CoMOS: An Operating System for Heterogeneous Multi-Processor Sensor Devices

Chih-Chieh Ham, Michel Goraczkd, Johannes HelanderJie Liuf, Nissanka B. PriyantiaFeng Zhao
*University of California, Los Angeles, simonhan@cs.ucla.edu
fMicrosoft Research,{michelg,jvh,liuj,bodhip,zhao } @microsoft.com

Abstract—This paper presents the architectural design and failure, as in such cases the processing job of the module can
implementation of CoMOS, a component messaging based oper-pe delegated to other modules.

ating system for mobile sensing and communication devices with One approach to programming multi-processor sensor de-
multiple, heterogeneous processors. Potential applications of these

devices include personal voice or video services, health monitor- vices is to develop _appllcatlons 'n_ pl(?(?es directly on top
ing, and environmental sensing. To enable timely processing of Of each local operating system of individual modules. For
environmental or user events and energy-efficient operations, the example, the Intel Stargdtevith a 32-bit PXA250 processor
system uses a stack-based preemption mechanism and supportgan be connected to Mica2 sensor node with an 8-bit ATMEL
task migration and fine-grained resource scheduling. At the - iorqeoniroller to support sensing and communication. The
center of the architecture is a processor-agnostic programming . g .

abstraction in which applications are specified as sets of asynchro- PXAZSO processor runs Linux, Wh"‘? the MlqaZ ssansor node
nous tasks interacting with messages. Tasks respond to messageguns TinyOS [16]. There are several issues with this approach.
or events, and may produce new messages. Message handlingrirst, performance optimization becomes more involved. Con-
can be preempted on stack enabling timely response to high sider a simple data aggregation from wireless radio on Mica2.

priority events with a very small memory overhead. The tasks are A user has to decide priori where the data aggregation
mapped to processors at compile time and can be migrated from

one processor to another at runtime, allowing dynamic power service §h0u|d be implemented. ChOO_Si”Q an optim_al location
optimization and load balance. CoMOS has been implemented on iS non-trivial when more than one application is running on the
mPlatform, a modular multi-board sensing device with multiple device. Second, different operating systems impose different
MSP430 and ARM7 processors and radios, and has been used toprogramming models. For example, Linux follows a process

support the development of a real-time 4-channel sound source ; : ; Ari
location (SSL) application on the mPlatform. We describe the model while TinyOS is based an an event-driven model.

experimental results quantifying the overhead of the messaging, Integrating prer"’_‘ms Create?' with dlfferen(.:e programming
migration, and other critical components of COMOS, and the Models can be tricky, especially when multiple concurrency
end-to-end performance evaluation of the SSL application. models, like threads and interrupt handling, are involved. One
way to deal with this problem is to view a multi-processor
. INTRODUCTION device as a distributed system and provide a middleware
The modular architecture of multiple modules intercorthat translates system calls for one OS into another OS. For
nected via reconfigurable buses provides an attractive desiggample, Emstar [12] provides a thin “stub” layer for TinyOS
choice for supporting heterogeneous and extensible mohilenning on Linux capable device so that program written in
embedded computing [24], [8], [22]. In this architecture, eachinyOS can talk to Emstar through the stub, which translates
individual module can specialize in providing one of théow-level drivers such as radio, timers and LEDs to Emstar
sensing, actuation, processing, storage, and communicatgstem calls. However, moving a component from Emstar to
capabilities, or a combination of these. Consider a scenafiimyOS is still difficult. A separate stub layer for the moved
in which a mobile wellness monitoring device continuouslgomponent must be in place to translate function interface
senses and logs a person’s fitness signals. One modulentd messaging interface. While effective for a small number
the device could use a low-power microcontroller such @$ modules as in the Starget/Mica2 case, this approach would
MSP430 with low sleep current and low wakeup cost for datse difficult to scale up when the number of modules increases.
sampling, simple processing tasks such as filtering, and storag&his points to the need for a processor-agnostic program-
control. Upon detection of a significant physiological conditioming model in which an application is developed independent
such as a heart irregularity, the device could wake up a masethe individual processors and interconnects. It should be
powerful module equipped with a 32-bit microprocessor sughe job of the scheduler and OS to map and schedule an
as ARM7 to respond to this infrequent, but computationallypplication onto the processors, meeting timing and power
more demanding diagnostic task without delay. At the samequirements. In this paper, we present the architecture and
time, another module, which specializes in wireless commumnplementation of CoMOS, a component messaging operat-
nication with a low-power medium access control (MAC)ing system. An application in CoMOS is specified as a set
could switch from a low-power wireless sniffing mode to anf asynchronous tasks interacting with messages. The tasks
active transmission mode of sending the alert and data ta@ event triggered in that they respond to input messages
remote caregiver. Concurrently, a cell-phone module migfdr events), process them, and may produce new messages.
also be requested to support real-time voice communicatipessage handling can be preempted, enabling timely response
with the caregiver if necessary. The availability of multipleto high-priority events. To support preemptive execution on

heterogeneous processors allow the device to respondntemory constrained low-end microcontrollers, we choose a
different events in dimely and energy-efficientnanner. It is

also moreflexibleand potentially more robust to local module thttp://www.xbow.com/Products/productsdetails.aspx?sid=65

stack-based preemption mechanism rather than threads. synchronous communication between modules. TinyGALS [6]
The CoMOS architecture is partly motivated by the need fowilds an asynchronous message passing model on top of
moving computational tasks around to achieve optimal energgsC. However, TinyGALS does not provide prioritization
utilization when the parameters of an application change of tasks, nor preemptive execution. Port-based objects [25]
a new application arrives, which is important for batteryses asynchronous components to achieve reconfigurability.
powered devices. For example, in a sound-source localizatiBat message ordering is not guaranteed in the communication.
(SSL) application, when the desired sampling block latency Asynchronous models are also common in integrating het-
of an acoustic application changes from 200 ms to 250 m&ypgeneous systems. EmStar [12] integrates TinyOS with a
it is more energy efficient to run a 512-point FFT task on stub layer, which converts low-level TinyOS drivers to mes-
MSP430 than an ARM7 [23]. A uniform messaging interfacesage handlers. The asynchronous nature of driver-hardware
enabled by an underlying high-speed TDMA based CPLibteraction, method calls for resource requests to the driver
bus and a message-routing table, provides transparency toamd hardware interrupt for completion, makes the integration
module or cross-module communication. Late-binding of tasksnsparent to both systems. However, generalizing the stub
to available resources decouples the task specification framproach to every component can be very complex.
the task execution. Task assignment can happen at compil@) Component migration and loadingA number of ap-
time, where a constrained optimization scheduler assign egebaches implement component migration using virtual ma-
task to a processor, considering both power and deadliclenes. SensorWare [4] provides a mobile agent environment
requirements, based on detailed energy models for processatsgre scripts written in Tcl can migrate from one sensor
buses, and radios. The tasks execution can then be monitanede to another and spawn new scripts, with some limitations
at run time, and tasks can be migrated from one module itb communication and restart. SensorWare provides system
another to achieve balanced load, improved responsivenesssugport for serializing the script and Tcl variables associated
optimized power utilization. with the script; there is no need to migrate neither program
CoMOS has been implemented on the multi-processstack nor routing table. Agilla [9] is a middleware that provides
sensing devicenPlatformwith multiple embedded processoramobile agent environment on mote-class devices. It supports
and radios and has supported the prototyping of a real-timmégration with a stack-based byte-code interpreter, in which
acoustic SSL application. Our experiments and performaneach task has a stack, registers and a heap. When an agent
evaluation have shown that the messaging, stack-based pnégrates, Agilla serializes the stack, registers and heap. Al-
emption, and migration incurred a small, tolerable amoutiiough the interpreters in these approaches provide a uniform
of latency and memory overhead while providing the desirexkecution environment, script execution can have a significant
capabilities, as demonstrated by the end-to-end performamoenputational overhead [18]. The expressiveness of the task
of the SSL application. Theontributionsof CoMOS are: is limited to the underlying virtual machine or agent system.

« It introduces a processor-agnostic programming al? contrast, CoOMOS is based on a cross-processor messaging
straction based on a message mediated asynchron@@slel, which does not rely on a VM interpreter. Further, the
task model to support application development on Rrogramming language for COMOS is C, which is commonly
heterogeneous multi-module system. used in embedded system programming.

« It supports run-time dynamic migration of tasks thus CoMOS draws upon prior work on application loading such
giving a multi-processor embedded platform the abilitgs TinyOS [16], Contiki [7], Impala [19], and SOS [13].
to finely manage power, balance loads and mitigafdl four systems provide loading applications compiled in
possible local failures. native instructions with different granularity. TinyOS supports

« It uses an asymmetric stack-based preemption me¢amote application installation by replacing entire program
anism to improve the responsiveness to time-criticdnage including OS and application. Contiki allows loading
events while incurring a minimal memory overhead. an application compiled in the ELF format into the kernel.

