A Reachability Predicate for Analyzing Low-Level Software

Shaunak Chatterjee Shuvendu K. Lahiri
Indian Institute of Technology Microsoft Research

Shaz Qadeer Zvonimir Rakamarié
Microsoft Research University of British Columbia

December 1, 2006

Technical Report
MSR-TR-2006-154

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

A Reachability Predicate for Analyzing Low-Level Software

Shaunak Chatterjee
Indian Institute of Technology

Shuvendu K. Lahiri
Microsoft Research

Shaz Qadeer
Microsoft Research

Zvonimir Rakamarié
University of British Columbia

Abstract

Reasoning about heap-allocated data structures such as
linked lists and arrays is challenging. The reachability pred-
icate has proved to be very useful for such reasoning in
type-safe languages such as Java in which memory is ma-
nipulated by dereferencing object fields. Sound and precise
analysis for such data structures becomes significantly more
challenging in the presence of low-level pointer manipulation
that is prevalent in systems software.

In this paper, we give a novel formalization of the reach-
ability predicate in the presence of internal pointers and
pointer arithmetic. We have designed an annotation lan-
guage for C programs that makes use of the new predicate.
This language enables us to specify properties of many in-
teresting data structures present in the Windows kernel. We
present preliminary experience with a prototype verifier on
a set of illustrative C benchmarks.

1 Introduction

Static software verification has tremendous potential to im-
prove programmer productivity and reduce the cost of pro-
ducing reliable software. By finding errors at the time of
compilation, these techniques help avoid costly software
changes late in the development cycle and after deploy-
ment. Many successful tools for detecting software errors
have emerged in the last decade [14, 2, 15, 9]. These tools
can scale to large software systems; however, this scalability
is achieved at the price of precision. Heap-allocated data
structures are one of the most significant sources of impre-
cision for these tools. Fundamental correctness properties,
such as control and memory safety, depend on intermediate
assertions about the contents of data structures. Therefore,
imprecise reasoning about the heap usually results in a large
number of annoying false warnings increasing the probabil-
ity of missing the real errors.

The reachability predicate is crucial for specifying prop-
erties of data structures. Informally, a memory location v is
reachable from a memory location u in a heap if either u = v
or u contains the address of a location = and v is reachable
from . Automated reasoning about the reachability predi-
cate is difficult for two reasons. First, reachability cannot be
expressed in first-order logic, the input language of choice
for most modern and scalable automated theorem provers.
Second, it is difficult to precisely specify the update to the
reachability predicate when a heap location is updated.

Previous work has addressed these problems in the con-

text of a reachability predicate suitable for verifying pro-
grams written in high-level languages such as Java and
C+# [21,17,1, 16, 5]. This predicate is inadequate for reason-
ing about low-level software which commonly uses program-
ming idioms such as internal pointers (addresses of object
fields) and pointer arithmetic to move between object fields.
We illustrate this point with several examples in Section 2.

The goal of our work is to build a scalable verifier for sys-
tems software that can reason precisely about heap-allocated
data structures. To this end, we introduce in this paper
a new reachability predicate suitable for verifying low-level
programs written in C. We describe how to automatically
compute the precise update for the new predicate and a
method for reasoning about it using automated first-order
theorem provers. We have designed a specification language
that uses our reachability predicate, allows succinct specifi-
cation of interesting properties of low-level software, and is
conducive to modular program verification. We have imple-
mented a modular verifier for annotated C programs called
Havoc (Heap-Aware Verifier Of C). We report on our pre-
liminary encouraging experience with HAvVOC on a set of
small but interesting C programs.

1.1 Related work

Havoc is a static assertion checker for C programs in the
same style that ESC/Java [14] is a static checker for Java
programs, and Spec# [4] is a static checker for C# pro-
grams. However, HAvOC is different in that it deals with the
low-level intricacies of C and provides reachability as a fun-
damental primitive in its specification language. The abil-
ity to specify reachability properties also distinguish Havoc
from other assertion checkers for C such as CBMC [8] and
SATURN [22]. The work of McPeak and Necula [19] allows
reasoning about reachability but only indirectly using ghost
fields in heap-allocated objects. These ghost fields must be
updated manually by the programmer whereas HAVOC pro-
vides the update to its reachability predicate automatically.

There are several verifiers that do allow the verification
of properties based on the reachability predicate. TVLA [18]
is a verification tool based on abstract interpretation using
3-valued logic [21]. It provides a very general specification
logic combining first-order logic with reachability. Recently,
they have also added an axiomatization of reachability in
first-order logic to the system [17]. However, TVLA has
mostly been applied to Java programs and, to our knowl-
edge, cannot handle the interaction of reachability with
pointer arithmetic.

YY) I f oo
Kk
\(next — next — next —

L prev L prev I prev

P

+4
x vor
L_ﬁ next — next — next 1

| prev prev prev

Figure 1: Doubly-linked lists in Java and C

Caduceus [13] is a modular verifier for C programs. It
allows the programmer to write specifications in terms of
arbitrary recursive predicates, which are axiomatized in an
external theorem prover. It then allows the programmer to
interactively verify the generated verification conditions in
that prover. HAvOC only allows the use of a fixed set of
reachability predicates but provides much more automation
than Caduceus. All the verification conditions generated by
Havoc are discharged automatically using first-order theo-
rem provers. Unlike Caduceus, HAVOC understands internal
pointers and the use of pointer arithmetic to move between
fields of an object.

