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Abstract— Remote Differential Compression (RDC) 

protocols can efficiently update files over a limited-

bandwidth network when two sites have roughly similar 

files; no site needs to know the content of another's files a 

priori. We present a heuristic approach to identify and 

transfer the file differences that is based on finding 

similar files, subdividing the files into chunks, and 

comparing chunk signatures. Our work significantly 

improves upon previous protocols such as LBFS and 

RSYNC in three ways. Firstly, we present a novel 

algorithm to efficiently find the client files that are the 

most similar to a given server file. Our algorithm requires 

96 bits of meta-data per file, independent of file size, and 

thus allows us to keep the metadata in memory and 

eliminate the need for expensive disk seeks. Secondly, we 

show that RDC can be applied recursively to signatures to 

reduce the transfer cost for large files. Thirdly, we 

describe new ways to subdivide files into chunks that 

identify file differences more accurately. We have 

implemented our approach in DFSR, a state-based multi-

master file replication service shipping as part of 

Windows Server 2003 R2. Our experimental results show 

that similarity detection produces results comparable to 

LBFS while incurring a much smaller overhead for 

maintaining the metadata. Recursive signature transfer 

further increases replication efficiency by up to several 

orders of magnitude.  

I. INTRODUCTION 

s the amount of data shared over the Internet continues 

to grow rapidly, users still experience high costs and 

long delays in transferring large amounts of information 

across the network. 

However, it often happens that a large fraction of the 

information that is transmitted is redundant, as the recipient 

may already have stored a similar (if not identical) copy of the 

data. For instance, consider the case of a group of people 

collaborating over email to produce a large PowerPoint 

presentation, sending it back and forth as an attachment each 

time they make changes. An analysis of typical incremental 

changes shows that very often just a small fraction of the file 

changes. Therefore, a dramatic reduction in bandwidth can be 

achieved if just the differences are communicated across the 

network. A change affecting 16KB in a 3.5MB file requires 

about 3s to transmit over a 56Kbps modem, compared to 10 

minutes for a full transfer. 

Delta-compression utilities such as diff [1][11][13], vcdiff 

[17], xdelta [21], BSDiff [25], or zdelta [32] may be used to 

produce a succinct description of the differences between two 

files if both files (the old and the new version) are locally 

available to a sender. However, in many distributed systems 

this assumption may be overly restrictive, since it is difficult 

or infeasible to know which old copies of the files (if any) 

other nodes hold. (A notable exception is the case of software 

distribution, where the sender may store the previous versions 

of the binaries and pre-compute differences). 

A different class of protocols can be used if the old and the 

new version of the file are at the opposite ends of a slow 

network connection. These Remote Differential Compression 

(RDC) protocols heuristically negotiate a set of differences 

between a recipient and a sender that have two sufficiently 

similar versions of the same file. While not as precise as local 

delta compression, RDC may help to greatly reduce the total 

amount of data transferred. 

In the Low Bandwidth File System (LBFS) [24], an RDC 

protocol is used to optimize the communication between a 

sender and a recipient by having both sides subdivide all of 

their files into chunks and compute strong checksums, or 

signatures, for each chunk. When a client needs to access or 

copy a file from the server, the latter first transmits the list of 

signatures for that file to the client, which determines which 

of its old chunks may be used to reconstruct the new file, and 

requests the missing chunks. The key to this protocol is that 

the files are divided independently on the client and server, by 

determining chunk boundaries from data features. Compared 

to chunking at fixed boundaries (an approach used by 

RSYNC [25][34]), this data-dependent chunking opens up 

other applications, such as using a system-wide database of 

chunk signatures on the client. 

This paper builds upon the LBFS approach in the context 

of DFSR, a scalable state-based multi-master file 

synchronization service that is part of Windows Server 2003 

R2. Some of the primary uses of DFSR include the 

distribution of content from a small number of hubs to a large 
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number of spoke nodes, the collection of content from spokes 

back to the hubs for backup and archival purposes, and ad-

hoc collaboration between spokes. Hubs and spokes may be 

arranged in a user-defined and dynamically modifiable 

topology, ranging up to a few thousand nodes. In most actual 

configurations, spokes will be geographically distributed and 

will often have a limited-bandwidth connection to the rest of 

the system; satellite links or even modem-based connections 

are not uncommon. Therefore, efficient use of connection 

bandwidth is one of the foremost customer requirements for 

DFSR. 

In our RDC implementation, we significantly improve upon 

LBFS as well as other similar protocols, such as the widely 

used RSYNC protocol [25][34], in three different ways. 

The first contribution is a novel and very efficient way for 

allowing a client to locate a set of files that are likely to be 

similar to the file that needs to be transferred from a server. 

Once this set of similar files has been found, the client may 

reuse any chunks from these files during the RDC protocol. 

Note that in the context of multi-master replication, we use 

the terms “client”, instead of recipient, and “server”, instead 

of sender, to indicate the direction of file synchronization, 

thus a given node may act as both a client and a server for 

different transactions, even at the same time. 

Our similarity approach differs from LBFS in a significant 

way. Whereas LBFS maintains a database of chunk signatures 

across all the files on the node, RDC maintains only a small 

fixed size (96 bits) piece of meta-data per file. Since we may 

exclude meta data for very small files (in DFSR, this is set to 

less than 64KB), an index of this data can easily fit in main 

memory, even on large shares with more than 1M such files. 

LBFS on the other hand has to perform a tradeoff between the 

average chunk sizes and the size of the data-base. An average 

chunk size of 8KB, as suggested in [24], results in only 0.4% 

overhead for the chunk database, assuming 32 bytes for 

signatures and offset per chunk. However, chunk sizes in the 

order of 200 bytes, which in our experiments were found to 

be much more effective for differential compression would 

require an unacceptable 15% overhead for the database alone. 

The combination with recursion, furthermore amplifies the 

benefits of our similarity based approach. 

The second contribution is that the LBFS RDC protocol 

can be applied recursively, by treating the signatures 

generated as a result of chunking as a new input to the 

protocol. This results in a second level of signatures that are 

transmitted in order to reconcile the first level of signatures. 

The first level of signatures is finally used to reconcile the 

real file contents. Recursion can of course be applied to an 

arbitrary depth. The benefit of recursion is that it reduces the 

signature transfer cost of the protocol, which can be 

significant for large files. 

The third contribution is a chunking algorithm that 

identifies file differences more accurately, and an analysis of 

its quality. LBFS summarizes small windows of a file using a 

hash; chunk boundaries are chosen when the hash is divisible 

by a fixed base m. The average chunk size is thus equal to m 

when the hashes are evenly distributed. Neither the minimal 

nor the maximal chunk size is determined by this method. It is 

possible to impose a minimal chunk size by disregarding all 

hashes within a given minimal distance from a previous chunk 

boundary but this negatively affects the number of chunks that 

can be expected to coincide for roughly similar files. 

Our local maxima chunking algorithm is also based on 

examining an interval of hash values.  A position is a cut 

point, or chunk boundary, if its hash is larger than the hashes 

at all other surrounding positions within distance h. We show 

that determining local maxima is asymptotically no more 

expensive than determining cut-points by the other methods. 

In particular, we give an algorithm that requires only 

1+ln(h)/h comparisons per position. The local maxima 

chunking approach has the advantage of a “built-in” minimal 

chunk length, and of not requiring auxiliary parameters. A 

probabilistic analysis reveals that this approach also recovers 

more quickly from file differences. 

