

1

Abstract— Remote Differential Compression (RDC)

protocols can efficiently update files over a limited-

bandwidth network when two sites have roughly similar

files; no site needs to know the content of another's files a

priori. We present a heuristic approach to identify and

transfer the file differences that is based on finding

similar files, subdividing the files into chunks, and

comparing chunk signatures. Our work significantly

improves upon previous protocols such as LBFS and

RSYNC in three ways. Firstly, we present a novel

algorithm to efficiently find the client files that are the

most similar to a given server file. Our algorithm requires

96 bits of meta-data per file, independent of file size, and

thus allows us to keep the metadata in memory and

eliminate the need for expensive disk seeks. Secondly, we

show that RDC can be applied recursively to signatures to

reduce the transfer cost for large files. Thirdly, we

describe new ways to subdivide files into chunks that

identify file differences more accurately. We have

implemented our approach in DFSR, a state-based multi-

master file replication service shipping as part of

Windows Server 2003 R2. Our experimental results show

that similarity detection produces results comparable to

LBFS while incurring a much smaller overhead for

maintaining the metadata. Recursive signature transfer

further increases replication efficiency by up to several

orders of magnitude.

I. INTRODUCTION

s the amount of data shared over the Internet continues

to grow rapidly, users still experience high costs and

long delays in transferring large amounts of information

across the network.

However, it often happens that a large fraction of the

information that is transmitted is redundant, as the recipient

may already have stored a similar (if not identical) copy of the

data. For instance, consider the case of a group of people

collaborating over email to produce a large PowerPoint

presentation, sending it back and forth as an attachment each

time they make changes. An analysis of typical incremental

changes shows that very often just a small fraction of the file

changes. Therefore, a dramatic reduction in bandwidth can be

achieved if just the differences are communicated across the

network. A change affecting 16KB in a 3.5MB file requires

about 3s to transmit over a 56Kbps modem, compared to 10

minutes for a full transfer.

Delta-compression utilities such as diff [1][11][13], vcdiff

[17], xdelta [21], BSDiff [25], or zdelta [32] may be used to

produce a succinct description of the differences between two

files if both files (the old and the new version) are locally

available to a sender. However, in many distributed systems

this assumption may be overly restrictive, since it is difficult

or infeasible to know which old copies of the files (if any)

other nodes hold. (A notable exception is the case of software

distribution, where the sender may store the previous versions

of the binaries and pre-compute differences).

A different class of protocols can be used if the old and the

new version of the file are at the opposite ends of a slow

network connection. These Remote Differential Compression

(RDC) protocols heuristically negotiate a set of differences

between a recipient and a sender that have two sufficiently

similar versions of the same file. While not as precise as local

delta compression, RDC may help to greatly reduce the total

amount of data transferred.

In the Low Bandwidth File System (LBFS) [24], an RDC

protocol is used to optimize the communication between a

sender and a recipient by having both sides subdivide all of

their files into chunks and compute strong checksums, or

signatures, for each chunk. When a client needs to access or

copy a file from the server, the latter first transmits the list of

signatures for that file to the client, which determines which

of its old chunks may be used to reconstruct the new file, and

requests the missing chunks. The key to this protocol is that

the files are divided independently on the client and server, by

determining chunk boundaries from data features. Compared

to chunking at fixed boundaries (an approach used by

RSYNC [25][34]), this data-dependent chunking opens up

other applications, such as using a system-wide database of

chunk signatures on the client.

This paper builds upon the LBFS approach in the context

of DFSR, a scalable state-based multi-master file

synchronization service that is part of Windows Server 2003

R2. Some of the primary uses of DFSR include the

distribution of content from a small number of hubs to a large

Optimizing File Replication over Limited-Bandwidth Networks

using Remote Differential Compression

Dan Teodosiu, Nikolaj Bjørner, Yuri Gurevich, Mark Manasse, Joe Porkka

{danteo, nbjorner, gurevich, manasse, jporkka} @ microsoft.com

Microsoft Corporation

A

2

number of spoke nodes, the collection of content from spokes

back to the hubs for backup and archival purposes, and ad-

hoc collaboration between spokes. Hubs and spokes may be

arranged in a user-defined and dynamically modifiable

topology, ranging up to a few thousand nodes. In most actual

configurations, spokes will be geographically distributed and

will often have a limited-bandwidth connection to the rest of

the system; satellite links or even modem-based connections

are not uncommon. Therefore, efficient use of connection

bandwidth is one of the foremost customer requirements for

DFSR.

In our RDC implementation, we significantly improve upon

LBFS as well as other similar protocols, such as the widely

used RSYNC protocol [25][34], in three different ways.

The first contribution is a novel and very efficient way for

allowing a client to locate a set of files that are likely to be

similar to the file that needs to be transferred from a server.

Once this set of similar files has been found, the client may

reuse any chunks from these files during the RDC protocol.

Note that in the context of multi-master replication, we use

the terms “client”, instead of recipient, and “server”, instead

of sender, to indicate the direction of file synchronization,

thus a given node may act as both a client and a server for

different transactions, even at the same time.

Our similarity approach differs from LBFS in a significant

way. Whereas LBFS maintains a database of chunk signatures

across all the files on the node, RDC maintains only a small

fixed size (96 bits) piece of meta-data per file. Since we may

exclude meta data for very small files (in DFSR, this is set to

less than 64KB), an index of this data can easily fit in main

memory, even on large shares with more than 1M such files.

LBFS on the other hand has to perform a tradeoff between the

average chunk sizes and the size of the data-base. An average

chunk size of 8KB, as suggested in [24], results in only 0.4%

overhead for the chunk database, assuming 32 bytes for

signatures and offset per chunk. However, chunk sizes in the

order of 200 bytes, which in our experiments were found to

be much more effective for differential compression would

require an unacceptable 15% overhead for the database alone.

The combination with recursion, furthermore amplifies the

benefits of our similarity based approach.

The second contribution is that the LBFS RDC protocol

can be applied recursively, by treating the signatures

generated as a result of chunking as a new input to the

protocol. This results in a second level of signatures that are

transmitted in order to reconcile the first level of signatures.

The first level of signatures is finally used to reconcile the

real file contents. Recursion can of course be applied to an

arbitrary depth. The benefit of recursion is that it reduces the

signature transfer cost of the protocol, which can be

significant for large files.

The third contribution is a chunking algorithm that

identifies file differences more accurately, and an analysis of

its quality. LBFS summarizes small windows of a file using a

hash; chunk boundaries are chosen when the hash is divisible

by a fixed base m. The average chunk size is thus equal to m

when the hashes are evenly distributed. Neither the minimal

nor the maximal chunk size is determined by this method. It is

possible to impose a minimal chunk size by disregarding all

hashes within a given minimal distance from a previous chunk

boundary but this negatively affects the number of chunks that

can be expected to coincide for roughly similar files.

Our local maxima chunking algorithm is also based on

examining an interval of hash values. A position is a cut

point, or chunk boundary, if its hash is larger than the hashes

at all other surrounding positions within distance h. We show

that determining local maxima is asymptotically no more

expensive than determining cut-points by the other methods.

In particular, we give an algorithm that requires only

1+ln(h)/h comparisons per position. The local maxima

chunking approach has the advantage of a “built-in” minimal

chunk length, and of not requiring auxiliary parameters. A

probabilistic analysis reveals that this approach also recovers

more quickly from file differences.

Based on a large corpus of files and using the production

version of DFSR, we show that the bandwidth savings

achieved using our similarity detection approach are within

just a few percent of LBFS, while incurring a tiny fraction of

the cost for maintaining the metadata.

Further experimental results over a large collection of files

show that RDC with recursion is significantly more efficient

than RSYNC in most cases. For some very large files RDC

uses up to four times less bandwidth than RSYNC. Although

we expected it to be not as efficient, RDC compares favorably

with local differential algorithms.

The rest of this paper is structured as follows. Section II

summarizes the basic LBFS RDC protocol [24]. Section III

presents our file similarity detection technique. Section IV

describes the recursive signature transfer. Section V discusses

our improved chunking algorithm. Section VI details the

implementation of these techniques in DFSR. Section VII

presents experimental results. The paper concludes after a

discussion of related work.

