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Abstract

Typed assembly languages usually support heap allocadietys
but often rely on an external garbage collector to dealoajects
from the heap and prevent unsafe dangling pointers. Evemeif t
external garbage collector is provably correct, verifyihg safety

of the interaction between TAL programs and garbage cadlieds
nontrivial. This paper introduces a typed assembly languwepse
type system is expressive enough to type-check a Cheneyeque
copying garbage collector, so that ordinary programs amlolagg
collection can co-exist and interact inside a single typedjlage.
The only built-in types for memory are linear types desagpi
individual memory words, so that TAL programmers can define
their own object layouts, method table layouts, heap las;oand
memory management technigues.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programp Studies of Program Constructs—Type struc-
ture; D.3.3 Programming LanguagégslLanguage Constructs and
Features—Dynamic storage manangement

General Terms Languages, Verification
Keywords Typed assembly language, garbage collection

1. Introduction

Operating systems have traditionally protected prograora one
another using run-time checking of memory addresses, based
page tables or segments. Many recent projects have uselhsafe
guages, such as Java and C#, to replace traditional opppstia
tem protection mechanisms. Language-based mechanismsspro
more flexible and fine-grained protection than traditionachy
anisms, but bring new challenges. In particular, a buggylemp
mentation of a safe language can invalidate the languagésys
guarantees and destroy the protection between programse Si
a language’s implementation typically consists of a largenc
piler and large run-time system, there is a large potentiakéich
bugs. Proof-carrying code [18] and typed assembly lang{kgje
eliminate the compiler and some of the run-time system from
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this “trusted computing base”, but typically still requisetrusted
garbage collector, because the safety of the garbage toltefun-
damental operation (“free memory”) is difficult to prove Iretpres-
ence of aliased data structures with complicated types.

This paper presents a typed assembly language c&lletl,
whose type system is expressive enough to verify the safedy o
garbage collector for a simple object-oriented languageohtrast
to earlier work on typed garbage collectors [26, 14], GTAlilbe
erately omits any built-in definitions of heaps, objectfyction,
and deallocation. Instead, it provides programmers withtafiray
of memory words, and programmers define their own memory lay-
outs and memory management routines by carving up the afray o
words to form objects, garbage collection tables, semiapaand
so on. This allows programmers to create diverse implertienta
of memory allocators and deallocators, and to tailor theuhyf
memory to match the needs of different allocators and destitws.
For example, the garbage collector presented in this pdipeates
data contiguously in a semi-space, and prepends each abfpet
header word pointing to a method table containing the sizhef
object. The collector uses the size in the table to help duaugh
a queue of contiguous objects. Other collectors are frempbe-
ment different strategies, such as putting objects of theessize
on the same page (as done by BiBoP collectors).

In place of built-in types for heaps and objects, GTAL inéaa
linear logic for encoding new types from individual memorgras.
The logic is simple, yet powerful enough to encode mutuatur-
sive classes with inheritance, overriding, and polymarpheth-
ods. GTAL's inclusion of a linear logic is similar to the LTan-
guage’s inclusion of the linear LF logic [8]. However, whil&T
used a linear logic to augment an otherwise standard tygerays
GTAL goes farther: the logic doesn’t augment the type system
the logicis the type system. We mean it when we say that program-
mers encode data types using logical formulas: even the'iytie
is encoded in the logic, rather than being built into the tgps-
tem. Recursive types pose a challenge for such a strictig-loased
approach, since unrestricted recursive types can easlyayethe
soundness of a logic. GTAL addresses this challenge usinapalm
operator that shields the logic from unrolled recursives/p

The rest of the paper is as follows. Section 2 compares GTAL
to previous work. Section 3 describes the logic embeddedéans
GTAL. Section 4 then introduces the typed assembly languagk
Section 5 summarizes the proofs of soundness for the logithan
assembly language. Section 6 uses the logic to express hrdps
heap objects, and Section 7 describes the GTAL code thaagarb
collects these objects. (The complete, mechanically-typeked
GTAL code for the garbage collector is available online [L0]



2. Background and related work

GTAL builds on recent work in type systems and proof-cagyin
code. Wang and Appel [26] observed that by copying live data o
of one memory region into another, and then freeing the figibn,
a programmer can implement a copying garbage collectorednti
from safe language primitives. In this approach, the typsiesy
tags every pointer with a region annotation, and therebyegmts
programs from dereferencing pointers to freed regions.details
of this approach are problematic, though; Wang and Appelired
ad hoctype system extensions to type forwarding pointers.
Monnier and Shao [15] overcame some of the problems by in-
troducing a language supporting regions, alias types @3], an
embedded proof language. Nevertheless, the regions egjliine
ad hocextensions to type-check Cheney queue scanning [27], and
the large number of features in the type system increaseutbied
computing base. Furthermore, the region-based approagke-im
ments only copying collectors, not mark-sweep collectors.
Because of the lack of generality and large trusted comgutin
base in current typed assembly languages, many reseamteers
working on foundational proof-carrying code (FPCC), which
principle can mechanically prove the safety of typed as$gtab-
guages and the correctness of their associated run-tintensys

Much progress has been made, but just proving the safety of an

FPCC systemvithoutgarbage collection [29, 5, 4] is challenging.
To add garbage collection to an FPCC system, one must mechani
cally prove the safety of the TAL, the correctness of theeatbir,

and the correctness of the interaction between the TAL aaddh
lector. As far as we know, this has not been done yet, although
enough pieces exist to make it plausible. Birkedahl. [2] for-
mally proved the correctness of a copying collector by shgwi
that the collector produces a copy that is isomorphic to thggral

live data. Like Birkedakt al., we establish and prove invariants for

a copying collector, though our invariants stop short ofrezping
graph isomorphism, which is stronger than necessary toepitoy
garbage collector’s safety. Unlike the collector of Birkédt al.,

our garbage collector supports header words and GC tabids, a
our tables can contain embedded code pointers.

lector’s from-space and to-space invariants, establistiffier-
ent invariants for different memory ranges in each spaceT (L
and TL, building on well-known, general-purpose logicg; sa
isfy this criterion easily.)

The logic should support linear reasoning about memorys Thi
lets the collector easily change the types of memory words
when it frees and reallocates memory. (LTT, ATS, andelia
al's approach satisfy this criterion.)

The logic should support unrestricted recursive specifinat

for two reasons. First, the specification of objects in Secti

6 is recursive, since objects’ classes may refer to eachr othe
recursively. Second, the specification of heaps in Sectien 7
recursive: heaps contain objects, objects contain headietsyw
header words point to method tables, method tables point to
code blocks, and the code blocks take the current heap as an
argument. (ATS satisfies this criterion. TL supports “intile
definitions”, but these are too restrictive to capture tloairgive
definitions of sections 6 and 7 directly.)

Given a logic satisfying these criteria, it is straightfand to define
the heap and garbage collector data types; the definitiomb-of
jects, heaps, and garbage collection in Sections 6 and @@géhly
but unsurprising. The proofs about the data types are btfarg
ward enough to be written by hand, without a proof assistam,
mechanically checked. For example, the “heap extensiomkn
which proves that extending the heap with a newly allocasddes
preserves all existing invariants in the heap, is about 20 lof
GTAL's logic. The rest of this section describes GTAL's logi
which combines ideas from LTT, TL, ATS, and Jaal’s logic
in a way that meets the requirements above.

3.1 Proof termsand types

Figure 1 specifies the abstract syntax of GTAL's logic. Thgido
is based onF'w [20], with support for linearity [24]. It includes
standard function types — 72 and pair types; ® 7= from linear
logic, type variablesA, polymorphic typesvA : k.7, existential

The FPCC approach is daunting enough to make considerationtypes 3A : k.7, as well asFw-style functionsAA : .7 and

of alternatives worthwhile. We follow an approach introdddy
Crary and Vanderwaart’'s LTT system [8] and Shetoal’'s TL
system [21]. These systems invert the FPCC approach: rtither
proving the soundness of a computation language’s typermsyst
inside a logic, they embed a logic (linear LF for LTT and CIC fo
TL) inside a computation language’s type system. This tesula
somewhat larger trusted computing base than FPCC, sinhehmot
logic and the computation language must be trusted, butkema
programmer’s job easier, since no foundational proof isiregl to
use the computation language.

Jiaet al [13] embed a linear logic inside a typed assembly
language to reason about stack allocation. Their logic sespe-
cialized for reasoning about stacks, though — it is not esgive
enough to type check our garbage collector. Zhu and Xi's /308 [
embeds a linear logic in a higher-level language, to sufgadetrea-
soning about ephemeral properties of data structuresgththey
apply ATS to simple data structures, such as arrays, ratlerto
implementing heaps and garbage collection.