The rest of the paper is structured as follows. Section lfhPala allows multiple applications to be loaded, but only
reviews prior work. Section Il describes the use of modul@n€ application can execute at any time. SOS allows multiple
hardware designs for energy efficiency. Section IV introduc@®Pplications to be loaded and executed concurrently. The gran-
the overall architecture and design choices of CoMOS, aHirity of application loading for COMOS is similar to SOS in
Section V describes its design and implementation. Section Y€ Sense that multiple applications can be loaded remotely
presents an evaluation of COMOS with micro-benchmari§d executed concurrently. Each application is represented
and end-to-end application performance. Section VIl discuss¥s Multiple binary images with application wiring, and the

limitations of and possible improvements to CoMOS. loading can be at individual component level. _
MMLite [14] and its distributed extension, The Microsoft

Il. RELATED WORK Invisible Computing Embedded Web Services [15], use the
1) Programming heterogeneous multi-module systemsCommon Object Model (COM) for component loading and
Componentization is a way to provide abstractions to programigration. The latter uses an automatic marshaler that converts
embedded systems. The interaction among components batween messages and procedural execution, and uses web
be synchronous, such as method calls, or asynchronous, ssetvices for distributed real-time scheduling.
as message passing. In sensor network programming model8) Task schedulingTask or message scheduling is at the
TinyOS/nesC [11] provide layered component abstraction andre of an operating system. TinyOS uses foreground and

background scheduling. Foreground processing is scheduteduires orders of magnitude more processing cycles. Timing
by hardware via interrupt and background processing is scheglquirements and energy consumption among these modes can
uled in FIFO order by TinyOS task scheduler. Contiki, likdve very different, pushing the limit of a single processor even
TinyOS, provides foreground/background scheduling excepith dynamic voltage and frequency scaling.
that interrupt handlers only register callbacks to be called Generally speaking, a more powerful microprocessor is
as soon as the current background task has completed rth@re energy efficient in that it can finish a given job faster
execution. Traditional threaded preemption can be optionaind with a smaller energy consumption than a less powerful
enabled to provide real-time operation. SOS provides a pniticroprocessor. However, putting the processor into sleep and
ority based message queue. Message handling in SOS Wwaking them up require more energy. This gives rise to non-
non-preemptive run-to-completion semantic. CoMOS messatgigial scheduling problems about which processor to use for
scheduling incorporates stack preemption on top of the meghat job [23]. For example, assume that two microprocegsors
saging system. The messages that have higher priority veithdq (with characteristics similar to ARM7 and MSP430) are
preempt current task execution immediately. This allows lor@nsidered for a non-splittable job bfmillions of instructions
running tasks be preempted for system responsiveness. by deadlineD. Figure 1 illustrates which processor is most
Mantis [2] provides traditional preemptive multi-threadingnergy efficient to use depending on the relationship between
and POSIX operating system interface. Preemption in Mantisand D, while taking into consideration the computation
is symmetric in that scheduler can swap back a previously ptaroughput (MIPS), energy throughput (MIPJ), mode transition
empted task. CoMOS stack preemption mechanism is asyiime, and mode transition energy cost. Appendix gives the
metric. When a task is preempted, switch back to the origindétails of the analysis. A more complete treatment of the prob-
task is not possible until interrupting task has completettm should also take into account of splittable workload the
However, CoMOS does not require pre-allocation of the taslkependencies among pieces of work, and the voltage/frequency
stack. This allows more efficient memory utilization. scale of the microprocessors. The problem can be formulated
There is a rich body of research on multiprocessor ard an integer linear programming problem [23], which is NP
distributed real-time scheduling [17], [21], [23]. The prehard. Even with this simple example, we can see that when the
emptive execution mechanism and the messaging interfaystem workload and real-time requirements vary over time,
implemented in CoMOS can support static scheduling frami¢-is desirable to shift the workload from one processor to
works, such as rate-monotonic scheduling, and some dynamimother to achieve optimal energy utilization.
scheduling frameworks, such as earliest deadline first (EDF).

seconds

I11. M ODULAR MULTI-PROCESSORPLATFORMS

The targets for COMOS are modular hardware architectures
that can provide a Lego-like, plug-and-play capability to put
together a sensor network platform tailored to specific applica-
tion/research requirements. In contrast to some embedded sys-
tem platforms that use a single processor to manage multiple
add-on boards, multi-processor platforms, especially heteroge-
neous multi-processor designs, have several advantages. For
example, DSP and network processors can perform domain
specific operations very efficiently. Using them alongsid&ig. 1—Optimal assignment of non-splittable workload on two processors.
general purpose CPUs can significantly improve multimedia
and digital communication application performance. Anoth@. The mPlatform

advantage of heterogeneous multi-processor designs is th":I"he mPlatformis a realization of the multi-module hard-

flexibility in power scheduling, which we elaborate below. ware architecture [22]. It comprises a collection of stackable
A. Heterogeneous mu'ti_processor energy efﬁciency hardWare m0du|eS that Share a We” deﬁned common com-
. . munication interface. Figure 2 shows a picture of a sample

High-end embedded processors generally can deliver MOIe yware setup
instruction cycles per unit energy than low-end microcon- '
trollers, when running at a full speed. However, high-end em-
bedded processors, unless completely shut down, also consume
more power and need more energy to wake up from a standby
or sleep mode. The difference in the power consumption in
different modes and their transitions as well as the difference
in the energy efficiency motivate us to use a dedicated low-end
microcontroller to handle frequent yet simple tasks.

Many mobile and embedded applications exhibit strong
variations in the application workload. The earlier example
of wellness monitoring scenario may switch from a low-

power monitoring mode to a high-fidelity processing mode that

Deadline D

Workload L millions of instructions

Fig. 2—A prototype of mPlatform.

Physically, each module consists of a circuit board amked to support a unified programming interface for multi-
connectors that enable other modules to be plugged on botbdule devices and easy migration and loading of program
top and bottom of that module. Some of tmePlatform components at runtime. A CoMOS application is written as
modules are general purpose processing boards with pro@sollection of loosely coupled software components, called
sors ranging from MSP430 to ARM7 and PXA270, whildasks which interacts by reacting to and generatingssages
others are special purpose boards such as radio boardsSome of these tasks can be executed at a number of different
wireless communication, sensor boards for sensing physicabdules. The operating system takes the role of allocating suf-
phenomena, and power boards for supplying power to a stdidient resources to these tasks to meet application constraints.
of modules. Each module, except for the power module,
has a local processor. These local processors greatly enhahcdasks
energy efficient handling of real-time events. The processor-

per-module approach also allows a more flexible compositi(?u ctions together. A task is also assigned a priority, which

of different modules. . . . e
: . det the ord f th d
The mPlatfom uses a high speed parallel bus for mter—e ermines e ordering o1 Message processing WIthin a mo

icati ith ! th hout of ule. Tasks have ports, which are their only communication

Eﬂr;t/:es;or ﬁommumca on, Wlt ?Tﬁx'?uqh roug plé Ol Sfiterfaces. These include the communication with the oper-

S. £ach processor connects to this bus through a L.omp g system, such as initialization, time triggers, and error
Programmable Logic Device (CPLD), which implements Ran

. dling. The ports of a task are one-to-one bindings to
TDMA protocol for sharing the bus among modules. The b"é ecific processing functions, calledactions or handlers

protocol supports both unicast and broadcast message delivg\ ymessage delivered to a specific port is handled by the
The CPLD bus employs hardware flow control to provid rocessing function assigned to the port

guaranteed message delivery. Due to the high throughput of Fasks are location transparent within a device. To achieve
CPLD bus, for ARM and MSP430 class processors, usua||¥))

. at, tasks have unique IDs across modules. When one task
the processors become the bottleneck during data trans

ffies to send a message to another task, the message contains
over the bus. The CPLD bus driver on each processor § 9 ’ 9
poses a unifornsend _-message() ,receive _message()

fie destination task ID. It is the OS's responsibility to route
: L . the message to the destination. A key to the atomicity of tasks
interface for communicating over the bus. Since the bus.Is L)

iS that they maintain their own state, and there are no shared
controlled by the CPLD, all but one of the processors cafn

.~.variables in the system. The state of a task is expected to be
be powered of, and be powered back on by the remammg. . L . .
Lo . seérialized and de-serialized if the task can be migrated.
active” processor by sending a message over the CPLD bus.
This enables processors to be shut down and woken up s

necessary to achieve the energy efficiency goals.

A task is an instance of a component that groups related

Messaging

CoMOS applications are constructed by connecting input
and output ports of tasks, which dictates how messages are

Heterogeneous multi-processor hardware design preseusted in the system. This information can be stored in a mes-
challenges and opportunities for operating systems. CoMQ@g&ge routing table that decouples task IDs from task locations.
is designed to meet the following goals: This level of indirection makes task migration relatively easy.

