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Abstract— This paper presents the architectural design and
implementation of CoMOS, a component messaging based oper-
ating system for mobile sensing and communication devices with
multiple, heterogeneous processors. Potential applications of these
devices include personal voice or video services, health monitor-
ing, and environmental sensing. To enable timely processing of
environmental or user events and energy-efficient operations, the
system uses a stack-based preemption mechanism and supports
task migration and fine-grained resource scheduling. At the
center of the architecture is a processor-agnostic programming
abstraction in which applications are specified as sets of asynchro-
nous tasks interacting with messages. Tasks respond to messages,
or events, and may produce new messages. Message handling
can be preempted on stack enabling timely response to high
priority events with a very small memory overhead. The tasks are
mapped to processors at compile time and can be migrated from
one processor to another at runtime, allowing dynamic power
optimization and load balance. CoMOS has been implemented on
mPlatform, a modular multi-board sensing device with multiple
MSP430 and ARM7 processors and radios, and has been used to
support the development of a real-time 4-channel sound source
location (SSL) application on the mPlatform. We describe the
experimental results quantifying the overhead of the messaging,
migration, and other critical components of CoMOS, and the
end-to-end performance evaluation of the SSL application.

I. I NTRODUCTION

The modular architecture of multiple modules intercon-
nected via reconfigurable buses provides an attractive design
choice for supporting heterogeneous and extensible mobile
embedded computing [24], [8], [22]. In this architecture, each
individual module can specialize in providing one of the
sensing, actuation, processing, storage, and communication
capabilities, or a combination of these. Consider a scenario
in which a mobile wellness monitoring device continuously
senses and logs a person’s fitness signals. One module of
the device could use a low-power microcontroller such as
MSP430 with low sleep current and low wakeup cost for data
sampling, simple processing tasks such as filtering, and storage
control. Upon detection of a significant physiological condition
such as a heart irregularity, the device could wake up a more
powerful module equipped with a 32-bit microprocessor such
as ARM7 to respond to this infrequent, but computationally
more demanding diagnostic task without delay. At the same
time, another module, which specializes in wireless commu-
nication with a low-power medium access control (MAC),
could switch from a low-power wireless sniffing mode to an
active transmission mode of sending the alert and data to a
remote caregiver. Concurrently, a cell-phone module might
also be requested to support real-time voice communication
with the caregiver if necessary. The availability of multiple,
heterogeneous processors allow the device to respond to
different events in atimely and energy-efficientmanner. It is
also moreflexibleand potentially more robust to local module

failure, as in such cases the processing job of the module can
be delegated to other modules.

One approach to programming multi-processor sensor de-
vices is to develop applications in pieces directly on top
of each local operating system of individual modules. For
example, the Intel Stargate1 with a 32-bit PXA250 processor
can be connected to Mica2 sensor node with an 8-bit ATMEL
microcontroller to support sensing and communication. The
PXA250 processor runs Linux, while the Mica2 sensor node
runs TinyOS [16]. There are several issues with this approach.
First, performance optimization becomes more involved. Con-
sider a simple data aggregation from wireless radio on Mica2.
A user has to decidea priori where the data aggregation
service should be implemented. Choosing an optimal location
is non-trivial when more than one application is running on the
device. Second, different operating systems impose different
programming models. For example, Linux follows a process
model while TinyOS is based on an event-driven model.
Integrating programs created with difference programming
models can be tricky, especially when multiple concurrency
models, like threads and interrupt handling, are involved. One
way to deal with this problem is to view a multi-processor
device as a distributed system and provide a middleware
that translates system calls for one OS into another OS. For
example, Emstar [12] provides a thin “stub” layer for TinyOS
running on Linux capable device so that program written in
TinyOS can talk to Emstar through the stub, which translates
low-level drivers such as radio, timers and LEDs to Emstar
system calls. However, moving a component from Emstar to
TinyOS is still difficult. A separate stub layer for the moved
component must be in place to translate function interface
into messaging interface. While effective for a small number
of modules as in the Starget/Mica2 case, this approach would
be difficult to scale up when the number of modules increases.

This points to the need for a processor-agnostic program-
ming model in which an application is developed independent
of the individual processors and interconnects. It should be
the job of the scheduler and OS to map and schedule an
application onto the processors, meeting timing and power
requirements. In this paper, we present the architecture and
implementation of CoMOS, a component messaging operat-
ing system. An application in CoMOS is specified as a set
of asynchronous tasks interacting with messages. The tasks
are event triggered in that they respond to input messages
(or events), process them, and may produce new messages.
Message handling can be preempted, enabling timely response
to high-priority events. To support preemptive execution on
memory constrained low-end microcontrollers, we choose a

1http://www.xbow.com/Products/productsdetails.aspx?sid=65



stack-based preemption mechanism rather than threads.
The CoMOS architecture is partly motivated by the need for

moving computational tasks around to achieve optimal energy
utilization when the parameters of an application change or
a new application arrives, which is important for battery
powered devices. For example, in a sound-source localization
(SSL) application, when the desired sampling block latency
of an acoustic application changes from 200 ms to 250 ms,
it is more energy efficient to run a 512-point FFT task on a
MSP430 than an ARM7 [23]. A uniform messaging interface,
enabled by an underlying high-speed TDMA based CPLD
bus and a message-routing table, provides transparency to on-
module or cross-module communication. Late-binding of tasks
to available resources decouples the task specification from
the task execution. Task assignment can happen at compile
time, where a constrained optimization scheduler assign each
task to a processor, considering both power and deadline
requirements, based on detailed energy models for processors,
buses, and radios. The tasks execution can then be monitored
at run time, and tasks can be migrated from one module to
another to achieve balanced load, improved responsiveness, or
optimized power utilization.

CoMOS has been implemented on the multi-processor
sensing devicemPlatformwith multiple embedded processors
and radios and has supported the prototyping of a real-time
acoustic SSL application. Our experiments and performance
evaluation have shown that the messaging, stack-based pre-
emption, and migration incurred a small, tolerable amount
of latency and memory overhead while providing the desired
capabilities, as demonstrated by the end-to-end performance
of the SSL application. Thecontributionsof CoMOS are:

• It introduces a processor-agnostic programming ab-
straction based on a message mediated asynchronous
task model to support application development on a
heterogeneous multi-module system.

• It supports run-time dynamic migration of tasks thus
giving a multi-processor embedded platform the ability
to finely manage power, balance loads and mitigate
possible local failures.

• It uses an asymmetric stack-based preemption mech-
anism to improve the responsiveness to time-critical
events while incurring a minimal memory overhead.

The rest of the paper is structured as follows. Section II
reviews prior work. Section III describes the use of modular
hardware designs for energy efficiency. Section IV introduces
the overall architecture and design choices of CoMOS, and
Section V describes its design and implementation. Section VI
presents an evaluation of CoMOS with micro-benchmarks
and end-to-end application performance. Section VII discusses
limitations of and possible improvements to CoMOS.

II. RELATED WORK

1) Programming heterogeneous multi-module systems:
Componentization is a way to provide abstractions to program
embedded systems. The interaction among components can
be synchronous, such as method calls, or asynchronous, such
as message passing. In sensor network programming models,
TinyOS/nesC [11] provide layered component abstraction and

synchronous communication between modules. TinyGALS [6]
builds an asynchronous message passing model on top of
nesC. However, TinyGALS does not provide prioritization
of tasks, nor preemptive execution. Port-based objects [25]
uses asynchronous components to achieve reconfigurability.
But message ordering is not guaranteed in the communication.

Asynchronous models are also common in integrating het-
erogeneous systems. EmStar [12] integrates TinyOS with a
stub layer, which converts low-level TinyOS drivers to mes-
sage handlers. The asynchronous nature of driver-hardware
interaction, method calls for resource requests to the driver
and hardware interrupt for completion, makes the integration
transparent to both systems. However, generalizing the stub
approach to every component can be very complex.