Calcagno et al. have used separation logic to reason
about memory safety and absence of memory leaks in low-
level code [7]. They perform abstract interpretation us-
ing rewrite rules that are tailored for “multi-word lists”, a
fixed predicate expressed in separation logic. Our approach
is more general since we provide a family of reachability
predicates, which the programmer can compose arbitrarily
for writing richer specifications (possibly involving quanti-
fiers); the rewriting involved in the generation and valida-
tion of verification conditions is taken care of automatically
by Havoc. Their tool can infer loop invariants but handles
procedures by inlining. On the other hand, HAvOC performs
modular reasoning but does not infer loop invariants.

2 Motivation

Consider the two doubly-linked lists shown in Figure 1. The
list at the top is typical of high-level object-oriented pro-
grams. The linking fields next and prev point to the be-
ginning of the successor and predecessor objects in the list.
In each iteration of a loop that iterates over the linked list,
the iterator variable points to the beginning of a list object
whose contents are accessed by a simple field dereference.
Existing work would allow properties of this linked list to
be specified using the two reachability predicates Rnexs and
Rprev, €ach of which is a binary relation on objects. For ex-
ample, Ruexs (a, b) holds for objects a and b if b = a.next® for
some % > 0.

The list at the bottom is typical of low-level systems
software. Such a list is constructed by embedding a structure
LIST_ENTRY containing the two fields, next and prev, into
the objects that are supposed to be linked by the list.

typedef struct _LIST_ENTRY {
struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;
} LIST_ENTRY;

The linking fields, instead of pointing to the beginning of
the list objects, point to the beginning of the embedded

linking structure. In each iteration of a loop that iterates
over such a list, the iterator variable contains a pointer to
the beginning of the structure embedded in a list object. A
pointer to the beginning of the list object is obtained by
performing pointer arithmetic captured with the following
C macro.

#define CONTAINING_RECORD(a, T, f) \
(T *) ((int)a - (int)&((T *)0)->f)

This macro expects an internal pointer a to a field £ of an
object of type T and returns a typed pointer to the beginning
of the object.

There are two good engineering reasons for this ostensi-
bly dangerous programming idiom. First, it becomes pos-
sible to write all list manipulation code for operations such
as insertion and deletion separately in terms of the type
LIST_ENTRY. Second, it becomes very easy to have one ob-
ject be a part of several different linked lists; there is a field
of type LIST_ENTRY in the object corresponding to each list.
For these reasons, this idiom is very common both in the
Windows and the Linux operating system'.

Unfortunately, this programming idiom cannot be mod-
eled using the predicates Rnext and Rprev described earlier.
The fundamental reason is that these lists may link objects
via pointers at a potentially non-zero offset into the objects.
Different data structures might use different offsets; in fact,
the offset used by a particular data structure is a crucial
part of its specification. This is in stark contrast to the first
kind of linked lists in which the linking offset is guaranteed
to be zero.

The crucial insight underlying our work is that for ana-
lyzing low-level software, the reachability predicate must be a
relation on pointers rather than objects. A pointer is a pair
comprising an object and an integer offset into the object,
and the program memory is a map from pointers to pointers.
We introduce an integer-indexed set of binary reachability
predicates: for each integer n, the predicate R, is a binary
relation on the set of pointers. Suppose n is an integer and p
and g are pointers. Then R, (p,q) holds if and only if either
q = p + n, where p + n is the pointer obtained by incre-
menting p by n, or recursively R, (*(p + n), q) holds, where
*(p+mn) is the pointer stored in memory at the address p+mn.

Our reachability predicate captures the insight that in
low-level programs a list of pointers is constructed by per-
forming an alternating sequence of pointer arithmetic (with
respect to a constant offset) and memory lookup operations.
For example, let p be the address of the next field of an ob-
ject in the linked list at the bottom of Figure 1. Then,
the forward going list is captured by the pointer sequence
p+0,%(p+0)+0,*(x(p+0) +0)+0, ... Assuming that the
size of a pointer is 4, the address of the prev field in that
object is p + 4 and the backward going list is captured by
the pointer sequence p+4, *(p+4) +4, *(x(p+4)+4)+4, ...

The new reachability predicate is a generalization of the
existing reachability predicate and can just as well describe
the linked list at the top of Figure 1. Suppose the offset of
the next field in the linked objects is k and q is the address of
the start of some object in the list. Then, the forward going
list is captured by ¢+ k,*(q+ k) + k, *(x(¢ + k) + k) + &k, ...
and the backward going list is captured by ¢ + k + 4, *(q +
E+4)+k+4,+(x(q+k+4)+E+4) +k+4,...