« Ease of programming and reconfiguratio® wide Messages carry their destination ports and the priorities of
range of processors, from low-power microcontrollergestination tasks. When an application spans across multiple
to higher-power 32-bit embedded processors, can coeredules, the bus is used to send messages from one module to
ist on the same platform and efficiently communicatgnother. This is handled by the OS without explicit knowledge
with each other. To ease application development agsl the application. Messages on the same module are sorted
to encourage reuse of software components, itis impagy their priority and then by their creation order in the
tant to develop a simple, unified programming mode&bS scheduler. Higher priority messages are processed first.
that is transparent to the heterogeneity of the platfornylessages in different modules are processes concurrently.

« Real-time event handlingSince a mobile platform Message passing may create extra cost such as unnecessary
is typically used in applications where it constantl:ontent copying when sending to a local task. Thus practical
interacts with the environment and user, the ability teystems usually convert some message passing into direct
promptly handle high-priority events is important. function calls when possible. This can either be carried out

« Efficiency in resource utilizationin many sensing and uniformly by the system or specifically by the applications.
mobility applications devices are battery-powered. It ify the low-end modules, handling only a small number of
desirable to be able to shut down components when nfitssages and fairly simple applications, it is more memory
in use and scale up or down operation voltage and/gfiicient to leave the applications to handle message copying
frequency of the components according to changinghd marshaling directly. While it would be possible to have
task needs. In addition, applications should not havgitomatic marshaling of parameters on the more powerful
unbounded resource (e.g., memory) usage. modules, such as in the Invisible Computing framework [15],

These goals lead us to use atomic software components #mel current design choice favors the same programming inter-
asynchronous message passing as the foundation of applfaae on all the modules, thus using direct message processing
tions running on CoMOS. This architecture is motivated by thecross the modules.

IV. ARCHITECTURAL CONSIDERATIONS

| Application Manager | Input Port C_ondition _
PORTINIT triggered when the task is created
Task Migrator PORTFINAL triggered when the task is killed
g9
| Time Manager " Mermory Manager | PORTSERIALIZE request state serialization for migration
g i g PORTDESERIALIZE triggered when migration has completed
Priority Message Scheduler PORTTIMEOUTIO..3] triggered wherTIMER[0..3] has fired
Multi-cast Bus Message TABLE | —Pre-defined input ports and their associated conditions.
Manager Manager Dispatcher

A. CoMOS Tasks

1) Task SpecificationA Task in CoMOS is described by
the properties defined itask _desc structure. The values of

Fig. 3—CoMOS component break-down

C. Preemption model these properties are used to instantiate a given task.
The low-end modules are not limited just in computational® *™ogami T | prog.id;

capability but also in available memory. On microcontrollers® B'r?(?ﬁty_t t priority: .

without hardware memory management, thread stacks must oo addresst it focation;

be fully allocated in physical memory. Maintaining per-thread” 37— et

stack is very expensive considering the amount of availablé , ~f@sk-desc_flag.t flag;

memory on low-end microcontrollers. Single thread execution, L) i
on the other hand, requires little stack space. But the rdf€repProg.id is the ID of the code image that implements the

to-completion execution semantics limits the fast respon@K- .A_Ta_sk has a unique ID among all modules on the sensor
to high-priority events. An asymmetric preemptive threadingPde:Pid is the unique task identifiepriority is the priority
model is proposed in [1]. This model allows interrupting th@ssignment of the task. Each task has several output ports send
current computation, due to either I/O interrupt or higheRUt messagespumports is the number of output ports for
priority message processing, with another process on the sdhg taskiinit_location specifies the initial module Iocgn'orlfqr
stack. While this allows the yielding of computation resourcd€ task. A task may use a set parameters when it |n|t|al|ze?s
from low-priority tasks to high-priority tasks, it limits how (Similar to the parameter list used in a C++ constructor);
priorities can be dynamically changed at run time, sindBit-datasize and init_data.offset specifies the size and the
switching back to the original computation is not possibll@cation of an initialization string which is in fact a serialized
until the intruding process has completed. Nevertheless this/fRgSion of these parameters. Thiag is the bitwise OR of a

sufficient to support many real-time requirements, while usiriyt ©f task options such ZOMOSASKMOVABLE _
memory extremely efficiently. A task has a set of pre-defined input ports to receive

messages generated by CoMOS. Some of them are system
ports, as shown in Table |, others are application ports named
as PORTO throughPORTMAX The current implementation
Task migration may appear easy in a component-orientedpports a maximum of 128 input ports.
message passing system, since it is primarily an act of serilisting 1 shows the execution part of a "Hello World”
alizing states and changing message routing table. Howevask in CoMOS. The task creates a periodic timer that fires
challenges arise when we must maintain the continuity of tagkery 0.125 seconds after the task initialization (line 6 - 10).
execution. To ensure the transparency to high-level applicatidfihen requested time interval has passed, a message to port
task migration has to be an atomic operation, that is all pendiRQRTTIMEOUTO is generated forhello _task . CoMOS
messages at the start of migration and all messages sent toathi®matically associatesIMER. O with PORTTIMEOUTQ
task during its migration must be received by the migratethe message handler then sends out “Hello World” message
task and in the correct order. to output portPORTO (line 14 - 19). Message handling in
A task migration protocol is implemented in CoMOS@ task follows the run-to-completion semantic. That is the
which coordinate among multiple modules to achieve both tif@plementation of a task does not need to handle concurrency
atomicity of task migration and consistency of messages. Byid synchronization explicitly. However, the execution of a
atomic, we mean that the task will either be at the destinatié@sk can be preempted when there are certain messages with
module when migration has succeeded or at the source moduigher priorities.

D. Migration

when migration has failed but on not both modules. The details ret_t hello_task(void wstate, msg_t *msg)
. . . 2
of the protocol are given in section V-D. switch (msg->port) {
4
/I First Message for the task
6 case PORT_INIT:
V. SYSTEM DESIGN AND IMPLEMENTATION . timer_sfart(,

0,
TIMEQUT SECOND / 8

In this section, we present the design and implementation of breakT!MEOUT:SECOND /8
the CoMOS components to support the architectural requiré= The Message every fime timer fires
ments. Figure 3 shows the component break-down of currefit case sggﬁ-rs_eru\iﬂ_lzﬁ?\?\?(m
CoMOS implementation. All components have one instancé e I Worlat,

18

: . 0,
running on each module of a multi-module sensor node. PORT_O);

20) break ; description has six sections (refer to the line number in
2 feturn OK; Listing 2 for concrete example).

Listing 1—A CoMOS task that sends out “Hello World” every 0.125 seconds « Application Description Header (line 13-14) specifies
— the number of tasks and multicast groups used.

o The Task Descriptions section (line 16 - 32) describes
the properties of all the tasks in the application such
as the task ID relative to this application, the priority
of the task, and the number of output ports, as shown

2) Task Creation: A CoMOS task is created by pass-
ing a task description to the message scheduler. Message
scheduler, upon receiving task creation request, first calls the
sched _task _create() with 5 parameters.

in task _desc.
L et S_Csrlli?—tas'(—ctrggﬁ,e(_ « The implementation of the task is described as an ID
’ Blr?o_rﬁtyj P, pid to the program (line 18 and 27). The actual implemen-
S o ge t num forts): tation of the task is defined separately as discussed

in the previous section. This makes it easy to support
different object formats such as ELF and COFF.
« Mcast Group Descriptions (line 34-35) provides the
It indicates to the scheduler which massage handler to invoke information regarding multi-cast group such as multi-
when receiving a message for this task. cast group ID and number of members in the group.
Second parameterpid, is the unique identifier for « The routing tables (line 37-44) describe the destination
this task. The pid should be unique among all modules task ID (relative to the application) and input port.
on the sensor node. ID generation is not handled by . FinaIIy, Task Init Strings (Iine 46) includes the initial-
sched _task _create() interface because CoMOS allows ization strings for each task if not NULL.
resource to be identified with ID. In section V-A.3, we describe Currently, application writers manually construct the appli-
how ID is generated when we describe application creatioration description as shown in listing 2.
Third parameter is the priority of the task to be created. suic stuet nelio_worid_app_desc ¢

First parametertask has following prototype.

ret_t task_name(void *state, msg_t *msg)