2) Component migration and loading:A number of ap-
proaches implement component migration using virtual ma-
chines. SensorWare [4] provides a mobile agent environment
where scripts written in Tcl can migrate from one sensor
node to another and spawn new scripts, with some limitations
in communication and restart. SensorWare provides system
support for serializing the script and Tcl variables associated
with the script; there is no need to migrate neither program
stack nor routing table. Agilla [9] is a middleware that provides
mobile agent environment on mote-class devices. It supports
migration with a stack-based byte-code interpreter, in which
each task has a stack, registers and a heap. When an agent
migrates, Agilla serializes the stack, registers and heap. Al-
though the interpreters in these approaches provide a uniform
execution environment, script execution can have a significant
computational overhead [18]. The expressiveness of the task
is limited to the underlying virtual machine or agent system.
In contrast, CoMOS is based on a cross-processor messaging
model, which does not rely on a VM interpreter. Further, the
programming language for CoMOS is C, which is commonly
used in embedded system programming.

CoMOS draws upon prior work on application loading such
as TinyOS [16], Contiki [7], Impala [19], and SOS [13].
All four systems provide loading applications compiled in
native instructions with different granularity. TinyOS supports
remote application installation by replacing entire program
image including OS and application. Contiki allows loading
an application compiled in the ELF format into the kernel.
Impala allows multiple applications to be loaded, but only
one application can execute at any time. SOS allows multiple
applications to be loaded and executed concurrently. The gran-
ularity of application loading for CoMOS is similar to SOS in
the sense that multiple applications can be loaded remotely
and executed concurrently. Each application is represented
as multiple binary images with application wiring, and the
loading can be at individual component level.

MMLite [14] and its distributed extension, The Microsoft
Invisible Computing Embedded Web Services [15], use the
Common Object Model (COM) for component loading and
migration. The latter uses an automatic marshaler that converts
between messages and procedural execution, and uses web
services for distributed real-time scheduling.

3) Task scheduling:Task or message scheduling is at the
core of an operating system. TinyOS uses foreground and



background scheduling. Foreground processing is scheduled
by hardware via interrupt and background processing is sched-
uled in FIFO order by TinyOS task scheduler. Contiki, like
TinyOS, provides foreground/background scheduling except
that interrupt handlers only register callbacks to be called
as soon as the current background task has completed the
execution. Traditional threaded preemption can be optionally
enabled to provide real-time operation. SOS provides a pri-
ority based message queue. Message handling in SOS has
non-preemptive run-to-completion semantic. CoMOS message
scheduling incorporates stack preemption on top of the mes-
saging system. The messages that have higher priority will
preempt current task execution immediately. This allows long
running tasks be preempted for system responsiveness.

Mantis [2] provides traditional preemptive multi-threading
and POSIX operating system interface. Preemption in Mantis
is symmetric in that scheduler can swap back a previously pre-
empted task. CoMOS stack preemption mechanism is asym-
metric. When a task is preempted, switch back to the original
task is not possible until interrupting task has completed.
However, CoMOS does not require pre-allocation of the task
stack. This allows more efficient memory utilization.

There is a rich body of research on multiprocessor and
distributed real-time scheduling [17], [21], [23]. The pre-
emptive execution mechanism and the messaging interface
implemented in CoMOS can support static scheduling frame-
works, such as rate-monotonic scheduling, and some dynamic
scheduling frameworks, such as earliest deadline first (EDF).

III. M ODULAR MULTI -PROCESSORPLATFORMS

The targets for CoMOS are modular hardware architectures
that can provide a Lego-like, plug-and-play capability to put
together a sensor network platform tailored to specific applica-
tion/research requirements. In contrast to some embedded sys-
tem platforms that use a single processor to manage multiple
add-on boards, multi-processor platforms, especially heteroge-
neous multi-processor designs, have several advantages. For
example, DSP and network processors can perform domain
specific operations very efficiently. Using them alongside
general purpose CPUs can significantly improve multimedia
and digital communication application performance. Another
advantage of heterogeneous multi-processor designs is the
flexibility in power scheduling, which we elaborate below.

A. Heterogeneous multi-processor energy efficiency

High-end embedded processors generally can deliver more
instruction cycles per unit energy than low-end microcon-
trollers, when running at a full speed. However, high-end em-
bedded processors, unless completely shut down, also consume
more power and need more energy to wake up from a standby
or sleep mode. The difference in the power consumption in
different modes and their transitions as well as the difference
in the energy efficiency motivate us to use a dedicated low-end
microcontroller to handle frequent yet simple tasks.

Many mobile and embedded applications exhibit strong
variations in the application workload. The earlier example
of wellness monitoring scenario may switch from a low-
power monitoring mode to a high-fidelity processing mode that

requires orders of magnitude more processing cycles. Timing
requirements and energy consumption among these modes can
be very different, pushing the limit of a single processor even
with dynamic voltage and frequency scaling.

Generally speaking, a more powerful microprocessor is
more energy efficient in that it can finish a given job faster
and with a smaller energy consumption than a less powerful
microprocessor. However, putting the processor into sleep and
waking them up require more energy. This gives rise to non-
trivial scheduling problems about which processor to use for
what job [23]. For example, assume that two microprocessorsp
andq (with characteristics similar to ARM7 and MSP430) are
considered for a non-splittable job ofL millions of instructions
by deadlineD. Figure 1 illustrates which processor is most
energy efficient to use depending on the relationship between
L and D, while taking into consideration the computation
throughput (MIPS), energy throughput (MIPJ), mode transition
time, and mode transition energy cost. Appendix gives the
details of the analysis. A more complete treatment of the prob-
lem should also take into account of splittable workload the
dependencies among pieces of work, and the voltage/frequency
scale of the microprocessors. The problem can be formulated
as an integer linear programming problem [23], which is NP
hard. Even with this simple example, we can see that when the
system workload and real-time requirements vary over time,
it is desirable to shift the workload from one processor to
another to achieve optimal energy utilization.
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Fig. 1—Optimal assignment of non-splittable workload on two processors.

B. The mPlatform

The mPlatform is a realization of the multi-module hard-
ware architecture [22]. It comprises a collection of stackable
hardware modules that share a well defined common com-
munication interface. Figure 2 shows a picture of a sample
hardware setup.

Fig. 2—A prototype of mPlatform.



Physically, each module consists of a circuit board and
connectors that enable other modules to be plugged on both
top and bottom of that module. Some of themPlatform
modules are general purpose processing boards with proces-
sors ranging from MSP430 to ARM7 and PXA270, while
others are special purpose boards such as radio boards for
wireless communication, sensor boards for sensing physical
phenomena, and power boards for supplying power to a stack
of modules. Each module, except for the power module,
has a local processor. These local processors greatly enhance
energy efficient handling of real-time events. The processor-
per-module approach also allows a more flexible composition
of different modules.

The mPlatfom uses a high speed parallel bus for inter-
processor communication, with a maximum throughput of 64
MB/s. Each processor connects to this bus through a Complex
Programmable Logic Device (CPLD), which implements a
TDMA protocol for sharing the bus among modules. The bus
protocol supports both unicast and broadcast message delivery.
The CPLD bus employs hardware flow control to provide
guaranteed message delivery. Due to the high throughput of the
CPLD bus, for ARM and MSP430 class processors, usually
the processors become the bottleneck during data transfers
over the bus. The CPLD bus driver on each processor ex-
poses a uniformsend message() , receive message()
interface for communicating over the bus. Since the bus is
controlled by the CPLD, all but one of the processors can
be powered of, and be powered back on by the remaining
“active” processor by sending a message over the CPLD bus.
This enables processors to be shut down and woken up as
necessary to achieve the energy efficiency goals.

IV. A RCHITECTURAL CONSIDERATIONS

Heterogeneous multi-processor hardware design presents
challenges and opportunities for operating systems. CoMOS
is designed to meet the following goals:

• Ease of programming and reconfiguration:A wide
range of processors, from low-power microcontrollers
to higher-power 32-bit embedded processors, can coex-
ist on the same platform and efficiently communicate
with each other. To ease application development and
to encourage reuse of software components, it is impor-
tant to develop a simple, unified programming model
that is transparent to the heterogeneity of the platform.

• Real-time event handling:Since a mobile platform
is typically used in applications where it constantly
interacts with the environment and user, the ability to
promptly handle high-priority events is important.