In Linux, the CONTAINING.RECORD macro corresponds to the
list_entry macro.

typedef struct { int data; LIST_ENTRY link; } A;
struct { LIST_ENTRY a; } g;

requires BS(&g.a.Flink) && B(&g.a, 0) == &g.a.Flink

requires forall(x, list(g.a.Flink, 0), x == &g.a || 0ff(x) == 4)
requires forall(x, list(g.a.Flink, 0), x == &g.a || Obj(x) !'= Obj(&g.a))

modifies decr(list(g.a.Flink, 0), 4)

ensures forall(x, list(g.a.Flink, 0), x == &g.a || deref(x-4) == 42)

void list_iterate() {
LIST_ENTRY *iter = g.a.Flink;
while (iter != &(g.a)) {
A *elem = CONTAINING_RECORD (iter, A, link);
elem->data = 42;
iter = iter->Flink;
}
}

Figure 2: Example

2.1 Example

We illustrate the use of our reachability predicate in program
verification with the example in Figure 2. The example has
a type A and a global structure g with a field a. The field ain
g and the field 1ink in the type A have the type LIST_ENTRY,
which was defined earlier. These fields are used to link to-
gether in a circular doubly-linked list the object g and a set
of objects of type A. The field a in g is the dummy head of
this list. The procedure list_iterate iterates over this list
setting the data field of each list element to 42.

In addition to verifying the safety of each memory ac-
cess in list_iterate, we would like to verify two additional
properties. First, the only parts of the caller-visible state
modified by 1list_iterate are the data fields of the list ele-
ments. Second, the data field of each list element is 42 when
list_iterate terminates.

To prove these properties on list_iterate, it is crucial
to have a precondition stating that the list of objects linked
by the Flink field of LIST_ENTRY is circular. To specify this
property, we extend the notion of well-founded lists, first
described in an earlier paper [16], to our new reachability
predicate. The predicate R, is well-founded with respect
to a set BS of blocking pointers if for all pointers p, the
sequence *(p + n) + n, *(x(p + n) + n) + n,... contains a
pointer in BS. This member of BS is called the block of p
with respect to the offset n and is denoted by B, [p]. Typical
members of BS include pointer values that indicate the end
of linked lists, e.g., the null pointer or the heads &g.a.Flink
and &g.a.Blink of the (respectively, forward and backward)
circular lists in our example.

Our checker HAVOC enforces a programming discipline
associated with well-founded lists. HAVOC provides an auz-
liary variable BS whose value is a set of pointers and allows
program statements to add or remove pointers from BS. Fur-
ther, each heap update in the program is required to preserve
the well-foundedness of R,, with respect to each offset n of
interest.

The first precondition of 1list_iterate uses the notion
of well-foundedness to express that &g.a.Flink is the head
of a circular list. In this precondition, B(&g.a,0) refers
to Bo[&g.al. We use Bo to specify that the circular list

is formed by the Flink field, which is at offset 0 within
LIST_ENTRY. The second precondition illustrates how facts
about an entire collection of pointers are expressed in our
specification language. In this precondition, the expression
list(g.a.Flink,0) represents the finite and non-empty set
of pointers in the sequence g.a.Flink + 0, *(g.a.Flink + 0) +
0,... upto but excluding the pointer Bo(g.a.Flink). Also,
the function 0ff retrieves the offset (or the second com-
ponent) from a pointer. This precondition states that the
offset of each pointer in list(g.a.Flink,0) is equal to 4,
the offset of the field sequence 1ink.Flink in the type A. The
third precondition uses the function Obj, which retrieves the
object (or the first component) from a pointer. This pre-
condition says that the object of each pointer, excluding the
dummy head, in list(g.a.Flink,0) is different from the
object of the dummy head.

The modifies clause illustrates yet another constructor
of a set of pointers provided by our language. If S is a set of
pointers, then decr(S,n) is the set of pointers obtained by
decrementing each pointer in S by n. The modifies clause
captures the update of the data field at relative offset —4
from the members of 1ist(g.a.Flink,0).

The postcondition of the procedure introduces the op-
erator deref, which returns the content of the memory at
a pointer address. This postcondition says that the value
of the data field of each object in the list, excluding the
dummy head, is 42.

Using loop invariants provided by us (not shown in the
figure), HAvVOC is able to verify that the implementation of
this procedure satisfies its specification. Note that in the
presence of potentially unsafe pointer arithmetic and casts,
it is nontrivial to verify that the heap update operation
elem->data := 42 does not change the linking structure of
the list. Since HAVOC cannot rely on the static type of the
variable elem, it must prove that the offset of elem before
the operation is 0 and therefore the operation cannot modify
either linking field.

3 Operational semantics of C

Our semantics for C programs depends on three fundamen-
tal types, the uninterpreted type ref of object references,

typedef struct { int x; int y[10]; } DATA;

DATA *create() {

procedure create() returns d:ptr {

int a; var a:ptr;
a := malloc(4);
DATA *d = d := malloc(44);

(DATA *) malloc(sizeof (DATA));
init(d->y, 10, &a);

init (PLUS(d, Ptr(null,4)),

Ptr(null,10), a);

d->x = a;
free(a);
return d;

} }

void init(int *in, int size,
int *out) {

Mem[PLUS(d, Ptr(null,0))]

:= Mem[a];

procedure init(in:ptr, size:ptr,
out:ptr) {

i := Ptr(null,0);

while (LT(i, size)) {
Mem[PLUS (in,i)] := i;

:= Mem[out] + i;

int i; var i:ptr;
i=0;
while (i < size) {
in[i] = i;
*out = *out + i; Mem[out]
i++; i := PLUS(i, Ptr(null,1));
} }
} }

Figure 3: Translation of C programs

the type int of integers, and the type ptr = ref X int
of pointers. Each variable in a C program, regardless of its
static type, contains a pointer value. A pointer is a pair con-
taining an object reference and an integer offset. An integer
value is encoded as a pointer value whose first component is
the special constant null of type ref. The constructor func-
tion Ptr : ref X int — ptr constructs a pointer value from
its components. The selector functions Obj : ptr — ref and
0ff : ptr — int retrieve the first and second component of
a pointer value, respectively.