Task priority assignment is also deferred to high-level. Foy — Smec -t task. desclz]
example, our back-end tool assigns task priority according to o ko iy
global timing requirement among multiple applications. Fourth Poriett menstt il

taskO_init_string_t task0_init;

and fifth parameter are theutput port table and the size o} app desc:

of the table respectively. The output port table iS USed aS18.omos_ app_desc » get app_dese(sizet »size)
routing table to route messages from the task to the intended ., deschirmm wsks = 2
destinations. The level of indirection provided by the outpug — *P-eschernim-oows = &

port table allows us to separate the definition of message h-qes s jescolnumpors P
destinations from the task implementation. Apart from thg r-fee i feedtlnea 2 COMOS TASK MOVABLE:
output port table,sched _task _create() allocates and , — FP-fecisieariliiioeaion = BOARD_STARTING_ADDR:

initializes the task control block (TCB) also. The TCB iSs i ec s seaciolnt data oficet = ofiscoiapp seee, ko i
used throughout the system to identify current executing tagk app descask descity.num ports

app_desc.task_desc[1].pid

and speed up message scheduling and delivery. Creating @ app desc ask descia] prog_id -

= o

ELLO_WORLD_PROG_ID;

I

task does not immediately initialize it. Task initialization iSs oo i desdi it locaton = BOARD. STARTING, ADUR 1 1
implemented by aPORTINIT message generated by the, e oo e -0
scheduler'ssched _task _init() interface. This allows the 5, ~ PP-eesceicdesdilnidaa ofiset = 0
tasks in an application to be created without worrying about — s-dese meae deedol oum anties = 1
missing messages. When initializing an application graph, app_desc.tasko_tbl[0} dst_pid = MULTICAST_PID;
application managersimply creates all the tasks and thep, — *P-escesio-nldaum - GRouPo:
issuessched _task _init() call to the message scheduler,, — Zraecasobiotord - porTey
The C prototype okched _task _init() is shown. 43 app_descmeastl tbiol.dst_pid Y
. app_desc.mcast1_tbl[0].dst_inp = PORTO;
1 ret_t sched_task_init() 45
pid_t pid,. app_desc.task0_init.timer_period = TIMEOUT_SECOND / 8;
3 void * init_data, 47
size_t init_data_size, «size = sizeof (app_desc);
5 msg_flag_t init_data_flag); 49) return (comos_app_desc *) app_desc;
In additior‘ _ to g_enerating PORTINIT ~ message, Listing 2—A CoMOS Hello World Application
sched _task _init() interface allows the initialization
string, init_.data to be included for parameterized task
initialization. Listing 2 is a CoMOS application that sends out “Hello

3) Application Creation: An application is composed of World” every 0.125 seconds. The application is implemented
task images (the implementation in terms of processor specifith one timer task and one hello world task. Timer task
instructions), task dependencies (output port routing tablissinitialized withtimer _period of TIMEOUTSECOND/8
and multi-cast group information), and initial conditions (taskeconds. When timeout message arrives at timer task, a multi-
initial location and task initialization strings). An applicationcast message is sent@&ROUPQOwhich is wired to hello world

task’s PORTO When the message arrives at hello world taskpessage destination is equal or higher than the sender. If
a “Hello World” message is sent tRADIO_PID’s PORTO so, the message is scheduled for immediate execution (i.e.

In order for message passing and migration to work, a setmeemption). Instead of normal preemption mechanism that
message routing tables are maintained at each module (themees registers and stack content, CoMOS preempts task on
include the output port tables of each local task). Each routitige global stack. Stack preemption is motivated by Stack-
table has two levels of information of the destination taskbased Resource Policy[1]. That is, when the preemption does
(1) the current task to module assignment, and (2) the infhppen, CoMOS fetches the function pointer associated with
ports within a task. This two-level routing table simplifies tasthe destination of the message and executes it immediately.
migration since the task is the unit of migration. A task is nothis way, there is only one global execution stack instead
specific to a particular architecture. The routing table allows per-task private stack. The limitation of the stack-based
late binding of tasks to modules, although some specific tagieemption is that once the task is preempted, the scheduler
numbers may be handled as constants by the routing taldannot swap back the task until the intruding task finishes.
One such specific task is a special control task that represéitisen the task starts handling the message CoMOS sets a flag
the module itself and facilitates migration requests and similer guard against the swapping-back situation, which may be
system functionality. caused by the arrival of a message to a task that is already

CoMOS supports creating applications dynamically througin the stack. When this flag is set, CoMOS queues all the
a special task calledpplication managerLike all tasks, the messages for that task.
application manager has ports which can be connected to otheéWhen the priority of message is lower than current ex-
messaging interface such as radio or serial port links. ecuting task, the message is queued in the scheduler for

When the application managerreceives the application later execution. The message queue is sorted according to
description, it first patches all IDs including task IDs andestination priorities. When the current task has finished,
multi-cast group IDs. This is because all these IDs arsessage scheduler checks the priority on top of the execution
described relatively to the application unless the ID fallstack against the head of the message queue. If the priority of
into the range of global resource ID. The application mamhe head of the message queue is higher, message scheduler
ager then broadcasts patched application description to @iBpatches the message. Otherwise, message scheduler simply
other modules and parses the application description localipes nothing and let the task on the top of the stack resume
For each task that has initial location local to the modulexecution.
sched _task _create() is issued along with necessary in- CoMOS handles the messages from the hardware inter-
formation. Otherwisesched _task _create _remote() is rupts differently. When a message is sent from the hardware
issued to inform the message scheduler the existence of thierrupt, CoMOS only preempt the current executing task
task on the remote module. For each multi-cast group, thdien the priority of the message is strictly greater. This is
members that are local to the module are added to the mutt- preserve the execution order. The current task execution,
cast table. Finallyapplication managerinitializes each task resulted from a previous interrupt, either directly or indirectly,
that is local to the module with initialization string. should take higher precedence.

To avoid consistency problems during the creation of ap-2) Message Routing:Local message routing is imple-
plications, theapplication manageris running at the high- mented using message routing tables. CoMOS enables the
est priority in the system. Further, application is created transparency of messaging by having an output port routing
two stages: instantiation and initialization. Message scheduteble for each task. Output routing table maps output port
buffers all messages for the task if the task has not yiet<destination task ID, input port > pair. This
initialized. These buffered messages will be dispatched orreriting table is stored in the RAM and thus can be changed.
the task has handled tHEORTINIT message. When a message is sent to a task on the remote module, the

In application instantiationsched _task _create() is message scheduler forwards the message tbukenanager
used to to allocate necessary memory and create TCBs.Tiee message scheduler makes this decision by finding the
application initialization,sched _task _init() is used to location of the message destination.
create message PORTINIT . To enable low execution cost on discovering destination
module, message scheduler stores the TCB of message desti-
nation along with each entry of routing table. For tasks that

Tasks communicate only through messages. They providarge remote to the current module, message scheduler creates
location transparent abstraction for tasks running on differemtremote TCB that includes Task ID, priority of the task, and
modules. Messaging is also a key to achieve prioritizatighe location in terms of module address. When the message
among local task execution. is sent to a particular port, the message scheduler looks up

1) Local Message Schedulin@oMOS schedules messageshe destination module address in the TCB. If the destination
according to the priorities of message destinations. The Guedule address is not the same as current module, the message
MOS message scheduler is invoked every time there isseheduler forwards the message to the bus manager. The bus
new message, called preemption point For example, line manager, if it is not currently sending another message, starts
15 of listing 1 is a preemption point, which CoMOS messending the message while blocking the current execution.
sage scheduler will be invoked. Every time CoMOS messalée use this implementation because of the high speed CPLD
scheduler is invoked, it checks whether the priority of thlbus. Using interrupt driven message transfer will waste CPU

B. Messaging

cycles on interrupt dispatch for each byte. On the other harahd de-allocated accordingly. Therefore, dynamic memory

if the bus is busy sending messages, the new message willht@nagement not only makes programming easy, but also

buffered according to the priority of the destination task. serves as an essential service for correct task migration. The
CoMOS supports multicast messages though a virtual takky design decision then becomes whether the service should

Virtual task is a special task with special task ID but withoute exposed to the tasks. Static memory makes programming

the TCB. The virtual task for multicast messages has I@asy and free of memory leaks, while dynamic memory

equal toMULTICASTPID. When message scheduler sees thaables temporal sharing of memory. Dynamic memory was

destination task ID equal tdULTICASTPID, it forwards the chosen also because it makes moving messages easy. Tracking

message to aulticast managerA multicast manager, upon memory ownership eases memory leak debugging and enables

receiving the message from message scheduler, first sendsgaubage collection.

the message over the bus. The memory attached to the message is only copied when
Each multicast manager maintains the multicast group methe task explicitly asks to do so. Task uses the following

bership information of the tasks local to its own module. Wheinterface for taking the payload the message.

a multicast manager receives a multicast message over thevoid =sched_take_msg(msg_t *msg)

bus, or when a multicast manager finishes sending a muIticasli_

. he memory manager, upon receiving this call, first checks
message over the bus, based on the multicast group ID, the > .
whether the memory is dynamically allocated. If so, the mem-

multicast manager fetches the list of local tasks that belon imol h back to th ler. If
to this group ID. It then duplicates the message and sendsoﬂi manager simply returns the memory back to the cafler.