Based on a large corpus of files and using the production 

version of DFSR, we show that the bandwidth savings 

achieved using our similarity detection approach are within 

just a few percent of LBFS, while incurring a tiny fraction of 

the cost for maintaining the metadata. 

Further experimental results over a large collection of files 

show that RDC with recursion is significantly more efficient 

than RSYNC in most cases. For some very large files RDC 

uses up to four times less bandwidth than RSYNC. Although 

we expected it to be not as efficient, RDC compares favorably 

with local differential algorithms. 

The rest of this paper is structured as follows. Section II 

summarizes the basic LBFS RDC protocol [24]. Section III 

presents our file similarity detection technique. Section IV 

describes the recursive signature transfer. Section V discusses 

our improved chunking algorithm. Section VI details the 

implementation of these techniques in DFSR. Section VII 

presents experimental results. The paper concludes after a 

discussion of related work. 

II. THE BASIC RDC PROTOCOL 

For completeness, we summarize in this section the basic 

RDC protocol used in LBFS [24]. While LBFS uses the entire 

client file system as a seed for differential transfers, we shall 

assume without loss of generality the existence of a single 

seed file FC, as this shall facilitate the presentation of our 

approach in the following sections. Readers familiar with the 

LBFS algorithm may skip to the end of this section. 

Referring to Fig. 1, the basic RDC protocol assumes that 

the file FS on the server machine S needs to be transferred to 
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the client machine C using the seed file FC stored on the 

client. FS is a new version containing incremental edits over 

the seed file FC. The transfer of FS from S to C is performed 

as follows: 

  

Step 1: C sends S a request to transfer file FS. 

Step 2: C partitions FC into chunks by using a fingerprinting 

function that is computed at every byte position of FC. A 

chunk boundary is determined in a data-dependent fashion 

at positions for which the fingerprinting function satisfies a 

certain condition. Next, a signature SigCk is computed for 

each chunk k of FC. A cryptographically secure hash 

function (SHA-1) is used in LBFS, but any other collision-

resistant hash function may be used instead. 

Step 3: Using the same partitioning algorithm as in Step 2, S 

independently partitions FS into chunks and computes the 

chunk signatures SigSj. Steps 2 and 3 may run in parallel. 

Step 4: S sends the ordered list of chunk signatures and 

lengths ((SigS1,LenS1) … (SigSn,LenSn)) to C. Note that this 

implicitly encodes the offsets of the chunks in FS. 

Step 5: As this information is received, C compares the 

received signatures against its own set of signatures 

{SigC1,…,SigCm} computed in Step 2. C records every 

distinct signature value received that does not match one of 

its own signatures SigCk. 

Step 6: C sends a request to S for all the chunks for which 

there was no matching signature. The chunks are requested 

by their offset and length in FS. 

Step 7: S sends the content of the requested chunks to C. 

Step 8: C reconstructs FS by using the chunks received in 

Step 7, as well as its own chunks of FC that in Step 5 

matched signatures sent by S.  

 

In LBFS, the entire client file system acts as the seed file 

FC. This requires maintaining a mapping from chunk 

signatures to actual file chunks on disk to perform the 

comparison in Step 5. For a large number of files this map 

may not fit in memory and may require expensive updates on 

disk for any changes to the local file system. In our approach 

the seed is made up of a small set of similar files from the 

client file system, and can be efficiently computed at the 

beginning of a transfer based on a data structure that fits in 

memory. The following three sections describe this similarity 

approach and two additional enhancements that we have 

made to the RDC algorithm. 

III. USING SIMILARITY DETECTION TO FIND RDC 

CANDIDATES 

A. Finding RDC candidates 

To transfer a file FS from the server to the client, the RDC 

protocol requires that a seed FC that is similar to FS be 

identified on the client. In some cases, a simple heuristic 

based on file identity, such as equality of the file path or of 

the file unique identifier assigned by a state-based replicator, 

can be used to identify FC. This assumes that the new version 

FS was derived from the old version FC through incremental 

edits. 

However, in many cases a seed file cannot be identified a 

priori, although the client may already store several good 

RDC candidates. For example, if a new file FN is created on 

the server S by simply copying FS, but no record of the copy 

operation is kept, then it may be difficult to determine that FC 
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Seed file FC New file FS 
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Fig. 1.  The basic RDC protocol in LBFS [24] starts with both client and server machines dividing their respective files into 

chunks and computing signatures for each chunk. The server then communicates the list of signatures to the client, which checks 

it against its own to determine which chunks it needs to request from the server. Upon receipt of the missing chunks, the client 

combines the received chunks with its own seed ones to reassemble a copy of the new file FS. 
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is the perfect seed for the differential transfer of FN. Examples 

of this scenario can be frequently observed in environments 

where DFSR is deployed; examples include saving a large 

modified PowerPoint presentation to a new file, making a 

copy of an existing large document, creating a new virtual 

machine image by installing an application on top of an 

existing image, etc. 

In this section, we describe a technique that allows the 

client C to efficiently select a small subset of its files, FC1, 

FC2, …, FCn, that are similar to a file FS that needs to be 

transferred from S using the RDC protocol. Typically, the set 

of similar files to be chosen will be small, i.e. n ≤ 10.  

Similarity between two files FS and FC is measured in terms 

of the number of identical chunks that FS and FC share, 

divided by the total number of distinct chunks in the two files. 

If Chunks(FS) and Chunks(FC) are the sets of chunks 

computed for FS and FC in Steps 3 and 2 of the base RDC 

protocol, then: 

 

( ) ( ) ( )
( ) ( )CS

CS
CS

FChunksFChunks

FChunksFChunks
F,FSim

U

I
=  

As a proxy for chunk equality we shall use equality on the 

signatures of the chunks. If the signatures are computed using 

a cryptographically secure hash function (such as SHA-1 or 

MD4), this is highly accurate, due to the extremely low 

probability of a hash collision. Thus, if Signatures(FS) and 

Signatures(FC) are the sets of signatures for FS and FC, then: 

 

( )
( ) ( )
( ) ( )CS

CS
CS

FSignaturesFSignatures

FSignaturesFSignatures
F,FSim

U

I
≅  

 

One fine point to note in the above is the fact that a file 

may contain several identical chunks (with identical 

signatures). This is irrelevant from the point of view of the 

RDC protocol, as identical chunks will be requested and 

transferred at most once in Steps 6 and 7, respectively. 

Given a file FS and FilesC, the set of all the files that are 

stored on C, the problem we need to solve is to identify the 

files in FilesC that have the highest degree of similarity with 

FS. If FC1, FC2, ...., FCn are the n files in FilesC most similar to 

FS, we define: 

 

( ) { }CnC2C1CS F,...,F,F s,Files,FSimilar =  

 

where by “most similar” we mean that for all files FCi, Sim(FS, 

FCi) ≥ s, and for all other files x in FilesC, Sim(FS, x) ≤ 

Sim(FS, FCi). s is a similarity threshold explained below. 

A brute-force approach for computing Similar(FS, FilesC, s) 

could be based on the set of signatures sent by S in Step 4 of 

the RDC protocol. However, there are two problems with this 

approach. Firstly, C would need to wait until it received at 

least a substantial portion of the signature list before selecting 

the similar files and starting to execute Step 5, thus 

significantly reducing its pipelining opportunities. Secondly, 

lacking a seed, the recursive signature transfer described in 

Section IV could not be applied to the signature list. 

B. Using traits to encode similarity information 

File similarity can be approximated by using the following 

heuristic that makes use of a compact summary of a file’s 

signatures, called its set of traits. The set of traits Traits(F) of 

a file F can be computed simultaneously with the partitioning 

of the file into chunks during Step 2 of the RDC algorithm, 

and cached as part of the file metadata. 

