
Abortable Consensus and Its Application to
Probabilistic Atomic Broadcast

Wei Chen

Microsoft Research Asia

Beijing Sigma Center
No. 49 Zhichun Road, Haidian District

Beijing, China, 100080
weic@microsoft.com

Abstract

This paper introduces the specification of abortable consensus in message passing systems with prob-
abilistic message delivery behaviors to address the tradeoff between progress and agreement in asyn-
chronous consensus. The paper presents an abortable consensus algorithm, proves its correctness, and
shows how to configure the parameters of the algorithm to satisfy the explicit requirement on the tradeoff
between progress and requirement. The probabilistic analysis to the algorithm is novel in that it covers
all possible failures and asynchrony allowed by the system model rather than some simple case studies
as conducted by most previous researches. The paper furthershows how to apply abortable consensus
to probabilistic atomic broadcast, and shows that abortable consensus provides stronger properties than
probabilistic atomic broadcast.

Keywords: abortable consensus, probabilistic atomic broadcast, probabilistic analysis, fault tolerance, dis-
tributed algorithm

1 Introduction

1.1 Motivation — Tradeoff between Progress and Agreement

Asynchronous consensusis a well-recognized problem in the area of distributed computing. In an asyn-

chronous message-passing distributed system subject to process and/or communication failures, asynchronous

consensus specifies a problem in which each process proposesa value and all processes eventually reach a

unanimous decision on one of the proposed values. Asynchronous consensus is typically defined by the

following properties (e.g. [7]):

• Uniform Validity: If a process decidesv then some process previously proposedv.

• Agreement: Correct processes (i.e., processes that do not crash) do not decide different values.

• Termination: Eventually all correct processes decide.

1

Asynchronous consensus is at the core of many important distributed agreement problems, such as atomic

broadcast, leader election, atomic commit, group membership, and mutual exclusion. Despite its importance,

the well-knownFLP impossibility result[15] shows that consensus is not solvable in a purely asynchronous

system with the presence of even one possible process crash.To circumvent this impossibility result, several

techniques, such as partial synchrony model [11, 12], failure detector model [7, 6], and randomization [4, 9],

were introduced.

Although asynchronous consensus has been extensively studied, there are still some issues left without

satisfactory answers. This paper addresses an important issue concerning the tradeoff between progress and

agreement in asynchronous consensus, as explained below.

The above consensus specification requires that all correctprocesses must always agree on the decision

value. To satisfy this requirement of absolute agreement, the consensus algorithms may have to sacrifice

the progress of the consensus in certain situations. In particular, when a process cannot communicate with

majority of the processes, the process cannot make a decision. This is because in an asynchronous system,

the process cannot reliably detect if other processes have failed or not, and to avoid disagreement, the process

has to wait until the communication with a majority of processes resume. In the extreme case where majority

of processes fail, all remaining processes have to be blocked indefinitely. No progress can be made and the

system comes to a halt.1 Therefore, unreliable communication channels and processfailures may delay or

even halt the progress of consensus, because consensus requires absolute agreement and does not tolerate any

disagreement at all.

While many fault-tolerant systems, such as state-machine replication [23], do require absolute agreement,

there are cases in which a small degree of disagreement is tolerable, and thus sacrificing progress over agree-

ment may not always be the best solution. For example, consensus can be used to implement atomic broad-

cast [7], which guarantees the agreement on the total ordering of message deliveries. However, absolute

agreement on the total order may not be required. For instance, Felber and Pedone [14] studied probabilistic

atomic broadcast, in which it is enough to guarantee messageordering with a high probability. In this case,

consensus should be able to take advantage of the tolerance of a small probability of disagreement to achieve

faster progress.

1A majority of processes being correct is not required in asynchronous systems augmented with a perfect failure detectorP or a
strong failure detectorS [7]. However,P andS requires that at least some correct process never be suspected, which is essentially a
synchrony requirement. So these classes of failure detectors are not of the concern here.

2

In general, the current asynchronous consensus specification and its implementations emphasize unilat-

erally on agreement over progress. As an alternative, this paper proposes a more flexible version of asyn-

chronous consensus that makes the tradeoff between progress and agreement explicit and adjustable, so that

applications can control this tradeoff according to their specific needs. This new version of consensus in-

cludes the existing consensus as a special case, and thus rather than conflicting with the existing studies on

consensus, it is a significant extension that provides more flexible control to the applications.