) ot, the memory manager dynamically allocates memory on
behalf of the caller and does a deep copy of the message

each destination task according to the task priority. ;
We use this implementation because maintaining only theolyload. This enables low latency messaging when both the

local multicast membership information can result in a sig-

o . o nder and the receiver are on the same module. Memory
nificant memory saving, compared to maintaining the globa . . .
. . IS not shared among multiple tasks, which would otherwise
membership at each multicast manager.

. . . : . force us to provide distributed shared memory in CoMOS and
Consider outask migratorimplementation. For a six mod- P Y

le sensor node, there is a total of sksk migratorinstances: complicate the design.
u'e St ' ' ng ! . Processors on the current mPlatform do not have memory
one instance for each module. Ttesk migratoruses multi-

. . T management units (MMU), and the standard C library does
cast messages to implement reliable task migration. If ﬂﬁ%t provide ownership information in thmalloc() imple-

multi-cast managewrecords only the tas_k migrator instanc% ntation. Therefore, we implemented memory management
local to the module, we save memory since we do not rec h ownership tracking that has the same semantics as the

the other five instances. In fact, thask migrator uses iwo standard C library. To reduce external fragmentation, we chose

multi-cast groups. This saves a total of 10 routing entries Yh address-ordered first fit algorithm for memory allocation.

the multi-cast table. Further, a smaller multi-cast table allo efficiently manage small metadata, such as timer control
faster message delivery because there is no need to filter Bl%tcks task control blocks. and routi’ng entries, we imple-
unwanted entries. Obviously, when the multi-cast message, IS ' I '
only for the local module, the energy for waking up bus anlﬂt

sending over the bus is wasted; however, this is a rare case.

nted a slab allocator, which is commonly used to avoid
ernal fragmentations of OS metadata [3].
The memory interface is identical to libC. We repeat here

C. Resource Management for completeness.
; - id * I ize_t size);
Memories and timers are shared resources that must be cafevod « mem—camioc C 526" 28 " mem, size t new size)
void mem_free (void *mem); - -

fully managed in resource constrained sensor nodes. CoMO
assumes that the sensor node is a multi-machine architectur2) Time Manager: The time managermanages virtual
in that every processor has dedicated memory and comnioners for each task. In our current implementation, each task
peripherals such as hardware counters. CoMOS allocates soah have up to four timers. The time manager provides these
generic resource at the local processor where the task is resickual timers via one hardware counter on the local processor.
ing at the time of request. When migration is requested, theBlee software timer is not ticked regularly from hardware;
generic resources are serialized in a processor independestead, a delta timer is implemented to avoid unnecessary
manner and de-serialized on the destination module. CoM@®U cycles associated with timer interrupt handling.
manages two hardware resources for the tasks on each modul&urthermore, in order to reduce extra load on the bus,
The memory managemanages the heap memory, and theach processor maintains its local delta timer based on its
time managerprovides a fixed number of virtual timers toown hardware clock. However, the problem of not using a
each task. Resources such as flash devices for storage, 12Gsiiogle clock is that the global notion of time needs to be
communication, and additional hardware counters are assurhedidled separately. In a long running system, each module
to be controlled by tasks. Since these hardware resourceswaoelld eventually have different notion of time because local
physically bound to a specific module, the tasks that contrdbck crystals drift. To solve this problem, CoMOS uses time
these resources cannot be migrated. Such tasks have thgirchronization to ensure precise timing. Time synchroniza-
COMOSASKMOVABLEHlag cleared to indicate this. tion is implemented as a special virtual task, which has ID
1) Memory Manager:When a task is migrated in or out, TIMESYNCPID. Messages sent to this task will be broadcast
the memory for the task specific state must be allocated the CPLD bus. The sender side CPLD driver recognizes this

special task ID and timestamps the messages with the local messages back to the message queue for delivery. Upon
clock counter. When the destination side CPLD driver receives successfully de-serialization of the task, all TMs updates
this special message, it compares the timestamp with its local their local routing entries. For a failed de-serialization,
clock. The difference of the two clocks is maintained to derive the routing entries at all modules remain unchanged.

the global clock. The 32.768 KHz Real Time Clock (RTC) One important property of this protocol is that the messages
used in mPlatform has +/-20 PPM (parts per million) accuracyent before the FREEZE message will be buffered at the
which corresponds to a worse case of 40 PPM (a drift @burce task location and the message sent after the FREEZE
40 ps per second) frequency error between any two modulegessage will be buffered at the senders. The messages that
The RTC resolution of a tick is 30.ps (1/32768 seconds). were buffered at the source will be forwarded to the new task
With 1Hz time synchronization frequency, we can achievgcation once the migration is complete. This ensures that at
a global clock synchronization within +/-9.ps. Because no time instance, the same task appears at both the source
tasks can send messagesTMESYNCPID, it is easy t0 and the destination, which is an important property of atomic
modify the time synchronization frequency at runtime. Fahigration.
example, with low PPM clock crystals, time synchronization The source TM sends task virtual timers and task specific
frequency can be reduced. Further, for better bus utilizationsgte. At the time of the serialization, the TM timestamps vir-
task can implement adaptive time synchronization algorithmgal timers with the global clock and stores the reminder timer
(e.g. [10)). ticks. When these serialized timers arrive at the destination,
D. Task Migration the.time manager first computes th'e time thaF has beep 'spent
, o i , during migration by comparing the timestamp in the serialized
Qne unique service |n' CoMOS ,'S thlgsk m|grator(TM), timers and the global clock. Then, the TM subtracts those
which ensures an atomic task migration. The task migratghmnted ticks from the virtual timer. If a timeout is fired

provides atomic guarantee via following migration protocol.during migration, the time manager then fires the message to

1) Task migration REQUEST can be generated by eithelMORTTIMEOUT port of the task.
task or a TM based on runtime resource utilization and The serialization and de-serialization of the task state is
application specific migration policies. associated with two special input porBORTSERIALIZE

2) A REQUEST is first forwarded to the module whergnd PORTDESERIALIZE. The message scheduler, upon
the task to be migrated resides. We call this module thgceiving a serialization command, sends a message to the
source module PORTSERIALIZE port. If the state of the task has already

3) Upon receiving the REQUEST at the source modulgerialized, it ignores this message. Otherwise, the task al-
the source TM multicasts a FREEZE message with thecates a continuous region of memory and serializes its
task ID to be migrated and then issues a serializati@fate. Similarly, the message scheduler sends a message to
command to the message scheduler, which will StgORTDESERIALIZE port when it receives a de-serialize
the serialization of the task resources and will block alommand from the TM. The task then de-serializes the content
messages for this task. of the message according to the defined data structure for the

4) Upon receiving the FREEZE message, other TMs issygsk state. We depend on the tasks to perform serialization and
a freeze command to their local message schedulegg.serialization, because the task state may contain pointers to

which will block all messages sent toward this taskgynamically allocated memories, and without MMU support
Then the TMs unicast reply messages back to the SOUgggMOS cannot not detect them.

TM.
5) When the source message scheduler has serialized all V1. EVALUATION
resources and the source TM has received all reply mesCoMOS has been ported to tmePlatform We have de-
sages from other TMs, the source TM sends serializefhned a set of experiments to evaluate the performance of
resources to the destination module where the migrate@MOS with respect to latency and memory overhead. The
task will be resumed. evaluation is carried out in the context of a complex real-
6) Upon receiving the serialized resources at the destinime sensing application. The hardware platform used for the
tion TM, a de-serialize command with the serializeéxperiments is a five-modulaPlatformprototype, where one
resources is sent to the destination message scheduisdule has an OKI ML67Q5003 processor (60MHz, 32kB
The destination TM then multicasts the return value fa®RAM), while each of the other 4 sensing modules has a Tl
the de-serialize command from the message schedule§P430F1611 processor (6MHz, 10kB RAM). Each sensing
to all other TMs. module has a microphone and an amplifier to sense audio.
7) Upon receiving the reply from the destination TM, th@ne of the sensing modules also includes an 802.15.4 radio for
source TM checks whether the migration has succeedegreless communication, and another sensing module includes
If not, the source TM tries to resume the task at the temperature sensor.
local module. If the task fails to resume, the task is o o
kiled and a KILLED message is multicast to all othefr- Application description
modules. The non-source TMs wait for a successful To stress test CoMOS, we devised an application scenario
reply value and issue UNFREEZE commands to thein which the mPlatform device is used simultaneously for
respective message schedulers, which will put blockedidio conferencing in an office setting and for fire hazard

detection. We have implemented a 4-channel SSL algorithm Sound Source (ms) Noise (ms)
. . . CoMOS 253.0 287.0

together a fire-breakout-detection (FBD) algorithm on the Standalonel 250.6 284.6

top of CoMOS, whose task graph is shown in Figure 4. In Overhead | 0.94% 0.84%

addition to benchmarking the latency and memory overhead in TABLE Il —SSL execution latency on single mPlatform module.
messaging and migration, this setup allows us to evaluate the

effectiveness of the preemption mechanism of COMOS whemye implemented both the CoMOS-based version and a non-
multiple applications share processing and hardware resourqesmos version of this task graph to measure the overhead.
For the non-CoMOS version, we unwrapped the CoMOS task
framework and implemented the application as a standalone