3. Alogic

The rest of this paper applies the embedded logic approachiof
TL, ATS, and Jieet al. to heap objects and garbage collection. The
embedded logic must satisfy the following criteria:

e The logic should be general enough to reason about simple
propositions, equality, and integer inequality. For exeEngec-
tion 7 uses integer arithmetic to express a copying garbalge ¢

applicationsr; 7> at the type level. Kinds: include T for types,

N for numbers, andR for register names; Figure 2's rules assign
kinds to types. Following Xi and Pfenning [28], register remm
and numbers live at the type level, rather than the term level; this
simplifies the meta-theory by avoiding full-blown dependgpes.
Both the term and type levels contain elimination consgufor
numbers (the term-level construct implements inductiow toe
type-level construct implements primitive recursion).

Given basic function and polymorphic types, the type system
can encode true (aka “unit”), false (aka “void”), negatidrand-
only-if, choice of A or B (aka additive conjunction, A& B"),
union of A and B (aka additive disjunction,A & B”"), and equality
(A= B)[12]:

True =VA:T.A— A
False =VA:T.A
Not = MA:T.A — False
Iff = AA:TAB:T.!(A — B)®!(B — A)
Choice = AA:TAB:T3X: T.XQ!(X — A)Q (X — B)
Union = NMA:T.AB:TNVC:TVX:T.
C —l(C—-oA—-oX)—ol(C—-oB—oX)—oX
Eq, =AA:kAB:kVF:xk - T FA—-FB

As in linear logic, types are linear by default, and are odglmear

if there is a! symbol in front of them. Thus, a function of type
(!71) —o 72 may user; multiple times or not at all, while a function
of type 1 — 72 (wherer; is not of the form!r) must use its
argument exactly once.



kind K T|N|R| Kk — ke
number n = 0] s(n)
register r = rl| ... |7k
locaton ¢ = n|r
type T = Ir|mn—om|n1®mn|Or|recr
| A|VA:k7 | JA:kT | NAKT | T1 T2
| 0|s(r)|elmr, 7. 7s
| 7 |Regm 72 | Mem T 12 | Coder; T2
pattern = z[lz|p) [ Ap]|pp
term e = z|le|letp=eiines | Ap:T.e
| eiex|er,ex| N:ikel|erT
| elimr, 77 e.es | Oc | e1O<< ez | fact
| pacHri,e]asr: | coddn)[ri, ..., T
value v = lv|Ap:T.e]|vi,v2| A:ik.e| Oe | fact
| pacKri,v]asr | cod€n)(r,..., 7]
tvarctxt A = {}|AJA— &
var ctxt T’ {JIz—rT1
codectxt Y = {}|T,n—r7
memctxtv = {} |V, L—n
ctxt C AT Y50
Figure 1. Proof term and type syntax
AFT:T AFm:T AFm:T
AFr:R
AF!T:T AT —om:T "
AFm:T AbF7:T AFT:N
AFO0:N _—
AFm1Q@m:T Ak s(t):N
AF71, N AT, K ArF17s:N—Kk—kK
Arelmr, 7. 7s 1 K
AA:kbET:T AA:kbET:T
kA ’ ’
AAikkAin AFVA:kT:T AF3A:kT:T
AA: R TRy AlFTfKg — Ky VANl
AFMNA: KT : Ka — Kb AT Ta Ky
ATk AFT:k— K A7 R AF71,:N
AFOT:K AkFrecrT: kK AFRegr, 7, : T
AF7,:N AFT7,:N AF7,:N AbFT:T

A+FMemr, 7, : T A+ Coder,, 7: T

Figure2. Kinding rules

The typing rules for terms, shown in Figures 4 and 5, enforce
the linearity requirements by distinguishing betweendinariable
bindings and nonlinear variable bindings [24]. The envinentT’
either binds a variable to a type linearly ( 7), in which case
x must be used exactly once, or nonlinearly (: 7), in which
caser may be used more than once or not at all. Pattern matching
introduces new variables into the environment. Figure 4vshtthe
typing rules for patterns: the judgmehtp : = A;T says
that the patterrp, matching a value of type, introduces a set
of type variablesA and value variable§' into the environment.
The patternz introduces a linear binding : 7 into I', and the
pattern !z introduces a nonlinear bindingz : = into I'. The
pattern !(p) discards a 1" operator, while patterngp:, p2) and
[A, p] unpack pairs and existential types. For example, the term
Az, 1Y) © T2®7y.(z,y,y) binds z linearly andy nonlinearly;
this term has type,.® 7y — 7. ® 7, ® 7. The termA(z, ly) :
T=® 7y .(z, x,y), on the other hand, is ill-typed because it uses the
linearly bound variable: twice. The notatiod® = I'y, I'; indicates
thatT" andT'; and T2 have identical nonlinear assumptions, but
that I''s linear assumptions are split betwe&a and I's. The
notationI" = IT"; indicates thal® andI'; have identical nonlinear
assumptions, but th&t has no linear assumptions. The typing rule
that concludede : 7, for example, requires thattype-check in a
purely nonlinear environmentT - e : 7), so that expressions of
type !T cannot carry linear assumptions; this makes it safe toyfreel
discard and duplicate expressions of type Figure 1 extends the
T';,T'2 and IT'; notations to cover all the environments in a context
C = A;T;T; ¥, where the type variable environmett and
the code environmenf contain only nonlinear assumptions, the
location environmentr contains only linear assumptions, and, as
described above, the variable environm&ntontains both linear
and nonlinear assumptions.

The type system uses linearity to enafi®ng updateso regis-
ters and memory [2, 23]. By “strong update”, we mean that sewri
to a register or memory location can change the type of theeval
stored in the register or memory location. Because of algasiuch
a type change would be unsafe without some linearity reisnc

The type system describes the state of registers and mem-
ory with a linear environmen® mapping locationd to integer
valuesn. The program manipulate& via the linearcapability
types‘Reg r n” and “Mem n; n2”, which indicate that register
(wherer is a type of kindR) currently holds the integet (where
n is a type of kindN), and memory address; holds the integer
n2 (Wheren; andng are types of kindN). A capability of type
Regr n, for example, gives the program the right to read value
n from registerr, and to change the contents of registdo any
new valuen’, where changing: to n’ consumes the linear capa-
bility Reg » n and produces a new linear capability Reg’. The
linearity of the environmen® guarantees that only one capabil-
ity for registerr exists, so that it is safe to consume Reg and
produce Reg n’. ¥’s linearity does not mean that we restrict pro-
grams to linear data structures (trees). Instead, we usknaan
function types!(m1 — 72) to encode aliasing and weak updates,
as described in Section 6.

Conceptually, a program starts with an initialthat describes
the initial state of the registers and memory. As the prognans,

U evolves to track the updates to registers and memory. Hayweve
¥ is merely a technical device used to establish the soundfess
the language; our actual implementation of the type systeitso
. In practice, programs have a “main” block whose precoonliti
specifies a variable holding an array of register and memory ca-
pabilities, and the program uses variables to pass thesbititips
from block to block. (The loader that loads and starts thegzm
must ensure that the initial state of the memory and regisiztis-
fies main’s precondition.) The soundness of the languagesreh



T1 = T2 T1 =172 T2 = T3

T2 =T1 T1 = T3

(AN k.Tp) Ta = [A — Ta]T
eim07, s =72
elim S(Tm) Ty Ts = Ts Tm (e“m Tm Tz 7-5)
rect = O(r (recr))
(OT1) To = O(Tl 7'2)

Figure 3. Type equivalence rules (excluding congruence)

Fo:r={};{z:7} Flo:r = {}{lz:7}

Fp:7= AT Fp:7= AT

Fi(p) :!Ir = AT

Fpi:m= AT Fpo:me = Ay
Fpi,pe: 71 @ 2 = A1Qg;T1I2

FAp:3A:k7= A A: kT

Figure 4. Proof pattern typing rules

ICke:T

ICox:thax:T Ol s
! le : 11

Cile:thx: T

Citer:m Fp:mm = AT
(CQ)(A;F) |—62:7'2 01702 }—TQZT

C1,Cz I |etp =e1 in €2 T2

Fp:1e = A;T YA D) Fe:my Ckm:T
CEAp:Tae:Ta — T
Cilef:itma—m Ciker:m

02|_€a3’7'a CQI—GQZTQ
01702 Fef €q . Th 017CQF€1,€2:7'1 X T2

C1,!CQF7'”2N Cl,!CQFTf:N—)T
Cike.:150 ICo Fes :IWA:N.1p A — 75 5(A)

Ch, 1CoFelim, 75 e es : T T

C,A:kbte:T

Clte:VA:kT Cktr1:k

CFMA:ke:VAikT Crer:[A—rT]7

Chkmn:k Che:[A—T1ir Clte:T T=T

Ct packri,elasdA: k.12 : JA: k.72 Clre:1’
Cre:r Ciker:O(ra — m) Cotes: O,

CFOe:OT 01702 FerO<<ez: Omp

A; IT; Y5 {r — n} - fact: Regr n
A IT; Y5 {n +— n'} - fact: Mem n n'/

T=VAi:Kk1....VA,:k,.Coden 7/
AFT:i81...AFTh kn
A T, n — 73 {} - cod€n) [ ... Ta] :
Coden ([An « Tn]...[A1 «— 7))

Figure5. Proof term typing rules

one additional technical device: there must be some vahte¢ip-
resents a capability. GTAL uses the special value “fact"donect
U to the proper capabilities; lik&, the “fact” value appears only
in the theory, not the implementation.