II. THE BASIC RDC PROTOCOL

For completeness, we summarize in this section the basic

RDC protocol used in LBFS [24]. While LBFS uses the entire

client file system as a seed for differential transfers, we shall

assume without loss of generality the existence of a single

seed file FC, as this shall facilitate the presentation of our

approach in the following sections. Readers familiar with the

LBFS algorithm may skip to the end of this section.

Referring to Fig. 1, the basic RDC protocol assumes that

the file FS on the server machine S needs to be transferred to

3

the client machine C using the seed file FC stored on the

client. FS is a new version containing incremental edits over

the seed file FC. The transfer of FS from S to C is performed

as follows:

Step 1: C sends S a request to transfer file FS.

Step 2: C partitions FC into chunks by using a fingerprinting

function that is computed at every byte position of FC. A

chunk boundary is determined in a data-dependent fashion

at positions for which the fingerprinting function satisfies a

certain condition. Next, a signature SigCk is computed for

each chunk k of FC. A cryptographically secure hash

function (SHA-1) is used in LBFS, but any other collision-

resistant hash function may be used instead.

Step 3: Using the same partitioning algorithm as in Step 2, S

independently partitions FS into chunks and computes the

chunk signatures SigSj. Steps 2 and 3 may run in parallel.

Step 4: S sends the ordered list of chunk signatures and

lengths ((SigS1,LenS1) … (SigSn,LenSn)) to C. Note that this

implicitly encodes the offsets of the chunks in FS.

Step 5: As this information is received, C compares the

received signatures against its own set of signatures

{SigC1,…,SigCm} computed in Step 2. C records every

distinct signature value received that does not match one of

its own signatures SigCk.

Step 6: C sends a request to S for all the chunks for which

there was no matching signature. The chunks are requested

by their offset and length in FS.

Step 7: S sends the content of the requested chunks to C.

Step 8: C reconstructs FS by using the chunks received in

Step 7, as well as its own chunks of FC that in Step 5

matched signatures sent by S.

In LBFS, the entire client file system acts as the seed file

FC. This requires maintaining a mapping from chunk

signatures to actual file chunks on disk to perform the

comparison in Step 5. For a large number of files this map

may not fit in memory and may require expensive updates on

disk for any changes to the local file system. In our approach

the seed is made up of a small set of similar files from the

client file system, and can be efficiently computed at the

beginning of a transfer based on a data structure that fits in

memory. The following three sections describe this similarity

approach and two additional enhancements that we have

made to the RDC algorithm.

III. USING SIMILARITY DETECTION TO FIND RDC

CANDIDATES

A. Finding RDC candidates

To transfer a file FS from the server to the client, the RDC

protocol requires that a seed FC that is similar to FS be

identified on the client. In some cases, a simple heuristic

based on file identity, such as equality of the file path or of

the file unique identifier assigned by a state-based replicator,

can be used to identify FC. This assumes that the new version

FS was derived from the old version FC through incremental

edits.

However, in many cases a seed file cannot be identified a

priori, although the client may already store several good

RDC candidates. For example, if a new file FN is created on

the server S by simply copying FS, but no record of the copy

operation is kept, then it may be difficult to determine that FC

SigC1

SigC2

SigC3

SigC4

SigC5

SigS1

SigS2

SigS3

SigS4

Client machine C Server machine S

Seed file FC New file FS

Request file FS 1

Chunk up FC 2 Chunk up FS 3

Send signature list for FS 4

Send missing chunks 7

Reconstruct FS 8

Request missing chunks 6 Compare

signatures

5

Fig. 1. The basic RDC protocol in LBFS [24] starts with both client and server machines dividing their respective files into

chunks and computing signatures for each chunk. The server then communicates the list of signatures to the client, which checks

it against its own to determine which chunks it needs to request from the server. Upon receipt of the missing chunks, the client

combines the received chunks with its own seed ones to reassemble a copy of the new file FS.

4

is the perfect seed for the differential transfer of FN. Examples

of this scenario can be frequently observed in environments

where DFSR is deployed; examples include saving a large

modified PowerPoint presentation to a new file, making a

copy of an existing large document, creating a new virtual

machine image by installing an application on top of an

existing image, etc.

In this section, we describe a technique that allows the

client C to efficiently select a small subset of its files, FC1,

FC2, …, FCn, that are similar to a file FS that needs to be

transferred from S using the RDC protocol. Typically, the set

of similar files to be chosen will be small, i.e. n ≤ 10.

Similarity between two files FS and FC is measured in terms

of the number of identical chunks that FS and FC share,

divided by the total number of distinct chunks in the two files.

If Chunks(FS) and Chunks(FC) are the sets of chunks

computed for FS and FC in Steps 3 and 2 of the base RDC

protocol, then:

() () ()
() ()CS

CS
CS

FChunksFChunks

FChunksFChunks
F,FSim

U

I
=

As a proxy for chunk equality we shall use equality on the

signatures of the chunks. If the signatures are computed using

a cryptographically secure hash function (such as SHA-1 or

MD4), this is highly accurate, due to the extremely low

probability of a hash collision. Thus, if Signatures(FS) and

Signatures(FC) are the sets of signatures for FS and FC, then:

()
() ()
() ()CS

CS
CS

FSignaturesFSignatures

FSignaturesFSignatures
F,FSim

U

I
≅

One fine point to note in the above is the fact that a file

may contain several identical chunks (with identical

signatures). This is irrelevant from the point of view of the

RDC protocol, as identical chunks will be requested and

transferred at most once in Steps 6 and 7, respectively.

Given a file FS and FilesC, the set of all the files that are

stored on C, the problem we need to solve is to identify the

files in FilesC that have the highest degree of similarity with

FS. If FC1, FC2,, FCn are the n files in FilesC most similar to

FS, we define:

() { }CnC2C1CS F,...,F,F s,Files,FSimilar =

where by “most similar” we mean that for all files FCi, Sim(FS,

FCi) ≥ s, and for all other files x in FilesC, Sim(FS, x) ≤

Sim(FS, FCi). s is a similarity threshold explained below.

A brute-force approach for computing Similar(FS, FilesC, s)

could be based on the set of signatures sent by S in Step 4 of

the RDC protocol. However, there are two problems with this

approach. Firstly, C would need to wait until it received at

least a substantial portion of the signature list before selecting

the similar files and starting to execute Step 5, thus

significantly reducing its pipelining opportunities. Secondly,

lacking a seed, the recursive signature transfer described in

Section IV could not be applied to the signature list.

B. Using traits to encode similarity information

File similarity can be approximated by using the following

heuristic that makes use of a compact summary of a file’s

signatures, called its set of traits. The set of traits Traits(F) of

a file F can be computed simultaneously with the partitioning

of the file into chunks during Step 2 of the RDC algorithm,

and cached as part of the file metadata.

The basic RDC protocol described in the previous section

is modified as follows to allow the client C to identify and use

as a seed the set of n files FC1, FC2, …, FCn that are similar to

the file FS to be differentially transferred:

Sig1 Sig2 Sig3 Sig4 Sig5 Sig6 Sig7 Sig8 File F

PT1 T1

min @ 5

sel0..b-1

PTt Tt

Traits(F)

sel(t-1)b..tb-1

Image

sets

H1(Sig1) H1(Sig2)

H1(Sig3)

H1(Sig4)

H1(Sig5)

H1(Sig6)

H1(Sig7)

H1(Sig8)

min @ 8

Ht(Sig1) Ht(Sig2)

Ht(Sig3)

Ht(Sig4)

Ht(Sig5)

Ht(Sig6)

Ht(Sig7)

Ht(Sig8)

Fig. 2. Computing the traits of a file F is done by mapping the signatures into t image sets through t different hash functions. A

pre-trait is derived out of each image set by taking the element with minimum hash value from the set. Traits are computed by

selecting b bits out of each pre-trait.

5

Step S.1.1: C sends S a request to transfer the file FS.

Step S.1.2: S replies with the set of traits for FS, Traits(FS).

Traits(FS) will be usually cached as part of the metadata of

FS, and thus can be sent to C without additional overhead.

Step S.1.3: C uses Traits(FS) to identify a set of its existing

files, FC1, FC2, …, FCn, that are likely to be similar to FS.

Step S.2: C partitions all identified files FC1, FC2, …, FCn into

chunks and computes a signature SigCik for each chunk k of

each file FCi.

Step S.3: S partitions FS into chunks and computes the chunk

signatures SigSj.

Step S.4: S sends the ordered list of chunk signatures and

lengths ((SigS1,LenS1) … (SigSn,LenSn)) to C.

