the age difference between the users. (e) Number of conversations per
link in the observation period with the age difference. (f) Number of exchanged messages per unit
time as a function of age difference between the users.
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Figure 18: (a) Degree distribution of communication network (number of people with whom a
person communicates). (b) Degree distribution of the buddy network (length of the contact list).

7 The communication network

So far we have examined communication patterns based on pairwise communications. We
now create a more general communication network from the data. Using this network,
we can examine the typical social distance between people, i.e., the number of links that
separate a random pair of people. This analysis seeks to understand how many people can
be reached within certain numbers of hops among people who communicate. Also, we test
the transitivity of the network, i.e., the degree at which pairs with a common friend tend
to be connected.

We constructed a graph from the set of all two-user conversations, where each node
corresponds to a person and there is an undirected edge between a pair of nodes if the users
were engaged in an active conversation during the observation period (users exchanged at
least 1 message). The resulting network contains 179,792,538 nodes, and 1,342,246,427 edges.
Note that this is not simply a buddy network; we only connect people who are buddies and

have communicated during the observation period.
Figures 18–19 show the structural properties of the communication network. The network

degree distribution shown in Figure 18(a) is heavy tailed but does not follow a power-law
distribution. Using maximum likelihood estimation, we fit a power-law with exponential
cutoff p(k) ∝ k−ae−bk with fitted parameter values a = 0.8 and b = 0.03. We found a strong
cutoff parameter and low power-law exponent, suggesting a distribution with high variance.

Figure 18(b) displays the degree distribution of a buddy graph. We did not have access
to the full buddy network; we only had access to data on the length of the user contact list
which allowed us to create the plot. We found a total of 9.1 billion buddy edges in the graph
with 49 buddies per user. We fit the data with a power-law distribution with exponential
cutoff and identified parameters of a = 0.6 and b = 0.01. The power-law exponent now is
even smaller. This model described the data well. We note a spike at 600 which is the limit
on the maximal number of buddies imposed by the Messenger software client. The maximal
number of buddies was increased to 300 from 150 in March 2005, and was later raised to
600. With the data from June 2006, we see only the peak at 600, and could not identify
bumps at the earlier constraints.
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Social networks have been found to be highly transitive, i.e., people with common friends
tend to be friends themselves. The clustering coefficient (19) has been used as a measure of
transitivity in the network. The measure is defined as the fraction of triangles around a node
of degree k (19). Figure 19(a) displays the clustering coefficient versus the degree of a node
for Messenger. Previous results on measuring the web graph as well as theoretical analyses
show that the clustering coefficient decays as k−1 (exponent −1) with node degree k (11).
For the Messenger network, the clustering coefficient decays very slowly with exponent −0.37
with the degree of a node and the average clustering coefficient is 0.137. This result suggests
that clustering in the Messenger network is much higher than expected—that people with
common friends also tend to be connected. Figure 19(b) displays the distribution of the
connected components in the network. The giant component contains 99.9% of the nodes
in the network against a background of small components, and the distribution follows a
power law.
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Figure 21: k-core decomposition of a small graph. Nodes contained in each closed line belong to a
given k-core. Inside each k-core all nodes have degree larger than k (after removing all nodes with
degree less than k.

7.1 How small is the small world?

Messenger data gives us a unique opportunity to study distances in the social network. To
our knowledge, this is the first time a planetary-scale social network has been available to
validate the well-known “6 degrees of separation” finding by Travers and Milgram (17). The
earlier work employed a sample of 64 people and found that the average number of hops for
a letter to travel from Nebraska to Boston was 6.2 (mode 5, median 5), which is popularly
known as the “6 degrees of separation” among people. We used a population sample that is
more than two million times larger than the group studied earlier and confirmed the classic
finding.

Figure 20(a) displays the distribution over the shortest path lengths. To approximate
the distribution of the distances, we randomly sampled 1000 nodes and calculated for each
node the shortest paths to all other nodes. We found that the distribution of path lengths
reaches the mode at 6 hops and has a median at 7. The average path length is 6.6. This
result means that a random pair of nodes in the Messenger network is 6.6 hops apart on
the average, which is half a link longer than the length measured by Travers and Milgram.
The 90th percentile (effective diameter (16)) of the distribution is 7.8. 48% of nodes can be
reached within 6 hops and 78% within 7 hops. So, we might say that, via the lens provided
on the world by Messenger, we find that there are about “7 degrees of separation” among
people. We note that long paths, i.e., nodes that are far apart, exist in the network; we
found paths up to a length of 29.