In contrast to the register and memory environménthe code
environmentY is nonlinear, which allows nonlinear code capabil-
ities !(Coden 7). Each code capability asserts that at memory lo-
cationn, there is a block of code with preconditien Code blocks
may be polymorphic over type variables, ... A, so code val-
ues codén)[ri . . . 7] Specify types; to instantiate each; with.

For example, the following type specifies a code block polymo
phic over integersV, with a precondition that asks that register
containN, the address of a continuation function specified by type
CodeN (Regr N):

VN :N.Coden (Regr N®!(CodeN (Regr N)))

The Reg, Mem, and Code capabilities refer to integemshich we
define to be) or the successor of an integgm). Given zero and
successor, we can define less-than-or-equal and arraytofsess
Church encodings, which fold functions over the integérsi +
1,A+2,...,B—1:

Le = MA:N.AB:NVF:N — T.
I(WN:N.FN—oFsN))—~FA—-FB

Arr = AMA:NAB:N.AF:N — TVG:N — T.
I(IWN:NNFN—oGN—-Gs(N)) -GA—-GB

For instance, Arr 5 8 (AN : N.3M : NMem N M) is an ar-
ray of free memory in location$...7: for any type function
G, it transformsG 5 into G 8 by applying the function3M :
N.Mem N M) — G N — G s(N) three times (once fav = 5,
once forN = 6, once forN = 7). Given these definitions, it's
straightforward to define lemmas abdit, such as transitivity, and
lemmas aboutirr, such as lemmas for splitting and combining ad-
jacent arrays.

Figure 3 shows the type equivalence rules. The type system in
cludes a primitive recursion (fold) operation “elimr, 7," thatis
equivalenttar; if n = 0 and is equivalent tor, m (elim m 7. 75))
if n = s(m). This lets the type system express addition, reasoning
by cases, and predecessor:

Add = AA:N.AB:N.elim B A (AM :N.XAccum :N.s(Accum))
Case, = MA:NZ:k.A\S:N — k.

elim A Z (AM :N.XAccum:N.S M)
Pred = AXA:N.Casey A0 (AM:N.M)

The term language also contains an induction operationtegens,
also called “elim”. For simplicity, we ignore 32-bit and ®-
arithmetic in this paper, and assume that registers and myemo
words can hold any natural number, but modifying the assgmbl
language rules to use mad-arithmetic would be straightforward.

3.2 Recursive syntax, recursive types, and modal operators

Supporting recursive specifications in a logic requirestioas—
adding unrestricted recursive types to the system candut® un-
bounded recursion, which corresponds to circular reagoritor
example, suppose that a recursive typeis defined to be a func-
tion type (implication) takingF'’r and returningFalse, so that the
following type equivalence holdsi'’r = (!Fr) — False. Then
the term (A lz :!Fr.z lz) has type(!Fr) — False, and so
the (non-terminating) terrt\ !z :\ Fr.z 'z) !(Alz:!Fr.z !z) has
type False, and thus provegualse.

Nevertheless, ATS and Jiet al's system already include a
particular form of recursion between the proof languageig¢ivh
must disallow unbounded recursion) and the computaticguiage
(which allows nontermination): in these systems, the syiita
computation types and logical formulas is mutually rectesFor



example, the logical formulg = 7 in Jiaet al’'s system asserts
that memory locatiory has typer, and the computation type
(F) — 0 specifies a typed assembly language code block with
preconditionF’, as shown in this simplified subset of their syntax:

formula F=...|g=>7
type T=...|(F)—0

The proof language can safely cooperate with the computéaio
guage because the proof language handles computation types
opaquely; a proof with access to a formyla = ((F1) — 0)
cannot actually invoke the typed assembly language blodief
(F1) — 0 (which might have a side effect, or fail to terminate).
Furthermore, even the formulas insid&é appear opaque to this
proof, since the formuld? is buried inside the computation type
(F1) — 0. In fact, the following computation recursive type equiv-
alence is sound:

Tr = ((92 = Tr) — 0)

even though it introduces a logical recursive type equivade
given the abbreviatiof'’r = (g2 = 7r):

Fr = (g2 = ((Fr) — 0)))

We can generalize this idea in two steps. First, followindg&e
[17, 1], we add an explicit opagueness operatoito the logi-
cal formula syntax, and allow recursive type equivalendethe
form Fr = O(...Fgr...). For example,fr = O((!Fr) —o
False) is a legal equivalence. Second, in the spirit of monadic
10 [25], we distinguish between a pure language (the proof la
guage) and an impure language (the computation language), a
stipulate that only the impure language can extract formtriam
underneath the operator — proof terms can coerééto OF,
but only computation terms can coercel” to F. To see the in-
tuition behind this restriction, consider again the nomrieating
term (A lz | Fr.x lz) !(Alx:\Fr.x !z). The application & !z”
is now ill-typed, because’s type O((!Fr) — False) is not
a function type, and the proof language cannot coerde the
function type((!Fr) — False). By contrast, the equivalence
Tr = (O(g = 7r)) — 0 gives the computation language a way
to express non-termination: a computation functjoof type r
coerces its preconditio® (¢ = 7r) to the formula(g = 7r),
uses this formula to load a functigii of type 7z from address),
and then invokeg’. If ' andf are the same function, this compu-
tation diverges. Thus, it is still possible to encode namteating
computationausing recursive types, but Section 5 proves that all
well-typedproofsterminate.

GTAL'’s recursive type “recr” uses theO operator to form
recursive definitions, such as this recursive definition afeeo-
terminated linked list:

rec (AList:N — T.AN:N.
I(Le 1 N) — (3N’:N.Mem N N’ @ List N'))

Unlike many proof languages (such as TL's proof languag&plG
allows recursive type definitions that mention the recedgibound
name in both positive and negative positions, and@heperator
protects the proof terms from non-termination. (Note: thpet
equivalence rule ree = O (7 (rec 7)) implements a form oéqui-
recursive typeswhich tend to be more challenging to type check
than iso-recursive types. Our actual implementation ofpitaof
language requires explicit term annotations to tell thetyipecker
where to apply the rule ree = O(7 (recr)).)

It's often necessary to coerce a formued to a some related
formula© B. For example, GTAL encodes classes using recursive
types, and a coercion from a subclass object to a superchass o
ject coercesD A to OB, where A describes the subclass aritl
describes the superclass. The garbage collector's heapsiom
lemma also coerce® A to OB, where A describes an object in

coercion
instruction 1

c = elfc

c

[c]movir «— n

[c1]ea]movry — 7o
[c1]cz]addiry «— ra +n
[Cl|02|03]add7‘1 —1ra+r1s3
[c1]c2,mem]l0@dry «— [r2 + n]
[¢mem |c1|c2]store]ry + n] «— ro

[c1]e2]z.cjmplblery < ran

block blk letp =i in bik
[cjmplimpn
[clejmplir T
block w/ header b A kD | Ap:T.blk
code heap A= {J]An—b
program  prog = letp=cinprog | Ablk

Figure6. Computation language syntax

some heapd and B describes an object in an extended hé&&p
It's possible to coerce® A to OB by first using the computation
language to coerc® A to A, and then using the proof language
to coerceA to B to O B, but this often forces an awkward rendez-
vous between the computation and proof language. The héap-ex
sion lemma, for example, performs ofied- to-O B coercion for
each word in the heap, and it would be impractical to execoee o
computation step per heap word every time the heap growsk-Luc
ily, there is a sound axiom, the modal “distribution axiomtitten
here as © <<"), that lets the proof language perform a coercion
inside aO operator:

O<< O(A— B) — (0OA— OB)

This axiom, when combined with the axiodh — O A, fits into

a general framework of intuitionistic modal logics catéged by
Simpson [22]. (Specifically, these two axioms are valid foipKe
models(W, <, R, V') whereR is a subset of; see [22] for deriva-
tions of various intuitionistic modal logics based on vag@hoices

of R.) Nakano [17] describes additional axioms that may be appro
priate for theO operator, though the two axioms above are suffi-
cient for this paper. Note, though, the standard monhitid ax-
iom, “>>=", is inappropriate for GTAL, as it is strong enough to
express non-terminating proofs when combined with GTAFE's r
cursive types:

>>= OA— (A—OB)— OB

Therefore, even though GTAL's use ©f is analogous to monadic
10, it is fundamentally different. Nevertheless, Wadleb][2le-
scribes two slightly weaker operatocff — (A — B) — OB
andOA — OB — O(A x B)) that predate $>="and are safe
for GTAL,; these weaker operators can derivec< and are deriv-
able fromO<<.