The basic RDC protocol described in the previous section 

is modified as follows to allow the client C to identify and use 

as a seed the set of n files FC1, FC2, …, FCn that are similar to 

the file FS to be differentially transferred: 
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Fig. 2.  Computing the traits of a file F is done by mapping the signatures into t image sets through t different hash functions. A 

pre-trait is derived out of each image set by taking the element with minimum hash value from the set. Traits are computed by 

selecting b bits out of each pre-trait. 
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Step S.1.1: C sends S a request to transfer the file FS. 

Step S.1.2: S replies with the set of traits for FS, Traits(FS). 

Traits(FS) will be usually cached as part of the metadata of 

FS, and thus can be sent to C without additional overhead. 

Step S.1.3: C uses Traits(FS) to identify a set of its existing 

files, FC1, FC2, …, FCn, that are likely to be similar to FS. 

Step S.2: C partitions all identified files FC1, FC2, …, FCn into 

chunks and computes a signature SigCik for each chunk k of 

each file FCi. 

Step S.3: S partitions FS into chunks and computes the chunk 

signatures SigSj. 

Step S.4: S sends the ordered list of chunk signatures and 

lengths ((SigS1,LenS1) … (SigSn,LenSn)) to C. 

Step S.5: As this list is received, C compares the received 

signatures against its own set of computed signatures 

(SigC11,…SigC1m,…SigCn1,…). C records every distinct 

signature value received that does not match one of its own 

signatures SigCik. 

Step S.6: C sends a request to S for all the chunks for which 

there was no matching signature on C. 

Step S.7: S sends the requested chunks to C. 

Step S.8: C reconstructs FS by using the chunks received in 

Step S.7, as well as its own chunks of FC1, FC2, …, FCn that 

in Step S.5 matched signatures sent by S. Once a copy of 

FS has been reconstructed, C adds FS to its collection of 

stored files and stores Traits(FS) as part of its metadata. 

 

To minimize network traffic and CPU overhead, it is 

essential that Traits(FS) be very small and that the set of 

similar files FC1, FC2, …, FCn be determined quickly. 

The algorithm for identifying similar files has two main 

parameters (b,t) that are summarized below. These parameters 

are explained in detail in the following description. 

 

b : Number of bits per trait 

 t : Number of traits per object 

C. Computing the set of traits for a file  

Fig. 2 shows an example of a trait computation. Traits(F) is 

derived from the chunk signatures of F as follows: 

  

Step T.1: The signature set {Sig1…Sign} is mapped into t 

image sets by applying t different hash functions H1…Ht. 

The set of hash functions must be the same on both client 

and server machines. These hash functions are chosen to be 

one-on-one maps from the space of signature values to 

some well-ordered set of values. This generates t image 

sets, each of size n:  

  IS1 = {H1(Sig1), H1(Sig2), …}  

  … 

  ISt = {Ht(Sig1),  Ht(Sig2), …}  

 

Step T.2: The pre-traits PT1…PTt are computed by taking the 

signatures whose hash is the minimum element of each 

image set. Intuitively, using the minima means that if two 

files only have a few chunks that differ their pre-traits are 

likely to be the same. 

 

  PT1 = Sig1j where H1(Sig1j) = min(IS1);  

  …  

  PTt = Sigtj where Ht(Sigtj) = min(ISt); 

  

Step T.3: The traits T1…Tt are computed by selecting b 

different bits out of each pre-trait PT1…PTt. For instance:  

  T1 = select0..b-1(PT1)  

  …  

  Tt = select(t-1)b...tb-1(PTt) 

 

In DFSR, to compute Ht on a given signature value we 

calculate the MD4 signature concatenated with the 1-byte 

representation of t. If the pre-traits have fewer than t×b bits, 

we could use an extra level of hash function to compute 

independent values, but in the range of values we consider 

experimentally, this does not happen.  We want the bit ranges 

to be non-overlapping so that repeated values in the pre-traits 

(as may happen for short files) do not produce repeated 

values in the traits, which would allow accidental collisions of 

b bits for unequal signature values to be magnified. 

The number of traits t and the trait size b are chosen so that 

just a small total number of bits (t×b) is needed to represent 

the traits for an object. Typical combinations of (b,t) 

parameters that we have found to work well are (b=6,t=16) 

and (b=4,t=24), for a total of 96 bits per object. Abusing 

notation, we’ll denote by Ti(F) the i
th

 trait of F. 

D. Computing the pre-traits efficiently 

An efficient way to select the pre-traits PT1 … PTt in step 

T.3 is to pick an expanded signature set and to perform partial 

evaluation of the signatures.  Logically, each Hi is divided 

into Highi containing the high-order bits of Hi, and Lowi 

containing the remaining low-order bits. Since only the 

minimum element of each image set ISi is selected, we 

compute Highi for every signature, but need to compute Lowi 

only for those signatures that achieve the minimum value ever 

achieved for Highi. If the High values are drawn from a 

smaller space, this may save us computation.  If, further, 

several High values are bundled together, we can save 

significant computation.  Suppose, for instance, that each 

High value is 8 bits long.  We can pack eight of these into a 

long integer; at the cost of computing a single random value 

from a signature, we can chop that value into eight 

independent one byte slices. If only the High value were 

needed, this would reduce our computational costs by a factor 
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of eight; however, on average one time in 256 we also need to 

compute the corresponding Low value. 

Because our trait values are just the input signature values, 

if we have only one signature which attains the minimum 

High value, we need never compute the corresponding Low 

value. 

E. Finding similar files using a given set of traits  

We can approximate the set of files similar to a given file 

FS by computing the set of files having similar traits to FS: 

 

( ) ( ) ( ){ }SCCS F
i

TF
i

T|iF,FTraitSim ==  

 

( ) { }CkC2C1CS F,...,F,Fs n,,Files,FSimTraits =  

 

where the set {FC1,…,FCk}contains 0 ≤ k ≤ n files in FilesC 

such that (TraitSim(FS,FCi)/t) ≥ s, and for all other files x in 

FilesC, TraitSim(FS, x) ≤ TraitSim(FS, FCi). Note that TraitSim 

is an unbiased estimator for Sim, if we divide by t, when 

averaged over all choices of one-to-one hash functions. 

The calculated curves in Fig. 3 show the probability of 

detecting 1,2,…,16 matching traits as a function of the actual 

fraction of matching chunk signatures. Note that the similarity 

curves allow us to detect true similarity differences in the 

range of 5-10%. For the set of parameters (b=6,t=16) that we 

use in practice, we found that setting the lower bound to s = 

5/16, i.e. at least 5 matching traits, provided a reasonable 

threshold. The false positive rate for entirely dissimilar files 

drops to roughly one in three hundred thousand at 5 out of 16 

matching traits (giving us 30 bits of true match, but 








5

16
ways 

to generate these matches). 

To efficiently determine the set of likely similar files, we 

organize our traits into t × 2
b
 lists of files indexed by (τ, β); in 

list (τ, β) we include every file in which trait τ has value β. 

We identify the files using small integers and delta-encode the 

lists for compactness. Given Traits(FS), we can select the t 

lists corresponding to the trait values of FS, and then perform 

the equivalent of a merge sort to compute the number of 

matching traits for every file in FilesC. We can maintain the k 

≤ n largest values as yet observed in a bounded-size priority 

queue. 

Using this compact encoding, the trait information for 1M 

files can be kept in about 32MB of main memory. For 

(b=6,t=16), each bucket has on average 16K entries, so the 

merge takes about 96K comparisons, less than a millisecond 

of CPU time.  