7.2 Network cores

We further study connectivity of the communication network by examining the k-cores (5)
of the graph. The concept of k-core is a generalization of the giant connected component.
The k-core of a network is a set of vertices K, where each vertex in K has at least k edges
to other vertices in K (see Figure 21). The distribution of k-core sizes gives us an idea of
how quickly the network shrinks as we move towards the core.

The k-core of a graph can be obtained by deleting from the network all vertices of degree
less than k. This process will decrease degrees of some non-deleted vertices, so more vertices
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will have degree less than k. We keep pruning vertices until all remaining vertices have
degree of at least k. We call the remaining vertices a k-core.

Figure 20 plots the number of nodes in a core of order k. We note that the core sizes
are remarkably stable up to a value of k ≈ 20; the number of nodes in the core drops for
only an order of magnitude. After k > 20, the core size rapidly drops. The central part
of the communication network is composed of 79 nodes, where each of them has more than
68 edges inside the set. The structure of the Messenger communication network is quite
different from the Internet graph; it has been observed (2) that the size of a k-core of the
Internet decays as a power-law with k. Here we see that the core sizes remains very stable
up to a degree ≈ 20, and only then start to rapidly degrease. This means that the nodes
with degrees of less than 20 are on the fringe of the network, and that the core starts to
rapidly decrease as nodes of degree 20 or more are deleted.

7.3 Strength of the ties

It has been observed by Albert et al. (1) that many real-world networks are robust to node-
level changes or attacks. Researchers have showed that networks like the World Wide Web,
Internet, and several social networks display a high degree of robustness to random node
removals, i.e., one has to remove many nodes chosen uniformly at random to make the
network disconnected. On the contrary, targeted attacks are very effective. Removing a few
high degree nodes can have a dramatic influence on the connectivity of a network.

Let us now study how the Messenger communication network is decomposed when
“strong,” i.e., heavily used, edges are removed from the network. We consider several
different definitions of “heavily used,” and measure the types of edges that are most impor-
tant for network connectivity. We note that a similar experiment was performed by Shi et
al (13) in the context of a small IM buddy network. The authors of the prior study took the
number of common friends at the ends of an edge as a measure of the link strength. As the
number of edges here is too large (1.3 billion) to remove edges one by one, we employed the
following procedure: We order the nodes by decreasing value per a measure of the intensity

of engagement of users; we then delete nodes associated with users in order of decreasing
measure and we observe the evolution of the properties of the communication network as
nodes are deleted.

We consider the following different measures of engagement:

• Average sent: The average number of sent messages per user’s conversation

• Average time: The average duration of user’s conversations

• Links: The number of links of a user (node degree), i.e., number of different people he
or she exchanged messages with

• Conversations: The total number of conversations of a user in the observation period

• Sent messages: The total number of sent messages by a user in the observation period

• Sent per unit time: The number of sent messages per unit time of a conversation

• Total time: The total conversation time of a user in the observation period
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Figure 22: Relative size of the largest connected component as a function of number of nodes
removed.

At each step of the experiment, we remove 10 million nodes in order of the specific
measure of engagement being studied. We then determine the relative size of the largest
connected component, i.e., given the network at particular step, we find the fraction of the
nodes belonging to the largest connected component of the network.

Figure 22 plots the evolution of the fraction of nodes in the largest connected component
with the number of deleted nodes. We plot a separate curve for each of the seven different
measures of engagement. For comparison, we also consider the random deletion of the nodes.