1.2 Main Results of the Paper

1.2.1 Introducing Abortable Consensus

To address the tradeoff between progress and agreement, this paper introduces theabort action to consensus.

Intuitively, when a process cannot communicate with majority of processes, the process can choose to abort

the consensus instead of deciding a value, in order to avoid waiting indefinitely for messages from the majority

processes. This version of the consensus is calledabortable consensus.

The abort action is a compromise to the absolute agreement ofconsensus. Instead of requiring every correct

process deciding on the same value, abortable consensus allows that some of the correct processes abort the

consensus while others decide. However, for those processes that do make decisions, they still have to agree on

the same value. Therefore, by allowing the abort action as a compromise to the absolute agreement, abortable

consensus provides chances for a process to terminate rather than to be blocked indefinitely, meanwhile it still

maintains agreement for other processes that do decide.

To control the degree of potential disagreement allowed by the abort action, anabort probability threshold

α is introduced in the specification to limit the probability that a process aborts in a consensus run. The

thresholdα can vary from0 to any value less than1. Whenα is zero, abortable consensus does not tolerate

any abort actions, and it is reduced to the traditional asynchronous consensus. Whenα increases, abortable

consensus is more tolerant to the abort action, and it will terminate the consensus faster. Therefore, by

varying the abort probability thresholdα, abortable consensus covers a spectrum of consensus specifications

that provide different degrees of tradeoff between progress and agreement. One end point of the spectrum is

the traditional consensus that does not compromise agreement at all for progress.

The benefit that abortable consensus provides to applications is its flexibility. If an application demands

absolute agreement, then it can use abortable consensus with α = 0, which is equivalent to traditional consen-

3

sus. If an application can tolerate a certain degree of disagreement, it can specify this degree of disagreement

as the abort probability thresholdα, and use the abortable consensus to achieve faster progress. This pa-

per provides a specific example of using abortable consensusto implement probabilistic atomic broadcast to

achieve an appropriate and provable tradeoff between progress and agreement.

1.2.2 Abortable Consensus Algorithm and Its Analysis

The basic idea of using the abort action to terminate consensus faster is simple. Practical systems may already

use some sort of abort actions, such as killing the thread that is blocked by consensus, to allow the systems to

make progress. The challenging part, however, is to guarantee the abort probability thresholdα. This requires

a careful design and analysis of the consensus algorithm.

The paper presents an abortable consensus algorithm based on the rotating coordinator algorithm of [7].

The algorithm has several modifications in order to facilitate its probabilistic analysis. The analysis of the

algorithm is based on the probabilistic network model (e.g.[10, 3, 8]), where message delays and message

losses follow some probability distribution.

The analysis proves that the algorithm implements abortable uniform consensus (a stronger version of

abortable consensus), and derives the abort probability thresholdα from the parameters of the algorithm

and the system. Moreover, it shows how to configure the parameters of the algorithm to satisfy the abort

probability thresholdα for any givenα. This enables applications to specify the abort probability thresholdα

and configure the consensus algorithm accordingly based on their needs.

The probabilistic analysis of the algorithm is novel in thatit covers all possible scenarios that are allowed

by the system model, including process crashes, message delays, message losses, asynchronous progress of

consensus rounds, and even the asynchronous behavior of thepropose actions. Moreover, the performance

metrics are both asynchronous round-based and time-based.This is in contrast to most of the existing perfor-

mance analyses on asynchronous consensus (e.g. [22, 19, 17,1]), which are only asynchronous round-based,

and are only conducted for several simple cases (such as whenno process crashes, or when all crashes have

already occurred and the system becomes stable).

An analysis that considers all possible scenarios is important in practice because it provides insights to

the performance of a fault-tolerant system under all circumstances instead of just a few good-case scenarios.

Despite the complexity of the analysis, the final results produced in the paper are in simple closed forms that

4

can be used directly. To the best of the author’s knowledge, the analysis in this paper is the first all-inclusive

analysis to any version of asynchronous consensus that considers all different kinds of failures and asynchrony

allowed by the underlying system model.

1.2.3 Application to Probabilistic Atomic Broadcast

In asynchronous systems, consensus is shown to be equivalent to atomic broadcast[7]. Atomic broadcast

specifies that all correct processes deliver the same set of messages in the same order [16]. Felber and Pe-

done [14] proposedprobabilistic atomic broadcast (PABCast), which does not require absolute agreement on

either the set of delivered messages or the order of message deliveries. Instead, agreement on message deliv-

eries and orders only needs to satisfy certain probability thresholds. Naturally, PABCast bears similarities to

abortable consensus.