To improve both precision and recall, we could increase 

the total number of bits. For instance, switching to (b=5,t=24) 

would dramatically improve precision at the cost of 

increasing memory consumption for file traits. 

IV. RECURSIVE RDC SIGNATURE TRANSFER 

For large files, a fixed overhead is incurred in Step 4 of the 

basic RDC protocol described in Section II even if FC and FS 

are very similar. The amount of data sent over the network in 

Step 4 is proportional to the size of FS divided by the average 

chunk size. This can become quite significant for large files. 

For instance, assuming the size of FS is 10 GB and the 

average chunk size 2 KB, FS will be divided into 5 million 

chunks, corresponding to about 60 MB of signature 

information that needs to be sent over the network in Step 4. 

This is a fixed cost, even if the differences between FC and FS 

(and thus the amount of data that needs to be sent in Step 6) 

are very small. 

To reduce the amount of signature traffic sent over the 

network in Step 4, a recursive application of the basic RDC 

protocol can be used to transfer the signatures. Thus Step 4 of 

the basic protocol may be replaced with the following steps: 

 

Step R.4.1: The ordered list of chunk signatures and lengths 

((SigS1,LenS1) … (SigSn,LenSn)) computed in Step 3 is 

recursively chunked up on S into signature chunks using an 

approach similar to that described in Step 3, to produce a 

list of recursive signatures and lengths ((RSigS1,RLenS1) … 

(RSigSr,RLenSr)). Compared to the original list, the size of 

the recursive list is reduced by a factor equal to the average 

chunk size (r « n). 

Step R.4.2: C also does a recursive chunking of its signature 

and length list ((SigC1,LenC1) … (SigCm,OffsCm)) into signa-

ture chunks, obtaining a list of recursive signatures and 

lengths ((RSigC1,RLenC1) … (RSigCs,RLenCs)), where s « 
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Fig. 3.  Calculated similarity curves for (b=6,t=16) showing 

the detection probability of finding 1, 2, …, 16 matching 

traits, given the actual fraction of matching chunk signatures. 

The bold curve is the one used in DFSR, corresponding to 5 

matching traits.  



  

 

7

m. 

Step R.4.3: S sends C its ordered list of recursive signatures 

and lengths ((RSigS1,RLenS1)…(RSigSr,RLenSr)). 

Step R.4.4: C compares the recursive signatures received 

from S with its own list of recursive signatures computed in 

Step R.4.2. C then sends a request to S for every distinct 

signature chunk (with recursive signature RSigSk) for which 

C does not have a matching recursive signature. 

Step R.4.5: S sends C the requested signature chunks. 

Step R.4.6: C uses its locally-matching signature chunks and 

the chunks received from S in Step R.4.5 to reassemble the 

original list of signatures and lengths ((SigS1,LenS1) … 

(SigSn,LenSn)) computed by S in Step 3. At this point, 

execution continues at Step 5 of the basic RDC protocol 

described in Section II. 

 

For very large files, the above recursive procedure may be 

applied r times (r ≥ 1). For an average chunk size C, this 

reduces the size of the signature traffic over the network by a 

factor of approximately C
r
.  

The recursive step may be performed by choosing an 

average chunk size based on the number of signatures from 

the previous iteration. This approach may be used to bound 

the amount of data that gets sent over the wire. The method 

may be extended to also choose a permitted overlap, where 

the chunks may overlap with a number of common signatures. 

The recursive decomposition described above can be seen as 

an instance of this where the permitted overlap is 0 and the 

chunk size is set to C. 

In contrast to LBFS [24], our experimental results suggest 

that, when using recursion, the highest bandwidth savings can 

be achieved by choosing a small average chunk size (e.g. 

C=2048 for the base and C=256 for the recursive levels). This 

observation is also consistent with the fact that recursion will 

save significantly on longer file segments that are equal, since 

the recursive signatures will coincide, while segments that are 

different are often relatively short, especially in text 

documents. 

V. IMPROVED CHUNKING ALGORITHMS 

In this section we discuss three alternative chunking 

algorithms and introduce a metric, called slack, for comparing 

these. Calculations that are too lengthy to fit here are reported 

in [2].  

A. Slack and using Point filters  

We observed that the basic RDC protocol requires the 

client and server to partition their files independently. A 

technique for achieving this, described in [24], pre-processes 

the file stream through a hash that summarizes the contents of 

windows comprising the last w bytes (typically w=12...64) 

into a single 4-byte value v. The Rabin hash [28] provides a 

high quality hash function that can be computed 

incrementally. Choose a number h and identify as cut points 

the positions where v mod h = 0.  

There is no gain to sending chunk signatures that occupy 

more space than the chunks they summarize. Therefore, to 

filter out cut-points that are considered too close, one can 

supply an additional parameter m that indicates how many 

positions should be skipped before v is checked again against 

h. This method produces average chunks of size m+h. 

How should m and h be chosen? If m is large relative to h, 

then there is a high probability that chunks in FS and FC will 

not align even though FS and FC only differ in the first 

character. In Fig. 4 we illustrate the situation in which cut 

points are misaligned, for a choice of parameters m=3 and 

h=a (for simplicity, we have suppressed the use of a rolling 

hash in this example). 

Such misalignment directly influences the overhead of 

RDC, since the amount of file data transferred by RDC is 

directly proportional to the number of chunks of FS, but not of 

FC. For quantitative comparisons of chunking methods, we 

therefore consider the following scenario. Take two doubly 

infinite files f1, f2 which coincide on non-negative positions.  

These non-negative positions form an infinite-to-the-right file 

f3. Let f’1 (respectively f’2) be the part of f1 (respectively f2) 

given by their respective negative positions. Assume that the 

infinite-to-the-left files f’1 and f’2 as well as the infinite-to-

the-right file f3 are random. We then define the random 

variable slack as the distance from 0 to the least position of f3 

that is the common cut point of f1 and f2, normalized by 

dividing by the expected chunk size. 

Since bytes “wasted” in the slack will be in chunks whose 

signatures don’t match, RDC benefits from a chunking 

method with the smallest possible expected slack. For the 

point-filter method it can be shown that the minimal slack 

(obtained for m = 0.3h) is 0.82.  

B. Using an interval filter 

A different way to choose cut points is what we will refer 

to as the interval-filter method. It determines the next cut-

point by searching for a pattern in an interval of h previous 

values. It avoids indefinite misalignments. A prototypical 

 

a b a d a b a d a File FA 

cut points 

a d a b a d a b a File FB c b 

 

Fig. 4.  Example of misaligned cut points for m=3 and h=a 

when using the point filter method, where m is the 

minimum chunk size and h is the value at which cut-points 

are chosen. 
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example of an interval filter is obtained by partitioning the 

hash values v into two sets, H (head) and T (tail), where H 

contains 1/h of the possible hash values and T contains the 

rest. A cut-point is then chosen when the file matches a 

pattern of h-1 T’s followed by one H. Clearly, cut-points are 

at least h positions apart, and the choice of possible cut-points 

is local, since it depends only on the h previous positions. 

The average chunk size when using an interval filter can be 

shown [2] to be e·h, while the slack is 1 – e
-1 
+ e

-2 
0.77. 