• Efficiency in resource utilization:In many sensing and
mobility applications devices are battery-powered. It is
desirable to be able to shut down components when not
in use and scale up or down operation voltage and/or
frequency of the components according to changing
task needs. In addition, applications should not have
unbounded resource (e.g., memory) usage.

These goals lead us to use atomic software components and
asynchronous message passing as the foundation of applica-
tions running on CoMOS. This architecture is motivated by the

need to support a unified programming interface for multi-
module devices and easy migration and loading of program
components at runtime. A CoMOS application is written as
a collection of loosely coupled software components, called
tasks, which interacts by reacting to and generatingmessages.
Some of these tasks can be executed at a number of different
modules. The operating system takes the role of allocating suf-
ficient resources to these tasks to meet application constraints.

A. Tasks

A task is an instance of a component that groups related
functions together. A task is also assigned a priority, which
determines the ordering of message processing within a mod-
ule. Tasks have ports, which are their only communication
interfaces. These include the communication with the oper-
ating system, such as initialization, time triggers, and error
handling. The ports of a task are one-to-one bindings to
specific processing functions, calledreactions or handlers.
A message delivered to a specific port is handled by the
processing function assigned to the port.

Tasks are location transparent within a device. To achieve
that, tasks have unique IDs across modules. When one task
tries to send a message to another task, the message contains
the destination task ID. It is the OS’s responsibility to route
the message to the destination. A key to the atomicity of tasks
is that they maintain their own state, and there are no shared
variables in the system. The state of a task is expected to be
serialized and de-serialized if the task can be migrated.

B. Messaging

CoMOS applications are constructed by connecting input
and output ports of tasks, which dictates how messages are
routed in the system. This information can be stored in a mes-
sage routing table that decouples task IDs from task locations.
This level of indirection makes task migration relatively easy.

Messages carry their destination ports and the priorities of
destination tasks. When an application spans across multiple
modules, the bus is used to send messages from one module to
another. This is handled by the OS without explicit knowledge
to the application. Messages on the same module are sorted
by their priority and then by their creation order in the
OS scheduler. Higher priority messages are processed first.
Messages in different modules are processes concurrently.

Message passing may create extra cost such as unnecessary
content copying when sending to a local task. Thus practical
systems usually convert some message passing into direct
function calls when possible. This can either be carried out
uniformly by the system or specifically by the applications.
In the low-end modules, handling only a small number of
messages and fairly simple applications, it is more memory
efficient to leave the applications to handle message copying
and marshaling directly. While it would be possible to have
automatic marshaling of parameters on the more powerful
modules, such as in the Invisible Computing framework [15],
the current design choice favors the same programming inter-
face on all the modules, thus using direct message processing
across the modules.



Fig. 3—CoMOS component break-down

C. Preemption model

The low-end modules are not limited just in computational
capability but also in available memory. On microcontrollers
without hardware memory management, thread stacks must
be fully allocated in physical memory. Maintaining per-thread
stack is very expensive considering the amount of available
memory on low-end microcontrollers. Single thread execution,
on the other hand, requires little stack space. But the run-
to-completion execution semantics limits the fast response
to high-priority events. An asymmetric preemptive threading
model is proposed in [1]. This model allows interrupting the
current computation, due to either I/O interrupt or higher-
priority message processing, with another process on the same
stack. While this allows the yielding of computation resources
from low-priority tasks to high-priority tasks, it limits how
priorities can be dynamically changed at run time, since
switching back to the original computation is not possible
until the intruding process has completed. Nevertheless this is
sufficient to support many real-time requirements, while using
memory extremely efficiently.

D. Migration

Task migration may appear easy in a component-oriented
message passing system, since it is primarily an act of seri-
alizing states and changing message routing table. However,
challenges arise when we must maintain the continuity of task
execution. To ensure the transparency to high-level application,
task migration has to be an atomic operation, that is all pending
messages at the start of migration and all messages sent to the
task during its migration must be received by the migrated
task and in the correct order.

A task migration protocol is implemented in CoMOS,
which coordinate among multiple modules to achieve both the
atomicity of task migration and consistency of messages. By
atomic, we mean that the task will either be at the destination
module when migration has succeeded or at the source module
when migration has failed but on not both modules. The details
of the protocol are given in section V-D.

V. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of
the CoMOS components to support the architectural require-
ments. Figure 3 shows the component break-down of current
CoMOS implementation. All components have one instance
running on each module of a multi-module sensor node.

Input Port Condition
PORTINIT triggered when the task is created
PORTFINAL triggered when the task is killed
PORTSERIALIZE request state serialization for migration
PORTDESERIALIZE triggered when migration has completed
PORTTIMEOUT[0..3] triggered whenTIMER [0..3] has fired

TABLE I —Pre-defined input ports and their associated conditions.

A. CoMOS Tasks

1) Task Specification:A Task in CoMOS is described by
the properties defined intask desc structure. The values of
these properties are used to instantiate a given task.

1 struct task_desc {
program_id_t prog_id;

3 pid_t pid;
priority_t priority;

5 port_range_t num_ports;
board_address_t init_location;

7 size_t init_data_size;
size_t init_data_offset;

9 task_desc_flag_t flag;
}

Hereprog id is the ID of the code image that implements the
task. A Task has a unique ID among all modules on the sensor
node;pid is the unique task identifier;priority is the priority
assignment of the task. Each task has several output ports send
out messages;numports is the number of output ports for
the task;init location specifies the initial module location for
the task. A task may use a set parameters when it initializes
(similar to the parameter list used in a C++ constructor);
init data size and init data offset specifies the size and the
location of an initialization string which is in fact a serialized
version of these parameters. Theflag is the bitwise OR of a
set of task options such asCOMOSTASK MOVABLE.

A task has a set of pre-defined input ports to receive
messages generated by CoMOS. Some of them are system
ports, as shown in Table I, others are application ports named
as PORT0 throughPORTMAX. The current implementation
supports a maximum of 128 input ports.

Listing 1 shows the execution part of a ”Hello World”
task in CoMOS. The task creates a periodic timer that fires
every 0.125 seconds after the task initialization (line 6 - 10).
When requested time interval has passed, a message to port
PORTTIMEOUT0 is generated forhello task . CoMOS
automatically associatesTIMER 0 with PORTTIMEOUT0.
The message handler then sends out “Hello World” message
to output portPORT0 (line 14 - 19). Message handling in
a task follows the run-to-completion semantic. That is the
implementation of a task does not need to handle concurrency
and synchronization explicitly. However, the execution of a
task can be preempted when there are certain messages with
higher priorities.

ret_t hello_task( void * state, msg_t * msg )
2 {

switch ( msg->port ) {
4 //

// First Message for the task
6 case PORT_INIT:

timer_start(
8 TIMER_0,

TIMEOUT_SECOND / 8,
10 TIMEOUT_SECOND / 8);

break ;
12 //

// The Message every time timer fires
14 case PORT_TIMEOUT0:

sched_send_msg(
16 "Hello World",

sizeof ("Hello World"),
18 0,

PORT_0 );



20 break ;
}

22 return OK;
}

Listing 1—A CoMOS task that sends out “Hello World” every 0.125 seconds
—

2) Task Creation: A CoMOS task is created by pass-
ing a task description to the message scheduler. Message
scheduler, upon receiving task creation request, first calls the
sched task create() with 5 parameters.

1 ret_t sched_task_create(
task_t task,

3 pid_t pid,
priority_t p,

5 portlist_t * pl,
port_range_t num_ports );

First parameter,task, has following prototype.
ret_t task_name( void * state, msg_t * msg )

It indicates to the scheduler which massage handler to invoke
when receiving a message for this task.