4. A typed assembly language

GTAL's computation language, shown in Figure 6, consistasf
sembly language instructions for moving, adding, loadgtgring,
conditional branch, direct jumps, and jumps through regsst_ike
LTT[8], TL[21], and ATS [30], the computation language nm@un
lates proof terms explicitly, assigning proofs to variablegoccur-
ring in pattern®) using “let” expressions. Each instruction requires



one or more proof terms to provide evidence of the instra&io
safety; for example, the move instructioe;|cz]Jmovr, «— 72" re-
quires proofs:; andc, that registers; andr, are accessible. This
approach results in verbose annotations, but makes typkicige
easy. Section 5's coercion termination theorem allows GTaL
erase the annotations after type-checking the code.

Unlike the proof language, the computation language suppor
the coercionrD A — A. The operator §” erases a singl®© from a
type:

Chkec:OT1

Chtc:r
We define a “coerciont to be a proof terne preceded by zero or
moref operators. Typically, a program uses theperator to unroll
a recursive type. If the variable has type ree, then the compu-
tation term “lety = g« in blk” introduces an unrolled variablgof
type (7 (recr)).

Each blockbd in the program specifies a precondition For
example, the following block’s precondition requires thegister
r hold a number4, and that memory locatiod hold a numbeB
that is the address of another block of code:

AA:NAB:NA(zr, zm, lzc) :
(Regr A) ® (Mem A B)® (VX :T.CodeB X).
letzr’ = [zr|zr, zm]loadr < [r + 0] in
[zr'|zc ((Regr B) ® (Mem A B)), (zr’, zm)|jrr

The block accepts its precondition in the variableszm, andzc,
and then executes a load and a jump. Each instruction reggxire
idence that the instruction is safe, and produces new evédfor
subsequent instructions. For example, the load instnucgquires
two coercions as evidence: the coercigrproves that the destina-
tion register is available, ant ..., proves that the source regis-
ter and memory location are available. In this examplés both
the source and destination register, so the same evidensat-
isfies both requirements. (Note that even thoughs linear, it is
safe and useful for the load instruction’s typing rule torshéne
contextC’s linear assumptions among the operands so that both
operands can use, rather than splitting”' disjointly between the
operands.) The load instruction consumes the evidencbéatds-
tination register and produces new evidence saying thaetister
now contains the loaded value from memory:

C=CuC. C=cC'C"
C' t co,mem : (RegT2 72) @ (Mem 7o+ n Tp,)
CT = c1 Regrl T1
Ca,xz— (Regry mm) - blk
C + letz = [c1]c2,mem]l0@dry < [r2 + n] in blk

(For simplicity, we show a special case of the general rulédad,
accepting just variables rather than patterng.) In the example
above,zr’ is assigned type Reg B. This prepares the block for a
jump to the code at addregs

C — Cl C//
C'Fc:Regr 7,
CF Cjmp : (CodeT, ) ® 7¢
C + [clejmplirr

The code evidencec shown above is polymorphic over all precon-
ditions X, so the example instantiatés with a particular precon-
dition 7. = (Regr B)® (Mem A B), and then provides evidence
(zr’, zm) of typer..

Other instructions are similar. The store instruction cones a
memory assertion Menm; 72 to produce a new memory assertion
Mem 71 5. The add instructions consume a Ragr to produce
a Regm s(s(...s(72)...)). The conditional branch produces an
assertion!(Le s(r2) 72) for the instructions following a compari-
son ofr; to 72, and an assertiof( Le 71 72) for the branch target

(the variabler shown in the syntax holds the latter assertion, so that

the coerciort can user to satisfy the branch target’s precondition).
A program prog consists of a currently executing blodkk

and a mappingA from code addresses to blocks, preceded by

zero or more “let” declarations. The “let” declarations ased to

establish libraries of types and proofs for use by the coescand

expressions inside the blocks; for example, the garbadectot

in Section 7 establishes a large library of basic types,(&igue,

False, Le, Arr) and types for garbage collection invariants. The

complete typing and evaluation rules are available onti®.[

5. Formal properties

GTAL is safe in the standard sense of type preservation €stbj
reduction) and progress; the preservation and progressetims
for programsprog encompass preservation and progress for blocks
blk, coercionse, and expressions; proofs are by induction over
judgments:

Theorem [typepreservation]: If C' = A;T'; T; ¥ and- C' and
C I prog and¥; prog — ¥’'; prog’ then- C’ andC’ - prog’
whereC’ = A;T; T3 W'

Theorem [progress]: If C = {};{}; T; ¥ and- C andC +
prog then there is som&’; prog’ such thaW; prog — V’; prog’.

The termination theorems make it safe to erase the annasatio
from a TAL program before running it, so that TAL execution is
just untyped assembly language execution:

Theorem [expression termination]: If C = {};{}; T; ¥,
and- C andC F e; : 7 then all sequences of reduction steps
e1 — ex — e3 — ... terminate at some,, = v,. (Note
that valuesy do not step; particularly, the valuee does not step.)
Proof by preservation and progress, and by mappiagd+ onto
calculus of inductive construction terms/types [21, 1Bdsing any
e inside aOe and anyr inside aO7. The key observation is that
in a proof termOe, the terme plays no role in the reduction.
More formally, we define an erasure that maps to the dummy
valuetrue (of type True) and mapsO 7 and recr to dummy types
(e.g., True, if 7 : T), and prove that this erasure has no effect
on the number of reduction steps. We then prove that the étrase
term is well-typed, so that proving termination of well-gterms
in the original language reduces to proving termination eflw
typed terms in a language without theoperator and ree type.
Note that if the proof language included a coercion — T, the
corresponding evaluation rutee — e would destroy the proof,
because: could escape into the rest of the evaluation and affect
the number of subsequent reduction steps. Intuitively, ihiwhy
the monadic operatos>= is unsafe for thed> operator: the rule
(Ceq) >>= ey — ey eq allows e, to escape outside the
operator and affect the rest of the computation. By contthst
rule (Oep)O<< (Oeq) — Ofep eq) produces an opaque value,
with no escape.

Theorem [coercion termination]: If C = {};{}; ;¥ and
F CandC F ¢ : 7 then all sequences of reduction steps
¢c1 — c2 — c¢3 — ...terminate at some,, = v,. Proof
by induction on the number gf operators irc (using expression
termination in both base and induction cases).

Detailed proofs of these theorems are available online [10]

6. Heapsand heap object types

Sections 3-5 described GTAL's syntax completely; the réshe
paper adds no new syntax. As promised in Section 1, GTAL in-
cludes no types or expressions for heaps, heap objectsatdin,
and deallocation. This section describes how to encode ttes-
cepts using the existing GTAL syntax.

GTAL's types are sufficient to implement a heap and nonlinear
arbitrarily aliased pointers into the heap. For examplppsse that



the heap contains just two wordk and A; at memory locations
N and N + 1. Define the heap\f = My ® M; where, for an
immutable heapM;, = Mem N + k Ay (using the abbreviations
N+0=N,N+1=s(N),N+2=s(s(N)), etc.), or, for a
mutable heapM; = JAx:N. (Mem N+k Ay)® (Fr Ax) where
Fy, is an invariant thatl;, must satisfy. A nonlinear pointe?; into
the heapV/ is simply a nonlinear functioh(M — M; ®...) that
extractsM, from M. The “ ..” indicates everything else if/ that
is not contained inV/y; for the typed assembly language presented
below, it's helpful to describe “everything else” precigelsing the
type (M, — M) (which intuitively can be thought of asMj
subtracted from\/”):

Given a nonlinear pointeP, and a linear heap/, a simple proof
term provesM;, and (M — M). The computation language can
then usel, to load Ay, from memory locationV + & or storeAy,

to memory locationV + k. After loading or storing, a simple proof
usesMj, and (M, — M) to reconstitute the heal/. A program
passes the linear hedg from function to function explicity as the
program executes; this allows every function in the prograumse
the pointersP; for loads and stores at any time.