C. Using local maxima 

The point and interval filters are both absolute in the sense 

that they require hash values to take certain pre-determined 

values for a position to be a cut-point. Another local way, 

closely related to the winnowing technique described by 

Schleimer [30], is to choose as cut-points the positions that 

are local maxima (or local minima). An h-local maximum is a 

position whose hash value v is strictly larger than the hash 

values at the preceding h and following h positions. Suppose 

there are M different possible hash values (M=2
32 

for 4-byte 

hash values), then the probability that a given position is a 

cut-point is: 

12

11
2

0 +
≈







⋅∑
≤≤ hM

j

M

h

Mj

 

since, for each of the M different values that a position can 

take, the neighboring 2h positions must be taken from the 

j/M
th

 fraction of smaller values. Kac’s ergodic recurrence 

theorem [26] implies that the average distance between cut-

points is the inverse of the probability: 2h+1. The expected 

slack for the local maxima filter turns out to be 0.7. 

One intriguing observation is that, on average, the queue 

used to store the ascending chain of at most h previous hash 

values will have length ln(h). To see this, denote by f(h) the 

expected length of the sequence starting with the hash at the 

current position and including hash values from at most h 

preceding positions that form an ascending chain. In the base 

case, we have f(0)=0, while in general, the current position is 

included and the next position to be included is taken 

uniformly from the remaining h-1 positions, unless the value 

at the current position is maximal. The h
th
 harmonic number is 

the solution to the recurrence equation: 

( ) ( ) ( )hlnH
h

1

3

1

2

1
1if

h

1
1hf h

1h

0i

≈=++++=+= ∑
−

=

L  

We can use the above observation to compute cut points by 

examining every position only 1+ ln(h)/h times on average. 

The algorithm processes chunks of size h. Each chunk is 

processed from right to left building up an array of strictly 

ascending hash values. The largest value in the k+1’st interval 

is marked maximal if the first dominating value in the k
th
 

interval is beyond h positions away. On the other hand, the 

largest value in the k
th

 interval is a cut-point if it is marked 

maximal, and is either larger than the largest value in the k+1
st
 

interval, or the largest value is beyond h positions away, and 

all values closer to it are smaller.  

As we later report on in Section VII.A, there is a 

performance tradeoff between the different chunking 

methods. The average case behavior of only ln(h) branch 

miss-predictions together with the ability to use scanned bytes 

directly as digits
1
 appear to give local maxima an both a 

performance and quality advantage over point filters that rely 

on a good hashing function. On the other hand, local maxima 

require a look-ahead for determining cut-points that makes it 

harder to compose with other stream processing utilities.  

 
1 As far as we know, this simple fact appears to have not been observed 

before. An efficient implementation of this approach resembles a Boyer-

Moore string matching algorithm. 
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Fig. 5.  Replicating a file F from a server to a client involves marshaling the file F and its metadata into a staged representation 

M(F) on the server, negotiating the traits and the RDC recursion level, identifying a set of similar staged files M(F1), M(F2),… 

on the client, using RDC to transfer M(F), and finally un-marshaling the transferred M(F) into a copy of the file F on the client. 
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In certain applications, it may be useful to also impose a 

maximal size on chunks. None of the considered chunking 

methods impose maximal sizes a priori, as it is impossible for 

methods that depend only on a limited neighborhood to 

impose bounds on both minima and maxima (consider a file 

of all 0’s: either all positions are cuts or none are). On the 

other hand, periodically imposing extra cuts based on fixed 

lengths does not break RDC. Obviously, local max can be 

refined in either direction by allowing cuts at positions that 

are h’ maximal, for h’<h, (or h’>h as part of recursive RDC). 

VI. IMPLEMENTATION IN DFSR 

This section details the implementation of our previously 

described RDC approach in the DFSR service included in 

Windows Server 2003 R2. Given that an in-depth description 

of DFSR is outside the scope of this paper, we shall focus on 

how files are transferred between machines using RDC; a 

general description of state-based replication can be found in 

Saito and Shapiro [29].  

 DFSR uses an algorithm based on version vectors to 

efficiently determine which files of a synchronized directory 

tree need to be replicated between a server and a client 

machine
2
. Once the client has found out that a file F needs to 

be replicated, the following steps are executed to 

differentially transfer F, as illustrated in Fig. 5: 

 

Step F.1: The client sends a request to the server to prepare 

for the differential transfer of F. 

Step F.2: The server marshals the data and meta-data of F 

into a blob M(F) and stores this blob in a private directory 

called the staging area. For NTFS files, M(F) needs to 

include the main data stream of F, any alternate data 

streams, as well as the replicated meta-data such as the file 

creation time and ACL (access control list); some of the 

metadata, such as the last modified time, is not replicated 

and is thus not included in M(F). Based on the size of 

M(F), the server determines the RDC recursion level, and 

computes the RDC signatures and the traits for M(F). 

Transfers of files smaller than 64K fall back to direct 

downloads without RDC. 

Step F.3: The server sends Traits(M(F)) and the desired RDC 

recursion level to the client. 

Step F.4: The client uses its similarity information to 

compute SimTraits(M(F)) = {M(F1), M(F2), …}, thereby 

identifying a subset F1, F2, … of its own files whose 

marshaled representations M(F1), M(F2), … are similar to 

M(F). For each of these files Fk, the client computes M(Fk) 

and stores it in its staging area. To bootstrap the use of 

RDC, the client also considers pre-existing files with no 

traits stored in the similarity information, but with the same 

name as the remote file.  

Step F.5: M(F) is transferred via recursive RDC (as described 

in Section IV) using M(F1), M(F2), … as a seed. 

Step F.6: Once the client has reassembled a copy of M(F) in 

its staging area, it un-marshals it to obtain its own copy of 

F, which it installs in the synchronized directory. 

 

Computing the traits and RDC signatures of M(F) instead 

of F has the advantage of enabling RDC to also work for 

changes to the file meta-data. For instance, this occurs when 

the NTFS ACLs for all files in a directory tree are changed 

recursively. 

DFSR manages its staging area as a cache. Staged files are 

deleted lazily when the staging area size reaches a 

 
2 As mentioned in the introduction, the terms “client” and “server” only 

refer to the direction in which synchronization is performed. A machine can 

act both as a client and a server at the same time. For instance, this is the 

case for bi-directional synchronization between two machines. 

Metadata 

 

Main Stream 

Alt Streams 

M(F) 

CM(F) 

Jump 

table(F) 

RDC 

signatures 

Synchronized directory 

 

Stage F 

9755 
… 

34024 

REPLICATOR Staging Area 

= compressed data that can be sent directly by SendSegment 

= needs to be recompressed by SendSegment 

Staged(F) 

Metadata 

Main 

Stream 

Alt 

Streams 

F 

0K

8K

16K

24K

32K

40K

0 

534 

1244 

1753 

2122 

4013 

CM(F) 

Offs(M(F)) Offs(CM(F)) 

0K � 0 

8K � 534 

16K � 1244 

24K � 1753 

32K � 2122 

40K � 4013 

Jump 

table(F) 

 

SendSegment 

(9755…34024) 

 

Fig. 6.  The staged representation of a file F contains the marshaled file metadata and data streams M(F) stored in compressed 

form CM(F), the RDC signatures for M(F), and the jump table for CM(F). The jump table is used for seeking inside CM(F) given 

logical offsets into M(F), and is based on storing the offsets in CM(F) for every 8K segment in M(F); seeking inside a segment 

requires decompression of the segment. 
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configurable threshold. If M(F) is cached, a machine acting as 

a server may thus skip step F.2, while a machine acting as a 

client will not need to re-compute M(Fk) if it decides to use Fk 

as a seed in step F.4. 