Second parameter,pid, is the unique identifier for
this task. The pid should be unique among all modules
on the sensor node. ID generation is not handled by
sched task create() interface because CoMOS allows
resource to be identified with ID. In section V-A.3, we describe
how ID is generated when we describe application creation.
Third parameter is the priority of the task to be created.
Task priority assignment is also deferred to high-level. For
example, our back-end tool assigns task priority according to
global timing requirement among multiple applications. Fourth
and fifth parameter are theoutput port table and the size
of the table respectively. The output port table is used as a
routing table to route messages from the task to the intended
destinations. The level of indirection provided by the output
port table allows us to separate the definition of message
destinations from the task implementation. Apart from the
output port table,sched task create() allocates and
initializes the task control block (TCB) also. The TCB is
used throughout the system to identify current executing task
and speed up message scheduling and delivery. Creating a
task does not immediately initialize it. Task initialization is
implemented by aPORTINIT message generated by the
scheduler’ssched task init() interface. This allows the
tasks in an application to be created without worrying about
missing messages. When initializing an application graph,
application managersimply creates all the tasks and then
issuessched task init() call to the message scheduler.

The C prototype ofsched task init() is shown.
1 ret_t sched_task_init(

pid_t pid,
3 void * init_data,

size_t init_data_size,
5 msg_flag_t init_data_flag );

In addition to generating PORTINIT message,
sched task init() interface allows the initialization
string, init data to be included for parameterized task
initialization.

3) Application Creation: An application is composed of
task images (the implementation in terms of processor specific
instructions), task dependencies (output port routing tables
and multi-cast group information), and initial conditions (task
initial location and task initialization strings). An application

description has six sections (refer to the line number in
Listing 2 for concrete example).

• Application Description Header (line 13-14) specifies
the number of tasks and multicast groups used.

• The Task Descriptions section (line 16 - 32) describes
the properties of all the tasks in the application such
as the task ID relative to this application, the priority
of the task, and the number of output ports, as shown
in task desc .

• The implementation of the task is described as an ID
to the program (line 18 and 27). The actual implemen-
tation of the task is defined separately as discussed
in the previous section. This makes it easy to support
different object formats such as ELF and COFF.

• Mcast Group Descriptions (line 34-35) provides the
information regarding multi-cast group such as multi-
cast group ID and number of members in the group.

• The routing tables (line 37-44) describe the destination
task ID (relative to the application) and input port.

• Finally, Task Init Strings (line 46) includes the initial-
ization strings for each task if not NULL.

Currently, application writers manually construct the appli-
cation description as shown in listing 2.
1 static struct hello_world_app_desc {

comos_app_desc hdr;
3 comos_task_desc task_desc[2];

comos_mcast_desc mcast_desc[1];
5 portlist_t task0_tbl[1];

portlist_t task1_tbl[1];
7 portlist_t mcast1_tbl[1];

task0_init_string_t task0_init;
9 } app_desc;

11 comos_app_desc * get_app_desc( size_t * size )
{

13 app_desc.hdr.num_tasks = 2;
app_desc.hdr.num_groups = 1;

15
app_desc.task_desc[0].num_ports = 1;

17 app_desc.task_desc[0].pid = 0;
app_desc.task_desc[0].prog_id = TIMER_TASK_PROG_ID;

19 app_desc.task_desc[0].flag = COMOS_TASK_MOVABLE;
app_desc.task_desc[0].init_location = BOARD_STARTING_ADDR;

21 app_desc.task_desc[0].priority = 1;
app_desc.task_desc[0].init_data_size = sizeof (task0_init_string_t);

23 app_desc.task_desc[0].init_data_offset = offsetof(app_desc, task0_init);

25 app_desc.task_desc[1].num_ports = 0;
app_desc.task_desc[1].pid = 1;

27 app_desc.task_desc[1].prog_id = HELLO_WORLD_PROG_ID;
app_desc.task_desc[1].flag = COMOS_TASK_MOVABLE;

29 app_desc.task_desc[1].init_location = BOARD_STARTING_ADDR + 1;
app_desc.task_desc[1].priority = 1;

31 app_desc.task_desc[1].init_data_size = 0;
app_desc.task_desc[1].init_data_offset = 0;

33
app_desc.mcast_desc[0].group_id = GROUP0;

35 app_desc.mcast_desc[0].num_entries = 1;

37 app_desc.task0_tbl[0].dst_pid = MULTICAST_PID;
app_desc.task0_tbl[0].dst_inp = GROUP0;

39
app_desc.task0_tbl[0].dst_pid = RADIO_PID;

41 app_desc.task0_tbl[0].dst_inp = PORT0;

43 app_desc.mcast1_tbl[0].dst_pid = 1;
app_desc.mcast1_tbl[0].dst_inp = PORT0;

45
app_desc.task0_init.timer_period = TIMEOUT_SECOND / 8;

47
* size = sizeof (app_desc);

49 return (comos_app_desc * ) app_desc;
}

Listing 2—A CoMOS Hello World Application

—

Listing 2 is a CoMOS application that sends out “Hello
World” every 0.125 seconds. The application is implemented
with one timer task and one hello world task. Timer task
is initialized with timer period of TIMEOUTSECOND/8
seconds. When timeout message arrives at timer task, a multi-
cast message is sent toGROUP0, which is wired to hello world



task’sPORT0. When the message arrives at hello world task,
a “Hello World” message is sent toRADIO PID ’s PORT0.

In order for message passing and migration to work, a set of
message routing tables are maintained at each module (these
include the output port tables of each local task). Each routing
table has two levels of information of the destination tasks:
(1) the current task to module assignment, and (2) the input
ports within a task. This two-level routing table simplifies task
migration since the task is the unit of migration. A task is not
specific to a particular architecture. The routing table allows
late binding of tasks to modules, although some specific task
numbers may be handled as constants by the routing table.
One such specific task is a special control task that represents
the module itself and facilitates migration requests and similar
system functionality.

CoMOS supports creating applications dynamically through
a special task calledapplication manager. Like all tasks, the
application manager has ports which can be connected to other
messaging interface such as radio or serial port links.

When the application managerreceives the application
description, it first patches all IDs including task IDs and
multi-cast group IDs. This is because all these IDs are
described relatively to the application unless the ID falls
into the range of global resource ID. The application man-
ager then broadcasts patched application description to all
other modules and parses the application description locally.
For each task that has initial location local to the module,
sched task create() is issued along with necessary in-
formation. Otherwise,sched task create remote() is
issued to inform the message scheduler the existence of this
task on the remote module. For each multi-cast group, the
members that are local to the module are added to the multi-
cast table. Finally,application managerinitializes each task
that is local to the module with initialization string.

To avoid consistency problems during the creation of ap-
plications, theapplication manageris running at the high-
est priority in the system. Further, application is created in
two stages: instantiation and initialization. Message scheduler
buffers all messages for the task if the task has not yet
initialized. These buffered messages will be dispatched once
the task has handled thePORTINIT message.

In application instantiation,sched task create() is
used to to allocate necessary memory and create TCBs. In
application initialization,sched task init() is used to
create message toPORTINIT .

B. Messaging

Tasks communicate only through messages. They provide a
location transparent abstraction for tasks running on different
modules. Messaging is also a key to achieve prioritization
among local task execution.

1) Local Message Scheduling:CoMOS schedules messages
according to the priorities of message destinations. The Co-
MOS message scheduler is invoked every time there is a
new message, called apreemption point. For example, line
15 of listing 1 is a preemption point, which CoMOS mes-
sage scheduler will be invoked. Every time CoMOS message
scheduler is invoked, it checks whether the priority of the

message destination is equal or higher than the sender. If
so, the message is scheduled for immediate execution (i.e.
preemption). Instead of normal preemption mechanism that
saves registers and stack content, CoMOS preempts task on
the global stack. Stack preemption is motivated by Stack-
based Resource Policy[1]. That is, when the preemption does
happen, CoMOS fetches the function pointer associated with
the destination of the message and executes it immediately.
This way, there is only one global execution stack instead
of per-task private stack. The limitation of the stack-based
preemption is that once the task is preempted, the scheduler
cannot swap back the task until the intruding task finishes.
When the task starts handling the message CoMOS sets a flag
to guard against the swapping-back situation, which may be
caused by the arrival of a message to a task that is already
on the stack. When this flag is set, CoMOS queues all the
messages for that task.