The current paper studies the relationship between abortable consensus and PABCast, shows how to imple-

ment PABCast using abortable consensus, and derives the probability thresholds of PABCast from the abort

probability thresholdα of abortable consensus. The paper further shows that abortable consensus provides

more properties than those specified by PABCast. More precisely, abortable consensus is equivalent to an

enhanced version of PABCast. This demonstrates the applicability and the strength of abortable consensus

with respect to other distributed problems.

To summarize, the current paper has the following contributions: (a) it introduces the abortable consen-

sus specification in the message passing model to address thetradeoff between progress and agreement in

asynchronous consensus; (b) it presents an algorithm that implements abortable consensus, and shows how to

configure the algorithm to satisfy an application’s requirement on the abort probability thresholdα; (c) it is the

first to provide an all-inclusive and quantitative performance analysis to an asynchronous consensus algorithm

that considers all possible failure and asynchrony scenarios allowed by the system model, yet the analytical

results are kept in simple closed forms; and (d) it shows how to implement probabilistic atomic broadcast us-

ing abortable consensus, with provable probabilistic guarantees derived from the abort probability threshold

α, and it shows that abortable consensus is equivalent to an enhanced version of PABCast.

5

1.3 Related Work

To the best of the author’s knowledge, there is no previous work that introduces the abort action to the spec-

ification of consensus, or other asynchronous agreement problems, to address the tradeoff between progress

and agreement. The abort action in atomic commit [20] is different, and the difference is further discussed in

Section 3.

In terms of the performance analysis to the consensus algorithms, Keidar and Rajsbaum summarized the

results in this area in their PODC’02 tutorial [18]. However, as the title of the tutorial suggested, most

of the existing studies only analyzed the performance of consensus algorithms when there are no faults in

the system. This limits the applicability of a performance analysis to a fault-tolerant system. Keidar and

Rajsbaum also pointed out the weakness of the asynchronous round-based performance metric used in the

existing performance analyses, and they posed an open question on what is a better performance metric.

This paper enriches the current research on performance analyses to consensus by providing an analysis that

considers all failure and asynchrony scenarios allowed by the system model. It also provides a time-based

performance metric as a better alternative to the asynchronous round-based metric.

In terms of the probabilistic network models and probabilistic analysis, they have been used earlier in clock

synchronization protocols [10, 3], and later for several other distributed problems(e.g. [2, 5, 13, 14, 8, 21, 24]).

The studies in [5, 13, 14] mainly focus on the scalability issue of the reliable broadcast or multicast, and apply

probabilistic analysis on the gossip-style protocols. In particular, the work in [14] studies PABCast, which

can be implemented by abortable consensus as shown in this paper. The study on PABCast in [14] differs

from the one in the current paper in several aspects: a) the work in [14] focuses on scalability, while this paper

focuses on the tradeoff between progress and agreement; b) abortable consensus can be used to implement

more properties than those of PABCast; and c) for the probability thresholds of PABCast, [14] provides either

recursive formulas or simulation results, while this paperprovides analytical results in closed forms.

The work in [8] studies failure detectors, one of the fundamental components in fault-tolerant distributed

systems, and its quality-of-service guarantees under the probabilistic network model. The current paper can be

viewed as a continuation of the research in [8]: it uses the similar model and it addresses another fundamental

problem in fault-tolerant distributed systems, namely consensus, in the probabilistic network model.

The study in [24] also applies a probabilistic analysis to a consensus algorithm. Its probabilistic analysis

6

differs from the analysis in the current paper in that a) it makes significant simplifying assumptions in the

analysis, such as all processes start every consensus roundat the same time, and all crashes occur at the

boundary between two successive rounds; and b) the analytical result also seems to be more complicated than

the results presented in this paper.

The rest of the paper is organized as follows. Section 2 defines the system model. Section 3 presents the

specification of abortable consensus, and discusses some ofits implications. Section 4 provides the algo-

rithm that implements abortable uniform consensus. Section 5 proves the correctness of the algorithm by a

probabilistic analysis, shows how to configure the parameters of the algorithm to satisfy the abort probability

thresholdα for any givenα, and analyzes the performance of the algorithm under all circumstances. Section 6

studies the relationship between abortable consensus and PABCast. Finally, Section 7 concludes the paper

and discusses a few future directions.