Should the differential transfer of M(F) be interrupted in 

step F.5 (e.g. because of a broken connection to the server), 

the partial download of M(F) is kept in the client’s staging 

area and will be reused as a seed during future attempts at 

transferring M(F). This provides the equivalent of download 

resumption at very low additional cost, and allows downloads 

to be reliably resumed even across different server machines. 

Given that the synchronized data that we typically see in 

production systems tends to have a reasonably good 

compression ratio, it is possible to further reduce bandwidth 

by transferring compressed chunks if no pre-existing similar 

data can be identified. However, both compression and RDC 

signature computation incur noticeable CPU overhead. 

To reuse the result of compression and RDC chunking, we 

keep a staged representation of F, Staged(F), in the staging 

area instead of just storing M(F). Ass shown in Fig. 6, 

Staged(F) includes the compressed marshaled representation 

CM(F) and the RDC signatures for F. Staged(F) is stored as a 

single NTFS file, where the unnamed data stream contains 

CM(F), while alternate NTFS file streams contain the RDC 

signatures (one stream per recursion level) and a jump table 

that we describe next. 

Since seeks are required for steps S.7 and S.8 of the RDC 

protocol to retrieve file chunks on both client and server, we 

have adapted the compression algorithm to allow us to 

perform reasonably efficient seeks on the compressed format 

CM(F). This is done by compressing 8K segments of M(F) at 

a time and maintaining a jump table consisting of an array of 

offsets into the compressed stream for each of the 8K 

segments, as illustrated in Fig. 6. A lookup in the jump table 

consists of dividing the required offset by 8K and reading the 

resulting position in the array to get to the surrounding 

compressed block containing the desired offset. When 

transferring chunks over the wire in step S.7 of the RDC 

protocol, we use the jump table to avoid re-compressing 

portions of CM(F). For instance, referring to Fig. 6, when 

serving the range from uncompressed offset 9755 to 34024, 

only the portions that don’t fit within an existing segment 

(9755…16383 and 32768…34024, respectively) are re-

compressed by the server’s SendSegment routine. Portions 

corresponding to whole segments can be transferred to the 

client directly out of CM(F). 

While staging is beneficial when the same file is served to 

multiple clients or when a file is used as a seed, maintaining a 

staging area comes at the cost of storage and disk access 

overhead. To mitigate this cost, we skip the creation of 

Staged(F) when F is smaller than 64K and RDC is not used. 

A memory mapped file stores the similarity information 

described in Section III. Since this data structure takes up 

about 32 bytes per file, most of this information can be 

cached in memory even for synchronized directories with a 

large number of files. In addition to the 16 × 2
6
 lists of file 

IDs (for which most entries can be represented using only one 

byte due to delta-encoding), we need to maintain a file ID 

table that maps the compact file ID to the UID (unique 

identifier) assigned by DFSR to the file. 

Updates to the similarity information are periodically 

flushed to disk and the similarity file is marked on clean 

shutdowns. Additionally, whenever we compute or receive the 

traits for a file, we store them in the database used by DFSR 

to keep track of file UID and version numbers. If the 

similarity file is lost or corrupted (e.g. because of a dirty 

shutdown), it is rebuilt on startup using a scan of the records 

in the DFSR database. While discrepancies between the 

similarity file and the actual content of the synchronized 

directory do not impact correctness, they have a performance 

cost in terms of lost RDC opportunities. 

To compute the list of needs in Step S.5 of the RDC 

protocol, the client inserts the stream of remote signatures 

received from the server in Step S.4 into a hash table that 

maps signature hashes to file offsets in the server’s file. The 

client then scans its seed signatures stored in Staged(F), 

performing a lookup in the hash table to establish whether a 

match exists for each signature. If the size of the hash table is 

too large to fit in memory, the client processes the remote 

signatures in batches, doing a sequential scan of the 

signatures in Staged(F) for every batch We found that using a 

hash table was approximately 50% faster than using binary 

search in a sorted list, most likely due to the good distribution 

of the signature hash function. 

VII. EXPERIMENTAL RESULTS 

In this section we present experimental results obtained by 
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Fig 9. Speedup based on a sample pair of PPT files, as a 

function of horizon size (sampled between 40 and 2000) 

and recursion level (between 1 and 4).  
 

using DFSR, and compare these results against an LBFS-like 

approach [24], RSYNC [33][34], and the local diff utilities 

xdelta [21] and BSDiff [25]. To obtain the LBFS figures, we 

implemented a simulator that allows us to determine the 

transfer sizes for various experiments without actually 

providing the full file system semantics of LBFS. All network 

traffic reported below refers to application data and does not 

include network overhead such as IP packet headers. 

By default DFSR compresses all data sent over the wire 

using a proprietary compression library. Since our 

compression algorithm has different characteristics than zlib 

used in RSYNC, and since we’re using blocked compression, 

most of the figures in this section are for uncompressed traffic 

to provide an accurate comparison. 

Hardware characteristics are indicated where relevant for 

performce, otherwise, our measurements in terms of bytes 

over the wire are hardware agnostic. DFSR was run on a 

Windows Server 2003 R2 installation, and RSYNC was run 

on RedHat Linux 2.4. 

A. Reducing the overhead of computing chunks 

Early performance testing indicated that calculating chunk 

boundaries and chunk signatures contribute significantly to 

the overall CPU overhead of RDC. Consequently, we hand-

optimized the most CPU intensive parts by using assembly 

versions of critical inner loops and MD4 and achieved very 

significant speedups.  

To compare the optimized chunker against RSYNC and the 

local diff utilities, we measured the chunking and signature 

comparison overheads combined and aggregated the client 

and server overhead for RDC and RYNC. On a P3 machine, 

and for identical files, we measured 31 cycles per byte for 

RDC, 45 for RSYNC, 39 for xdelta, and 2580 for BSDiff. 

When using a pair of different files, we measured 36 for 

RDC, 32 for RSYNC, 410 for xdelta and 2780 cycles for 

BSDiff. Thus, RDC and RSYNC appear comparable, while 

the local diff utilities require much more CPU and memory. 

The optimized RDC chunker requires 31 CPU cycles per 

byte on a Pentium 4 (corresponding to 64MB/s throughput on 

a 2GHz processor), and 24 cycles per byte on an AMD64 

CPU running x86 binaries (75MB/s on a 1.8GHz processor). 

When DFSR sends a file to more than one client, the CPU 

overhead for chunking is amortized by persisting the chunks 

and signatures in Staged(F) on the server, as described earlier. 

In contrast, RSYNC spends most of the CPU cycles for file 

transfers on the server, as the chunking and the lookup on the 

server are dependent on the client data. 

More recent experiments indicate that a 128 bit hash based 

on Jenkins’ hash algorithm [17] is adequate and twice as fast 

as MD4. Furthermore, another significant speedup can be 

gained by computing local maxima directly by treating the 

bytes from the input file as digits in large numbers. This 

allows bypassing computing rolling hashes all-together. For 

instance, for an average chunk length of 256 bytes, a 64 bit 

P4 machine, requires 8.4 cycles per byte to compute local 

maxima when bypassing the rolling hash, but 18.7 cycles per 

byte when layering the computation with a simple, low 

quality, rolling hash based on bit-wise exclusive or and bite-

wise rotation. The point-filter approach, on the other hand 

requires a hash, but has lower overhead when determining 

cut-points. Hence, for the low quality hash, it requires only 

7.6 cycles per byte; but for the higher quality Rabin based 

hash we measured 15.8 cycles per byte. 