é‘f(ﬂ‘g A image. The standalone image was programmed in a single C

2 > q h file, to allow extensive compiler optimization. In the stand-

o FFT alone version, all events such as the timer and Analog-to-

< > > Digital Converter(ADC) interrupts, were handled in hardware
Sound FFT interrupt handlers. Further, the standalone version did not use

o) \ / \ dynamic memory. We consider our implementation of the
Sound | f -) (standalone version to be the optimal in both speed and code

(kHz)) L L size. We compiled both versions using the IAR V3.41 com-

— N - N . \ (1 piler, with the maximum speed optimization option enabled.
[256 ms]—'[Temp] LEWMA, | Alert) L Radio] To measure the end-to-end latency of the CoMOS-based and

_ . _ standalone versions of the application, we set a GPIO pin of
Fig. 4—The task graph for sound source localization (SSL) and fire breakqut high when the ti int t fired dol th

detection (FBD). Top four processing chains belong to SSL while the bott _e processor] '_9 when the |_mer Interrupt ired ana clear the
processing chain is FBD. pin when SC finished processing.

SSL is a classic problem in sensing that detects the directionf@ble Il shows our latency measurement in milliseconds.
of a sound source using a microphone array, and it is at thithout CoMOS, the end-to-end latency was measured to be
center of applications such as teleconference and intelligé®0-6 ms when there is a sound source. With COMOS, the la-
user interfaces. We use SRP-PHAT, a well-know algorithm f&@ncy was increased by 2.4 ms. In one round of the application
SSL [5], in a setup of 4 microphones forming a square. SREXecution, there were 6 messages and 25 OS events logged.
PHAT estimates the source location by computing the dela®s> €vent logging is the COMOS mechanism for exporting
between arrivals of the audio signal at different microphone§formation to the task scheduler. The task scheduler, which
via the maximization of the signal cross-correlation functiolecides when and where a task should be migrated, is outside
The signal processing is usually performed in the frequentiye scope of this paper, but we are interested in the overhead
domain because of more efficient processing and noise filtéiroduced due to OS event logging. Figure 5 shows the task
ing. The FFT task applies Fourier transform to a block of 518raph with 25 events listed. Of those 2.4 ms, 1.4 ms were
audio samples. The SC task performs noise power estimatiHe¢ to messaging, 0.863 ms were due to OS event logging,
which is used to detect the presence of a voice. If more th8rl37 ms were due to dynamic memory operations such as
two channels detect voices, through a voting procedure, Adocation, free, and transfer. CoMOS results in a 0.94% CPU
HT task is executed to determine the source location througherhead when a sound source is detected, and a 0.84%
correlation maximization. Concurrently, the FBD task chaifiverhead otherwise. We observe that this 1% overhead
periodically samples temperature sensor (Temp) at 4 Hz did@ Small price to pay, compared to the ease of application
performs exponentially weighted moving average (EWMA}j_evelopment and resource management enabled by CoMOS
The Alert task detects possible fire breakout using the enei@fy Multiprocessor platforms. The stack preemption makes the
component in the temperature readings. Even though FBDO¥erhead small since this type of preemption only generates a
computationally less intensive compared to SSL, whenevef®all number of messages. With stack preemption, none of the

fire is detected FBD gets a higher priority to send an alert.task implementations needed to post messages back to itself
for continuation while maintaining responsiveness. In fact, the

FFT implementation was a simple matter of downloading from
Radio task had the highest priority since the system tasks®e web and wrapping it with CoMOS task framework. The
running at highest priority use this task. We assigned thehole process took us less than 10 minutes. Next we examine

priority 1 and 2 to all the other tasks of SSL and FBOBCoMOS messaging latency in more detail.

respectively.
—
Sound
(8‘:(‘:4“1) |—o| FFT |_.| sc
2sT 1sT 28T ROIE
2 END 1END

2END

1ALLOC 1ALLOC 1ALLOC 1st

1 SEND 1 FREE > FREE 1END
1 SEND 1 SEND 1 SEND

B. Priority Assignment

C. Messaging Latency

We implemented a subset of the SSL application tasks,
shown highlighted in Figure 4, on a single sensing module
to evaluate the CoMOS Messaging induced latency overhead.
.In this |mplementat|on, when SC detects a valid sound SOUT |e. 5—The types and numbers of events recorded for each round of
it sends out 1 kB of FFT results over the CPLD bus, otherwig@ecution. ST: Message Start Event, END: Message End Event, SEND:

SC updates the noise spectrum. Message Sent Event, ALLOC: Memory Allocation Event, FREE: Memory
Free Event.

ile)
(]

To further understand the latency of COMOS messaging angYStem | Code Size| Data Size| Heap Size HNT:p Usage
(O ev<_ant logging, we measured individual message Iatenc_n"@oMoS 19424 518 6144 249;)
by setting a GPIO pin before posting a message and clearingtandalone| 4104 4180 0 0
the pin when the message arrived at the destination. Figure 6 .
shows the message latencies for each message destination. The TABLE Iil —Memory Comparison in bytes
solid bars show the latency without OS event logging and the Eg:gsg::nérivers gggf Size ?g;a Size
hollow bars with logging. Here SC2 refers to the message Messaging Kernel 7562 64
received at SC from the Vote task. The suffix “Mcast” refers Memory Management 1840 68
to multicast versions of the messages used in the multi-module Virtual Timer 732 8
SSL implementation shown in Figure 4. Migration Protocol | 2548 86

Application 3808 0

We observe that mgssa_glng does not have a constant o\fEELE IV —CoMOS Memory usage in bytes. The heap size of 6kB is
head. The overhead is highly dependent on the task graphyuded from memory management

type of messages, and the priority setting. Messages to the

Timer task were originated from hardware timer and the deltgas ransferred from the sender to the destination: this results
timer. We observe the extra processing (12j#s8overhead) in ywo more events: FREE and ALLOC events at the sender
involved in handling the delta-timer messages, compared tQ &4 the destination respectively.

normal message such as one destined to the FFT task (80.9@/e contend that the functionalities provided by messaging:
ps overhead). The extra processing for creating message:fptext switch, memory management, and event logging more
the Timer task is due to manipulating delta-timer list, whicf,5, justify the messaging overhead. For example, a message
is a linked list storing the time duration to the next hardwarg ;¢ implements a context switch has a 6532latency. This
timer interrupt. context switch includes software check for remote destination,
multi-cast messages, and priority of current executing task.
In contrast, thread based preemption, typically implemented

sulting memory overhead. We measured the code and data
memory sizes of the application used in the latency measure-
ments. Table Il lists the memory footprint of the CoMOS-

o based and standalone implementations. CoMOS relied heavily

Timer Sound Sound FFT SsC Voting sc2 sc2

(Mcast) (Mcast) on dynamic memory; therefore, the static data usage was
Fig. 6—Messaging latency in microseconds. For each result, the bar on ﬁ@?‘" (430 bytes). In contrast, standalone version relied on
left is the latency without OS event logging. The bar on the right is the latengfatic data. Standalone used 2048 bytes to store 512 samples
with OS event logging of integer FFT conversion and 2078 bytes for storing noise
We also observe that multicast messages result in higbwer estimates. Since integer FFT results were only used as
overhead. For example, multicast messages to Sound haviet&rmediate computation, having dynamic memory improves
times the latency of unicast messages. This is because e@chporary memory usage. The sum of maximum heap us-
multicast message results in a message broadcast overatje and data size in CoMOS can be used to compare the
CPLD bus. As we observe from the SC2 latency data, cycltemory usage against standalone application. In this particular
task graphs also result in higher overhead. SC2 (Mcast), fopplication, the total overhead is 836 bytes. Part of memory
example, has incurred 625s. This is because SC wasoverhead comes from static data (518 bytes), which we will
already preempted on the stack when it sent the messageplain later. The remaining overhead of 318 bytes is due
VOTE task, causing the second message to be buffered in theOS meta-data allocation based on slab allocation. In our
gueue until the entire message sending chain is unwrappedurrent implementation, CoMOS allocate 8 objects for timer
In Figure 6, the column on the right gives the latency witbontrol block (14 bytes per object) and task control block (21
OS event logging for each destination task. In general, edajtes per object) regardless of the numbers of blocks used.
message results in 3 logged events: message sent (SENDJable IV shows the memory footprint of CoMOS version
message start (ST), and message end (END). SEND and8dken up into individual components. Application code size
are included in the latency measurement. The minimum eveasitslightly less than the standalone image size because libc
logging latency is measured to be 13, but it can be as runtime, math library and interrupt vectors are accounted for
high as 181.37us as we observe in the SC2 unicast. Thim the Messaging Kernel. CoMOS occupies 15616 bytes in
is because the latency also includes the END event of plogram memory. On MSP430F1611, this is about 31.7%
preempted tasks. Messaging can generate several more eveihtetal program memory (48kB). Even with the relatively
due to the associated memory management features. In ¢benplex sensing application we used here, the low end micro-
FFT and SC tasks, for example, the ownership of the memargntroller can still accommodate 8 such applications together

-
=)
S

& 700 n using a setjump library call (1%s), a longjmp (17us), and

H Minimal . . .