Step S.5: As this list is received, C compares the received

signatures against its own set of computed signatures

(SigC11,…SigC1m,…SigCn1,…). C records every distinct

signature value received that does not match one of its own

signatures SigCik.

Step S.6: C sends a request to S for all the chunks for which

there was no matching signature on C.

Step S.7: S sends the requested chunks to C.

Step S.8: C reconstructs FS by using the chunks received in

Step S.7, as well as its own chunks of FC1, FC2, …, FCn that

in Step S.5 matched signatures sent by S. Once a copy of

FS has been reconstructed, C adds FS to its collection of

stored files and stores Traits(FS) as part of its metadata.

To minimize network traffic and CPU overhead, it is

essential that Traits(FS) be very small and that the set of

similar files FC1, FC2, …, FCn be determined quickly.

The algorithm for identifying similar files has two main

parameters (b,t) that are summarized below. These parameters

are explained in detail in the following description.

b : Number of bits per trait

 t : Number of traits per object

C. Computing the set of traits for a file

Fig. 2 shows an example of a trait computation. Traits(F) is

derived from the chunk signatures of F as follows:

Step T.1: The signature set {Sig1…Sign} is mapped into t

image sets by applying t different hash functions H1…Ht.

The set of hash functions must be the same on both client

and server machines. These hash functions are chosen to be

one-on-one maps from the space of signature values to

some well-ordered set of values. This generates t image

sets, each of size n:

 IS1 = {H1(Sig1), H1(Sig2), …}

 …

 ISt = {Ht(Sig1), Ht(Sig2), …}

Step T.2: The pre-traits PT1…PTt are computed by taking the

signatures whose hash is the minimum element of each

image set. Intuitively, using the minima means that if two

files only have a few chunks that differ their pre-traits are

likely to be the same.

 PT1 = Sig1j where H1(Sig1j) = min(IS1);

 …

 PTt = Sigtj where Ht(Sigtj) = min(ISt);

Step T.3: The traits T1…Tt are computed by selecting b

different bits out of each pre-trait PT1…PTt. For instance:

 T1 = select0..b-1(PT1)

 …

 Tt = select(t-1)b...tb-1(PTt)

In DFSR, to compute Ht on a given signature value we

calculate the MD4 signature concatenated with the 1-byte

representation of t. If the pre-traits have fewer than t×b bits,

we could use an extra level of hash function to compute

independent values, but in the range of values we consider

experimentally, this does not happen. We want the bit ranges

to be non-overlapping so that repeated values in the pre-traits

(as may happen for short files) do not produce repeated

values in the traits, which would allow accidental collisions of

b bits for unequal signature values to be magnified.

The number of traits t and the trait size b are chosen so that

just a small total number of bits (t×b) is needed to represent

the traits for an object. Typical combinations of (b,t)

parameters that we have found to work well are (b=6,t=16)

and (b=4,t=24), for a total of 96 bits per object. Abusing

notation, we’ll denote by Ti(F) the i
th

 trait of F.

D. Computing the pre-traits efficiently

An efficient way to select the pre-traits PT1 … PTt in step

T.3 is to pick an expanded signature set and to perform partial

evaluation of the signatures. Logically, each Hi is divided

into Highi containing the high-order bits of Hi, and Lowi

containing the remaining low-order bits. Since only the

minimum element of each image set ISi is selected, we

compute Highi for every signature, but need to compute Lowi

only for those signatures that achieve the minimum value ever

achieved for Highi. If the High values are drawn from a

smaller space, this may save us computation. If, further,

several High values are bundled together, we can save

significant computation. Suppose, for instance, that each

High value is 8 bits long. We can pack eight of these into a

long integer; at the cost of computing a single random value

from a signature, we can chop that value into eight

independent one byte slices. If only the High value were

needed, this would reduce our computational costs by a factor

6

of eight; however, on average one time in 256 we also need to

compute the corresponding Low value.

Because our trait values are just the input signature values,

if we have only one signature which attains the minimum

High value, we need never compute the corresponding Low

value.

E. Finding similar files using a given set of traits

We can approximate the set of files similar to a given file

FS by computing the set of files having similar traits to FS:

() () (){ }SCCS F
i

TF
i

T|iF,FTraitSim ==

() { }CkC2C1CS F,...,F,Fs n,,Files,FSimTraits =

where the set {FC1,…,FCk}contains 0 ≤ k ≤ n files in FilesC

such that (TraitSim(FS,FCi)/t) ≥ s, and for all other files x in

FilesC, TraitSim(FS, x) ≤ TraitSim(FS, FCi). Note that TraitSim

is an unbiased estimator for Sim, if we divide by t, when

averaged over all choices of one-to-one hash functions.

The calculated curves in Fig. 3 show the probability of

detecting 1,2,…,16 matching traits as a function of the actual

fraction of matching chunk signatures. Note that the similarity

curves allow us to detect true similarity differences in the

range of 5-10%. For the set of parameters (b=6,t=16) that we

use in practice, we found that setting the lower bound to s =

5/16, i.e. at least 5 matching traits, provided a reasonable

threshold. The false positive rate for entirely dissimilar files

drops to roughly one in three hundred thousand at 5 out of 16

matching traits (giving us 30 bits of true match, but








5

16
ways

to generate these matches).

To efficiently determine the set of likely similar files, we

organize our traits into t × 2
b
 lists of files indexed by (τ, β); in

list (τ, β) we include every file in which trait τ has value β.

We identify the files using small integers and delta-encode the

lists for compactness. Given Traits(FS), we can select the t

lists corresponding to the trait values of FS, and then perform

the equivalent of a merge sort to compute the number of

matching traits for every file in FilesC. We can maintain the k

≤ n largest values as yet observed in a bounded-size priority

queue.

Using this compact encoding, the trait information for 1M

files can be kept in about 32MB of main memory. For

(b=6,t=16), each bucket has on average 16K entries, so the

merge takes about 96K comparisons, less than a millisecond

of CPU time.

To improve both precision and recall, we could increase

the total number of bits. For instance, switching to (b=5,t=24)

would dramatically improve precision at the cost of

increasing memory consumption for file traits.

IV. RECURSIVE RDC SIGNATURE TRANSFER

For large files, a fixed overhead is incurred in Step 4 of the

basic RDC protocol described in Section II even if FC and FS

are very similar. The amount of data sent over the network in

Step 4 is proportional to the size of FS divided by the average

chunk size. This can become quite significant for large files.

For instance, assuming the size of FS is 10 GB and the

average chunk size 2 KB, FS will be divided into 5 million

chunks, corresponding to about 60 MB of signature

information that needs to be sent over the network in Step 4.

This is a fixed cost, even if the differences between FC and FS

(and thus the amount of data that needs to be sent in Step 6)

are very small.

To reduce the amount of signature traffic sent over the

network in Step 4, a recursive application of the basic RDC

protocol can be used to transfer the signatures. Thus Step 4 of

the basic protocol may be replaced with the following steps:

Step R.4.1: The ordered list of chunk signatures and lengths

((SigS1,LenS1) … (SigSn,LenSn)) computed in Step 3 is

recursively chunked up on S into signature chunks using an

approach similar to that described in Step 3, to produce a

list of recursive signatures and lengths ((RSigS1,RLenS1) …

(RSigSr,RLenSr)). Compared to the original list, the size of

the recursive list is reduced by a factor equal to the average

chunk size (r « n).

Step R.4.2: C also does a recursive chunking of its signature

and length list ((SigC1,LenC1) … (SigCm,OffsCm)) into signa-

ture chunks, obtaining a list of recursive signatures and

lengths ((RSigC1,RLenC1) … (RSigCs,RLenCs)), where s «

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Actual matching chunk signatures

D
et

ec
ti

o
n

 p
ro

b
a
b

il
it

y

Fig. 3. Calculated similarity curves for (b=6,t=16) showing

the detection probability of finding 1, 2, …, 16 matching

traits, given the actual fraction of matching chunk signatures.

The bold curve is the one used in DFSR, corresponding to 5

matching traits.

7

m.

Step R.4.3: S sends C its ordered list of recursive signatures

and lengths ((RSigS1,RLenS1)…(RSigSr,RLenSr)).

Step R.4.4: C compares the recursive signatures received

from S with its own list of recursive signatures computed in

Step R.4.2. C then sends a request to S for every distinct

signature chunk (with recursive signature RSigSk) for which

C does not have a matching recursive signature.