B. Tuning the chunking parameters and the recursion level 

In the next set of experiments, we first tune the chunking 

parameters by choosing a horizon and window size h and w, 

respectively. We examine the impact of recursion next, and 

evaluate the bandwidth savings against RSYNC and the local 

diff utilities. The data set used for these experiments consists 
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Fig. 8.  RDC speedup factors for a fixed horizon and window 

size (h=256, w=32) but with variable levels of recursion, 
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of several different file types: Word (DOC, avg. size: 19MB), 

PowerPoint (PPT, 9.2MB), Excel (XLS, 6MB), Visio (VSD, 

2MB) and Project (MPP, 1MB); for each of these types, the 

seed files were 15 randomly selected documents from an 

archive. The data set also includes two Outlook Offline 

Folders (OST) files. The changed files were derived by 

editing one or two places within each file; the edits included 

changing a few headers, word replacements, font changes, 

additions or deletions of text, and changes in diagrams. For 

the OST files, we used versions from successive days 

(updated with a few hundred emails) as the changed files. 

 Fig. 7 shows the RDC speedup factors achieved for 

various combinations of the horizon h and window size w 

(remember that for local maximum the average chunk size is 

C=2h+1). The speedup factor is calculated as the total size of 

the file divided by the number of bytes sent. Fig. 7 shows 

weighted averages across samples of the same type. Even 

without recursion, RDC compares quite favorably to RSYNC, 

though the latter is better in several cases because it sends 

fewer and more compactly represented signatures. This is the 

reason why RDC doesn’t perform as well on OST or DOC 

files for a small average chunk size and no recursion.  

In Fig. 8 we fix the horizon and window size to (h=256, 

w=32) and vary the number of recursion levels (0, 2, and 4). 

We picked a small average chunk size since the additional 

signature overhead is reduced through recursion. The 

parameters for the recursive signature chunking were (h=128, 

w=4). As shown in this Figure, recursion provides a very 

significant performance boost, especially for larger files: 

while the average PPT file size in our experiments was 

8.8MB, the OST files were about 213MB in size. 

Fig. 9 summarizes an experiment performed on a PPT file 

selected at random. A combination of horizon size between 

80 and 160 and 4 recursive applications of RDC provide the 

highest speedup (about 13x), while recursion has little effect 

for the higher horizon sizes.  

To calibrate how well RDC and RSYNC compare to local 

diff, we ran the same dataset with xdelta. We expected xdelta 

to perform better, since it has more information available to it 

than RDC or RSYNC. Note that xdelta uses significantly 

more memory than RDC (8 times the total file sizes for 

xdelta, vs. less than 5% of the file size for RDC if the 

signatures are kept in memory). The results are shown in Fig. 

10. Note that for this comparison we had to use compression, 

since the output of xdelta is compressed. In some cases our 

blocked compression does not perform as well as the one in 

xdelta or RSYNC, which is applied to the entire change 

stream. This was a trade-off we made in favor of reducing the 

CPU overhead on servers that need to replicate data to large 

numbers of clients. 

To further examine the impact of recursion on very large 

files, we ran RDC and RSYNC on some VHD (Virtual Hard 

Disk) files generated using Microsoft Virtual Server. Table 

11 summarizes the experiments we performed. The baseline 

was a Windows Server 2003 clean install image. In the first 

four experiments we used the result of the updates listed in 

the first column as the initial VHD version for the next row. 

Before each experiment, we scrubbed the VHD files by 

zeroing out all unallocated sectors and deleting the OS page 

file to avoid transferring dead sectors. The results are shown 

in Table 11, note: we could not run the local diff utilities on 

these files, as their memory consumption far exceeded the 

available main memory. RDC was run with 4 levels of 

recursion, and a horizon size of 256 bytes. The first six rows 

correspond to the six experiments listed above. The last row 

repeats the firth experiment, but uses the admin pack 

installation as an additional seed. Notice how recursion plays 

a significant role when the speedup factor is high, while 

RSYNC is on par with RDC on a more modest speedup 

factor. 

C. Evaluating similarity detection 

We now present the results from a set of experiments in 
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Fig. 10.  Speedup of recursive RDC and RSYNC normalized 

to xdelta. Note these figures all include compression. 

 

Experiment File size RDC 

speedup 

RSYNC 

speedup 

Baseline: VHD containing a clean 

installation of Windows Server 

2003 SP1. 

3.2GB n/a n/a 

Add MSN messenger and toolbar . 3.2GB 104 36 

Add MSN money. 3.8GB 92 2 

Add Winzip and Source Insight. 3.8GB 82 73 

Install R2 and launch DFSR. 4.0 GB 13 15 

Baseline: Windows Server 2003 

Domain Controller VHD image. 

2.5GB n/a n/a 

Add new domain user account. 2.5GB 886 439 

Install the admin pack.  2.6GB 236 162 

Add another domain user account. 2.5 GB 1036 439 

 

Table. 11.  Speedup factors for RDC vs. RSYNC for large 

files. 
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Type Server 1 Server 2 Server 3 

Total transfers 219061 175854 160926 

Non-RDC 

transfers 

195623 156555  148625  

Non-RDC bytes 

transferred  

2.9GB 

 

1.4GB  6.5GB 

RDC transfers 23438 19299  12301 

RDC target size 18GB 15GB 8.4GB 

RDC bytes 

transferred 

13.5MB 118MB 238MB 

Average speedup 

from RDC 

133 128 35 

Table 13. Breakdown of RDC and non-RDC transfers in a 

deployment scenario. 

which we tuned similarity detection and compared the results 

against LBFS.  

The file data used was drawn from a versioned document 

library maintained by our organization. We selected at 

random a total of 14,000 old versions of files from the library 

to be used as seeds. We then picked the new versions of 350 

of those files, which included various Microsoft Office 

formats, as well as PDF and ZIP files. For each new file, we 

computed the traits and ran similarity detection to select n 

similar files, by using k matches Next, we used the n similar 

files for an RDC transfer (without recursion) from a server 

containing the new file to a client containing the 14,000 seed 

files, and measured the required bandwidth. We normalized 

the results against the bandwidth required for an LBFS 

transfer. The outcome is shown in Fig. 12 for samples where 

n∈{1,10} and k∈{4,7,10}. We used 16 traits with 6 bits each 

in all experiments reported in this table.  

 Another experiment used a collection of 36 VHD images 

(using 24 as seeds), totaling 100GB. The data set included 

VHD images of different versions of operating system 

images, ranging from MS DOS to Windows Server 2003 

images. The choice of the parameters k and n had virtually no 

impact, as for each transferred VHD only one seed contained 

most of the useful data for RDC and LBFS. So RDC was 

within 10% on all transfers without recursion. Adding 

recursion turned the advantage 10% towards RDC, but not 

more, as the data set consisted of larger deltas than used in 

Table 11. 

The results in Fig. 13 show that for a choice of parameters 

of (n=10,k=4), the most liberal matching criterion, our 

technique performs within just a few percent of LBFS in most 

cases, and within 10% for the OS images. This is remarkable, 

given that the amount of metadata we keep and our overhead 

in terms of potential disk seeks per chunk are tiny compared 

to LBFS, and that LBFS has ideal chunk reuse characteristics. 

The advantages using similarity are furthermore amplified by 

recursion and small chunk sizes. 

D. Deployment example 

A scenario that illustrates a realistic, albeit not controlled, 

use of RDC is a DFSR deployment among 136 globally 

distributed branch offices within Microsoft. DFSR is used to 

replicate product builds as well as documents to the branch 

offices. While the total amount of replicated data is currently 

around 100GB, churn only happens occasionally when 

updates such as patches are shared, ACLs are changed, and 

old content is removed. To gauge the amount of data that may 

be transferred and the contribution of RDC, we sampled the 

activity of three servers over a week. A breakdown is 

summarized in Table 13. We observe that the average file 

sizes for non-RDC transfer is around 30K and for RDC the 

average file size is around 750KB, while on average only 

10KB of actual changes were transferred by RDC. 