2 System Model

2.1 Probabilistic Network Model

The system considered in the paper consists of a set ofn processes,Π = {1, 2, . . . , n}. Processes communi-

cate with each other by message passing through a communication network, which is modeled as a complete

graph with bidirectional links connecting every pair of processes. Message passing is asynchronous, that is,

messages may be delayed without bound or may be lost. To facilitate quantitative analysis, the model as-

sumes that message delay and message loss behaviors follow certain probabilistic distribution, but the actual

probabilistic distribution may not be completely known. More specifically, each linkℓ connecting a process

p to a processq is characterized by the following two parameters: 1)message loss probabilitypL(ℓ), which

is the probability that a message fromp to q is dropped by linkℓ, and 2)message delayD(ℓ), which is a

random variable with range(0,∞) representing the delay from the time a message is sent byp to the time it

is received byq, under the condition that the message is not dropped by the link (borrowing the same termi-

nologies from [8]). The network is not necessarily symmetric, that is, the probabilistic behavior of each link

may be different. The message delay and loss behaviors of different messages are independent.

The model ignores the execution delays of local actions, including the send and receive actions, of the

processes. This assumption could be justified as follows. Ifthe local execution delays were considered, one

7

would have to model the atomic steps of local executions as well as the delay behaviors between atomic steps.

Such a model could easily get very complicated and very difficult to analyze. Moreover, in our distributed

environment, a process cannot distinguish whether anotherprocess is slow in executing local steps or the

message from that process is slow. Thus, to some extent localexecution delays can be viewed as part of

message delays. Therefore, explicitly modeling local execution delays introduces much complexity without

providing more insight, so the paper chooses to ignore the local execution delays.

Time is treated as continuous with range from0 to ∞. Each process has access to a local clock, which can

be used by the process to time out on messages or other actions. Local clocks may be skewed from the real

time and from each other, but for simplicity, they are assumed to be drift-free, i.e., local clocks run at the same

speed as the real time. In practice, clock drift rate is usually very small (in the order of10−6 [10]). Thus,

clock drift is negligible for the duration of one run of consensus, which is at the level of seconds, or at most

minutes.

2.2 Process Failure Model

Processes may fail by crashing, i.e., stopping all its actions including sending and receiving messages. For

simplicity, the model does not include process recovery. A process iscorrect if it never crashes; a process is

faulty if it is not correct. Afailure patternF describes when a faulty process crashes in each run of consensus.

Formally, failure patternF is a function fromΠ to [0,∞]. For each processp, F (p) denotes the time at which

processp crashes in this failure pattern; ifF (p) = ∞, it meansp does not crash, i.e.,p is correct.

Process crashes may occur at any time, even between two consecutive local actions on a process, although

the model ignores the execution delays of local actions for analytical purposes. The model does not assume

that process crashes can be predicted either deterministically or probabilistically. That is, the state of the sys-

tem at any given time has no information whatsoever (deterministically or probabilistically) on the occurrence

of future crashes. Moreover, the delay and loss behaviors ofthe messages that a process sends are independent

of whether and when the process crashes.

There are several reasons why process crashes are not modeled probabilistically as message delays and

losses. First, conceptually it distinguishes the network behaviors from process crash behaviors, and empha-

sizes that the quantitative results of the paper are based onthe quantitative characteristics of the network,

but not on any quantitative assumptions on process crashes.Second, technically if the model does not make

8

assumptions on process crashes, the results obtained are stronger, in that they are also correct when pro-

cess crashes do follow certain probabilistic distributions. Third, typically in practice, it is relatively easier to

estimate and predict message delay and loss behaviors than to estimate or predict process crashes.

3 Specification of Abortable Consensus

In abortable consensus, each process proposes a value and eventually every correctprocess either decides a

value or aborts. Abortable consensus is required to satisfythe following properties:

• Uniform Validity: If a process decidesv then some process previously proposedv.

• Agreement: Correct processes do not decide different values.

• Termination: Eventually all correct processes either decide or abort.

• α-Abortability: There exists anα < 1 such that for any failure pattern in which a majority of processes

are correct, the probability that there exists some processthat aborts in a run with the failure pattern is

at mostα.

Theα in theα-Abortability property is called theabort probability threshold. The property allows that some

process aborts the consensus while other processes decide,but it limits the probability of this situation byα

when a majority of processes are correct. The Agreement property, on the other hand, requires that among the

correct processes that decide, they still decide on the samevalue. A stronger version of abortable consensus,

calledabortable uniform consensus, further requires:

• Uniform Agreement: Processes (correct and faulty) do not decide different values.