$ 600 | Mevent Log some scheduling algorithm«(21.2 iis), incurs a latency of

£ 55.2 us.

E 500

3 400 D. Memory Overhead

& 300 | One important aspect of any operating system is the re-

with CoMOS, so we do not consider the program memogy task with 1 kB of state imposes a 17.23 ms delay. Since

overhead to be a major issue. we assume task migration to be an infrequent activity, this
o overhead is well within acceptable limits.
E. Migration Latency We note that the task scheduler can use these latency results

Since task migration is a key feature of CoMOS, lowvhen deciding to migrate timing sensitive tasks. For example,
latency task migration becomes important. In this section, vifethe deadline of an event is 10 ms and migrating the task to
measure the task migration latency of CoMOS using a taklster processor reduces processing time by 5 ms, depending
with variable task state. Here we define the migration latenop the size of task state, migration might offset the benefit
to be the time between the instance a migration request arrifksn faster processor. Further, these results suggest that tasks
at a task and the instance the task finishes de-serializingvitiéh large state should be migrated less frequently.

state at the destination. Note that in our definition, the PrograM end to End Application Performance Evaluation
image size of the task is not relevant since we assume that the

program image is already installed at the destination. There are-:ro measure the end—to—end_ overhead introduced by CoMOS
two variables that can affect the migration latency: number SPP' to examine the réSponsiveness of the prgempnve mech-
modules and the size of the task state. The number of moduf&e>™m N ,COMOS’ we .|mplemented the combined SSL gnd
affect the latency because CoMOS must wait for replies froﬁfD application on a f|vg-module mPIa’Fform prototype with
all other modules before sending the serialized task resour S task-to-module mapping shown in Figure 8.

to the destination module. Here, the CoMOS at the origin must

process each reply sequentially, causing the latency to increase) ((

with the number of moduleEhe size of the task state affects S°””d24 LT \

migration latency because the state must be transmitted to the . \ ’

destination. Another possible source of latency is the delay d Sound, FFT .

to bus contention. For example, a CoMOS message may S p S >

gueued due to another message currently being transmitteT; Sound FFT

however, we can ameliorate this by extending the CPLD bus / - 4; \
implementation to preempt an on going bus transmission when Sound] - (

a high priority message arrives. To measure the task migration 5) S §

latency, we used an empty task that allocates a variable 'Timer) () () (.
task state during its initialization. To measure latency, a GP| zs6 mi]_’[BN E™) | ") LR""""’Z]

pin at the source was set when the migration request arrived, _ o
L. .. FIg, 8—Task-to-module mapping for SSL and FBD applications: module ID
and a GPIO at the destination was set when the task f'n'sh§%hown on the bottom-right corner of each task. Module 1 corresponds to
de-serializing its state. computational module (ARM board) and modules 2 to 5 correspond to sensing
modules. Radio is on module 2 and temperature sensor is on module 3.
» To measure the overhead introduced by CoMOS, we imple-
mented the standalone version of the same application without
CoMOS. One immediate observation was that implementing
the standalone version was very tedious. We had to manually
keep track of five different program images for five different
modules as the task-to-module assignment was unique for each
module. Every time we experimented with a different map-
s ping, we had to carefully ensure the task-to-module mapping
. was correct. For CoMOS, we only had to make sure that the
’ T ctesmebytesy application description was correct and the task images were
included. Changing task locations was as simple as changing
Fig. 7—Migration latency in terms of number of bytes in the task state. an integer in the application description. When the system
Figure 7 shows the task migration delay versus the tastarted, CoMOS initialized the application according to the
state size. The data was measured on two sensing modapglication description. Further, for the standalone version, the
with MSP430 processors running at 6 MHz. Each data poiapplication writer had to deal with low-level issues such as
corresponds to the average of 10 runs. We observed that, donfiguring various hardware interrupts to achieve the desired
a given number of modules, the latency of task migration fanctionality.
linearly proportional to the size of the task state. The plot Next we measured the processing overhead introduced by
intersects the Y-axis at 3.5 ms, which corresponds to a ZMOS. Since the CPU requirement for FBD related tasks is
ms fixed base latency. Each additional byte of task state agktremely low, we used only the SSL portion of the application
0.013 ms to the migration latency. Although our simple tadk take measurements. We measured latency by setting a GPIO
does not have any output ports, each out port adds two bygas just after the timer hardware interrupt, and by clearing the
to the state during migration. Each timer corresponds to BPIO pin after HT has completed (to measure latency for
bytes of state, hence the 4 timers per task add a maximmaise input, we set a GPIO on a sensing module just after SC
of 0.73 ms to the migration latency. For example, migratingopmpletes the noise update).

Migration Latency (ms)
I

Sound Source (ms) Noise (ms) base cost for migrating the state and message routing table.
CoMOS 392.0 287.0 Wh iqrati task d tfit i destinati
Standalonel 389.6 2846 en migrating tasks code cannot fit in every destination
Overhead | 0.616% 0.836% processor, we should take into account the latency incurred

TABLE V —SSL execution latency on five mPlatform modules. for transmitting task code. Furthermore, any task that will
migrate across heterogeneous processors will have to have the

Table V shows latency measurements. The column labelgefe image for those processor architectures. This introduces
“Sound Source” gives the latency when a sound source wagra complexity for preparing the executables. Currently,
detected by the first pass of SC. The column labeled “Noisg*Platform has only two processor architectures: ARM7 and
gives latencies when SC identified the acoustic samples M&P430. Therefore, application code image is at most twice as
be noise. Latency numbers for “Sound Source” column aRig as the homogeneous architecture. Future multi-processor
higher because HT needs to perform hypothesis testing afgtform should limit the amount of heterogeneity in the
compute the direction of the sound source. We observeystem or go with a virtual machine approach.
that the overhead due to CoMOS is 1% in both these =~ CoMOS asymmetric stack preemption solves long running
instances. Hence, for data processing intensive applicatié?gk problem with very low memory requirement. Traditional
CoMOS provides its services with negligible computation arereemptive multi-threaded execution model will allocate at
latency overhead. least 128 bytes per-task private stack. So the 5 tasks in SSL

Next we examined the effectiveness and the correctnesswsfuld incur 640 bytes additional memory overhead, which
stack preemption mechanism by invoking the FBD relatdd significant on MSP430. CoMOS moves per-task stack into
tasks while SSL tasks are busy executing. While the S®llobal stack. The assumption is that not all tasks will be on
related tasks are running, we increased the temperature of it stack simultaneously; hence, the overall stack utilization
air around the temperature sensor. Each time FBD detectet$ dow. On the other hand, when CPU utilization is high,
“fire”, we measured the execution time of the FBD related tagRis assumption may not hold true. In which case, traditional
chain by setting a GPIO pin when the temperature samplifiyeading model may be a better design choice.
was completed, and clearing the GPIO pin when Alert finished Stack-based preemption mechanisms, although restrain the
processing the EWMA result. The FBD execution time wagapability of changing priorities dynamically, is powerful
always less than 10 ms. Since the execution time of the S8nough to support simple real-time scheduling frameworks
related FFT task is 100 ms, this shows that the stack preemspeh as rate-monotonic and earliest deadline first sched-
tion mechanism is working properly and makes the systemes. The major difference between our implementation and
responsive enough for efficient real-time event handling. Baker's [1] is that we do not need to use priority ceiling

to prevent possible dead lock introduced by the sharing of
VIl. CONCLUDING REMARKS the global stack. Thanks to our choice of the asynchronous

CoMOS enables a cross-module uniform programming atask model. COMOS message scheduler automatically queues
straction, resource efficiency, and real-time responsivenessiféssage to the task on the stack. As a consequence, there is
heterogeneous multi-processor platforms by using componeetneed to assign priorities to all resources in the system.
messaging, migration, asymmetric stack preemption mechaCoMOS creates task control blocks (TCB) for every task
nisms. in the system to avoid the cost of discovering task location at

The task component messaging model allows an applicati@itime. When the number of tasks is large, this will result in
to span across multiple processor modules in a transpargdbr memory utilization. Currently, each remote TCB costs 6
manner. Messaging over the bus incurs little overhead, fd&es of memory. When more information is needed in remote

small as 300s, comparing to local message communicatiom:CB, online discovery of task location may be a better design
Flow control mechanism employed in the CPLD bus hashoice.

simplified the implementation of CoMOS significantly. Fur-
ther, the broadcast nature of the bus enables us to efficiently APPENDIX

implement multicast messaging and create multicast group] .) .

members specific to the modules, which reduces memoryere we prowde a detailed anaIyS|s of. the mqltl—processor
consumption. The memory overhead of COMOS is also lo®n€rgy efficiency advantage mentioned in Section Ill-A. To
One MSP430, the CoMOS kernel occupies 15616 bytes out@fPlify our discussion, we assume that each processor has
48kB program memory and incurs 836 bytes out of 10kB dapf® mode, in terms of voltage and frequency scaling. We
memory to support prioritized execution, dynamic memomptroduce the following parameters for a processor

allocation, task migration, and virtual timers. Comparing to « N' is the instruction throughputof the processors, in
678 bytes in SOS and 500 bytes in Mantis, CoMOS has terms of millions of instructions per second (MIPS).
slightly higher memory usage, but CoMOS uses 292 bytes For a workload ofL instructions, the execution time is
for hardware drivers. T(L) = L/N'.