When the priority of message is lower than current ex-
ecuting task, the message is queued in the scheduler for
later execution. The message queue is sorted according to
destination priorities. When the current task has finished,
message scheduler checks the priority on top of the execution
stack against the head of the message queue. If the priority of
the head of the message queue is higher, message scheduler
dispatches the message. Otherwise, message scheduler simply
does nothing and let the task on the top of the stack resume
execution.

CoMOS handles the messages from the hardware inter-
rupts differently. When a message is sent from the hardware
interrupt, CoMOS only preempt the current executing task
when the priority of the message is strictly greater. This is
to preserve the execution order. The current task execution,
resulted from a previous interrupt, either directly or indirectly,
should take higher precedence.

2) Message Routing:Local message routing is imple-
mented using message routing tables. CoMOS enables the
transparency of messaging by having an output port routing
table for each task. Output routing table maps output port
to <destination task ID, input port > pair. This
routing table is stored in the RAM and thus can be changed.

When a message is sent to a task on the remote module, the
message scheduler forwards the message to thebus manager.
The message scheduler makes this decision by finding the
location of the message destination.

To enable low execution cost on discovering destination
module, message scheduler stores the TCB of message desti-
nation along with each entry of routing table. For tasks that
are remote to the current module, message scheduler creates
a remote TCB that includes Task ID, priority of the task, and
the location in terms of module address. When the message
is sent to a particular port, the message scheduler looks up
the destination module address in the TCB. If the destination
module address is not the same as current module, the message
scheduler forwards the message to the bus manager. The bus
manager, if it is not currently sending another message, starts
sending the message while blocking the current execution.
We use this implementation because of the high speed CPLD
bus. Using interrupt driven message transfer will waste CPU



cycles on interrupt dispatch for each byte. On the other hand,
if the bus is busy sending messages, the new message will be
buffered according to the priority of the destination task.

CoMOS supports multicast messages though a virtual task.
Virtual task is a special task with special task ID but without
the TCB. The virtual task for multicast messages has ID
equal toMULTICASTPID . When message scheduler sees the
destination task ID equal toMULTICASTPID , it forwards the
message to amulticast manager. A multicast manager, upon
receiving the message from message scheduler, first sends out
the message over the bus.

Each multicast manager maintains the multicast group mem-
bership information of the tasks local to its own module. When
a multicast manager receives a multicast message over the
bus, or when a multicast manager finishes sending a multicast
message over the bus, based on the multicast group ID, the
multicast manager fetches the list of local tasks that belong
to this group ID. It then duplicates the message and sends to
each destination task according to the task priority.

We use this implementation because maintaining only the
local multicast membership information can result in a sig-
nificant memory saving, compared to maintaining the global
membership at each multicast manager.

Consider ourtask migratorimplementation. For a six mod-
ule sensor node, there is a total of sixtask migratorinstances:
one instance for each module. Thetask migratoruses multi-
cast messages to implement reliable task migration. If the
multi-cast managerrecords only the task migrator instance
local to the module, we save memory since we do not record
the other five instances. In fact, thetask migratoruses two
multi-cast groups. This saves a total of 10 routing entries in
the multi-cast table. Further, a smaller multi-cast table allows
faster message delivery because there is no need to filter out
unwanted entries. Obviously, when the multi-cast message is
only for the local module, the energy for waking up bus and
sending over the bus is wasted; however, this is a rare case.

C. Resource Management

Memories and timers are shared resources that must be care-
fully managed in resource constrained sensor nodes. CoMOS
assumes that the sensor node is a multi-machine architecture
in that every processor has dedicated memory and common
peripherals such as hardware counters. CoMOS allocates such
generic resource at the local processor where the task is resid-
ing at the time of request. When migration is requested, these
generic resources are serialized in a processor independent
manner and de-serialized on the destination module. CoMOS
manages two hardware resources for the tasks on each module.
The memory managermanages the heap memory, and the
time managerprovides a fixed number of virtual timers to
each task. Resources such as flash devices for storage, I2C for
communication, and additional hardware counters are assumed
to be controlled by tasks. Since these hardware resources are
physically bound to a specific module, the tasks that control
these resources cannot be migrated. Such tasks have their
COMOSTASK MOVABLEflag cleared to indicate this.

1) Memory Manager:When a task is migrated in or out,
the memory for the task specific state must be allocated

and de-allocated accordingly. Therefore, dynamic memory
management not only makes programming easy, but also
serves as an essential service for correct task migration. The
key design decision then becomes whether the service should
be exposed to the tasks. Static memory makes programming
easy and free of memory leaks, while dynamic memory
enables temporal sharing of memory. Dynamic memory was
chosen also because it makes moving messages easy. Tracking
memory ownership eases memory leak debugging and enables
garbage collection.

The memory attached to the message is only copied when
the task explicitly asks to do so. Task uses the following
interface for taking the payload the message.

void * sched_take_msg( msg_t * msg )

The memory manager, upon receiving this call, first checks
whether the memory is dynamically allocated. If so, the mem-
ory manager simply returns the memory back to the caller. If
not, the memory manager dynamically allocates memory on
behalf of the caller and does a deep copy of the message
payload. This enables low latency messaging when both the
sender and the receiver are on the same module. Memory
is not shared among multiple tasks, which would otherwise
force us to provide distributed shared memory in CoMOS and
complicate the design.

Processors on the current mPlatform do not have memory
management units (MMU), and the standard C library does
not provide ownership information in themalloc() imple-
mentation. Therefore, we implemented memory management
with ownership tracking that has the same semantics as the
standard C library. To reduce external fragmentation, we chose
an address-ordered first fit algorithm for memory allocation.
To efficiently manage small metadata, such as timer control
blocks, task control blocks, and routing entries, we imple-
mented a slab allocator, which is commonly used to avoid
internal fragmentations of OS metadata [3].

The memory interface is identical to libC. We repeat here
for completeness.

1 void * mem_alloc ( size_t size );
void * mem_realloc ( void * mem, size_t new_size );

3 void mem_free ( void * mem );

2) Time Manager: The time managermanages virtual
timers for each task. In our current implementation, each task
can have up to four timers. The time manager provides these
virtual timers via one hardware counter on the local processor.
The software timer is not ticked regularly from hardware;
instead, a delta timer is implemented to avoid unnecessary
CPU cycles associated with timer interrupt handling.

Furthermore, in order to reduce extra load on the bus,
each processor maintains its local delta timer based on its
own hardware clock. However, the problem of not using a
single clock is that the global notion of time needs to be
handled separately. In a long running system, each module
would eventually have different notion of time because local
clock crystals drift. To solve this problem, CoMOS uses time
synchronization to ensure precise timing. Time synchroniza-
tion is implemented as a special virtual task, which has ID
TIMESYNCPID . Messages sent to this task will be broadcast
on the CPLD bus. The sender side CPLD driver recognizes this



special task ID and timestamps the messages with the local
clock counter. When the destination side CPLD driver receives
this special message, it compares the timestamp with its local
clock. The difference of the two clocks is maintained to derive
the global clock. The 32.768 KHz Real Time Clock (RTC)
used in mPlatform has +/-20 PPM (parts per million) accuracy,
which corresponds to a worse case of 40 PPM (a drift of
40 µs per second) frequency error between any two modules.
The RTC resolution of a tick is 30.5µs (1/32768 seconds).
With 1Hz time synchronization frequency, we can achieve
a global clock synchronization within +/-9.5µs. Because
tasks can send messages toTIMESYNCPID , it is easy to
modify the time synchronization frequency at runtime. For
example, with low PPM clock crystals, time synchronization
frequency can be reduced. Further, for better bus utilization, a
task can implement adaptive time synchronization algorithms
(e.g. [10]).

D. Task Migration

One unique service in CoMOS is thetask migrator(TM),
which ensures an atomic task migration. The task migrator
provides atomic guarantee via following migration protocol.

1) Task migration REQUEST can be generated by either a
task or a TM based on runtime resource utilization and
application specific migration policies.

2) A REQUEST is first forwarded to the module where
the task to be migrated resides. We call this module the
source module.

3) Upon receiving the REQUEST at the source module,
the source TM multicasts a FREEZE message with the
task ID to be migrated and then issues a serialization
command to the message scheduler, which will start
the serialization of the task resources and will block all
messages for this task.