Unfortunately, if the program extends the heap with a third
memory wordMs, this strategy breaks down. The new heap type
M’ = My ® My ® M- is different from the old heap typ®/, and
this means that the old pointef% no longer apply to the current
heap (since they refer td/, not M’). One strategy is to restrict
pointers to a particular pattern, as &igal. do for stacks [13]; we
can imitate their approach by observing thgt/’ — M @ (M —o
M")), so that pointers intd/ are still usable via a two-step process:
extract M from M’, then extractM, from M. This is good for
stacks, which have very restricted usage patterns for g@inbut
insufficient for heaps, because pointersifohave different types
than pointers ta\/’, and this prevents a program from using these
pointers interchangeably.

Another strategy is to find all old pointers in the program and
update their types to refer tof’. Updating an old pointer is easy,
but finding the old pointers is hard, since they may be hidden
inside functions, inside recursive data types, their typag appear
non-positively in other types, etc. The traditional médtaeretic

approach to heaps uses an induction over terms to prove a heap

extension lemma [16]; this is a straightforward inductidnttee
meta-level, but it appears difficult to encode an inductieerderms
efficiently from inside the language (i.e., to construct terms that
perform structural induction over all other terms).

In earlier work [11], we overcame this problem by adding a
meta-level extension lemma to the proof language. Thisethus
some tension with our stated goal of not baking the heap heo t
language, though — if there’s no heap built into the languadpat

does the extension lemma extend? Our answer to this wag rathe

eccentric (the extension lemma extended a set of recurgpe t
bindings), so for this paper we've chosen a cleaner apprataser
in spirit to work by Crary and Weirich [9] and Shatal. [21]. Shao
et al. define “source typest? as inductive type definitions within
their proof language (CIC):

Inductives? : Kind := snat : Nat — Q
| sbool : Bool —
| Q2 —-Q—-0Q
| tup : Nat — (Nat — Q) — Q
| Ve : Ik :s.(k — Q) — Q
| 3s: MMk :s.(k— Q) —Q

In this example (taken from [21]), the source types inclunfe s
gleton natural numbers (such asnéat 7"), singleton booleans,
function types (such as% (snat 7) (sbool true)”), tuple types

(specified by a length and a mapping from indices to types), an
polymorphic and existential types (both written in a higbeder
abstract syntax style). The program then performs anabtsis
transformations on these types from within the languag#owi
requiring any meta-level proofs about the source types. #igpa
ularly useful transformation is Crary and Weirich’s “inpérfunc-
tion, which maps the inductively defined sources types taieie
representations.

Following these approaches, we first define an inductiveasynt
for what we'll call “heap types”, and then define a functiomtth
maps heap types to concrete representations. Given thege he
types, we can define a heap and prove heap extension inside the
language, without requiring a meta-level heap extensiomia.

The ability to analyze inductively defined heap types within
the language comes at a cost: the types of objects appearing i
the heap are limited to whatever types can be expressed using
inductive definitions. There are two reasons to believe thist
cost is reasonable. First, thepresentationsf the heap types may
still incorporate any types in the type system (existertijpkes,
capabilities, etc.), not just heap types. Second, {thexample
above shows that a proof language like CIC is powerful enough
to express common programming language features. Nelesthe
CIC’s rules for well-formed inductive types and operatioms
inductive types are intricate and subtle; for this paperpveger to
stick with a simpler type system (and leave the integratfdBTAL
with CIC as future work). Luckily, the proof system from Seat
3 already defines one inductive type, natural numbers, asditie
type alone is enough to encode classes, methods, and subtgpi
the style of Chen and Tarditi’s LI [6].

Just as Crary and Weirich define mappings from inductively
defined types to concrete representations, Chen and Tdediitie
mappings frontlass namego concrete representations. To encode
this approach, we use natural numbers as class names, and the
define a mapping from natural numbers to representatiorighke
kind of class name§& be an abbreviation for the natural number
kind: C = N. Then the representation functidtep is a recursive
type of the following form, wherex,, (defined in Section 6.1) has
kind T:

Rep =rec(ARep:C - N—- (N—-C) - N—-T.
AClassName:C.
AOffset :N.
ASpaceMap :N — C.
AValue :N.Trep)

Each class representation specifies a word representati@ach
word at offsetOffset. For example, consider a class Point, with a
header word and integer data word, and a class Link with agnead
word and two data words:

class Point {pointmdr; int}
class Link {rrinksar; int; Point}

Point will define word representations for offsets 0 and 4 an
Link will define word representations for offsets 0, 1, andach
word representation takes a paramefpuceMap, described be-
low, and a value indicating the contents of memory at oft3gtet
from the beginning of an object. Given these parametersyird
representation produces an invariant that must be satigfigte
contents of memory aDffset. For example, a word of type “int”
may contain any natural number, so the word representaitirei
trivial invariant “A\SpaceMap : N — C.\ Value : N. True”. A type
“pos” that holds non-zero natural numbers would have thedwor
representationXSpaceMap :N — C.\Value:N.Le 1 Value”.

The SpaceMap parameter describes the memory layout at a
given point in the program’s execution. For the moment, sspp



that a singleSpaceMap function defines the current state of the
entire heap. (The next section actually defines tmceMap
functions, one for from-space and one for to-space.) Ea@cbb
in the heap consists of a header word followed by zero or more
interior words.SpaceMap maps word addresses to descriptions of
words. SpecificallySpaceMap N = 0 if addressN holds a free
word, SpaceMap N = 1 if addressN holds an interior word, and
SpaceMap N = s(s(C)) if addressN holds the header word of
an object of clasg’.

Word representations for class-pointer types define caingsr
on SpaceMap. The word representation of Link’s last field, of type
Point, is:

ASpaceMap :N — C.\ Value :N.
(Eq (SpaceMap Value) s(s(Cpgint))
®(Eq (SpaceMap s( Value)) 1)

where Cpint is the class name for Point. This representation re-
quires that at addressé&lue ands( Value), there lives an object

of class Point. (Actually, we've fibbed here slightly; thalreefi-
nition of the pointer-to-Point representation allows anpdass of
Point to reside at addresialue, but we defer subclasses to Ap-
pendix A. Also, for simplicity, we assume non-null point@rghis
paper; the representation of a possibly null pointer wouabgetthe
form “ASpaceMap : N — C.AValue : N.!(Le 1 Value) — 77,
stating that the invariant is only relevant if the addresBalue is

not 0.)

The heap maintains two properties for each heap address
First, a linear capability “Merm Value” specifies that address
currently holds some valu®alue. Second, ifn holds a field of an
allocated object, thelValue must satisfy the word representation
of that field (e.g. Value must satisfy Te 1 Value” for a field
of type “pos”). The mapping from to n's word representation
consists of two steps: first, us&paceMap n) to find the class
ClassName and offset Offset stored atn; second, useRep to
find the word representatigiRep ClassName Offset). Suppose,
for example, thatSpaceMap maps address to class Point and
offset 1. Then(Rep Cpgjnt 1) Will be the word representation
for “int”. ASpaceMap : N — C.\Value : N.True. A program
can use the capability Mem Value to load value Value from
addressn, and the word representation to discover thatiue
satisfies the (trivial) constraintTrue”. The program can also use
the capability Memn Value to store a new valueValue’ into
addressn, provided thatValue' also satisfies the constraint (in
this case, all values satisfy the constraifit-tie”). Notice that as
long as a new valué/alue’ satisfies the constraint for the word
representation at, storing Value’ into n does not change the
global mapSpaceMap. In other words, the heap can treat “weak
updates” to address (updates that do not change the invariant at
n) locally, without considering other memory addresses.

6.1 Generalized representations

The Point and Link classes provide examples of how to define a
particular definition ofRep. This rest of this section generalizes
Rep's definition to cover all classes defined by the followingrgra
mar:

class = Tmethods fleld,
ﬁeld = Neclass | Tprimitive

... field,,

Each class defines a layout consisting of a method table tayou
specified by any type.,c:.q Of kind N — T, and zero or more
fields. Each field is either a pointer to a class, specified ley th
integer name of the pointed-to class, or a primitive typetigg by
any typerprimitive, Of KiINAN — T. For exampler,rimitive cOUld be
AValue :N.Le 1 Value to represent a positive integer field. Since

the Trmethod @NA Tprimitive types do not depend ofipaceMap, the
garbage collector will not care how they are defined; it withgly
copy the valueValue from one memory location to another.