The very significant speedups from Table 13 may suggest 

that only trivial churn appears on the machines. With 

additional instrumentation, we extracted a summary of which 

heuristic DFSR used to identify similar files for RDC.  

Besides the similarity metric, DFSR also allows using 

partially downloaded files, old versions of the same file, and 

name conflicting files as a seed for RDC. Table 14 

summarizes the collected numbers. The first column contains 

the combination of heuristics used for a transfer, the number 

of times that particular heuristic was used is counted in the 

second column, and the combined file sizes are summarized 

in the third column. While old versions of the same files 

account for a significant amount of the applicable heuristics, 

we observe that there is a very significant presence of similar 

files. In the Microsoft scenario this is due to a relatively 

frequent case of duplicate files across different replicated 

folders.  

1
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Fig. 12.  Comparison of the transfer bandwidth required 

when using similarity detection with different parameters 

and RDC (without recursion) vs. LBFS. 
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VIII. RELATED WORK 

Several previous papers have been concerned with the 

efficient identification of similar objects in large collections. 

Manber [22] investigated the use of probabilistic selection 

techniques for finding local files closely resembling a given 

file, to help with version management. In order to ascertain 

the degree of near-duplication of pages on the World-Wide 

Web, Broder et al. [3][4] employed similarity techniques 

from which the one we present is derived. Heintze [11] and 

Schleimer et al. [30] apply related techniques with a primary 

focus on discovering duplication of code fragments for 

detecting plagiarism. The latter paper additionally presents 

winnowing, a phrase-selection scheme based on local minima 

of hash functions, algorithmically close to the one we use in 

defining chunk boundaries, apart from the treatment of ties A 

central result of [30] is that the winnowing has a density of 

selection within a constant factor of the lower bound of any 

landmarking scheme. In contrast to our criteria, winnowing 

requires at least one chunk boundary for every segment of 

size h. Consequently, no minimal chunk length is or can be 

enforced by winnowing. On the technical side, our 

contributions include the notion and analysis of slack, the 

average number of branch miss-predictions, and the simple 

observation that no rolling hash is required for our schemes. 

Cox [6] presents a similarity-based mechanism for locating 

a single source file, used to extend an RDC mechanism 

similar in most other ways to LBFS [24]. Irmak et al. [14] 

present an intriguing approach for reducing communication 

rounds in an RDC approach by using erasure codes; this 

improves latency at the expense of a small overhead in 

bandwidth. Suel et al. [31] consider using global techniques 

for discovering similar chunks, and then apply local 

differencing techniques. Kulkarni et al. [19] perform trace-

driven analyses of differencing techniques for eliminating 

redundancy. Quinlan and Dorward [27] describe a protocol 

resembling LBFS, but at the disk block level. Korn et al [17], 

in their RFC, provide a network protocol to express the local 

edits needed in delta-encoding. 

The widely used RSYNC protocol [33][34] has the 

recipient chop up its old file at fixed chunk boundaries. The 

recipient then transmits a strong and a weak checksum for 

each chunk to the sender. The sender traverses its version of 

the file, computing weak checksums over a sliding window. 

The weak checksums are used to filter out matching 

candidates with the chunks received from the recipient. The 

sender can then deduce which chunks already reside on the 

recipient and what file data needs to be transferred directly. 

Langford [20] considers recursive decomposition as an 

extension to RSYNC.  This decomposition, like that of Fu [9]  

and Irmak and Suel [15] (which both apply to new transport 

protocols, rather than RSYNC), constructs a balanced binary 

tree of segment fingerprints. The primary disadvantages of 

this approach are that the depth of the tree is larger than ours 

and is not tunable, and that small changes can cause 

misalignments throughout the tree. Consider, for example, a 

file containing 2
k
 chunks. Move the first chunk to the end of 

the file. All the leaf signatures are unchanged, but every 

signature at the next level of the tree and all higher levels is 

different. In the multi-round work of Langford [20], at least 

RSYNC alignment should apply, requiring computation of 

larger misaligned checksums to look for the transmitted 

signatures. In our design, small changes impact a small 

number of boundaries, and thus the set of chunks 

concatenated during the recursion will be largely unchanged. 

Jain et al [16] present a replica synchronization system 

called TAPER that combines RSYNC for intra-file 

compression and LBFS for inter-file redundancy elimination. 

Directory renames are optimized by maintaining a 

hierarchical hash of directories. In contrast, DFSR maintains 

unique object identifiers per resource making renames cheap. 

TAPER makes a novel use of Bloom filters for content 

dependent hashes for similarity detection. A claim is made 

that Bloom filters are cheaper than techniques based on min-

wise independent hashes and shingles. In contrast, Section 

III.D describes how the cost of computing min-wise 

independent hash functions could be reduced to less than one 

extra hash computation per chunk. 

In a different setting, Chan and Woo [5] use related 

techniques to optimize the transmission of Web pages, 

building on chunks already resident in a cache. 

The computational framework we use for computing 

similarity is derived from those of Broder et al. [3][4] and 

Fetterly et al. [8], with modifications to reduce memory usage 

and to locate several closely matching files. 

Work that introduces concepts related to applying hashing 

recursively, but with substantially different content includes 

Eshghi [7] that uses a tree of hash values to represent a 

directory tree, and contains a suggestion using a two-level 

decomposition into chunks for P2P file copying.  It suggests 

 
Type Count File 

sizes 

Speed

up 

Total RDC downloads 21063 126MB 89 

Old version + 1 similar file 11229 53MB 86 

Old version 3498 16.5MB 199 

Name conflict + old version  1432 8.8MB 85 

Partial download +  

old version + 1 similar file 

1223 5.4MB 93 

2 similar files 1139 17MB 25 

Old version + partial download 1087 7.4MB 121 

Name conflicting file 748 6MB 72 

3 similar files 210 1.4MB 52 

Other combinations 495 10.6MB 30 

Table 14. Breakdown of RDC seed heuristics. 
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using a tree to represent versioning of files, but lacks details 

as to how the system determines appropriate-sized shared 

chunks (but different edits based on the same version of a file 

would give rise to a tree).  It is based on Merkle [23] trees 

that are used for computing hashes in order to prove that a 

segment exists in the tree. 

IX. CONCLUSION 

We have presented three significant optimizations to 

previous work on remote differential compression protocols: 

a very efficient similarity detection technique, recursive 

signature transfer, and improved data chunking algorithms. 

These optimizations have been implemented in a commercial 

state-based multi-master file synchronization service that can 

scale up to a few thousand nodes. 

Experimental data shows that these optimizations may help 

significantly reduce the bandwidth required to transfer file 

updates across a network, compared to previous techniques. 

Our similarity detection approach is shown to perform almost 

as well as the one used in LBFS (which has an ideal behavior 

in terms of chunk reuse), while requiring a very small amount 

of metadata per file (96 bits) and completely eliminating a 

substantial system-wide database of all chunks. 

We showed that recursion plays a key role for transferring 

incremental differences between large files, such as Virtual 

PC images. The built-in minimal chunk size, the reduced 

average slack, and independence of rolling hashes are 

compelling reasons for using the local maxima chunking 

algorithm. 

Some of the open issues that could be topics for future 

research include determining whether an optimal chunking 

algorithm exists with respect to slack, and applying RDC to 

compressed files. 
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