The heap of a C program is modeled using two map vari-
ables, Mem and Alloc, and a map constant Size. The vari-
able Mem maps pointers to pointers and intuitively represents
the contents of the memory at a pointer location. The vari-
able Alloc maps object references to the set {UNALLOCATED,
ALLOCATED, FREED} and is used to model memory alloca-
tion. The constant Size maps object references to positive
integers and represents the size of the object. The proce-
dure call malloc(n) for allocating a memory buffer of size
n returns a pointer Ptr(o,0) where o is an object such that
Alloc[o] = UNALLOCATED before the call and Size[o] > n.
The procedure modifies Alloc[o] to be ALLOCATED. The pro-
cedure call free(p) for freeing a memory buffer whose
address is contained in p requires that Alloc[0bj(p)] ==
ALLOCATED and 0ff(p) == 0 and updates Alloc[0bj(p)]
to FREED. The full specification of malloc and free is given
in Appendix A.

HAvocC takes an annotated C program and translates it
into a BoogiePL [10] program. BoogiePL has been designed
to be an intermediate language for program verification tools
that use automated theorem provers. This language is sim-
ple and has well-defined semantics. The operational seman-
tics of C, as interpreted by HAvoc, is best understood by
comparing a C program with its BoogiePL translation. Fig-
ure 3 shows two procedures, create and init, on the left
and their translations on the right. The example uses the C
struct type DATA.

Note that variables of both static type int and int* in

C are translated uniformly as variables of type ptr. The
translation of the first argument d->y of the call to init
shows that we treat field accesses and pointer arithmetic
uniformly. Since the field y is at an offset 4 in DATA, we treat
d->y as d+4. The translation uses the function PLUS to model
pointer arithmetic and the function LT to model arithmetic
comparison operations on the type ptr. The definitions of
these functions are also given in Appendix A.

The example also shows how we handle the & operator.
In the procedure create, the address of the local variable a
is passed as an out-parameter to the procedure init. Our
translation handles this case by allocating a on the heap.
Note that our translator allocates a static variable on the
heap only if the program takes the address of that vari-
able. For example, there is no heap allocation for the local
variable i in the procedure init. To prevent access to the
heap-allocated object corresponding to a local variable of a
procedure, it is freed at the end of the procedure.

4 Reachability and pointer arithmetic

We now give the formal definition of our new reachability
predicate in terms of the operational semantics of C as inter-
preted by Havoc. As in our previous work [16], we define
the reachability predicate on well-founded heaps. Let the
heap be represented by the function Mem : ptr — ptr and
let BS C ptr be a set of pointers. We define a sequence of
functions f* : int x ptr — ptr for 4 > 0 as follows: for
all n € int and u € ptr, we have f°(n,u) = u + n and
fitt(n,u) = Mem[f’(n,u)] + n for all i > 0. Then Mem is
well-founded with respect to the set of blocking pointers BS
and offset n if for all uw € ptr, there is ¢ > 0 such that
ft(n,u) € BS. If a heap is well-founded with respect to BS
and n, then the function idr, maps a pointer u to the least
¢ > 0 such that f*(n,u) € BS. Using these concepts, we now
define for each n € int, a predicate R, C ptr X ptr and a

function B, : ptr — ptr.

Rofu,0] = 3. 0<4<idza(u)Av= fi(n,u)
Bul] = f(n,u)
Suppose a program performs the operation Mem[x] := y

to update the heap. Then HAvOC performs the most precise
update to the predicate R,, and the function B,, by automat-
ically inserting the following code just before the operation.

assert(Rn[y, x] = BS[y + n])

B, := Au:ptr.
Rp[u, x]
?(®BS[y+n] ?y+n : Buy])
¢ Bn[u]
Au,v:ptr.
Rn[u, x]
? s?_n [u}_v] A R, [X —-n, V])

V (=BS[y + n] A Ra[y, v])

¢ Rpfu,v]

The assertion enforces that the heap stays well-founded with
respect to the blocking set BS and the offset n. The value
of B,[u] is updated only if x is reachable from u and oth-
erwise remains unchanged. Similarly, the value of Ry[u,v]
is updated only if x is reachable from u and otherwise re-
mains unchanged. These updates are generalizations of the
updates provided in our earlier paper [16] to account for
pointer arithmetic.

We note that the ability to provide such updates as
described above guarantees that if a program’s assertions
—preconditions, postconditions, and loop invariants— are
quantifier-free, then its verification condition is quantifier-
free as well. This property is valuable because the handling
of quantifiers is typically the least complete and efficient
aspect of all theorem provers that combine first-order rea-
soning with arithmetic.