Just as we used natural numbers to encode class names, we use
natural numbers to encode class layouts. The encodingsteri
three functions, where,;.. has kindN and7py-ciess Name @aNATprim
have kindT:

SizeOf = AClassName: C.Ts;ze
Ptrs = XClassName:C.
A Oﬁset : N-TPtTClassName
Prims = XClassName:C.
AOffset :N.
AValue :N.7prim

For eachClassName, the typePtrs maps each field of the class to
either0, to indicate a primitive type, or te( ClassName'), to in-
dicate a pointer type to clagslassName'. For eachClassName,

the type Prims maps each field of the class to either an invariant
Tprim fOr a primitive type field, or to the typéalse for a pointer
type field.

SizeOf specifies the size, in words, of each class’s layout.
Given this size information, we can define a pointer to anailgé
classClassName (generalizing the earlier definition of “pointer-
to-Point”):

EzactPtr =
AClassName:C.
ASpaceMap:N — N.
AValue:N.
I(Eq (SpaceMap Value) s(s(ClassName)))
®(Arr 1 (SizeOf ClassName) (AN :N.
I(Eq (SpaceMap (Add Value N)) 1)))

The typeEzactPtr specifies that an object of claé8assName re-
sides at addressé&ilue . . . Value+(SizeOf ClassName)—1—
specifically, it specifies thatpaceMap Value = ClassName + 2,
and thatSpaceMap (Value + 1) = 1...SpaceMap (Value +
(SizeOf ClassName)—1) = 1. (The prefix “Exact” indicates that
the pointer points to an object whose class is exaCllyssName,
and not a subclass aflassName; we defer subclass pointers to
Appendix A.)

A single definition of Rep, written in terms ofSizeOf, Ptrs,
and Prims, now suffices for all sets of class layouts:

Rep =rec (ARep:C - N—- (N—-C) - N—-T.
AClassName:C.
AOffset:N.
ASpaceMap:N — C.
AValue:N.
Case Offset (Prims ClassName 0 Value ®
GcHeader ClassName Value) (AM :N.
Case (Ptrs ClassName Offset)
(Prims ClassName Offset Value)
(AClassName':C.
EzactPtr ClassName' SpaceMap Value))))

The definition ofRep is by cases, using the definition Gfase
from Section 3 Case 0 7. 7s = 7. and Case s(M) 7. 7, =
75 M). The most important case is inner case, which defines prim-
itive type fields in terms ofPrims and defines pointer type fields
to be anEzactPtr to the pointed-to clas€lassName'. The outer
case differentiates the header word from the fields; thedremdrd
is defined in terms oPrims and then augmented with some extra
information for the garbage collector, as defined in the sexgtion.
The definition above expand®ep into one big recursive
datatype. Our actual implementation parameterieg’s defin-



FwdPtr =

load Rtmp2 <- [Rptr + 0] //load header (fromspace)
ble(Rd1<=Rtmp2) FwdNoCopy // already forwarded?
load Rtmpl <- [Rtmp2 + 0] // load (SizeOf C)

add Rtmpl <- Rtk + Rtmpl // allocate (SizeOf C) wordg
ble(Rtmpi<=Rtl) FwdCopy // enough space?

jmp Fail // not enough space
FwdNoCopy =

jr Rretc // return forwarding pointer
FwdCopy =

// copy word 0
// initialize fromspace ptr
// save tospace address

store [Rtk + 0] <- Rtmp2
mov Rtmp4<-Rptr

mov Rtmp2<-Rtk

jmp FwdCopyLoop
FwdCopyLoop =

addi Rtmp4 <- Rtmp4 + 1  //increment fromspace ptr
addi Rtk <- Rtk + 1 // increment tospace ptr
ble(Rtmpl <= Rtk) FwdDone //reached end of object?
load Rtmp3 <- [Rtmp4 + 0] // \

store [Rtk + 0] <- Rtmp3 // - copy one word

jmp FwdCopyLoop

FwdDone =

store [Rptr + 0] <- Rtmp2 // setforwarding pointer

jr Rretc // return copied object
GcStart =

mov Rfk <- Rtk /7 \

mov Rtj <- Rfi /7N

mov Rtk <- Rfi /7 N\

mov Rfi <- Rti // swap fromspace,
mov Rti <- Rtj // tospace
mov Rtmpl <- Rfl /7

mov Rfl <- Rtl /1

mov Rtl <- Rtmpl /77

jr Rretg

Gcloop =

ble (Rtk<=Rtj) GcDone // queue empty?
load Rtmpl <- [Rtj + 0] //load header (tospace)
load Rtmpl <- [Rtmpl + 1] //load scan function

jr Rtmpl // jump to scan function
GcDone =
jT Rretg // finished scanning

Figure7. Unannotated garbage collector code

ScanPoint =
addi Rtj <- Rtj + 2 // TJ—next object in queue
jmp GcLoop // finished scanning object
ScanLink =

load Rptr <- [Rtj + 2]
movi Rretc <- ScanLink2
jmp FwdPtr

ScanlLink2 =

store [Rtj + 2] <- Rtmp2
addi Rtj <- Rtj + 3

jmp GcLoop

// load ptr to Point object
// set return address
// forward the Point ptr

// store forwarded pointer
// TJ—next object in queud
// finished scanning object

Figure8. Unannotated scan code for Point and Link classes

ition over all possiblePtrs, Prims, andSizeOf :
Rep = APtrs:... APrims:... \SizeOf :....rec(...)

This allows the lemmas aboutep, such as the heap extension
lemma described in the next section, to be polymorphic oller a
Ptrs, Prims, and SizeOf, so that they need not be reproved for
each choice of class layouts. Similarly, the implementapara-
meterizesFEzactPtr over all possibleSizeOf . Finally, the imple-
mentation break®ep into smaller, mutually recursive pieces (en-
coding mutual recursion by parameterizing the pieces @@r).
For simplicity, this paper omits these parameterizatians|, treats
Rep as a monolithic recursive datatype.

7. A garbage collector

This section describes a simple garbage collector writigBTAL.
Figures 7 and 8 show the unannotated code for the colleabor. F
clarity, the figure uses textual labels for blocks (e.g., LGap”)
in place of integer code addresses. We have mechanicales typ
checked the annotated version of the garbage collectog asiype
checker written in OCaml; after introducing the garbagéention
algorithm, this section describes the main invariants Waused
to annotate the collector so that it could be type checkedortin
nately, the proof annotations are much larger than the dse#:i
about 1000 lines of proofs to establish lemmas for aritheneti-
rays, and equality, 1500 lines of lemmas for the object araphe
invariants (e.g. the heap extension lemma), and 500 linaswd-
tations on the garbage collector instructions. A garbagdleator is
atypical TAL code, though, because it manipulates unugaailin-
plex invariants. Simpler TAL code requires much less artimia
for example, the mov instructions in the GcStart block ofureg7
require only one line of annotation per instruction.

The garbage collector implements the well-known Cheney-
queue algorithm [27], which copies live data from “from-spa
to “to-space”, using to-space as a work-queue to save spaee.
space and from-space will each be contiguous ranges of nyemor
the former occupying address&% . .. TL — 1 and the latter occu-
pying addresse$] ... FL — 1. The program allocates objects in
to-space, starting a7 and continuing until the allocation reaches
the limit of to-space L), at which point the program starts a
collection.

The garbage collection algorithm proceeds as follows:

1. Assume that to-space contains objects in addréBses. TK —
1(f TK < TL,thenTK ... TL — 1 contains free memory).
The algorithm will garbage collect these objects. Assunag th
registerRt: holds TT and registeiRtk holds TK . Assume that
from-space contains free space in addresgés.. F'L — 1.
Assume that registeRfi holds FI and registei?fl holds FL.

2. First, the algorithm swaps to-space and from-space:lthtoeo
space, holding the objects, is now called from-space, aad th
old from-space is now called to-space. The program calls Gc-
Start, which swaps the registers that describe from-spattoa
space. GcStart also sets $man pointerTJ and theallocation
pointer TK to the beginning of the new to-space, and then re-
turns to the program by jumping to a return address (“jr Rjetg
Each time the collector copies an object into to-space,dsad
the size of the object td'K. In the remaining steps, “from-
space” refers to the new from-space, and “to-space” refers t
the new to-space.

3. For each register holding a pointer (each “root”), thegpam
calls FwdPtr to copy the pointed-to object to to-space. RwdP
overwrites the old from-space object’s header witbravarding
pointer that points to the new copy; any subsequent calls to
FwdPtr for this object return a pointer to the existing copy



rather than making additional copies. The newly copied abje
into-space is a word-for-word replica of the original frapace
object, which means that the pointers inside the copiedcobje
still point back to from-space.

. The program calls GcLoop, which scans each object in the Ch
eney queue (i.e., it scans the objects at addregdes. TK —
1). GeLoop repeats the following operation until the queue is
empty (i.e., untilTJ = TK):

(a) For the object at addresB/, call FwdPtr on each pointer
in the object. Overwrite the old (from-space) pointer value
in the object with the forwarded pointers so that the object
points to to-space.