4) Upon receiving the FREEZE message, other TMs issue
a freeze command to their local message schedulers,
which will block all messages sent toward this task.
Then the TMs unicast reply messages back to the source
TM.

5) When the source message scheduler has serialized all
resources and the source TM has received all reply mes-
sages from other TMs, the source TM sends serialized
resources to the destination module where the migrated
task will be resumed.

6) Upon receiving the serialized resources at the destina-
tion TM, a de-serialize command with the serialized
resources is sent to the destination message scheduler.
The destination TM then multicasts the return value for
the de-serialize command from the message scheduler
to all other TMs.

7) Upon receiving the reply from the destination TM, the
source TM checks whether the migration has succeeded.
If not, the source TM tries to resume the task at the
local module. If the task fails to resume, the task is
killed and a KILLED message is multicast to all other
modules. The non-source TMs wait for a successful
reply value and issue UNFREEZE commands to their
respective message schedulers, which will put blocked

messages back to the message queue for delivery. Upon
successfully de-serialization of the task, all TMs updates
their local routing entries. For a failed de-serialization,
the routing entries at all modules remain unchanged.

One important property of this protocol is that the messages
sent before the FREEZE message will be buffered at the
source task location and the message sent after the FREEZE
message will be buffered at the senders. The messages that
were buffered at the source will be forwarded to the new task
location once the migration is complete. This ensures that at
no time instance, the same task appears at both the source
and the destination, which is an important property of atomic
migration.

The source TM sends task virtual timers and task specific
state. At the time of the serialization, the TM timestamps vir-
tual timers with the global clock and stores the reminder timer
ticks. When these serialized timers arrive at the destination,
the time manager first computes the time that has been spent
during migration by comparing the timestamp in the serialized
timers and the global clock. Then, the TM subtracts those
computed ticks from the virtual timer. If a timeout is fired
during migration, the time manager then fires the message to
PORTTIMEOUTport of the task.

The serialization and de-serialization of the task state is
associated with two special input ports:PORTSERIALIZE
and PORTDESERIALIZE . The message scheduler, upon
receiving a serialization command, sends a message to the
PORTSERIALIZE port. If the state of the task has already
serialized, it ignores this message. Otherwise, the task al-
locates a continuous region of memory and serializes its
state. Similarly, the message scheduler sends a message to
PORTDESERIALIZE port when it receives a de-serialize
command from the TM. The task then de-serializes the content
of the message according to the defined data structure for the
task state. We depend on the tasks to perform serialization and
de-serialization, because the task state may contain pointers to
dynamically allocated memories, and without MMU support
CoMOS cannot not detect them.

VI. EVALUATION

CoMOS has been ported to themPlatform. We have de-
signed a set of experiments to evaluate the performance of
CoMOS with respect to latency and memory overhead. The
evaluation is carried out in the context of a complex real-
time sensing application. The hardware platform used for the
experiments is a five-modulemPlatformprototype, where one
module has an OKI ML67Q5003 processor (60MHz, 32kB
RAM), while each of the other 4 sensing modules has a TI
MSP430F1611 processor (6MHz, 10kB RAM). Each sensing
module has a microphone and an amplifier to sense audio.
One of the sensing modules also includes an 802.15.4 radio for
wireless communication, and another sensing module includes
a temperature sensor.

A. Application description

To stress test CoMOS, we devised an application scenario
in which the mPlatform device is used simultaneously for
audio conferencing in an office setting and for fire hazard



detection. We have implemented a 4-channel SSL algorithm
together a fire-breakout-detection (FBD) algorithm on the
top of CoMOS, whose task graph is shown in Figure 4. In
addition to benchmarking the latency and memory overhead in
messaging and migration, this setup allows us to evaluate the
effectiveness of the preemption mechanism of CoMOS when
multiple applications share processing and hardware resources.
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Fig. 4—The task graph for sound source localization (SSL) and fire breakout
detection (FBD). Top four processing chains belong to SSL while the bottom
processing chain is FBD.

SSL is a classic problem in sensing that detects the direction
of a sound source using a microphone array, and it is at the
center of applications such as teleconference and intelligent
user interfaces. We use SRP-PHAT, a well-know algorithm for
SSL [5], in a setup of 4 microphones forming a square. SRP-
PHAT estimates the source location by computing the delays
between arrivals of the audio signal at different microphones,
via the maximization of the signal cross-correlation function.
The signal processing is usually performed in the frequency
domain because of more efficient processing and noise filter-
ing. The FFT task applies Fourier transform to a block of 512
audio samples. The SC task performs noise power estimation,
which is used to detect the presence of a voice. If more than
two channels detect voices, through a voting procedure, the
HT task is executed to determine the source location through
correlation maximization. Concurrently, the FBD task chain
periodically samples temperature sensor (Temp) at 4 Hz and
performs exponentially weighted moving average (EWMA).
The Alert task detects possible fire breakout using the energy
component in the temperature readings. Even though FBD is
computationally less intensive compared to SSL, whenever a
fire is detected FBD gets a higher priority to send an alert.

B. Priority Assignment

Radio task had the highest priority since the system tasks
running at highest priority use this task. We assigned the
priority 1 and 2 to all the other tasks of SSL and FBD
respectively.

C. Messaging Latency

We implemented a subset of the SSL application tasks,
shown highlighted in Figure 4, on a single sensing module
to evaluate the CoMOS Messaging induced latency overhead.
In this implementation, when SC detects a valid sound source
it sends out 1 kB of FFT results over the CPLD bus, otherwise
SC updates the noise spectrum.

Sound Source (ms) Noise (ms)
CoMOS 253.0 287.0
Standalone 250.6 284.6
Overhead 0.94% 0.84%

TABLE II —SSL execution latency on single mPlatform module.

We implemented both the CoMOS-based version and a non-
CoMOS version of this task graph to measure the overhead.
For the non-CoMOS version, we unwrapped the CoMOS task
framework and implemented the application as a standalone
image. The standalone image was programmed in a single C
file, to allow extensive compiler optimization. In the stand-
alone version, all events such as the timer and Analog-to-
Digital Converter(ADC) interrupts, were handled in hardware
interrupt handlers. Further, the standalone version did not use
dynamic memory. We consider our implementation of the
standalone version to be the optimal in both speed and code
size. We compiled both versions using the IAR V3.41 com-
piler, with the maximum speed optimization option enabled.

To measure the end-to-end latency of the CoMOS-based and
standalone versions of the application, we set a GPIO pin of
the processor high when the timer interrupt fired and clear the
pin when SC finished processing.

Table II shows our latency measurement in milliseconds.
Without CoMOS, the end-to-end latency was measured to be
250.6 ms when there is a sound source. With CoMOS, the la-
tency was increased by 2.4 ms. In one round of the application
execution, there were 6 messages and 25 OS events logged.
OS event logging is the CoMOS mechanism for exporting
information to the task scheduler. The task scheduler, which
decides when and where a task should be migrated, is outside
the scope of this paper, but we are interested in the overhead
introduced due to OS event logging. Figure 5 shows the task
graph with 25 events listed. Of those 2.4 ms, 1.4 ms were
due to messaging, 0.863 ms were due to OS event logging,
0.137 ms were due to dynamic memory operations such as
allocation, free, and transfer. CoMOS results in a 0.94% CPU
overhead when a sound source is detected, and a 0.84%
overhead otherwise. We observe that this< 1% overhead
is a small price to pay, compared to the ease of application
development and resource management enabled by CoMOS
on multiprocessor platforms. The stack preemption makes the
overhead small since this type of preemption only generates a
small number of messages. With stack preemption, none of the
task implementations needed to post messages back to itself
for continuation while maintaining responsiveness. In fact, the
FFT implementation was a simple matter of downloading from
the web and wrapping it with CoMOS task framework. The
whole process took us less than 10 minutes. Next we examine
CoMOS messaging latency in more detail.
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To further understand the latency of CoMOS messaging and
OS event logging, we measured individual message latencies
by setting a GPIO pin before posting a message and clearing
the pin when the message arrived at the destination. Figure 6
shows the message latencies for each message destination. The
solid bars show the latency without OS event logging and the
hollow bars with logging. Here SC2 refers to the message
received at SC from the Vote task. The suffix “Mcast” refers
to multicast versions of the messages used in the multi-module
SSL implementation shown in Figure 4.