5 Annotation language

Our annotation language has three components: basic ex-
pressions that evaluate to pointers, set expressions that
evaluate to sets of pointers, and formulas that evaluate to
boolean values. The syntax for these expressions is given in
Figure 4.

The set of basic expressions is captured by Ezpr. The
expression addr(x) represents the address of the variable x.
The expression x represents the value of x in the post-state
and old(x) refers to the value of x in the pre-state of the
procedure. The expressions deref(e) and old_deref(e) refer
to the value stored in memory at the address e in the post-
state and pre-state respectively. The expressions block(e,n)
and old block(e,n) represent Byle] in the post-state and
pre-state of the procedure, respectively.

The set expressions are divided into the basic set expres-
sions in Set and the compound set expressions in CmpdSet.
The expressions list(e,n) and old_list(e,n) represent the
list of pointers described by the reachability predicate Ry
in the post-state and pre-state respectively. The compound
set expressions include incr(C,n) and decr(C,n) which re-
spectively increment and decrement each element of C' by
n, and deref(C) and old deref(C) which read the con-
tents of memory at the members of C in the post-state
and pre-state, respectively. The expressions union(C, C),

intersection(C, C), and difference(C, C) provide the ba-
sic set-theoretic operations.

Havoc is designed to be a modular verifier. Conse-
quently, we allow each procedure to be annotated by four
possible specifications, requires ¢, ensures 1), modifies C,
and frees D, where ¢, € Formula and C,D € CmpdSet.
The default value for ¢ and % is true, and for C and D is
(). The translation of these specifications is given in Fig-
ure 5. The translation refers to the translation function o
which is defined in the appendix in Figure 9. We also allow
each loop to be annotated with a formula representing its
invariant.

In Figure 5, the translation of requires ¢ and ensures
1) is obtained in a straightforward fashion by applying the
translation function | o | to ¢ and 1 respectively. Then,
there are four pairs of modifies and ensures clauses. The
translation of modifies C is captured by the first three pairs
and the translation of frees D is captured by the fourth
pair. Our novel use of set expressions in these specifications
results in a significant reduction in the annotation overhead
at the C level.

The first pair of modifies and ensures clauses in Fig-
ure 5 states that the contents of Mem remains unchanged at
each pointer that is allocated and not a member of C' in the
pre-state of the procedure. The second pair is parameterized
by an integer offset n and specifies the update of R,,. Simi-
larly, the third pair specifies the update of B,,. Based on the
set C provided by the programmer in the modifies clause,
one such pair is automatically generated for each offset n of
interest. The postcondition corresponding to R, says that if
the set of pointers reachable from any pointer x is disjoint
from the set C, then that set remains unchanged by the exe-
cution of the procedure. The postcondition corresponding to
B,, says that if the set of pointers reachable from any pointer
x is disjoint from the set C, then B, [x] remains unchanged
by the execution of the procedure. These two postconditions
are guaranteed by our semantics of reachability and the se-
mantics of the modifies clause. Consequently, HAVOC only
uses these postconditions at call sites and does not attempt
to verify them. The set D in the annotation frees D is
expected to contain only pointers with offset 0. Then, the
foruth pair states that the contents of Alloc remain un-
changed at each object that is allocated and is such that a
pointer to the beginning of that object is not a member of
D in the pre-state of the procedure.

6 Implementation

We have developed HAvOC, a prototype tool for verifying
C programs annotated with specifications in our annotation
language. We use the ESP [9] infrastructure to construct
the control flow graph and parse the annotations. HAvoc
translates an annotated C program into an annotated Boo-
giePL program as described in Section 3. The BOOGIE ver-
ifier generates a verification condition (VC) from the Boo-
giePL description, which implies the partial correctness of
the BoogiePL program. The VC generation in BOOGIE is
performed using a variation [3] of the standard weakest pre-
condition transformer [12]. The resulting VC is checked for
validity using the Simplify theorem prover [11].

6.1 Proving verification conditions

The verification condition generated is a formula in first-
order logic with equality, augmented with the following the-

n|x|addr(x) |e+e|e-e|deref(e) | block(e,n) |

0ld(x) | old_deref(e) | old_block(e,n)

n € int

e € Expr =
S € Set =
¢ € Formula ==
C € CmpdSet :=

{e} | BS | 1list(e,n) | old_1list(e,n) | array(e,n,e)
alloc(e) | old_alloc(e) | Obj(e) == Obj(e) | 0ff(e) < 0Off(e) |
in(e,S) | ! ¢ | ¢ && ¢ | forall(x, S,)

S | incr(C, n) | decr(C,n) | deref(C) | old_deref(C)

union(C, C) | intersection(C,C) | difference(C, C)

// translation of requires ¢
requires |@

// translation of ensures
ensures [¢|

// translation of modifies C
modifies Mem
ensures forall x:ptr:

modifies R,
ensures forall x:ptr:

modifies B,
ensures forall x:ptr:

// translation of frees D
modifies Alloc
ensures forall o:ref:

Figure 5: Translation of requires ¢, ensures 1), modifies C, and frees D

Figure 4: Annotation language

0ld(Alloc) [0bj(x)] == UNALLOCATED |
old(]in(x, C)]) 11
old (Mem) [x] == Mem[x]