Step R.4.5: S sends C the requested signature chunks.

Step R.4.6: C uses its locally-matching signature chunks and

the chunks received from S in Step R.4.5 to reassemble the

original list of signatures and lengths ((SigS1,LenS1) …

(SigSn,LenSn)) computed by S in Step 3. At this point,

execution continues at Step 5 of the basic RDC protocol

described in Section II.

For very large files, the above recursive procedure may be

applied r times (r ≥ 1). For an average chunk size C, this

reduces the size of the signature traffic over the network by a

factor of approximately C
r
.

The recursive step may be performed by choosing an

average chunk size based on the number of signatures from

the previous iteration. This approach may be used to bound

the amount of data that gets sent over the wire. The method

may be extended to also choose a permitted overlap, where

the chunks may overlap with a number of common signatures.

The recursive decomposition described above can be seen as

an instance of this where the permitted overlap is 0 and the

chunk size is set to C.

In contrast to LBFS [24], our experimental results suggest

that, when using recursion, the highest bandwidth savings can

be achieved by choosing a small average chunk size (e.g.

C=2048 for the base and C=256 for the recursive levels). This

observation is also consistent with the fact that recursion will

save significantly on longer file segments that are equal, since

the recursive signatures will coincide, while segments that are

different are often relatively short, especially in text

documents.

V. IMPROVED CHUNKING ALGORITHMS

In this section we discuss three alternative chunking

algorithms and introduce a metric, called slack, for comparing

these. Calculations that are too lengthy to fit here are reported

in [2].

A. Slack and using Point filters

We observed that the basic RDC protocol requires the

client and server to partition their files independently. A

technique for achieving this, described in [24], pre-processes

the file stream through a hash that summarizes the contents of

windows comprising the last w bytes (typically w=12...64)

into a single 4-byte value v. The Rabin hash [28] provides a

high quality hash function that can be computed

incrementally. Choose a number h and identify as cut points

the positions where v mod h = 0.

There is no gain to sending chunk signatures that occupy

more space than the chunks they summarize. Therefore, to

filter out cut-points that are considered too close, one can

supply an additional parameter m that indicates how many

positions should be skipped before v is checked again against

h. This method produces average chunks of size m+h.

How should m and h be chosen? If m is large relative to h,

then there is a high probability that chunks in FS and FC will

not align even though FS and FC only differ in the first

character. In Fig. 4 we illustrate the situation in which cut

points are misaligned, for a choice of parameters m=3 and

h=a (for simplicity, we have suppressed the use of a rolling

hash in this example).

Such misalignment directly influences the overhead of

RDC, since the amount of file data transferred by RDC is

directly proportional to the number of chunks of FS, but not of

FC. For quantitative comparisons of chunking methods, we

therefore consider the following scenario. Take two doubly

infinite files f1, f2 which coincide on non-negative positions.

These non-negative positions form an infinite-to-the-right file

f3. Let f’1 (respectively f’2) be the part of f1 (respectively f2)

given by their respective negative positions. Assume that the

infinite-to-the-left files f’1 and f’2 as well as the infinite-to-

the-right file f3 are random. We then define the random

variable slack as the distance from 0 to the least position of f3

that is the common cut point of f1 and f2, normalized by

dividing by the expected chunk size.

Since bytes “wasted” in the slack will be in chunks whose

signatures don’t match, RDC benefits from a chunking

method with the smallest possible expected slack. For the

point-filter method it can be shown that the minimal slack

(obtained for m = 0.3h) is 0.82.

B. Using an interval filter

A different way to choose cut points is what we will refer

to as the interval-filter method. It determines the next cut-

point by searching for a pattern in an interval of h previous

values. It avoids indefinite misalignments. A prototypical

a b a d a b a d a File FA

cut points

a d a b a d a b a File FB c b

Fig. 4. Example of misaligned cut points for m=3 and h=a

when using the point filter method, where m is the

minimum chunk size and h is the value at which cut-points

are chosen.

8

example of an interval filter is obtained by partitioning the

hash values v into two sets, H (head) and T (tail), where H

contains 1/h of the possible hash values and T contains the

rest. A cut-point is then chosen when the file matches a

pattern of h-1 T’s followed by one H. Clearly, cut-points are

at least h positions apart, and the choice of possible cut-points

is local, since it depends only on the h previous positions.

The average chunk size when using an interval filter can be

shown [2] to be e·h, while the slack is 1 – e
-1
+ e

-2
0.77.

C. Using local maxima

The point and interval filters are both absolute in the sense

that they require hash values to take certain pre-determined

values for a position to be a cut-point. Another local way,

closely related to the winnowing technique described by

Schleimer [30], is to choose as cut-points the positions that

are local maxima (or local minima). An h-local maximum is a

position whose hash value v is strictly larger than the hash

values at the preceding h and following h positions. Suppose

there are M different possible hash values (M=2
32

for 4-byte

hash values), then the probability that a given position is a

cut-point is:

12

11
2

0 +
≈







⋅∑
≤≤ hM

j

M

h

Mj

since, for each of the M different values that a position can

take, the neighboring 2h positions must be taken from the

j/M
th

 fraction of smaller values. Kac’s ergodic recurrence

theorem [26] implies that the average distance between cut-

points is the inverse of the probability: 2h+1. The expected

slack for the local maxima filter turns out to be 0.7.

One intriguing observation is that, on average, the queue

used to store the ascending chain of at most h previous hash

values will have length ln(h). To see this, denote by f(h) the

expected length of the sequence starting with the hash at the

current position and including hash values from at most h

preceding positions that form an ascending chain. In the base

case, we have f(0)=0, while in general, the current position is

included and the next position to be included is taken

uniformly from the remaining h-1 positions, unless the value

at the current position is maximal. The h
th
 harmonic number is

the solution to the recurrence equation:

() () ()hlnH
h

1

3

1

2

1
1if

h

1
1hf h

1h

0i

≈=++++=+= ∑
−

=

L

We can use the above observation to compute cut points by

examining every position only 1+ ln(h)/h times on average.

The algorithm processes chunks of size h. Each chunk is

processed from right to left building up an array of strictly

ascending hash values. The largest value in the k+1’st interval

is marked maximal if the first dominating value in the k
th

interval is beyond h positions away. On the other hand, the

largest value in the k
th

 interval is a cut-point if it is marked

maximal, and is either larger than the largest value in the k+1
st

interval, or the largest value is beyond h positions away, and

all values closer to it are smaller.

As we later report on in Section VII.A, there is a

performance tradeoff between the different chunking

methods. The average case behavior of only ln(h) branch

miss-predictions together with the ability to use scanned bytes

directly as digits
1
 appear to give local maxima an both a

performance and quality advantage over point filters that rely

on a good hashing function. On the other hand, local maxima

require a look-ahead for determining cut-points that makes it

harder to compose with other stream processing utilities.

1 As far as we know, this simple fact appears to have not been observed

before. An efficient implementation of this approach resembles a Boyer-

Moore string matching algorithm.

Client machine Server machine

REPLICATOR

F

M(F)

M(F1)

M(F2)

Staging area

NTFS

Synchronized

directory

REPLICATOR

F

M(F)

Staging area

NTFS

Synchronized

directory

Request F 1

Stage F 2

Send M(F)
using RDC

5

5 5

Install F 6

Traits(M(F)),
recursion level

3

Compute
SimTraits(M(F)) =
{M(F1),M(F2),…}

4

Fig. 5. Replicating a file F from a server to a client involves marshaling the file F and its metadata into a staged representation

M(F) on the server, negotiating the traits and the RDC recursion level, identifying a set of similar staged files M(F1), M(F2),…

on the client, using RDC to transfer M(F), and finally un-marshaling the transferred M(F) into a copy of the file F on the client.

9

In certain applications, it may be useful to also impose a

maximal size on chunks. None of the considered chunking

methods impose maximal sizes a priori, as it is impossible for

methods that depend only on a limited neighborhood to

impose bounds on both minima and maxima (consider a file

of all 0’s: either all positions are cuts or none are). On the

other hand, periodically imposing extra cuts based on fixed

lengths does not break RDC. Obviously, local max can be

refined in either direction by allowing cuts at positions that

are h’ maximal, for h’<h, (or h’>h as part of recursive RDC).