We observe that messaging does not have a constant over-
head. The overhead is highly dependent on the task graph,
type of messages, and the priority setting. Messages to the
Timer task were originated from hardware timer and the delta-
timer. We observe the extra processing (127.8µs overhead)
involved in handling the delta-timer messages, compared to a
normal message such as one destined to the FFT task (80.96
µs overhead). The extra processing for creating message to
the Timer task is due to manipulating delta-timer list, which
is a linked list storing the time duration to the next hardware
timer interrupt.
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Fig. 6—Messaging latency in microseconds. For each result, the bar on the
left is the latency without OS event logging. The bar on the right is the latency
with OS event logging

We also observe that multicast messages result in high
overhead. For example, multicast messages to Sound have 5
times the latency of unicast messages. This is because each
multicast message results in a message broadcast over the
CPLD bus. As we observe from the SC2 latency data, cyclic
task graphs also result in higher overhead. SC2 (Mcast), for
example, has incurred 625.7µs. This is because SC was
already preempted on the stack when it sent the message to
VOTE task, causing the second message to be buffered in the
queue until the entire message sending chain is unwrapped.

In Figure 6, the column on the right gives the latency with
OS event logging for each destination task. In general, each
message results in 3 logged events: message sent (SEND),
message start (ST), and message end (END). SEND and ST
are included in the latency measurement. The minimum event
logging latency is measured to be 13µs, but it can be as
high as 181.37µs as we observe in the SC2 unicast. This
is because the latency also includes the END event of all
preempted tasks. Messaging can generate several more events
due to the associated memory management features. In the
FFT and SC tasks, for example, the ownership of the memory

System Code Size Data Size Heap Size Heap Usage
(Max)

CoMOS 19424 518 6144 4498
Standalone 4104 4180 0 0

TABLE III —Memory Comparison in bytes

Component Code Size Data Size
Hardware Drivers 2934 292
Messaging Kernel 7562 64
Memory Management 1840 68
Virtual Timer 732 8
Migration Protocol 2548 86
Application 3808 0

TABLE IV —CoMOS Memory usage in bytes. The heap size of 6kB is
excluded from memory management

gets transferred from the sender to the destination; this results
in two more events: FREE and ALLOC events at the sender
and the destination respectively.

We contend that the functionalities provided by messaging:
context switch, memory management, and event logging more
than justify the messaging overhead. For example, a message
that implements a context switch has a 65.32µs latency. This
context switch includes software check for remote destination,
multi-cast messages, and priority of current executing task.
In contrast, thread based preemption, typically implemented
using a setjump library call (17µs), a longjmp (17µs), and
some scheduling algorithm (' 21.2µs), incurs a latency of'
55.2 µs.

D. Memory Overhead

One important aspect of any operating system is the re-
sulting memory overhead. We measured the code and data
memory sizes of the application used in the latency measure-
ments. Table III lists the memory footprint of the CoMOS-
based and standalone implementations. CoMOS relied heavily
on dynamic memory; therefore, the static data usage was
small (430 bytes). In contrast, standalone version relied on
static data. Standalone used 2048 bytes to store 512 samples
of integer FFT conversion and 2078 bytes for storing noise
power estimates. Since integer FFT results were only used as
intermediate computation, having dynamic memory improves
temporary memory usage. The sum of maximum heap us-
age and data size in CoMOS can be used to compare the
memory usage against standalone application. In this particular
application, the total overhead is 836 bytes. Part of memory
overhead comes from static data (518 bytes), which we will
explain later. The remaining overhead of 318 bytes is due
to OS meta-data allocation based on slab allocation. In our
current implementation, CoMOS allocate 8 objects for timer
control block (14 bytes per object) and task control block (21
bytes per object) regardless of the numbers of blocks used.

Table IV shows the memory footprint of CoMOS version
broken up into individual components. Application code size
is slightly less than the standalone image size because libc
runtime, math library and interrupt vectors are accounted for
in the Messaging Kernel. CoMOS occupies 15616 bytes in
program memory. On MSP430F1611, this is about 31.7%
of total program memory (48kB). Even with the relatively
complex sensing application we used here, the low end micro-
controller can still accommodate 8 such applications together



with CoMOS, so we do not consider the program memory
overhead to be a major issue.

E. Migration Latency

Since task migration is a key feature of CoMOS, low
latency task migration becomes important. In this section, we
measure the task migration latency of CoMOS using a task
with variable task state. Here we define the migration latency
to be the time between the instance a migration request arrives
at a task and the instance the task finishes de-serializing its
state at the destination. Note that in our definition, the program
image size of the task is not relevant since we assume that the
program image is already installed at the destination. There are
two variables that can affect the migration latency: number of
modules and the size of the task state. The number of modules
affect the latency because CoMOS must wait for replies from
all other modules before sending the serialized task resources
to the destination module. Here, the CoMOS at the origin must
process each reply sequentially, causing the latency to increase
with the number of modules.T̃he size of the task state affects
migration latency because the state must be transmitted to the
destination. Another possible source of latency is the delay due
to bus contention. For example, a CoMOS message may get
queued due to another message currently being transmitted;
however, we can ameliorate this by extending the CPLD bus
implementation to preempt an on going bus transmission when
a high priority message arrives. To measure the task migration
latency, we used an empty task that allocates a variable size
task state during its initialization. To measure latency, a GPIO
pin at the source was set when the migration request arrived,
and a GPIO at the destination was set when the task finished
de-serializing its state.
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Fig. 7—Migration latency in terms of number of bytes in the task state.

Figure 7 shows the task migration delay versus the task
state size. The data was measured on two sensing modules
with MSP430 processors running at 6 MHz. Each data point
corresponds to the average of 10 runs. We observed that, for
a given number of modules, the latency of task migration is
linearly proportional to the size of the task state. The plot
intersects the Y-axis at 3.5 ms, which corresponds to a 3.5
ms fixed base latency. Each additional byte of task state add
0.013 ms to the migration latency. Although our simple task
does not have any output ports, each out port adds two bytes
to the state during migration. Each timer corresponds to 14
bytes of state, hence the 4 timers per task add a maximum
of 0.73 ms to the migration latency. For example, migrating

a task with 1 kB of state imposes a 17.23 ms delay. Since
we assume task migration to be an infrequent activity, this
overhead is well within acceptable limits.

We note that the task scheduler can use these latency results
when deciding to migrate timing sensitive tasks. For example,
if the deadline of an event is 10 ms and migrating the task to
faster processor reduces processing time by 5 ms, depending
on the size of task state, migration might offset the benefit
from faster processor. Further, these results suggest that tasks
with large state should be migrated less frequently.

F. End to End Application Performance Evaluation

To measure the end-to-end overhead introduced by CoMOS
and to examine the responsiveness of the preemptive mech-
anism in CoMOS, we implemented the combined SSL and
FBD application on a five-module mPlatform prototype with
the task-to-module mapping shown in Figure 8.
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Fig. 8—Task-to-module mapping for SSL and FBD applications: module ID
is shown on the bottom-right corner of each task. Module 1 corresponds to
computational module (ARM board) and modules 2 to 5 correspond to sensing
modules. Radio is on module 2 and temperature sensor is on module 3.

To measure the overhead introduced by CoMOS, we imple-
mented the standalone version of the same application without
CoMOS. One immediate observation was that implementing
the standalone version was very tedious. We had to manually
keep track of five different program images for five different
modules as the task-to-module assignment was unique for each
module. Every time we experimented with a different map-
ping, we had to carefully ensure the task-to-module mapping
was correct. For CoMOS, we only had to make sure that the
application description was correct and the task images were
included. Changing task locations was as simple as changing
an integer in the application description. When the system
started, CoMOS initialized the application according to the
application description. Further, for the standalone version, the
application writer had to deal with low-level issues such as
configuring various hardware interrupts to achieve the desired
functionality.