0ld(Alloc) [Obj(x)] == UNALLOCATED |
exists y:ptr:: old(Rn)[x,y] && old([in(y,C)[) ||
forall z:ptr:: old(R,)[x,z] == R,[x,z]

0ld(Alloc) [Obj(x)] == UNALLOCATED | |
exists y:ptr:: old(R,)[x,y] && old(]in(y, C)[) ||
01d(B,)[x] == By [x]

0ld(Alloc) [o] == UNALLOCATED |
old(]in(Ptr(o,0), D)|]) && Alloc[0bj(x)] != UNALLOCATED |
Alloc[x] == old(Alloc) [x]

ories:

1. The theory of integer linear arithmetic with symbols
+,< and constants ..., —1,0,1,2,....

2. The theory of arrays with the select and update sym-
bols [20].

3. The theory of pairs, consisting of the symbols for the
pair constructor Ptr, and the selector functions Obj and
0ff.

4. The theory of the new reachability predicate, consisting
of the symbols Ry, B,,, BS and Mem.”

To verify the verification conditions, the SIMPLIFY the-
orem prover requires axioms about the theory of pairs and
the theory of reachability. The axioms for the theory of pairs
are fairly intuitive and are given in Figure 6. The axioms
for the theory of reachability are given in Figure 7. Note
that the symbol + in Figure 7 is the addition operation on
pointers. We have overloaded + for ease of exposition. The
first axiom defines that Ry[u,v] is true if and only if either
v = u + n, or the pointer Mem[u + n] + n is not a block-
ing pointer in BS and Ry, [Mem[u + n], v]) is true. The second
axiom similarly defines B,[u]. We call these two axioms the
base axioms of reachability because they attempt to capture
the recursive definitions of R, and B,,.

It is well known that the reachability predicate (ours as
well as the classic one) cannot be expressed in first-order
logic [6]. Hence, similar to our previous work [16], we pro-
vide a sound but (necessarily) incomplete axiomatization of
the theory by providing a set of derived axioms following
the base axioms in Figure 7. Since the definitions of R,, and
B, are well-founded, these derived axioms can be proved
from the base axioms using well-founded induction. The
derived axioms are subtle generalizations of similar axioms
presented for well-founded lists without pointers [16]. They
have sufficed for all the examples in this paper.

7 Evaluation

In this section, we describe our experience applying HAvocC
to a set of examples.® These examples illustrate the use of
pointer arithmetic, internal pointers, arrays, and linked lists
in C programs. For each of these examples, we prove a va-
riety of partial correctness properties, including the absence
of null dereferences.

Figure 8 lists the examples considered in this pa-
per. iterate is the example from Figure 2 in Sec-
tion 2. iterate_acyclic and array_iterate are versions
of iterate for an acyclic list and an array, respectively.
reverse_acyclic performs in-place reversal of an acyclic
singly-linked list; we verify that the output list is acyclic and
contains the same set of pointers as the input list. The exam-
ples slist_add and slist_del respectively add and delete a
node from an acyclic singly-linked list. Similarly, d1ist_add
and dlist_remove are the insertion and deletion routines
for cyclic doubly-linked lists used in the Windows kernel.
The examples using doubly-linked lists require the use of
Ro and R4 to specify the lists reachable through the Flink
and Blink fields of the LIST_ENTRY structure. The example

2Strictly speaking, the theory can imply facts that include the
symbol + and the integer constants.

8 Available at
http://research.microsoft.com/~shuvendu/Public/havoc.tar.gz

Example Time(s)
iterate 1.5
iterate_acyclic 1.3
array_iterate 1.2
slist_add 1.8
slist_del 1.4
reverse_acyclic 1.7
array_free 4.0
slist_sorted_insert 14.9
dlist_add 118.1
dlist_remove 215.4
allocator 124.3

Figure 8: Results of assertion checking. SIMPLIFY was used
as the theorem prover. The experiments were conducted on
a 3.2GHz, 2GB machine running Windows XP.

slist_sorted_insert inserts a node into a sorted (by the
data field) linked list; we verify that the output list is sorted.
This example illustrates the use of arithmetic reasoning (us-
ing <) on the data fields. The example array free takes as
input an array a of pointers, and iterates over the array to
free the pointers that are not null. We check that an object
is freed at most once. To verify this property, we needed to
express the invariant that if ¢ is distinct from j, then the
pointers a[i] and a[j] are aliased only if they both point to
null.

The final example allocator is a low-level storage alloca-
tor that closely resembles the malloc_firstfit_acyclic ex-
ample described by Calcagno et al. [7]. The allocator main-
tains a list of free blocks within a single large object; each
node in the list maintains a pointer to the next element of
the list and the size of the free block in the node. Allocation
of a block may result in either removing a node (if the entire
free block at the node is returned) from the list, or readjust-
ing the size of the free block (in case only a chunk of the
free block is returned). We check two main postconditions:
(i) the allocated block (when a non null pointer is returned)
is a portion of some free block in the input list, and (ii) the
free blocks of the output list do not overlap. This example
required the use of Ry to specify the list of free blocks.

