
An Online Bibliography on Schema Evolution
Erhard Rahm Philip A. Bernstein

University of Leipzig Microsoft Corporation
rahm@informatik.uni-leipzig.de philbe@microsoft.com

Abstract

We briefly motivate and present a new online bibliog-
raphy on schema evolution, an area which has recently
gained much interest in both research and practice.

1 Introduction
Schema evolution is the ability to change deployed
schemas, i.e., metadata structures formally describing
complex artifacts such as databases, messages, application
programs or workflows. Typical schemas thus include
relational or object-oriented (OO) database schemas,
conceptual ER or UML models, ontologies, XML
schemas, software interfaces and workflow specifications.
Obviously, the need for schema evolution occurs very
often in order to deal with new or changed requirements,
to correct deficiencies in the current schemas or to
migrate to a new platform.

Effective support for schema evolution is challeng-
ing since schema changes may have to be propagated,
correctly and efficiently, to instance data, views, applica-
tions and other dependent system components. Ideally,
dealing with these changes should require little manual
work and system unavailability. For instance, changes to a
database schema S should be propagated to instances data
and views defined on S with minimal human intervention.

Schema evolution has been an active research area
for a long time. However, the need for powerful schema
evolution has been increasing and many papers have
appeared recently. Moreover, commercial database
systems such as IBM DB2, Oracle and Microsoft SQL
Server have started to support online schema evolution
capabilities. Thus, although several previous bibliogra-
phies and surveys exist [13, 14], there is value in
producing an up-to-date bibliography.

One reason for increased interest is that widespread
use of XML and web services has led to new schema
types and usage scenarios of schemas for which schema
evolution must be supported. For example, data integra-
tion architectures, such as enterprise information integra-
tion (EII) and enterprise application integration (EAI), are
now common and must be able to deal with schema
changes for data sources, global schemas and ontologies.
The growing importance of such problems has prompted
recent work on generic metadata management, e.g.,
schema matching and model management. Such ap-
proaches can help automate schema evolution tasks, e.g.,
generation and adaptation of mappings between schemas.
The goal of our online bibliography is to provide a

comprehensive and up-to-date collection of publications
on schema evolution. We are not limiting ourselves to
database schema evolution but also consider related fields
such as ontology evolution, software evolution and
workflow evolution. We have found these evolution
problems are often similar so that proposed solutions may
be transferable to different fields. For example, ontology
evolution has similarities to previously investigated
evolution problems in object-oriented database systems.

Our bibliography on schema evolution is accessible
on the web under http://se-pubs.dbs.uni-leipzig.de. We
use our content categorization tool Caravela [1] to catego-
rize publications along multiple hierarchical dimensions.
Bibliographic entries typically contain the abstract, full-
text link and current number of citations from Google
Scholar. The system provides many ways to search and
browse the categories and papers. Publication entries can
be added, corrected and categorized collaboratively (wiki-
like) by many users. Automated data import from files or
web sites like Google scholar is also supported for author-
ized users. Fig. 1 shows the current start page of the bib-
liography indicating the categories (on the left) and author
names sized according to the number of available papers.

As of October 2006 more than 300 papers on schema
evolution and related fields are categorized. We broadly
assign papers within the following categories:
• Database schema evolution
• XML schema evolution
• Ontology evolution
• Software evolution and
• Workflow evolution.
Furthermore we have separate categories for popular
solution approaches, such as
• Schema versioning and
• Model and mapping management.
Each category is usually divided into several
subcategories. Using our categorization tool these

 2

categories can easily be extended or refined as needed,
i.e., we support evolution of the categorization schema. In
the following we briefly list some specific aspects of the
research categories covered by the bibliography.

2 Research categories
2.1 Database schema evolution
Some papers characterize types of schema changes for
different data models, in particular relational, object-
oriented (OO) and XML databases. These changes can be
propagated to instances of the schema immediately or
lazily. They may also be propagated to dependent views,
something that today’s commercial database systems do
automatically for simpler schema changes (e.g., 1 table).

There are many papers on schema evolution for OO
database systems [2,11], since evolution is intrinsic to the
design processes they support. By contrast, there are still
relatively few papers on schema evolution in distributed
systems―possibly a good opportunity for future research.