Several important points about the above specification are further explained below.

Restricting abort probability only when a majority of proce sses are correct. In the probabilistic net-

work model with a non-zero message loss probability or unbounded message delays, it is still necessary to

have a majority of processes being correct to implement asynchronous consensus, as stated by the following

proposition.

Proposition 1 In the probabilistic network model, if the message loss probability is non-zero, or message

delays have no upper bound, it is necessary that a majority ofprocesses be correct to implement asynchronous

consensus as defined in Section 1.1.

9

A standard partition argument similar to the one given in [7]can be applied here to prove this proposition,

because even though message passing follows certain probabilistic distribution, it is still allowed a positive

probability that arbitrary messages are lost or delayed foran arbitrarily long time, which is the key to estab-

lishing the partition argument.

The above proposition implies that the abort action is expected when a majority of processes are faulty,

because no algorithm can guarantee that all correct processes decide in this case. Therefore, the abort action

should only be restricted when a majority of processes are correct, as stated in theα-Abortability property.

Restricting the abort probability per failure pattern. Propertyα-Abortability restricts the probability of

the abort action toα for eachfailure pattern where a majority of processes are correct. One may suggest an

alternative that restricts the abort probability for all failure patterns together, such as “the overall probability

that a process aborts in some run where a majority of processes are correct is limited byα”. This, however,

requires that process crashes be probabilistic in order to sum the abort probabilities among all possible failure

patterns. As explained in Section 2.2, analytical results that are not based on the probabilistic assumption on

process crashes can also be applied to the situations where process crashes do follow probabilistic distribu-

tions. Therefore, theα-Abortability specified for each failure pattern is a stronger property than the alternative

specified over all failure patterns.

Traditional asynchronous consensus and abortable consensus. When the abort probability thresholdα is

zero, no abort action is allowed when a majority of processesare correct. Of course, the specification still

allows abort actions when a majority of processes are faulty. However, in asynchronous systems (even if

message delays are probabilistic), processes cannot reliably determine if a process has crashed or not. So no

algorithm can take advantage of a specification that allows the abort actions when a majority of processes are

faulty. Therefore, for all practical purposes, whenα is zero, abortable consensus is reduced to the traditional

asynchronous consensus as defined in Section 1.1.

Distinction between abortable consensus and atomic commit. Even though both abortable consensus and

atomic commit [20] have agreement properties and an abort action (non-blocking atomic commit also has a

termination property parallel to the termination propertyof abortable consensus), they are different in several

aspects. First, in atomic commit, abort could be one of the input values, while in abortable consensus, abort

is not part of the input; it is only an output option intended for exceptional cases. Second, atomic commit

10

requires that if all processes are correct and they all propose commit, they all eventually commit, and if any

process proposes abort, all processes have to abort; while in abortable consensus, there is no requirement

on when processes have to decide or when they have to abort, other than the probabilistic restriction on the

abort action. Finally, atomic commit requires that the abort action always be agreed among all processes,

while abortable consensus does not require agreement on theabort action. Therefore, abortable consensus

and atomic commit are two different problems.

4 Algorithm for Abortable Uniform Consensus

The algorithm given in Figure 1 implements abortable uniform consensus. It is based on the rotating coor-

dinator algorithm with failure detector3S [7]. In particular, the algorithm is also a round-based rotating

coordinator algorithm with the same mechanism for locking the decision value and a similar messaging struc-

tures as the one in [7]. However, several modifications are made either to allow progress even when a majority

of processes are faulty, or to simplify the probabilistic analysis. These modifications include: (a) allowing

the coordinator to skip the current round after waiting a long enough time without successfully gathering

a majority of responses; (b) allowing a process to abort after executing too many rounds; (c) replacing the

failure detector with a timeout mechanism; (d) replacing the separate reliable broadcast for decision propaga-

tion with a simple built-in propagation scheme; and (e) allowing every process to skip the current round and

immediately join the higher round when receiving a message of a higher round.2

In the algorithm, the processes proceed in asynchronous rounds. Each round has acoordinatorexchanging

messages with other processes (calledparticipants) in several phases in order to reach a final decision. The

coordinator executes two phases —NEWROUND andNEWESTIMATE — in each round. In each of these two

phases, the coordinator sends some messages to all participants, collects a certain type of response messages

from ⌊n/2⌋ participants, and executes some local actions according tothe responses. Note that the coordi-

nator always collects the response from itself automatically, so together with the⌊n/2⌋ responses from the

participants, the coordinator always collects a majority of responses before it proceeds.