VI. IMPLEMENTATION IN DFSR

This section details the implementation of our previously

described RDC approach in the DFSR service included in

Windows Server 2003 R2. Given that an in-depth description

of DFSR is outside the scope of this paper, we shall focus on

how files are transferred between machines using RDC; a

general description of state-based replication can be found in

Saito and Shapiro [29].

 DFSR uses an algorithm based on version vectors to

efficiently determine which files of a synchronized directory

tree need to be replicated between a server and a client

machine
2
. Once the client has found out that a file F needs to

be replicated, the following steps are executed to

differentially transfer F, as illustrated in Fig. 5:

Step F.1: The client sends a request to the server to prepare

for the differential transfer of F.

Step F.2: The server marshals the data and meta-data of F

into a blob M(F) and stores this blob in a private directory

called the staging area. For NTFS files, M(F) needs to

include the main data stream of F, any alternate data

streams, as well as the replicated meta-data such as the file

creation time and ACL (access control list); some of the

metadata, such as the last modified time, is not replicated

and is thus not included in M(F). Based on the size of

M(F), the server determines the RDC recursion level, and

computes the RDC signatures and the traits for M(F).

Transfers of files smaller than 64K fall back to direct

downloads without RDC.

Step F.3: The server sends Traits(M(F)) and the desired RDC

recursion level to the client.

Step F.4: The client uses its similarity information to

compute SimTraits(M(F)) = {M(F1), M(F2), …}, thereby

identifying a subset F1, F2, … of its own files whose

marshaled representations M(F1), M(F2), … are similar to

M(F). For each of these files Fk, the client computes M(Fk)

and stores it in its staging area. To bootstrap the use of

RDC, the client also considers pre-existing files with no

traits stored in the similarity information, but with the same

name as the remote file.

Step F.5: M(F) is transferred via recursive RDC (as described

in Section IV) using M(F1), M(F2), … as a seed.

Step F.6: Once the client has reassembled a copy of M(F) in

its staging area, it un-marshals it to obtain its own copy of

F, which it installs in the synchronized directory.

Computing the traits and RDC signatures of M(F) instead

of F has the advantage of enabling RDC to also work for

changes to the file meta-data. For instance, this occurs when

the NTFS ACLs for all files in a directory tree are changed

recursively.

DFSR manages its staging area as a cache. Staged files are

deleted lazily when the staging area size reaches a

2 As mentioned in the introduction, the terms “client” and “server” only

refer to the direction in which synchronization is performed. A machine can

act both as a client and a server at the same time. For instance, this is the

case for bi-directional synchronization between two machines.

Metadata

Main Stream

Alt Streams

M(F)

CM(F)

Jump

table(F)

RDC

signatures

Synchronized directory

Stage F

9755
…

34024

REPLICATOR Staging Area

= compressed data that can be sent directly by SendSegment

= needs to be recompressed by SendSegment

Staged(F)

Metadata

Main

Stream

Alt

Streams

F

0K

8K

16K

24K

32K

40K

0

534

1244

1753

2122

4013

CM(F)

Offs(M(F)) Offs(CM(F))

0K � 0

8K � 534

16K � 1244

24K � 1753

32K � 2122

40K � 4013

Jump

table(F)

SendSegment

(9755…34024)

Fig. 6. The staged representation of a file F contains the marshaled file metadata and data streams M(F) stored in compressed

form CM(F), the RDC signatures for M(F), and the jump table for CM(F). The jump table is used for seeking inside CM(F) given

logical offsets into M(F), and is based on storing the offsets in CM(F) for every 8K segment in M(F); seeking inside a segment

requires decompression of the segment.

10

configurable threshold. If M(F) is cached, a machine acting as

a server may thus skip step F.2, while a machine acting as a

client will not need to re-compute M(Fk) if it decides to use Fk

as a seed in step F.4.

Should the differential transfer of M(F) be interrupted in

step F.5 (e.g. because of a broken connection to the server),

the partial download of M(F) is kept in the client’s staging

area and will be reused as a seed during future attempts at

transferring M(F). This provides the equivalent of download

resumption at very low additional cost, and allows downloads

to be reliably resumed even across different server machines.

Given that the synchronized data that we typically see in

production systems tends to have a reasonably good

compression ratio, it is possible to further reduce bandwidth

by transferring compressed chunks if no pre-existing similar

data can be identified. However, both compression and RDC

signature computation incur noticeable CPU overhead.

To reuse the result of compression and RDC chunking, we

keep a staged representation of F, Staged(F), in the staging

area instead of just storing M(F). Ass shown in Fig. 6,

Staged(F) includes the compressed marshaled representation

CM(F) and the RDC signatures for F. Staged(F) is stored as a

single NTFS file, where the unnamed data stream contains

CM(F), while alternate NTFS file streams contain the RDC

signatures (one stream per recursion level) and a jump table

that we describe next.

Since seeks are required for steps S.7 and S.8 of the RDC

protocol to retrieve file chunks on both client and server, we

have adapted the compression algorithm to allow us to

perform reasonably efficient seeks on the compressed format

CM(F). This is done by compressing 8K segments of M(F) at

a time and maintaining a jump table consisting of an array of

offsets into the compressed stream for each of the 8K

segments, as illustrated in Fig. 6. A lookup in the jump table

consists of dividing the required offset by 8K and reading the

resulting position in the array to get to the surrounding

compressed block containing the desired offset. When

transferring chunks over the wire in step S.7 of the RDC

protocol, we use the jump table to avoid re-compressing

portions of CM(F). For instance, referring to Fig. 6, when

serving the range from uncompressed offset 9755 to 34024,

only the portions that don’t fit within an existing segment

(9755…16383 and 32768…34024, respectively) are re-

compressed by the server’s SendSegment routine. Portions

corresponding to whole segments can be transferred to the

client directly out of CM(F).

While staging is beneficial when the same file is served to

multiple clients or when a file is used as a seed, maintaining a

staging area comes at the cost of storage and disk access

overhead. To mitigate this cost, we skip the creation of

Staged(F) when F is smaller than 64K and RDC is not used.

A memory mapped file stores the similarity information

described in Section III. Since this data structure takes up

about 32 bytes per file, most of this information can be

cached in memory even for synchronized directories with a

large number of files. In addition to the 16 × 2
6
 lists of file

IDs (for which most entries can be represented using only one

byte due to delta-encoding), we need to maintain a file ID

table that maps the compact file ID to the UID (unique

identifier) assigned by DFSR to the file.

Updates to the similarity information are periodically

flushed to disk and the similarity file is marked on clean

shutdowns. Additionally, whenever we compute or receive the

traits for a file, we store them in the database used by DFSR

to keep track of file UID and version numbers. If the

similarity file is lost or corrupted (e.g. because of a dirty

shutdown), it is rebuilt on startup using a scan of the records

in the DFSR database. While discrepancies between the

similarity file and the actual content of the synchronized

directory do not impact correctness, they have a performance

cost in terms of lost RDC opportunities.

To compute the list of needs in Step S.5 of the RDC

protocol, the client inserts the stream of remote signatures

received from the server in Step S.4 into a hash table that

maps signature hashes to file offsets in the server’s file. The

client then scans its seed signatures stored in Staged(F),

performing a lookup in the hash table to establish whether a

match exists for each signature. If the size of the hash table is

too large to fit in memory, the client processes the remote

signatures in batches, doing a sequential scan of the

signatures in Staged(F) for every batch We found that using a

hash table was approximately 50% faster than using binary

search in a sorted list, most likely due to the good distribution

of the signature hash function.

VII. EXPERIMENTAL RESULTS

In this section we present experimental results obtained by

0

10

20

30

40

50

60

DOC MPP OST PPT VSD XLS

S
p

e
e
d

u
p

 f
a

c
to

r

 RDC(1024,32)

 RDC(1024,64)

 RDC(256,32)

 RDC(256,64)

 RDC(512,32)

 RDC(512,64)

 RDC(768,32)

 RDC(768,64)

 RSYNC

Fig. 7. RDC speedup factors without recursion, using various

combinations of the horizon h and window size w, compared

to RSYNC. The average chunk size is C=2h+1.