2.2 XML schema evolution
The semi-structured nature of XML offers more flexibility
in coping with schema changes and lower cost, due to
such features as optionality of schema parts and multiple
schemas per database [4].
2.3 Ontology evolution
Ontologies exhibit the same evolution problems as
database schemas, but have some different constructs,
such as controlled vocabularies, taxonomies, and rule-
based knowledge representation, and hence have some
different types of changes. Often, an ontology contains
both schema-like conceptual metadata plus its instances;
changes to metadata and instances need to be considered
together. A domain ontology may be used in many appli-
cations, resulting in dependencies between distributed
systems. So far, most papers focus on ontology matching
and versioning aspects of evolution [6, 7].

2.4 Software evolution
The generation of a new software version shares many of
the problems of schema evolution. Instead of schemas, we
have program interfaces or class hierarchies. Instead of
mappings or views, we have usage relationships and
dependencies between program modules. Research papers
classify different software evolution and maintenance
scenarios [8]. Many papers focus especially on object-
oriented software development [9]. Some describe change
support tools.

2.5 Workflow evolution
Workflows are long-running activities. Instead of schemas
and databases, we have workflow specifications and
executing workflow instances. So changing a workflow
specification (e.g., change/add/drop an activity) requires
different actions than changing a database schema [5].

2.6 Version management
One major approach to schema evolution is the use of
user-controlled, explicit versions [7, 14]. For example, the
need to propagate changes is reduced by preserving older

versions of schemas. Although versioning is rarely used
for database schema evolution, it is a very common
approach to software evolution and will likely be
important for XML, web service, and ontology evolution.

2.7 Model and mapping management
High-level operators on schemas and mappings are useful
for generating views and other mappings and adapting
them after schema changes.
• There is a big literature on schema matching [12],

which can help determine what has changed. Schema
evolution is a simple case for schema matching since
most of the schema remains unchanged.

• Given a result from schema matching, there are query
discovery techniques [10] to generate an executable
(instance-level) mapping between the old and
evolved schema.

• Given a mapping from an evolved schema to the old
schema and an existing view over the old schema,
mapping composition can be used to produce an
updated view [15].

• Scripts of match, compose and other operators have
been published for a variety of complex schema
evolution scenarios [3].

3 References
1. Aumüller, D., Rahm, E.: Caravela: Semantic Content

Management with Automatic Categorization. Univ. of
Leipzig, 2006

2. Banerjee, J.; Kim, W.; Kim, H.; Korth, H. F. Semantics and
Implementation of Schema Evolution in Object-Oriented
Databases. Proc. SIGMOD 1987

3. Bernstein, P.A.: Applying Model Management to Classical
Meta Data Problems. Proc. CIDR 2003

4. Beyer, K.; Oezcan, F.; Saiprasad, S.; Van der Linden, B.:
DB2/XML: Designing for Evolution. Proc. SIGMOD 2005.

5. Casati, I.; Ceri, S.; Pernici, B.; Pozzi, G. Workflow Evolu-
tion. Proc. Int. Conf. on Conceptual Modeling (ER), 1996

6. Doan, A.; Madhavan, J.; Domingos, P.; Halevy, A.:
Learning to Map between Ontologies on the Semantic
Web. Proc. WWW2002

7. Klein, M.; Fensel, D.: Ontology Versioning on the
Semantic Web. Proc. Int. Semantic Web Working
Symposium, 2001

8. Lehman, M.M; Ramil, J.F.: Software Evolution - Back-
ground, Theory, Practice. Inf. Process. Lett. 88(1-2), 2003

9. Lieberherr, K.J., Xiao, C.: Object-Oriented Software
Evolution. IEEE Trans. Software Eng. 19(4), 1993

10. Miller, R.; Haas, L.; Hernandez, M.: Schema Mapping as
Query Discovery. Proc. 26th VLDB, 2000

11. Ra, Y; Rundensteiner, E.: A Transparent Schema-Evolution
System Based on Object-Oriented View Technology. IEEE
Trans. Knowledge and Data Eng 9(4), 1997

12. Rahm, E.; Bernstein, P. A.: A Survey of Approaches to
Automatic Schema Matching. VLDB Journal, 2001

13. Roddick, J.F.: Schema Evolution in Database Systems: An
Annotated Bibliography. SIGMOD Record 21(4), 1992

14. Roddick, J.F.: Survey of Schema Versioning Issues for
Database Systems. Information and Software Technology,
37(7), 1995

15. Yu, C.; Popa, L.: Semantic Adaptation of Schema
Mappings when Schemas Evolve. Proc. VLDB 2005