Each participant executes two or three phases —SKIP, ESTIMATE andACK — in a round. In each of these

phases, each participant sends a message to the coordinator, waits for a response from the coordinator, and

then executes some local actions.
2Modifications (d) and (e) are similar to the schemes used in [1].

11

For every processp:

1 upon propose(vp):
2 (rp, estimatep, tsp)← (1, vp, 0) {initialization}
3 if rp > N then output abort; return {entry point of each round}
4 cp ← (rp mod n) + 1 {cp is the coordinator of roundrp}
5 if p = cp then {p is the coordinator of the current roundrp}
6 send(rp, NEWROUND) to all processes inΠ \ {p} {begin PhaseNEWROUND}
7 wait until one of the following conditions is true, and execute the actions following the condition:
8 (1) [received(rp, estimateq, tsq , ESTIMATE) from ⌊n/2⌋ participants]=⇒ continue on line 12
9 (2) [waiting time is longer thanTONR time units]=⇒ rp ← rp + 1; goto line 3
10 (3) [received message(r, . . .) with r > rp] =⇒ rp ← r; goto line 3
11 (4) [received message(estimate , DECIDE)] =⇒ estimatep ← estimate ; output decide(estimate); goto line 23
12 t← largesttsq in {tsq | p received(rp, estimateq, tsq , ESTIMATE) or q = p}
13 estimatep ← select oneestimateq from
14 {estimateq | p received(rp, estimateq, t, ESTIMATE) or (q = p and tsp = t) }
15 tsp ← rp {end PhaseNEWROUND}
16 send(rp, estimatep, NEWESTIMATE) to all processes inΠ \ {p} {begin PhaseNEWESTIMATE}
17 wait until one of the following conditions is true, and execute the actions following the condition:
18 (1) [received(rp, ACK) from ⌊n/2⌋ participants]=⇒ continue on line 22
19 (2) [waiting time is longer thanTONE time units]=⇒ rp ← rp + 1; goto line 3
20 (3) [received message(r, . . .) with r > rp] =⇒ rp ← r; goto line 3
21 (4) [received message(estimate , DECIDE)] =⇒ estimatep ← estimate ; output decide(estimate); goto line 23
22 output decide(estimatep) {end PhaseNEWESTIMATE}
23 send(estimatep, DECIDE) to all processes inΠ \ {p}; return {broadcast the decision to all processes}
24 else {p is a participant of the current roundrp}
25 if not yet received(rp, NEWROUND) from cp then
26 send(rp, SKIP) to cp {begin PhaseSKIP}
27 wait until one of the following conditions is true, and execute the actions following the condition:
28 (1) [received(rp, NEWROUND) from cp] =⇒ continue on line 33
29 (2) [received(rp, estimatecp

, NEWESTIMATE) from cp] =⇒ goto line 39
30 (3) [waiting time is longer thanTOS time units]=⇒ rp ← rp + 1; goto line 3
31 (4) [received message(r, . . .) with r > rp] =⇒ rp ← r; goto line 3
32 (5) [received message(estimate, DECIDE)] =⇒ output decide(estimate); return {end PhaseSKIP}
33 send(rp, estimatep, tsp, ESTIMATE) to cp {begin PhaseESTIMATE}
34 wait until one of the following conditions is true, and execute the actions following the condition:
35 (1) [received(rp, estimatecp

, NEWESTIMATE) from cp] =⇒ continue on line 39
36 (2) [waiting time is longer thanTOE time units]=⇒ rp ← rp + 1; goto line 3
37 (3) [received message(r, . . .) with r > rp] =⇒ rp ← r; goto line 3
38 (4) [received message(estimate , DECIDE)] =⇒ output decide(estimate); return
39 (estimatep, tsp)← (estimatecp

, rp) {end PhaseESTIMATE}
40 send(rp, ACK) to cp {begin PhaseACK}
41 wait until one of the following conditions is true, and execute the actions following the condition:
42 (1) [received message(estimate , DECIDE)] =⇒ output decide(estimate); return
43 (2) [waiting time is longer thanTOA time units]=⇒ rp ← rp + 1; goto line 3
44 (3) [received message(r, . . .) with r > rp] =⇒ rp ← r; goto line 3 {end PhaseACK}

45 upon receivem from q: {passive propagation of the decision value}
46 if m = (r, . . .) and decide(estimate) has occurredthen
47 if p = (r mod n) + 1 then {p is the coordinator of roundr}
48 send(estimate, DECIDE) to all processes inΠ \ {p} {broadcast the decision to all processes}
49 else
50 send(estimate, DECIDE) to q {send the decision to the coordinatorq of roundr}