11

1

2

3

4

rs
y
n
c4
08
0

1
6
0

2
0
0

2
8
0

3
2
0

4
0
0

5
0
0

6
2
0

1
0
0
0

1
4
0
0

2
0
0
0

0

2

4

6

8

10

12

14

s
p
e
e
d
u
p

horizon size

Fig 9. Speedup based on a sample pair of PPT files, as a

function of horizon size (sampled between 40 and 2000)

and recursion level (between 1 and 4).

using DFSR, and compare these results against an LBFS-like

approach [24], RSYNC [33][34], and the local diff utilities

xdelta [21] and BSDiff [25]. To obtain the LBFS figures, we

implemented a simulator that allows us to determine the

transfer sizes for various experiments without actually

providing the full file system semantics of LBFS. All network

traffic reported below refers to application data and does not

include network overhead such as IP packet headers.

By default DFSR compresses all data sent over the wire

using a proprietary compression library. Since our

compression algorithm has different characteristics than zlib

used in RSYNC, and since we’re using blocked compression,

most of the figures in this section are for uncompressed traffic

to provide an accurate comparison.

Hardware characteristics are indicated where relevant for

performce, otherwise, our measurements in terms of bytes

over the wire are hardware agnostic. DFSR was run on a

Windows Server 2003 R2 installation, and RSYNC was run

on RedHat Linux 2.4.

A. Reducing the overhead of computing chunks

Early performance testing indicated that calculating chunk

boundaries and chunk signatures contribute significantly to

the overall CPU overhead of RDC. Consequently, we hand-

optimized the most CPU intensive parts by using assembly

versions of critical inner loops and MD4 and achieved very

significant speedups.

To compare the optimized chunker against RSYNC and the

local diff utilities, we measured the chunking and signature

comparison overheads combined and aggregated the client

and server overhead for RDC and RYNC. On a P3 machine,

and for identical files, we measured 31 cycles per byte for

RDC, 45 for RSYNC, 39 for xdelta, and 2580 for BSDiff.

When using a pair of different files, we measured 36 for

RDC, 32 for RSYNC, 410 for xdelta and 2780 cycles for

BSDiff. Thus, RDC and RSYNC appear comparable, while

the local diff utilities require much more CPU and memory.

The optimized RDC chunker requires 31 CPU cycles per

byte on a Pentium 4 (corresponding to 64MB/s throughput on

a 2GHz processor), and 24 cycles per byte on an AMD64

CPU running x86 binaries (75MB/s on a 1.8GHz processor).

When DFSR sends a file to more than one client, the CPU

overhead for chunking is amortized by persisting the chunks

and signatures in Staged(F) on the server, as described earlier.

In contrast, RSYNC spends most of the CPU cycles for file

transfers on the server, as the chunking and the lookup on the

server are dependent on the client data.

More recent experiments indicate that a 128 bit hash based

on Jenkins’ hash algorithm [17] is adequate and twice as fast

as MD4. Furthermore, another significant speedup can be

gained by computing local maxima directly by treating the

bytes from the input file as digits in large numbers. This

allows bypassing computing rolling hashes all-together. For

instance, for an average chunk length of 256 bytes, a 64 bit

P4 machine, requires 8.4 cycles per byte to compute local

maxima when bypassing the rolling hash, but 18.7 cycles per

byte when layering the computation with a simple, low

quality, rolling hash based on bit-wise exclusive or and bite-

wise rotation. The point-filter approach, on the other hand

requires a hash, but has lower overhead when determining

cut-points. Hence, for the low quality hash, it requires only

7.6 cycles per byte; but for the higher quality Rabin based

hash we measured 15.8 cycles per byte.

B. Tuning the chunking parameters and the recursion level

In the next set of experiments, we first tune the chunking

parameters by choosing a horizon and window size h and w,

respectively. We examine the impact of recursion next, and

evaluate the bandwidth savings against RSYNC and the local

diff utilities. The data set used for these experiments consists

0

20

40

60

80

100

120

140

DOC MPP OST PPT VSD XLS

S
p
e
ed

u
p
 f

a
c
to

r

 RDC no recursion

 RDC 2 levels

 RDC 4 levels

 RSYNC

Fig. 8. RDC speedup factors for a fixed horizon and window

size (h=256, w=32) but with variable levels of recursion,

compared to RSYNC. The biggest boost is achieved for large

files.

12

of several different file types: Word (DOC, avg. size: 19MB),

PowerPoint (PPT, 9.2MB), Excel (XLS, 6MB), Visio (VSD,

2MB) and Project (MPP, 1MB); for each of these types, the

seed files were 15 randomly selected documents from an

archive. The data set also includes two Outlook Offline

Folders (OST) files. The changed files were derived by

editing one or two places within each file; the edits included

changing a few headers, word replacements, font changes,

additions or deletions of text, and changes in diagrams. For

the OST files, we used versions from successive days

(updated with a few hundred emails) as the changed files.

 Fig. 7 shows the RDC speedup factors achieved for

various combinations of the horizon h and window size w

(remember that for local maximum the average chunk size is

C=2h+1). The speedup factor is calculated as the total size of

the file divided by the number of bytes sent. Fig. 7 shows

weighted averages across samples of the same type. Even

without recursion, RDC compares quite favorably to RSYNC,

though the latter is better in several cases because it sends

fewer and more compactly represented signatures. This is the

reason why RDC doesn’t perform as well on OST or DOC

files for a small average chunk size and no recursion.

In Fig. 8 we fix the horizon and window size to (h=256,

w=32) and vary the number of recursion levels (0, 2, and 4).

We picked a small average chunk size since the additional

signature overhead is reduced through recursion. The

parameters for the recursive signature chunking were (h=128,

w=4). As shown in this Figure, recursion provides a very

significant performance boost, especially for larger files:

while the average PPT file size in our experiments was

8.8MB, the OST files were about 213MB in size.

Fig. 9 summarizes an experiment performed on a PPT file

selected at random. A combination of horizon size between

80 and 160 and 4 recursive applications of RDC provide the

highest speedup (about 13x), while recursion has little effect

for the higher horizon sizes.

To calibrate how well RDC and RSYNC compare to local

diff, we ran the same dataset with xdelta. We expected xdelta

to perform better, since it has more information available to it

than RDC or RSYNC. Note that xdelta uses significantly

more memory than RDC (8 times the total file sizes for

xdelta, vs. less than 5% of the file size for RDC if the

signatures are kept in memory). The results are shown in Fig.

10. Note that for this comparison we had to use compression,

since the output of xdelta is compressed. In some cases our

blocked compression does not perform as well as the one in

xdelta or RSYNC, which is applied to the entire change

stream. This was a trade-off we made in favor of reducing the

CPU overhead on servers that need to replicate data to large

numbers of clients.

To further examine the impact of recursion on very large

files, we ran RDC and RSYNC on some VHD (Virtual Hard

Disk) files generated using Microsoft Virtual Server. Table

11 summarizes the experiments we performed. The baseline

was a Windows Server 2003 clean install image. In the first

four experiments we used the result of the updates listed in

the first column as the initial VHD version for the next row.

Before each experiment, we scrubbed the VHD files by

zeroing out all unallocated sectors and deleting the OS page

file to avoid transferring dead sectors. The results are shown

in Table 11, note: we could not run the local diff utilities on

these files, as their memory consumption far exceeded the

available main memory. RDC was run with 4 levels of

recursion, and a horizon size of 256 bytes. The first six rows

correspond to the six experiments listed above. The last row

repeats the firth experiment, but uses the admin pack

installation as an additional seed. Notice how recursion plays

a significant role when the speedup factor is high, while

RSYNC is on par with RDC on a more modest speedup

factor.

C. Evaluating similarity detection

We now present the results from a set of experiments in

0

0.2

0.4

0.6

0.8

1

DOC MPP OST PPT XLS

 RDC no recursion

 RDC 2 levels

 RDC 4 levels

 RSYNC

 xdelta

Fig. 10. Speedup of recursive RDC and RSYNC normalized

to xdelta. Note these figures all include compression.

Experiment File size RDC

speedup

RSYNC

speedup

Baseline: VHD containing a clean

installation of Windows Server

2003 SP1.

3.2GB n/a n/a

Add MSN messenger and toolbar . 3.2GB 104 36

Add MSN money. 3.8GB 92 2

Add Winzip and Source Insight. 3.8GB 82 73

Install R2 and launch DFSR. 4.0 GB 13 15

Baseline: Windows Server 2003

Domain Controller VHD image.