Figure 8 gives the running times taken by SIMPLIFY to
discharge the verification conditions. The examples involv-
ing singly-linked lists and arrays take only a few seconds.
The examples involving doubly-linked lists take much longer
because they make heavy use of quantifiers to express the in-
variant that connects the forward-going and backward-going
links in a doubly-linked list. The allocator example makes
heavy use of arithmetic as well as quantifiers, and therefore
takes long to verify.

Interestingly, HAVOC revealed a bug in our implementa-
tion of the allocator. This bug was caused by an interac-
tion between pointer casting and pointer arithmetic. Instead
of the following correct code

return ((unsigned int) cursor) + sizeof (RegionHeader);

we had written the following incorrect code

return (unsigned int) (cursor + sizeof(RegionHeader));

Note that the two are different because the size of
RegionHeader, the static type of cursor, is different from
the size of unsigned int. We believe that such mistakes are

Yu :ptr. u
Vz:ref i:int. x
Vr:ref,i:int. 4

Ptr(0bj(u), 0ff(u))
0bj(Ptr(z,1))
0ff(Ptr(z,1))

Figure 6: Axioms for the theory of pairs

Rnfu,v] © (v=u+nV (-BS[Mem[u + n] + n] A Ry, [Mem[u + n],v]))
v =By[u] < (BSMem[u+ n]+mn]? v =Memu+ n]+n: v = By[Mem[u + n]])
Rnlu, v + n] ARp[v,w] = Rplu,w]
BS[u+ n] ARp[v,u+n] = u=wv
Rnfu,v +mn] = Bylu] = Bylv]
w=DMem[u +n] = BS[u+n]
—-BS[Mem[u + n] + n] = Ry[Mem[u + n]] =Ry[u] \ {u+ n}

Figure 7: Derived axioms for the theory of reachability predicate. The variables u, v and w are implicitly universally quantified.

common when dealing with low-level C code, and our tool
can provide great value in debugging such programs.

8 Conclusions and future work

In this work, we introduced a new reachability predicate
suitable for reasoning about data structures in low-level sys-
tems software. Our reachability predicate is designed to
handle internal pointers and pointer arithmetic on object
fields. It is a generalization of the classic reachability pred-
icate used in existing verification tools. We have designed
an annotation language for C programs that allows concise
specification of properties of lists and arrays. We have also
developed HAvoOC, a verifier for C programs annotated with
assertions in our specification language.

We believe that HAavoc is a good foundation for build-
ing powerful safety checkers for systems software based on
automated first-order theorem proving. We are currently
working to extend HAvOC with techniques for inference and
abstraction to help us scale to realistic code bases inside
Windows.

References

[1] I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis
by predicate abstraction. In Verification, Model check-
ing, and Abstract Interpretation (VMCAI ’05), 2005.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Raja-

mani. Automatic predicate abstraction of C programs.

In Programming Language Design and Implementation

(PLDI *01), 2001.

M. Barnett and K. R. M. Leino. Weakest-precondition
of unstructured programs. In ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Soft-
ware Tools and Engineering (PASTE ’05), pages 8287,
2005.

M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview. In Con-
struction and Analysis of Safe, Secure and Interopera-
ble Smart devices, LNCS 3362, pages 49 — 69, 2005.

[5]

J. Bingham and Z. Rakamarié. A logic and decision pro-
cedure for predicate abstraction of heap-manipulating

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

programs. In Verification, Model Checking, and Ab-
stract Interpretation (VMCAI ’06), pages 207-221,
2006.

E. Borger, E. Gridel, and Y. Gurevich. The Classical
Decision Problem. Springer-Verlag, 1997.

C. Calcagno, D. Distefano, P. O'Hearn, and H. Yang.
Beyond reachability: Shape abstraction in the presence
of pointer arithmetic. In Static Analysis Symposium
(SAS ’06), 2006.

E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
Predicate abstraction of ANSI-C programs using SAT.
Formal Methods in System Design (FMSD), 25:105—
127, September—November 2004.

M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive
program verification in polynomial time. In Program-
ming Language Design and Implementation (PLDI
’02), pages 57-68, 2002.

R. DeLine and K. R. M. Leino. BoogiePL: A typed
procedural language for checking object-oriented pro-
grams. Technical Report MSR-TR-2005-70, Microsoft
Research, 2005.

D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A
theorem prover for program checking. Technical report,
HPL-2003-148, 2003.

E. W. Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Communications of
the ACM, 18:453-457, 1975.

J. Fillidtre and C. Marché. Multi-prover verification
of C programs. In International Conference on Formal
Engineering Methods (ICFEM ’04), 2004.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nel-
son, J. B. Saxe, and R. Stata. Extended static checking
for Java. In Programming Language Design and Imple-
mentation (PLDI’02), pages 234-245, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy Abstraction. In Principles of Programming Lan-
guages (POPL ’02), pages 58-70. ACM Press, 2002.

[16] S. K. Lahiri and S. Qadeer. Verifying properties of
well-founded linked lists. In Principles of Programming
Languages (POPL ’06), pages 115-126, 2006.

[17] T. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv,

S. Srivastava, and G. Yorsh. Simulating reachability

using first-order logic with applications to verification

of linked data structures. In Conference on Automated

Deduction (CADE ’05), 2005.