Figure 1: Algorithm solving abortable uniform consensus

12

In the ideal cases when all the timings are right, all processes decide at the end of a round, which is the

successful round as defined later in Section 5.1. Figure 2(a)depicts a typical successful round, as explained

below. First, some processp enters the round and sends aSKIP message to the coordinatorc of the round

(line 26, phaseSKIP). When the coordinatorc receives theSKIP message, it jumps to this round immediately,

and sends aNEWROUNDmessage to every participant (line 6, phaseNEWROUND). When a participant receives

theNEWROUND message fromc, it enters this round (if not yet so), and sends anESTIMATE message with its

current estimate of the decision value to the coordinatorc (line 33, phaseESTIMATE). When the coordinator

c has receivedESTIMATE messages from at least⌊n/2⌋ participants, it selects an estimate value with the

latest timestamp, stores the new estimate value and its timestamp (lines 12–15, phaseNEWROUND), and

then it sends aNEWESTIMATE message with the newly selected value to every participant (line 16, phase

NEWESTIMATE). When a participant receives theNEWESTIMATE message fromc, it updates its local estimate

and the timestamp (line 39, phaseESTIMATE), and then sends anACK message back toc (line 40, phaseACK).

When the coordinatorc has received theACK messages from at least⌊n/2⌋ participants, it decides on its

estimate value (line 22, phaseNEWESTIMATE), and sends out theDECIDE message with the decision value to

every participant before it returns from the consensus run (line 23). Finally, when every participant receives

theDECIDE message fromc, it decides on the value attached with the message and returns from the consensus

run (line 42, phaseACK).

In less-than-ideal cases, message delays and losses and process failures may prevent processes from reach-

ing a decision in a round. The algorithm uses several schemesto avoid blocking the progress of the processes

in such cases. First, each of the five phases has a timeout so that no process is blocked in one phase forever.

If a process times out in a phase, it directly goes to the next round (lines 9, 19, 30, 36, and 43). Second, if a

process receives a higher round message, it jumps to that round immediately (lines 10, 20, 31, 37, and 44).

This guarantees that processes respond to the latest round messages immediately, which is important to the

probabilistic analysis. Third, if a process receives aDECIDE message, it decides immediately on the value

contained in the message (lines 11, 21, 32, 38, and 42). If theprocess is the coordinator of the round, it further

broadcasts the decision value to all participants before itreturns (line 23). Fourth, after a process decides,

it still helps other processes by sending outDECIDE messages whenever it receives a non-DECIDE message

(lines 45–50). This guarantees that a temporarily disconnected process can still decide after it reconnects

13

(b) a benchmark run of algorithmA

m4

≤ TONR ≤ TONE

m1

m2 m5 m6m3

(a) a succesful round of the abortable consensus algorithm

c

p

q

r

c

p

q

r

TONETONR

m1

m6m5m3m2 m4

m1—SKIP message;m2—NEWROUND message;m3—ESTIMATE message;m4—NEWESTIMATE message;m5—ACK message;m6—DECIDE message;

Figure 2: Comparison between a successful round of the abortable consensus algorithm and a benchmark run
of algorithmA

with the rest of the processes that already decided. Finally, if a processes advances to a round higher than a

thresholdN , it gives up on reaching a decision and aborts (line 3). This guarantees the termination of the

consensus run.

The algorithm has six parameters: theabort round thresholdN , which is the number of the highest round

that any process may enter before the process chooses to abort, and five timeout values,TONR, TONE , TOS ,

TOE , andTOA, one for each of the five phases. A few obvious improvements tothe algorithm are ignored

to make the algorithm more understandable and easier for analysis.

5 Analysis of the Algorithm

5.1 Correctness of the Algorithm

To prove the correctness of the algorithm, one needs to show that the algorithm satisfies Uniform Validity,

Termination, Uniform Agreement, andα-Abortability. This section focuses on theα-Abortability property

and provides the main idea on how to analyze the abort probability threshold of the algorithm. The complete

proof of correctness is included in Appendix A.

Definition 1 Let asuccessful roundin a run of the algorithm be the round such that there exists some process

entering the round, and all processes entering the round either decide or crash in this round.

The following lemma shows that some process aborting the consensus is directly related to the lack of a

successful round.