Currently, COMOS task migration does not including the « M' is thepower throughpubf the processors, in terms
transferring of task images. It assumes the target code is of million instructions per Joule (MIPJ). So, the energy
already on the destination boards. For a task code size of spent in executing. instructions isE'(L) = L/M'.
1kB, the additional latency for migrating the code (task P\: power consumption in thactive mode, where the
implementation) can be of 14 ms, comparing to 3.5 ms processor is actively running a task;

o Pi|: power consumption in thédle mode, where the [3] J. Bonwick. The slab allocator: An object-caching kernel memory

processor is executing NOP;
<. power consumption in thestandbymode, where
the clock to the processor is turned off;

allocator. INUSENIX Summeipages 87-98, 1994.

[4] A.Boulis, C.-C. Han, and M. B. Srivastava. Design and implementation

active and standby modes. This include the average
power spends on both going to standby and waking us]

from standby to the active mode. We uKg to denote

Ply: power consumption in the transition betweenl®]

the time spent in the transition. So the total energy cost
for going into and waking up from the standby mode

is Ely = P}y - iy
Breakeven time [T is defined as the amount of idle time

That is T, = (Ely — P5- T})/(P, — P%). Consider that. on
processor must be finished by a deadlifi If the slack time,

(8]

such that the energy spent in the idle mode is the same as the IEEE Press.
energy spent in standby mode and the transition mode [Zd?.]

D—Ti(L) > T, then it is more energy efficient to switch tol'"]

the standby mode. Otherwise, the processor should stay in the

idle mode until the next activation of the task.

With the above setup, we consider two heterogeneo
processor,p and g, where p is more powerful and power
efficient thang. That is, MP > M9 and NP > N9 We

H3)

further assume tha is an ultra-low-power microcontroller, [12]

(e.g MSP430), such that the energy cost in the standby mode

and the mode transitions are negligible. Rd.= 0, E}, = 0,
SO Tpe = 0.

Assuming a periodic non-splitable workload with perib
and deadlineD, Figure 1 is obtained as following:
The areas below lina: D = L /NP is non-schedulable
since not everp can meet the deadline.
In the areas above linebut below lineb: D = L/N9,
the workload can only be assignedg@inceq cannot
finish it on time.

workload on time. Line : D = (1/NP)-L+T}, defines
the breakeven line fgp. That is, above this lingy can

the work. Notice that is parallel toa.

d:D = (MTI-PF - MTlPF +)L, where belowd, it

d (13]

' [14]

(18]

In the area above link, both processors can finish the

[16

turn into the standby mode after finishing the work,
while below the linep will stay at idle after finishing 17

]

1 A. Khemka and R. K. Shyamasundar.

The area belove but aboveb is further split by Line [18]

is more power efficient to usp without standby and [19]

aboved, it is more efficient to usej.

The area above can be further split by the vertical
linee: L =EY/(ik —
line, it is more efficient to usg and to the right of
this line, it is more efficient to usp.

It is easy to show that the intersection of lineasndd is always
to the right of linee, unless wherP§ = 0, the three lines

intersect at a single point. So the lines are always arrangeolzz%

shown in Figure 1.
REFERENCES

[1] T. P. Baker.
processes.
1990.

), where to the left of this [20]

[21]

(23]

A stack-based resource allocation policy for realtime
INEEE Real-Time Systems Symposiyages 191-200, [24]

[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,

C. Gruenwald, A. Torgerson, and R. Han.

multithreaded operating system for wireless micro sensor platforms.

Mob. Netw. Appl.10(4):563-579, 2005.

Mantis os: an embedd§b]

of a framework for efficient and programmable sensor networks. In
MobiSys’'03 pages 187-200, 2003.

M. Brandstein and H. Silverman. A robust method for speech signal
time-delay estimation in reverberant rooms. Broc. of ICASSP’97
1997.

E. Cheong, J. Liebman, J. Liu, and F. Zhao. Tinygals: A programming
model for event-driven embedded systemsPtaceedings of 18th ACM
Symposium on Applied Computing (SACQ8jges 698-704, 2003.

A. Dunkels, B. Gbnvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensorsPtaceedings of
the First IEEE Workshop on Embedded Networked Sen206@4.

N. Edmonds, D. Stark, and J. Davis. Mass: modular architecture for
sensor systems. [IPSN '05 page 53, Piscataway, NJ, USA, 2005.

C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and flexible
deployment of adaptive wireless sensor network applicationsPréa
ceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS’'05pages 653-662. IEEE, June 2005.

S. Ganeriwal, D. Ganesan, H. Shim, V. Tsiatsis, and M. B. Srivastava.
Estimating clock uncertainty for efficient duty-cycling in sensor net-
works. InSenSys '05: Proceedings of the 3rd international conference
on Embedded networked sensor systgrages 130-141, New York, NY,
USA, 2005. ACM Press.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesc language: A holistic approach to networked embedded systems.
In Proc. of PLD| 2003.

L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Oster-
weil, and T. Schoellhammer. A system for simulation, emulation, and
deployment of heterogeneous sensor network$SenSys '04: Proceed-
ings of the 2nd international conference on Embedded networked sensor
systemspages 201-213, New York, NY, USA, 2004. ACM Press.

C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A dynamic
operating system for sensor nodes. NobiSys '05: Proceedings of
the 3rd international conference on Mobile systems, applications, and
services pages 163-176, New York, NY, USA, 2005. ACM Press.

J. Helander. Deeply embedded xml communication: towards an inter-
operable and seamless world. EMSOFT '05: Proceedings of the
5th ACM international conference on Embedded softywpages 62—67,
New York, NY, USA, 2005. ACM Press.

J. Helander and A. Forin. Mmlite: a highly componentized system
architecture. IrEW 8: Proceedings of the 8th ACM SIGOPS European
workshop on Support for composing distributed applicatigrages 96—
103, New York, NY, USA, 1998. ACM Press.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System
architecture directions for networked sensorsABPLOS-IXpages 93—
104. ACM Press, 2000.

An optimal multiprocessor
real-time scheduling algorithm.Journal of Parallel and Distributed
Computing 43(1):37-45, 1997.

P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks.
In International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, O8A2002.

T. Liu and M. Martonosi. Impala: a middleware system for managing
autonomic, parallel sensor systems. Rroceedings of the ninth ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming pages 107-118. ACM Press, 2003.

Y.-H. Lu and G. D. Micheli. Comparing system-level power man-
agement policies.IEEE Design and Test of Computerk3(2):10-19,
March/April 2001.

J. Luo and N. K. Jha. Power-conscious joint scheduling of periodic task
graphs and aperiodic tasks in distributed real-time embedded systems.
In ICCAD, pages 357-364. IEEE Press, 2000.

D. Lymberopoulos, B. Priyantha, and F. Zhao. A flexible and efficient
architecture for sharing data in stack-based sensor network platforms.
Technical Report MSR-TR-2006-142, Microsoft Research, 2006.

S. Matic, M. Goraczko, J. Liu, D. Lymberopoulos, B. Priyantha, and
F. Zhao. Resource modeling and scheduling for extensible embedded
platforms. Technical report, Microsoft Research, 2006.

B. Schott, M. Bajura, J. Czarnaski, J. Flidr, T. Tho, and L. Wang. A
modular power-aware microsensor with 1000x dynamic power range. In
IPSN '05 page 66, Piscataway, NJ, USA, 2005. IEEE Press.

D. Stewart, R. Volpe, and P. Khosla. Design of dynamically recon-
figurable real-time software using port-based obje¢EEE Trans. on
Software Engineering23(12):759-776, 1997.