The decomposition procedure highlighted two types of dynamics of network change with
node removal. The size of the largest component decreases rapidly when we use as measures
of engagement the number of links, number of conversations, total conversation time, or
number of sent messages. In contrast, the size of the largest component decreases very
slowly when we use as a measure of engagement the average time per conversation, average
number of sent messages, or number of sent messages per unit time. We were not surprised
to find that the size of the largest component size decreases most rapidly when nodes are
deleted in order of the decreasing number of links that they have, i.e., the number of people
with whom a user at a node communicates. Random ordering of the nodes shrinks the
component at the slowest rate. After removing 160 million out of 180 million nodes with the
random policy, the largest component still contains about half of the nodes. Surprisingly,
when deleting up to 100 million nodes, the average time per conversation measure shrinks
the component even more slowly than the random deletion policy.

Figure 23 displays plots of the number of removed edges from the network as nodes
are deleted. Similar to the relationships in Figure 22, we found that deleting nodes by the
inverse number of edges removes edges the fastest. As in Figure 23, the same group of
node ordering criteria (number of conversations, total conversation time or number of sent



26 Leskovec & Horvitz

0 2 4 6 8 10 12 14 16

x 10
7

0

2

4

6

8

10

12

14
x 10

8

Deleted nodes

D
el

et
ed

 e
dg

es

Avg. sent
Avg. time
Links
Conversations
Sent messages
Sent per unit time
Total time
Random

Figure 23: Number of removed edges as nodes are deleted by order of different measures of engage-
ment.

messages) removes edges from the networks as fast as the number of links criteria. However,
we find that random node removal removes edges in a linear manner. Edges are removed
at a lower rate when deleting nodes by average time per conversation, average numbers of
sent messages, or numbers of sent messages per unit time. We believe that these findings
demonstrate that users with long conversations and many messages per conversation tend
to have smaller degrees—even given the findings displayed in Figure 22, where we saw that
removing these users is more effective for breaking the connectivity of the network than for
random node deletion. Figure 23 also shows that using the average number of messages per
conversation as a criterion removes edges in the slowest manner. We believe that this makes
sense intuitively: If users invest similar amounts of time to interacting with others, then
people with short conversations will tend to converse with more people in a given amount
of time than users having long conversations.

8 Conclusion

We have reviewed a set of results stemming from the generation and analysis of an anonymized
dataset representing the communication patterns of all people using a popular IM system.
The methods and findings highlight the value of using a large IM network as a worldwide
lens onto aggregate human behavior.

We described the creation of the dataset, capturing high-level communication activities
and demographics in June 2006. The core dataset contains more than 30 billion conversations
among 240 million people. We discussed the creation and analysis of a communication
graph from the data containing 180 million nodes and 1.3 billion edges. The communication
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network is largest social network analyzed to date. The planetary-scale network allowed
us to explore dependencies among user demographics, communication characteristics, and
network structure. Working with such a massive dataset allowed us to test hypotheses such
as the average chain of separation among people across the entire world.

We discovered that the graph is well connected, highly transitive, and robust. We re-
viewed the influence of multiple factors on communication frequency and duration. We
found strong influences of homophily in activities, where people with similar characteristics
tend to communicate more, with the exception of gender, where we found that cross-gender
conversations are both more frequent and of longer duration than conversations with users of
the same reported gender. We also examined the path lengths and validated on a planetary
scale earlier research that found “6 degrees of separation” among people.

We note that the sheer size of the data limits the kinds of analyses one can perform. In
some cases, a smaller random sample may avoid the challenges with working with terabytes of
data. However, it is known that sampling can corrupt the structural properties of networks,
such as the degree distribution and the diameter of the graphs (15). Thus, while sampling
may be valuable for managing complexity of analyses, results on network properties with
partial data sets may be rendered unreliable. Furthermore, we need to consider the full data
set to reliably measure the patterns of age and distance homophily in communications.

In other directions of research with the dataset, we have pursued the use of machine
learning and inference to learn predictive models that can forecast such properties as com-
munication frequencies and durations of conversations among people as a function of the
structural and demographic attributes of conversants. Our future directions for research
include gaining an understanding of the dynamics of the structure of the communication
network via a study of the evolution of the network over time.

We hope that our studies with Messenger data serves as an example of directions in
social science research, highlighting how communication systems can provide insights about
high-level patterns and relationships in human communications without making incursions
into the privacy of individuals. We hope that this first effort to understand a social network
on a genuinely planetary scale will embolden others to explore human behavior at large
scales.
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