2.5GB n/a n/a

Add new domain user account. 2.5GB 886 439

Install the admin pack. 2.6GB 236 162

Add another domain user account. 2.5 GB 1036 439

Table. 11. Speedup factors for RDC vs. RSYNC for large

files.

13

Type Server 1 Server 2 Server 3

Total transfers 219061 175854 160926

Non-RDC

transfers

195623 156555 148625

Non-RDC bytes

transferred

2.9GB

1.4GB 6.5GB

RDC transfers 23438 19299 12301

RDC target size 18GB 15GB 8.4GB

RDC bytes

transferred

13.5MB 118MB 238MB

Average speedup

from RDC

133 128 35

Table 13. Breakdown of RDC and non-RDC transfers in a

deployment scenario.

which we tuned similarity detection and compared the results

against LBFS.

The file data used was drawn from a versioned document

library maintained by our organization. We selected at

random a total of 14,000 old versions of files from the library

to be used as seeds. We then picked the new versions of 350

of those files, which included various Microsoft Office

formats, as well as PDF and ZIP files. For each new file, we

computed the traits and ran similarity detection to select n

similar files, by using k matches Next, we used the n similar

files for an RDC transfer (without recursion) from a server

containing the new file to a client containing the 14,000 seed

files, and measured the required bandwidth. We normalized

the results against the bandwidth required for an LBFS

transfer. The outcome is shown in Fig. 12 for samples where

n∈{1,10} and k∈{4,7,10}. We used 16 traits with 6 bits each

in all experiments reported in this table.

 Another experiment used a collection of 36 VHD images

(using 24 as seeds), totaling 100GB. The data set included

VHD images of different versions of operating system

images, ranging from MS DOS to Windows Server 2003

images. The choice of the parameters k and n had virtually no

impact, as for each transferred VHD only one seed contained

most of the useful data for RDC and LBFS. So RDC was

within 10% on all transfers without recursion. Adding

recursion turned the advantage 10% towards RDC, but not

more, as the data set consisted of larger deltas than used in

Table 11.

The results in Fig. 13 show that for a choice of parameters

of (n=10,k=4), the most liberal matching criterion, our

technique performs within just a few percent of LBFS in most

cases, and within 10% for the OS images. This is remarkable,

given that the amount of metadata we keep and our overhead

in terms of potential disk seeks per chunk are tiny compared

to LBFS, and that LBFS has ideal chunk reuse characteristics.

The advantages using similarity are furthermore amplified by

recursion and small chunk sizes.

D. Deployment example

A scenario that illustrates a realistic, albeit not controlled,

use of RDC is a DFSR deployment among 136 globally

distributed branch offices within Microsoft. DFSR is used to

replicate product builds as well as documents to the branch

offices. While the total amount of replicated data is currently

around 100GB, churn only happens occasionally when

updates such as patches are shared, ACLs are changed, and

old content is removed. To gauge the amount of data that may

be transferred and the contribution of RDC, we sampled the

activity of three servers over a week. A breakdown is

summarized in Table 13. We observe that the average file

sizes for non-RDC transfer is around 30K and for RDC the

average file size is around 750KB, while on average only

10KB of actual changes were transferred by RDC.

The very significant speedups from Table 13 may suggest

that only trivial churn appears on the machines. With

additional instrumentation, we extracted a summary of which

heuristic DFSR used to identify similar files for RDC.

Besides the similarity metric, DFSR also allows using

partially downloaded files, old versions of the same file, and

name conflicting files as a seed for RDC. Table 14

summarizes the collected numbers. The first column contains

the combination of heuristics used for a transfer, the number

of times that particular heuristic was used is counted in the

second column, and the combined file sizes are summarized

in the third column. While old versions of the same files

account for a significant amount of the applicable heuristics,

we observe that there is a very significant presence of similar

files. In the Microsoft scenario this is due to a relatively

frequent case of duplicate files across different replicated

folders.

1

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

DOC MPP PDF PPT XLS ZIP

LBFS

RDC [10 files, 4 matches]

RDC [1 file, 4 matches]

RDC [10 files, 7 matches]

RDC [10 files, 10 matches]

Fig. 12. Comparison of the transfer bandwidth required

when using similarity detection with different parameters

and RDC (without recursion) vs. LBFS.

14

VIII. RELATED WORK

Several previous papers have been concerned with the

efficient identification of similar objects in large collections.

Manber [22] investigated the use of probabilistic selection

techniques for finding local files closely resembling a given

file, to help with version management. In order to ascertain

the degree of near-duplication of pages on the World-Wide

Web, Broder et al. [3][4] employed similarity techniques

from which the one we present is derived. Heintze [11] and

Schleimer et al. [30] apply related techniques with a primary

focus on discovering duplication of code fragments for

detecting plagiarism. The latter paper additionally presents

winnowing, a phrase-selection scheme based on local minima

of hash functions, algorithmically close to the one we use in

defining chunk boundaries, apart from the treatment of ties A

central result of [30] is that the winnowing has a density of

selection within a constant factor of the lower bound of any

landmarking scheme. In contrast to our criteria, winnowing

requires at least one chunk boundary for every segment of

size h. Consequently, no minimal chunk length is or can be

enforced by winnowing. On the technical side, our

contributions include the notion and analysis of slack, the

average number of branch miss-predictions, and the simple

observation that no rolling hash is required for our schemes.

Cox [6] presents a similarity-based mechanism for locating

a single source file, used to extend an RDC mechanism

similar in most other ways to LBFS [24]. Irmak et al. [14]

present an intriguing approach for reducing communication

rounds in an RDC approach by using erasure codes; this

improves latency at the expense of a small overhead in

bandwidth. Suel et al. [31] consider using global techniques

for discovering similar chunks, and then apply local

differencing techniques. Kulkarni et al. [19] perform trace-

driven analyses of differencing techniques for eliminating

redundancy. Quinlan and Dorward [27] describe a protocol

resembling LBFS, but at the disk block level. Korn et al [17],

in their RFC, provide a network protocol to express the local

edits needed in delta-encoding.

The widely used RSYNC protocol [33][34] has the

recipient chop up its old file at fixed chunk boundaries. The

recipient then transmits a strong and a weak checksum for

each chunk to the sender. The sender traverses its version of

the file, computing weak checksums over a sliding window.

The weak checksums are used to filter out matching

candidates with the chunks received from the recipient. The

sender can then deduce which chunks already reside on the

recipient and what file data needs to be transferred directly.

Langford [20] considers recursive decomposition as an

extension to RSYNC. This decomposition, like that of Fu [9]

and Irmak and Suel [15] (which both apply to new transport

protocols, rather than RSYNC), constructs a balanced binary

tree of segment fingerprints. The primary disadvantages of

this approach are that the depth of the tree is larger than ours

and is not tunable, and that small changes can cause

misalignments throughout the tree. Consider, for example, a

file containing 2
k
 chunks. Move the first chunk to the end of

the file. All the leaf signatures are unchanged, but every

signature at the next level of the tree and all higher levels is

different. In the multi-round work of Langford [20], at least

RSYNC alignment should apply, requiring computation of

larger misaligned checksums to look for the transmitted

signatures. In our design, small changes impact a small

number of boundaries, and thus the set of chunks

concatenated during the recursion will be largely unchanged.

Jain et al [16] present a replica synchronization system

called TAPER that combines RSYNC for intra-file

compression and LBFS for inter-file redundancy elimination.

Directory renames are optimized by maintaining a

hierarchical hash of directories. In contrast, DFSR maintains

unique object identifiers per resource making renames cheap.

TAPER makes a novel use of Bloom filters for content

dependent hashes for similarity detection. A claim is made

that Bloom filters are cheaper than techniques based on min-

wise independent hashes and shingles. In contrast, Section

III.D describes how the cost of computing min-wise

independent hash functions could be reduced to less than one

extra hash computation per chunk.

In a different setting, Chan and Woo [5] use related

techniques to optimize the transmission of Web pages,

building on chunks already resident in a cache.

The computational framework we use for computing

similarity is derived from those of Broder et al. [3][4] and

Fetterly et al. [8], with modifications to reduce memory usage

and to locate several closely matching files.