The following diagram illustrates the heap’s state in stepad 4:

From-space To-space
FI scanned TI
copied
allocated data
data unscanned TJ
copied
data (queue)
TK
FK
free free
FL TL
For simplicity, we assume that all root pointers are in regs

To support a stack, the collector would have to traverse dbésr
on the stack as well as roots in the registers; we expect stack
versal to be no harder than heap object traversal (with tksiple
exception of scanning saved callee-save registers). Starkning
is outside the scope of this paper.

The type system imposes one inefficiency on the collectoe:cod
each allocation in to-space must check that there is enouggh f
space for the new object. In theory, this check is unnecgdssar
cause to-space is the same size as from-space, and it tteecefo
tains enough room for one copy of each from-space objectifiyo
this statically would require extending the invariants siderably,
and we wanted to keep the invariants as simple as possible.

The garbage collector’s two central operations, copyinglan
ject and scanning an object, depend on an object’s layodtften
garbage collector code shown in Figure 7 must be polymorphic
over all classes. Therefore, the garbage collector neads son-
time information about each object’s layout. In generak thfor-
mation may come in two forms. First, the information may d¢sins
of meta-data in memory, such as an integer specifying thedfiz
an object, and a bit field specifying which fields of the objeate
pointers. Second, the information may implicitly resid@ér-class
code that actually implements the copy and scan operatiims.
demonstrate that GTAL handles both these approaches, ves&ho
the former approach for the copy operation and the lattetHer
scan operation.

The garbage collector reads information about each ohjewt f
the object’s method table, pointed to by the header word. The
method tables reside in a static data area at addrésses DL —

1, where DI and DL are constants. Each clag$ has its own
method table, and each method table contains a size wor@dna sc
function pointer, and zero or more method pointers:

SizeOf C
scan function
method 0
method 1
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The Rep function from Section 6 use&cHeader to add the
size word and scan function pointer to each method table:

GcHeader = A\ClassName:C. A Value : N.
I(StaticPtr Value (SInt (SizeOf ClassName)))

® |(StaticPtr s(Value) (ScanCode C'))

SInt = AN :N.A Value:N.Eq Value N
StaticPtr = AN :N.AInv:N — T.
!(Le s(N) DL)

QD — MemF N Inv ® (MemF N Inv — D))
MemF = AN :N.AInv:N — T.3V:N.Mem N V®!(Inv V)
RegF = AR:R.\Inv:N — T.3V:N.RegR V® !(Inv V)

D =rec(AD:T.Mem DI Mpr ®...®@ Mem DL —1 Mpr—1)

The type isD a recursive, linear type that specifies the layout of the
static data area (we omit the detailed definition/othere). Each
StaticPtr implements a nonlinear pointer intD, following the
strategy in Section 6. We require that the static data asdeé a
lower area of memory than from-space and to-space i< FI

and DL < TI). This enables the second instruction of FwdPtr to
distinguish between a header word that points to a methdd itab
D, and a header word that is a forwarding pointer to an object in
to-space. The following definition captures the overaltestsf the
heap, including from-space and to-spabe,and registers holding
various heap addresses:

Ge=\Sf,St,FI,FK,FL, TI, TJ, TK, TL.
Reg Rdi DI @ Reg Rdl DL
®Reg Rfi FI ® Reg Rfk FK ® RegRfl FL
®Reg Rt TI @ Reg Rty TJ ® Reg Rtk TK ® Reg Rtl TL
®!(Le DL FI)®!(Le DL TI)
®D
®FromSpace Sf St FI FK FL
®ToSpace Sf St TI TJ TK TL

For brevity, we omit theN — T” kind annotations on the from-
and to-space mapsf and St, and the N” kind annotations on the
heap addresses. The following type expresses the statesphte:

ToSpace = \Sf,St, TI, TJ, TK, TL.
\(Le TI T.J)®!(Le T.J TK)®!(Le TK TL)
®I(VN:N.Iff (Le 1 (St N))
I(1(Le TI NY®(Le s(N) TK)))
®!(Not (Eq (St TI) 1))
®QArr TI TJ (AN:N.MemF N (RepS St St N))
®@Arr TJ TK (AN:N.MemF N (RepS St Sf N))
®Arr TK TL (AN:N.3V:N.Mem N V)

The ToSpace type enforces these invariants:

* The to-space addresses are in order:< 7TJ < TK < TL

e An addressN holds allocated dataS¢ N > 0) if and only if
TI < N < TK. Otherwise N holds a free word{t N = 0).

e The first word of to-space may be fregt( 7 = 0) or contain
the first word of a class objecb{ T7 = s(s(C))), but it never
contains an interior word of an objeci( 71 # 1).

e Each addres§'7 < N < TJ holds data that points from to-
space to to-space. This data conforms to the invariantsfigabc
in Rep and the to-space mafi.

e Each addresg’J < N < TK holds data that points from
to-space to from-space. This data conforms to the invariant
specified inRep and the to-space mafi.

e Each addres§'K < N < TL holds free memory.

The functionRepS St S N specifies the invariant that each word
of to-space must satisfy:

RepS = \S,S’, N.Rep (SType S N) (SOffset S N) S’



RepS relies on auxiliary primitive recursive functiorfsIype and
SOffset, defined so tha{SType S N) = C if addressN holds
some word of some object of clags and(SOffset S N) equals
the offset from the start of the word (where the header word is
at offset 0). If addressV is free, then(SType S N) = 0 and
(SOffset S N) = 0.

The from-space definition is similar, except that each heade
word may contain a forwarding pointétzactPtr C St V, rather
than conforming to the invariants iRep:

FromSpace = \Sf, St, FI, FK, FL.
(Le FI FK)®!(Le FK FL)
QIVN:N.If !(Le 1 (St N))
I(Y(Le FI N)®!(Le s(N) FK)))
®!(Not (Eq (Sf FI) 1))
®Arr FI FK (AN :N.Union
(MemF N (RepS Sf Sf N))
(MemF N (RepFwdS Sf St N)))
®Arr FK FL (AN:N.3V:N.Mem N V)
RepFwdS = \Sf, St, N.
RepFwd (SType Sf N) (SOffset Sf N) Sf St
RepFwd = AC:C.AOffset :N.ASf, St. AV :N.
Case Offset
(EzactPtr C' St'V)
(AM :N.Rep C Offset Sf V)

Using these definitions, the annotated garbage collectie ce-
fines preconditions for each block. The preconditions ang,lgo
this section just highlights one of them: the precondition the
scan functions, parameterized over all possiilessNames:

ScanCode = AClassName :C.\ Value :N.
VSf, St,St', FI, FK, FL, TI, TJ, TK, TL.Code Value (
Gec Sf St FI FK FL TI TJ TK TL
® |(EzactPtr ClassName St' TJ)
® (ScanQueue St
(Add TJ (SizeOf ClassName)) TK)
® !(SpaceExtend St St')
® RegJunk (Rptr, Rtmp1, Rtmp2, Rtmp3, Rtmp/,,
Rretc)

®RetG Sf St)
RegJunk = AR:R.JV:N.RegR V'
RegJunk(Ri ... Ry) = RegJunk R1 ® ...Q® RegJunk Ry,

Each scan function expects an exact pointer to ctélassName
(for example, Figure 8's ScanLink expects a pointer to Lifik)is
allows the scan function to load and store fields of the cldsen
the scan function finishes, it jumps back to GcLoop. The soao-f
tion only scans the first object currently in the queue; aariant
“ScanQueue” (omitted here) provides an exact pointer for each
remaining object in the queue.

As the collector allocates new objects in to-space, it elgdhe
to-space space map. By the time the collector finishes, tla fin
space mapst’ differs from the initial St. Any pointers that still

VS, 8", C, Offset, V.!(SpaceExtend S S") —o
'(Rep C Offset S V) —o!(Rep C Offset S" V)

The proof uses the << operator to step inside the recursive type
Rep =rec (... Trep), and coercere,’s data fromsS to S’. Based
on the extension lemma fdkep, the annotated garbage collector
proves extension lemmas for from-space and to-space.

When GcLoop finishes, it jumps to a return address specified
by RetG (omitted here). At this poinf'J = TK, so all allocated
data in to-space points to to-space, not to from-space,renddta
in from-space is recycled into free space. (This collecda stop-
the-world collector; if the collector were incrementale torogram
would need a run-time check, barrier [27] to distinguish between
the to-space-to-to-space pointersii < N < TJ and the to-
space-to-from-space pointers™ < N < TK.)