Next we measured the processing overhead introduced by
CoMOS. Since the CPU requirement for FBD related tasks is
extremely low, we used only the SSL portion of the application
to take measurements. We measured latency by setting a GPIO
pin just after the timer hardware interrupt, and by clearing the
GPIO pin after HT has completed (to measure latency for
noise input, we set a GPIO on a sensing module just after SC
completes the noise update).



Sound Source (ms) Noise (ms)
CoMOS 392.0 287.0
Standalone 389.6 284.6
Overhead 0.616% 0.836%

TABLE V —SSL execution latency on five mPlatform modules.

Table V shows latency measurements. The column labeled
“Sound Source” gives the latency when a sound source was
detected by the first pass of SC. The column labeled “Noise”
gives latencies when SC identified the acoustic samples to
be noise. Latency numbers for “Sound Source” column are
higher because HT needs to perform hypothesis testing and
compute the direction of the sound source. We observed
that the overhead due to CoMOS is< 1% in both these
instances. Hence, for data processing intensive application,
CoMOS provides its services with negligible computation and
latency overhead.

Next we examined the effectiveness and the correctness of
stack preemption mechanism by invoking the FBD related
tasks while SSL tasks are busy executing. While the SSL
related tasks are running, we increased the temperature of the
air around the temperature sensor. Each time FBD detected a
“fire”, we measured the execution time of the FBD related task
chain by setting a GPIO pin when the temperature sampling
was completed, and clearing the GPIO pin when Alert finished
processing the EWMA result. The FBD execution time was
always less than 10 ms. Since the execution time of the SSL
related FFT task is 100 ms, this shows that the stack preemp-
tion mechanism is working properly and makes the system
responsive enough for efficient real-time event handling.

VII. C ONCLUDING REMARKS

CoMOS enables a cross-module uniform programming ab-
straction, resource efficiency, and real-time responsiveness for
heterogeneous multi-processor platforms by using component
messaging, migration, asymmetric stack preemption mecha-
nisms.

The task component messaging model allows an application
to span across multiple processor modules in a transparent
manner. Messaging over the bus incurs little overhead, as
small as 300µs, comparing to local message communication.
Flow control mechanism employed in the CPLD bus has
simplified the implementation of CoMOS significantly. Fur-
ther, the broadcast nature of the bus enables us to efficiently
implement multicast messaging and create multicast group
members specific to the modules, which reduces memory
consumption. The memory overhead of CoMOS is also low.
One MSP430, the CoMOS kernel occupies 15616 bytes out of
48kB program memory and incurs 836 bytes out of 10kB data
memory to support prioritized execution, dynamic memory
allocation, task migration, and virtual timers. Comparing to
678 bytes in SOS and 500 bytes in Mantis, CoMOS has
slightly higher memory usage, but CoMOS uses 292 bytes
for hardware drivers.

Currently, CoMOS task migration does not including the
transferring of task images. It assumes the target code is
already on the destination boards. For a task code size of
1kB, the additional latency for migrating the code (task
implementation) can be of 14 ms, comparing to 3.5 ms

base cost for migrating the state and message routing table.
When migrating tasks code cannot fit in every destination
processor, we should take into account the latency incurred
for transmitting task code. Furthermore, any task that will
migrate across heterogeneous processors will have to have the
code image for those processor architectures. This introduces
extra complexity for preparing the executables. Currently,
mPlatform has only two processor architectures: ARM7 and
MSP430. Therefore, application code image is at most twice as
big as the homogeneous architecture. Future multi-processor
platform should limit the amount of heterogeneity in the
system or go with a virtual machine approach.

CoMOS asymmetric stack preemption solves long running
task problem with very low memory requirement. Traditional
preemptive multi-threaded execution model will allocate at
least 128 bytes per-task private stack. So the 5 tasks in SSL
would incur 640 bytes additional memory overhead, which
is significant on MSP430. CoMOS moves per-task stack into
global stack. The assumption is that not all tasks will be on
the stack simultaneously; hence, the overall stack utilization
is low. On the other hand, when CPU utilization is high,
this assumption may not hold true. In which case, traditional
threading model may be a better design choice.

Stack-based preemption mechanisms, although restrain the
capability of changing priorities dynamically, is powerful
enough to support simple real-time scheduling frameworks
such as rate-monotonic and earliest deadline first sched-
ules. The major difference between our implementation and
Baker’s [1] is that we do not need to use priority ceiling
to prevent possible dead lock introduced by the sharing of
the global stack. Thanks to our choice of the asynchronous
task model. CoMOS message scheduler automatically queues
message to the task on the stack. As a consequence, there is
no need to assign priorities to all resources in the system.

CoMOS creates task control blocks (TCB) for every task
in the system to avoid the cost of discovering task location at
runtime. When the number of tasks is large, this will result in
poor memory utilization. Currently, each remote TCB costs 6
bytes of memory. When more information is needed in remote
TCB, online discovery of task location may be a better design
choice.

APPENDIX

Here we provide a detailed analysis of the multi-processor
energy efficiency advantage mentioned in Section III-A. To
simplify our discussion, we assume that each processor has
one mode, in terms of voltage and frequency scaling. We
introduce the following parameters for a processori:

• Ni is the instruction throughputof the processors, in
terms of millions of instructions per second (MIPS).
For a workload ofL instructions, the execution time is
Ti(L) = L/Ni .

• Mi is thepower throughputof the processors, in terms
of million instructions per Joule (MIPJ). So, the energy
spent in executingL instructions isEi(L) = L/Mi .

• Pi
A: power consumption in theactivemode, where the

processor is actively running a task;



• Pi
I : power consumption in theidle mode, where the

processor is executing NOP;
• Pi

S: power consumption in thestandbymode, where
the clock to the processor is turned off;

• Pi
W: power consumption in the transition between

active and standby modes. This include the average
power spends on both going to standby and waking up
from standby to the active mode. We useTi

W to denote
the time spent in the transition. So the total energy cost
for going into and waking up from the standby mode
is Ei

W = Pi
W · Ti

W.
Breakeven time Tibe is defined as the amount of idle time

such that the energy spent in the idle mode is the same as the
energy spent in standby mode and the transition mode [20].
That is Ti

be = (Ei
W − Pi

S · Ti
w)/(Pi

I − Pi
S). Consider thatL on

processori must be finished by a deadlineD. If the slack time,
D− Ti(L) > Ti

be, then it is more energy efficient to switch to
the standby mode. Otherwise, the processor should stay in the
idle mode until the next activation of the task.

With the above setup, we consider two heterogeneous
processor,p and q, where p is more powerful and power
efficient than q. That is, Mp > Mq and Np > Nq. We
further assume thatq is an ultra-low-power microcontroller,
(e.g MSP430), such that the energy cost in the standby mode
and the mode transitions are negligible. I.e.Pq

S = 0, Eq
W = 0,

so Tbe = 0.
Assuming a periodic non-splitable workload with periodD

and deadlineD, Figure 1 is obtained as following:
• The areas below linea : D = L/Np is non-schedulable,

since not evenp can meet the deadline.
• In the areas above linea but below lineb : D = L/Nq,

the workload can only be assigned top sinceq cannot
finish it on time.

• In the area above lineb, both processors can finish the
workload on time. Linec : D = (1/Np)·L+Tp

be defines
the breakeven line forp. That is, above this line,p can
turn into the standby mode after finishing the work,
while below the line,p will stay at idle after finishing
the work. Notice thatc is parallel toa.

• The area belowc but aboveb is further split by Line
d : D = ( 1

Mq·Pp
I
− 1

Mp·Pp
I

+ 1
Np )L, where belowd, it

is more power efficient to usep without standby and
aboved, it is more efficient to useq.

• The area abovec can be further split by the vertical
line e : L = Ep

W/( 1
Mq − 1

Mp ), where to the left of this
line, it is more efficient to useq and to the right of
this line, it is more efficient to usep.

It is easy to show that the intersection of linesc andd is always
to the right of linee, unless whenPp

S = 0, the three lines
intersect at a single point. So the lines are always arranged as
shown in Figure 1.
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