Work that introduces concepts related to applying hashing

recursively, but with substantially different content includes

Eshghi [7] that uses a tree of hash values to represent a

directory tree, and contains a suggestion using a two-level

decomposition into chunks for P2P file copying. It suggests

Type Count File

sizes

Speed

up

Total RDC downloads 21063 126MB 89

Old version + 1 similar file 11229 53MB 86

Old version 3498 16.5MB 199

Name conflict + old version 1432 8.8MB 85

Partial download +

old version + 1 similar file

1223 5.4MB 93

2 similar files 1139 17MB 25

Old version + partial download 1087 7.4MB 121

Name conflicting file 748 6MB 72

3 similar files 210 1.4MB 52

Other combinations 495 10.6MB 30

Table 14. Breakdown of RDC seed heuristics.

15

using a tree to represent versioning of files, but lacks details

as to how the system determines appropriate-sized shared

chunks (but different edits based on the same version of a file

would give rise to a tree). It is based on Merkle [23] trees

that are used for computing hashes in order to prove that a

segment exists in the tree.

IX. CONCLUSION

We have presented three significant optimizations to

previous work on remote differential compression protocols:

a very efficient similarity detection technique, recursive

signature transfer, and improved data chunking algorithms.

These optimizations have been implemented in a commercial

state-based multi-master file synchronization service that can

scale up to a few thousand nodes.

Experimental data shows that these optimizations may help

significantly reduce the bandwidth required to transfer file

updates across a network, compared to previous techniques.

Our similarity detection approach is shown to perform almost

as well as the one used in LBFS (which has an ideal behavior

in terms of chunk reuse), while requiring a very small amount

of metadata per file (96 bits) and completely eliminating a

substantial system-wide database of all chunks.

We showed that recursion plays a key role for transferring

incremental differences between large files, such as Virtual

PC images. The built-in minimal chunk size, the reduced

average slack, and independence of rolling hashes are

compelling reasons for using the local maxima chunking

algorithm.

Some of the open issues that could be topics for future

research include determining whether an optimal chunking

algorithm exists with respect to slack, and applying RDC to

compressed files.

X. ACKNOWLEDGMENTS

We are thankful to Akhil Wable for developing and

experimenting with an early prototype of RDC and similarity

based traits. Eric Hammerle tuned our current implementation

significantly and provided the CPU measurements. We are

also indebted to Le Wang and Rob Post for stressing RDC

from A to Z, and to Shobana Balakrishnan, Dan Boldo,

Patrick Bozeman, Jeff Carollo, Richard Chinn, Brian Collins,

Stone Cong, Huseyin Dursun, David Golds, Huisheng Liu,

Ram Natarajan, Rafik Robeal, Christophe Robert, Masood

Siddiqi, and Guhan Suriyanarayanan and numerous others for

their drive for shipping RDC and DFS-R.

REFERENCES

[1] M. Ajtai, R. Burns, R. Fagin, D. D. E. Long, and L.

Stockmeyer, “Compactly Encoding Unstructured Inputs with

Differential Compression,” Journal of the ACM, Vol. 49, No.

3,pp. 318-367,5- 2002.

[2] N. Bjørner, A. Blass, Y. Gurevich. “Content Dependent

Chunking for Differential Compression. The Local Maximum

Approach,” MSR Technical Report, 12-2006.

[3] A.Z. Broder, “On the resemblance and containment of

documents,” Proceedings of the Compression and Complexity

of Sequences, 1997.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G.

Zweig, “Syntactic clustering of the Web,” Proceedings of the

6
th
 International Conference on WWW, 9-1997.

[5] M.C. Chan, and T.Y.C. Woo, “Cache-based Compaction:

A New Technique for Optimizing Web Transfer,” Proc. of

the IEEE Infocom Conference, 1999.

[6] L. Cox, C.D. Murray, and B.D. Noble, “Pastiche: Making

Backup Cheap and Easy,” 5
th
 Symposium on Operating

System Design and Implementation, 12-2002.

[7] K. Eshghi: Intrinsic References in Distributed Systems.

675-680. 22
nd
 International Conference on Distributed

Computing Systems, Workshops (ICDCSW '02) July 2-5,

2002, Vienna, Austria, Proceedings

[8] D. Fetterly, J. Weiner, M. Manasse, M. Najork, “A large-

scale study of the evolution of Web pages,” Software –

Practice and Experience, Vol. 34, No. 2, pp.213-37, 2004.

[9] K. Fu, F. Kaashoek, and D. Mazières, “Fast and secure

distributed read-only file system,” OSDI-4, 10-2000.

[10] T. Haveliwala, A. Gionis, and P. Indyk. “Scalable

Techniques for Clustering the Web”, In Proceedings of

WebDB, 2000.

[11] N. Heintze. “Scalable document fingerprinting.” 1996

USENIX Workshop on E-Commerce, November 1996.

[12] J.W. Hunt, and M.D. McIllroy, “An algorithm for

differential file comparison,” Computer Science Technical

Report 41, Bell Labs, 6-1976.

[13] J.W. Hunt, and T.G. Szymansky, “A fast algorithm for

computing longest common subsequences,” Communications

of the ACM 20(5):350-353, 5-1977.

[14] U. Irmak, S. Mihaylov, and T. Suel, “Improved Single-

Round Protocols for Remote File Synchronization,” IEEE

Infocom Conference, 3-2005.

[15] U. Irmak, and T. Suel, “Hierarchical Substring Caching

for Efficient Content Distribution to Low-Bandwidth

Clients,” 14
th
 International WWW Conference, May 2005.

[16] N. Jain, M. Dahlin, and R. Tewari. “TAPER: Tiered

Approach for eliminating Redundancy in Replica

Synchronization,” 4
th
 Usenix Conference on File and Storage

Technology, FAST 2005.

[17] R. Jenkins. “Hash Functions for Hash Table Lookup”,

http://burtleburtle.net/bob/hash/evahash.html, 1995-1997.

[18] D. Korn, J. MacDonals, J. Mogul, and K. Vo, “The

VCDIFF Generic Differencing and Compression Data

Format,” RFC 3284, 6-2002.

[19] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey,

“Redundancy Elimination within Large Collections of Files,”

Proceedings of the 2004 USENIX Annual Technical

Conference, Boston, MA, 6-2004.

[20] J. Langford, “Multiround Rsync,” unpublished, 1- 2001.

16

[21] J.P. MacDonald, “File System Support for Delta

Compression,” Master’s Thesis, UC Berkeley,

http://www.cs.berkeley.edu/~jmacd.

[22] U. Manber, “Finding Similar Files in a Large File

System,” Technical Report TR 93-33, Department of

Computer Science, Univ. of Arizona, Tucson, 10-1993.

[23] R. C. Merkle. "A Digital Signature Based on a

Conventional Encryption Function." In A Conference on the

Theory and Applications of Cryptographic Techniques on

Advances in Cryptology, pp. 369--378, 1987.

[24] A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-

bandwidth Network File System,” Proceedings of the 18
th

SOSP, Banff, Canada, 10-2001.

[25] C. Percival, “Naïve Differences of Executable Code,”

Draft Paper, http://www.daemonology.net/bsdiff.

[26] K. Peterson. “Ergodic Theory,” Cambridge University

Press, 1983.

[27] S. Quinlan, and S. Dorward, “Venti: a new approach to

archival storage,” Proceedings of the FAST 2002 Conference

on File and Storage Technologies, 1-2002.

[28] M. Rabin. “Fingerprinting by random polynomials”.

Report TR-15-81, Center for Research in Computing

Technology, Harvard University, 1981.

[29] Y. Saito, and M. Shapiro, “Optimistic Replication,” ACM

Computing Surveys 37(1):42-81, 3-2005.

[30] S. Schleimer, D. Wilkerson, and A. Aiken, “Winnowing:

local algorithms for document fingerprinting,” Proceedings of

the 2003 ACM SIGMOD international conference on

Management of data, pp.76-85, 2003.

[31] T. Suel, P. Noel, and D. Trendafilov, “Improved File

Synchronization Techniques for Maintaining Large

Replicated Collections over Slow Networks,” IEEE

International Conference on Data Engineering, 3-2004.

[32] D. Trendafilov, N. Memon, T. Suel, “zdelta: An Efficient

Delta Compression Tool,” Technical Report TR-CIS-2002-

02, Polytechnic University, June 2002.

[33] A. Tridgell, and P. Mackerras, “The rsync algorithm,”

Technical Report TR-CS-96-05, Australian National

University, June 1996.

[34] A. Tridgell, “Efficient Algorithms for Sorting and

Synchronization,” PhD thesis, Australian National

University, 1999.