[18] T. Lev-Ami and S. Sagiv. TVLA: A system for imple-

menting static analyses. In Static Analysis Symposium

(SAS ’00), pages 280-301, 2000.

[19] S. McPeak and G. C. Necula. Data structure specifi-

cations via local equality axioms. In Computer-Aided

Verification (CAV ’05), pages 476-490, 2005.

[20] G. Nelson and D. C. Oppen. Simplification by cooper-

ating decision procedures. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 1979.

R. Wilhelm S. Sagiv, T. W. Reps. Solving shape-
analysis problems in languages with destructive updat-

ing. ACM Transactions on Programming Languages
and Systems (TOPLAS), 20(1):1-50, 1998.

[21]

Y. Xie and A. Aiken. Scalable error detection using
boolean satisfiability. In Principles of Programming
Languages (POPL ’05), pages 351-363, 2005.

Boogie definitions

procedure malloc(n: ptr) returns new:ptr

requires 0Obj(n) == null && 0 < 0ff(n)

modifies Alloc

ensures old(Alloc) [Obj(new)] == UNALLOCATED
ensures Alloc[0bj(new)] ALLOCATED

ensures 0ff (new) ==

ensures 0ff(n) <= Size(0Obj(new))

ensures (forall o:ref :: o == Obj(new) ||

old(Alloc) [o] == Alloc[o])
Obj(Mem[0bj (new) ,i]) == null)

BS[Obj(new),il)

(forall i: int ::
(forall i:int ::

ensures
ensures

procedure free(p: ptr)
requires Alloc(0bj(p))
modifies Alloc

ALLOCATED &% Off(p) ==

ensures alloc[0bj(p)] !'= UNALLOCATED
ensures alloc[0bj(p)] !'= ALLOCATED
ensures (forall o:ref :: o == 0bj(p) ||

old(Alloc) [o] == Alloc[o])
function PLUS(ptr, ptr) returns ptr;
axiom (forall x,y:ptr ::
(0bj(x) == null
PLUS(x,y) == Ptr(0bj(y), O0ff(x)+0ff(y))) &&
(0bj(y) == null ==>
PLUS(x,y) == Ptr(0bj(x), Off(x)+0ff(y))) &&
(O0bj(x) !'= null && Obj(y) !'= null ==
Obj (PLUS(x,y)) == null))

function MINUS(ptr, ptr) returns ptr;
axiom (forall x,y:ptr ::
(0bj(y) == null ==

MINUS (x,y) == Ptr(0bj(x), 0ff(x)-0ff(y))) &&
(Obj(y) !'= null && 0bj(x) == Obj(y) ==
MINUS(x,y) == Ptr(null, Off(x)-0ff(y))) &&
(Obj(y) !'= null && 0bj(x) != Obj(y) ==

Obj (MINUS(x,y)) == null))

function LT(ptr, ptr) returns bool;
axiom (forall x,y:ptr :: LT(x,y) <==>
0ff (MINUS(y,x)) > 0)

B Expression translation

The translation of expressions in our annotation language
is described in Figure 9. In this figure, bpl_x refers to the
BoogiePL variable corresponding to the C variable x.

Inl
I=]

Ptr(null, n)
{ Mem[bpl x], if address of x is taken

[old_deref(e)
[old_block(e,n)

old(Mem)[[e]]
o1d(Bx)(fel]

bpl_x, otherwise
J[addr(x)] = bplx
lex + 2] = Prr(Ob(le]), 0¢£(Jer]) + 02 (Jeal))
le1 —e2] = Ptr(null,0ff(Je:]) - 0f£(Jez]))
[deref(e)] = Mem[]e]]
[block(e,n)] = Bxl]e]]
[old(x)] = old(]x])

[alloc(e)
[old_alloc(e)
[obj(e1) == Obj(e2)
[off(e1) < 0ff(e2)

Alloc[Obj(]e])] == ALLOCATED
01d(Alloc)[0bj(]e])] == ALLOCATED

0bj([er]) == Obj([e2])
0££(les]) < 0££(Je2])

It ¢ ! 4]
lp1 && ¢ [#1] && [¢2]
[forall(x, S, ¢) forall x : ptr = (! [in(x, S)] |1 [¢])
lin(e, {e'}) lel == le']
[in(e, BS) BS[]e]]

[in(e,list(e’,n))

lin(e, 0ld 1list(e’, n))|

[in(e, array(e1, n, ez2))

[in(e, incx(C, n))

[in(e, decr(C, n))

[in(e, deref(C))

[in(e, 01d_deref(C))
[in(e,union(C1, C2))

[in(e, intersection(Ci, C-))
[in(e,difference(Cy, Cs))

Rn[le’], [el]
oLa(®)[e'], [el]
exists i:int (0 <=1 && i < Off(Jez]]) && [e] == [e1] + n*i)
lin(e - n, O)l
Jin(e + n, O]
exists x:ptr:

: (Jin(x, C)] && Mem[x] == |e])
exists x : ptr = (

n

n

l C)
[in(x, C)| && old(Mem)[x] == |e])
(e, C2)|
[in(e, C1)| && |in(e, C2)]|

lin(e, C1)] 11 [in(e,
lin(e, C1)[& ! [in(e, C»)]

Figure 9: Translation of expressions