8. Conclusions

We've presented a type system that gives programmers pawerf
primitive abstractions with which to implement type-safermory
management. GTAL differs from traditional TAL systems by en
coding objects and classes, rather than including thencttiran
the type system. This requires some initial effort to buifdtbe
appropriate abstractions (as the long series of definitiorsec-
tions 6 and 7 illustrate), but offers complete flexibilityepvmem-
ory layout and memory management. Yet, it stops short ofirequ
ing a complete mechanical formalization of a typed assenaloly
guage’s soundness, as in foundational PCC approacheheFurt
more, there’s no need for a separate mechanical proof tleat th
garbage collector and GTAL interact safely — the garbagkecol
toris GTAL code, and is verified safe by the GTAL type checker.

In contrast to program-logic-based assembly languages lik
XCAP [19], GTAL does not require extra effort to support em-
bedded code pointers, such as the pointers to the scandnscti
in the method tables; “Code” types are first-class types. da d
with genuinely “circular specifications” [19], such as thecalar
contract between the heap type (which specifies that heaateisw
point to scan functions) and scan functions (which take taplas
an argument), GTAL supports recursive types, and providés-|
weight operators ©” and “O <<” to manipulate recursive types
within GTAL's logic.

Compared to provably correct GC [2], our collector’s invari
ants are weaker in one dimension (proving safety, not coress),
but stronger in another dimension (type-checking the @nomgand
garbage collector together ensures their safe intergctian pro-
tection in a language-based operating system, safety igirgte
concern. Nevertheless, it would be nice to get the best ¢f Bpt
proaches; since GTAL contains a powerful logic, it may bespos
ble to extend the garbage collector’s invariants to captueecor-
rectness criteria (graph isomorphism) and thereby simediasly
prove partial correctness and type-safe program intemacti

For simplicity, GTAL's logic contains only a single indue#i

refer to St would be useless unless they could be updated to refer type, natural numbers. We plan to explore general indutipes,

to St’. This is the “heap extension lemma” described in Section 6,
and the garbage collector invariants maintain a relatitwéen the
original St and the currenft’:

SpaceExtend = \S:N — C.A\S":N — C.
VN:N.!(Le 1 (S N)) —!(Eq (S N) (S N"))

This relation ensures th&t’ extendsSt by changing free§t N =

0) entries of the map to allocated (non-zero) entries,d#(itdoes
not alter any entries iSt that were already allocated. From this, the
annotated garbage collector proves that data represantaiid
underSt remains valid undeft’:

11

as used in [21], to make our encodings more elegant and tdeenab
more advanced heap types, such as parameterized classes-and
istentially quantified closures; this would enable intéicac with
polymorphic functional languages like ML and System F, idiad
tion to the class-based languages currently supported.
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exactly class”' (not a subclass of’), while ApproxRep C' A de-
scribes some portion of some subclassof C. More precisely,
ApprozRep C A describes the fields and methodsAthat both
A andC share. A pointer t@' may actually point to any subclass
AofC:

Ptr = XC:C.AS:N — C.AV:N.3A:C.
(Subclass A C)® (EzactPtr A S'V)

The program can use aPtr C' S V" value to access a field or
method of the pointed-to object, but these accesses rdqareing
something about the subcladss fields and methods —A needs
to support all the fields and methods supported(byalthough

A may have additional fields and methods, and have overridden

implementations of’s methods). This knowledge comes from the
Subclass C1 Cs type, which specifies that @ is a subclass af’;
(“C1 < 2" in LIL ¢'s notation), then”'; supportsCs's methods
and fields:

Subclass = A\C1:C.A\C2:CVA:CVS:N — CVV:N.
I(Le (SizeOf C3) (SizeOf Ch))
® !(ApprozRep C1 A0SV — ApprozRep Co A0 S V)
®(Arr 1 (SizeOf C2) (AOffset:N.
(Eq (ApprozRep C1 A Offset S V)
(ApprozRep C2 A Offset S V))))

Since the fields are immutablé;; and C> must agree exactly on
the types of the fields shared between them (hence H€ In
the Subclass’s definition). On the other hand, the header word is
immutable, and uses covariant subtypidg’s header word must
be a subtype of’>’s header word, where following [3] and [7], the
function type— encodes subtyping.

We can now extend Section 6.1's definition of a class to irelud
explicit method declarations:

class = methody ...method, field,
ﬁeld = Nclass | Tprimitive

method = VX ... Xy.(type) — type
type = Nclass | Tprimitive | X

... field,

For simplicity, each method takes one argument (plus aniditpl
“this” pointer) and returns one result. Each claSsdefines its
method table (specified byrims C 0, as discussed in Section
6.1) to hold a pointer tanethod: at offset 2 in the method table, a
pointer tomethods at offset 3, and so on (offsets 0 and 1 are still
used forC'’s size and scan function):

[VX .(type,) — type,] = AA:C.AV:N.VX :C.
VK:NVZ:TNSf,St, FI, FK,FL, TI, TK, TL.!(Code’ V
Ge Sf St FI FK FL TI TK TK TL

®RegJunk(Rtmpl ... Rtmp/)

®RegF' Rthis (Ptr A St)

®RegF Rarg ([type,] St)

®Reg Rret K

®XRZ

®VSf,St, FI, FK,FL, TI, TK, TL.!(Code’ K

Ge Sf St FI FK FLTI TK TK TL

® RegJunk(Rtmpl...Rtmp4 , Rthis, Rret)
®RegF' Rarg ([type,] St)))

Code’ = AN:NAP:T.3P":T.!(P — P') —o CodeN P’
[nc] = Ptr nc
[X] = Ptr X
[[Tp'rimitivc]] =AS:N— C-Tprimitivc
Prims C0 AV =
I(StaticPtr s(s(V)) ([method1] A))
® (StaticPtr s(s(s(V))) ([method2] A))
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Notice that the definition offmethod] is independent of the
classC that contains the method. In particular, as in klLthe
“this” pointer has typePtr A St, where A is a parameter to
[method], not type Pir C' St. This makes subclassing straight-
forward. Suppose thats; has methodsnethod; . .. method., and
C: declares the same methods, followed by additional methods:
method, . .., method, methodm+1,.... Because the transla-
tion of method; for 1 < k < m is the same for’; andC-, the
definition of Prims C1 0 and Prims C2 0 provesSubclass’s cri-
teria relatingC'1’s header word t@s’s header word (the proof uses
O<X to step inside thel pprozRep recursive type):

\(ApprozRep C1 A0 SV — ApprozRep C2 A0S V)

Even thoughC; andC> declare the same method types, they may
implement their methods differently. In other word%, may over-
ride C’s method implementations. Suppose the program wants
to allocate aC; object. To do this, the program constructs val-
ues of typeskep C1 0 St Vo ... Rep C1 (n—1) St V,—1, where
n = (SizeOf C1). To construct theRep C1 0 St V, value, it
choosesV; to be the address af';’s method table. Notice that
sinceRep C1 = ApprozRep C1 C1, the program instantiates the
“A” parameter to the method table witt;, which means that
each method i1 's method table accepts a “this” pointer of type
Ptr C; St, and therefore has accesgig's fields and methods.
Rather than override all af’;’'s method implementations;;
may choose to inherit one or more 6%’s method implementa-
tions. (C1 could make its own copies af>’s implementations,
but it's more efficient to inherit the actual code fro@%: than
to duplicate the code.) Each @f>’'s method implementations
has type[vVX .(type,) — type,] Ca, which is not the same as
[[VY.(typel) — type,] Ch1. Luckily, the type system can encode
the subtyping relation between these two types, and thigioel
allows the method table to use[aX .(type,) — type,] Ca V
value where 4vX .(type,) — type,] C1 V is expected:

YV N (VX (type,) — type,] Ca V) —o
(VX (type,) — type,] C1 V)

This relation expresses the intuition that if a method impdata-
tion expects a&tr C» as an argument, then the same implementa-
tion is happy to receive a subclag¥r C; instead. Deriving this
relation relies onCode’ N 7 being contravariant i, which is
why [VX .(type,) — type,] uses ‘Code’" rather than “Code™:

VP:TYQ:T.VN:N.[(Q —o P) —o
I(Code’ N P) —o!(Code’ N Q)

Crary [7] points out the difficulty of encoding a general suydihg
relation recr < rect’ for recursive types. In GTAL’s logic, a
naive attempt to prove ree — rect’ might try to unroll recr
infinitely many times, but the termination lemma shows teatot
possible. Luckily, LIL encodes a fully-featured object-oriented
language without relying on a general rec< rect’ relation.
The closest that we come to rec— rec 7’ is the coercion from
ApprozRep C1 to ApproxRep C-. In this coercion, though, the
recursive typed pprozRep doesn’t change — only the argument to
the recursive type changes (frath to Cs), and implementing this
change only requires a shallow traversal of theprozRep type,
not an infinite unrolling.