Lemma 2 Suppose there is at least one process that enters round1. There is a process that aborts in a run of

the algorithm if and only if there is no successful round in the run.

14

For the purpose of analysis, consider the following fictitious algorithmA that resembles one round of the

abortable consensus algorithm.

Definition 2 Let c be a process called the coordinator, and other processes arecalled participants. Letp

be one of the participants. Define algorithmA with c as the coordinator andp as the starting process as

follows. The algorithm starts with processp sending aSKIP message to the coordinatorc. Whenc receives

theSKIP message fromp, c sends aNEWROUNDmessage to every participant. When a participant receives the

NEWROUNDmessage fromc, it sends anESTIMATE message toc. Afterc sends out theNEWROUNDmessages

for TONR time units,c sends aNEWESTIMATE message to every participant. When a participant receives the

NEWESTIMATE message fromc, it sends anACK message toc. Afterc sends out theNEWESTIMATE messages

for TONE time units,c sends aDECIDE message to every participant.

Definition 3 Let abenchmark runof algorithmA be a run in which all processes are correct, and it satisfies

the following conditions for every participantq: (a) the time elapsed fromp sending theSKIP message toq

receiving theNEWROUND message fromc is at mostTOS ; (b) the time elapsed fromc sending theNEW-

ROUND message toc receiving theESTIMATE message fromq is at mostTONR; (c) the time elapsed fromq

sending theESTIMATE message toq receiving theNEWESTIMATE message fromc is at mostTOE ; (d) the

time elapsed fromc sending theNEWESTIMATE message toc receiving theACK message fromq is at most

TONE ; (e) the time elapsed fromq sending theACK message toq receiving theDECIDE message fromc is at

mostTOA (see Figure 2(b)).

A benchmark run resembles a clean successful round of the abortable consensus algorithm, with the fol-

lowing important difference: in a benchmark run, the coordinator always waits until the end of the timeout to

send a new type of messages, while in a successful round of theabortable consensus algorithm, the coordi-

nator sends a new type of messages to all participants as soonas it receives the expected messages from half

of the participants (see Figure 2(a) for a comparison). The above point is used to establish a key result in the

analysis ofα-Abortability, which shows the relationship in probability between the successful rounds of the

abortable consensus algorithm and the benchmark runs of thealgorithmA, as explained below.

Definition 4 Consider the runs of algorithmA in which all processes are correct, andp is the starting process

andc 6= p is the coordinator. Letβ(p, c) be the probability that among these runs a run of algorithmA is a

benchmark run. Since the network may not be symmetric, theβ(p, c)’s may be different with different pairs of

p andc. Letbenchmark probabilityβ be the minimum among allβ(p, c)’s.

15

The major technical analysis is to establish the result that(roughly speaking) the probability of any round

being successful when a majority of processes as well as the coordinator of the round are correct is at least

the benchmark probabilityβ (Lemma 15 in Appendix A). This is the key to the entire analysis, because it

masks many complicated behaviors, such as process crashes,message losses and message delays that could

occur in a successful round, and reduces all different possible cases of successful rounds into a simple and

tractable type of benchmark runs. It is easy to see that givena reasonable set of timeout values, the benchmark

probabilityβ should be greater than zero. Then as the number of rounds increases, the probability of no round

being successful, which is the same as the probability that some process aborts in the run, should decrease

exponentially fast.

To complete the analysis, one also has to consider the asynchrony of the propose actions of the processes.3

At one extreme, if all processes propose at the same time, theanalysis is relatively simple, but it is an unreal-

istic synchrony assumption. At the opposite extreme, if there is no restriction whatsoever on when a process

proposes, the abortable consensus becomes impossible, since the propose actions on a majority of processes

can be delayed for an arbitrarily long time such that a minority of processes that proposed early always abort,

even though all processes are correct and eventually propose. To make the proposal asynchrony tractable, the

probabilistic restriction is applied to the delay in the propose actions.

Definition 5 Suppose that a majority of processes are correct. Letproposal delayV be a random variable

representing the elapsed time from the time when the first process proposes to the time by which a correct

majority of processes (processes that form a majority and are correct) have proposed. The probability thatV

is within a given valuet, denoted byPr(V ≤ t), tends to1 whent tends to∞.

The above probabilistic restriction on the propose actionsis reasonable, since when a consensus algorithm

is used as a component to solve other distributed problems, the propose actions on all processes are usually

coordinated in some fashion. For example, the algorithm in [7] that implements atomic broadcast with a

consensus algorithm uses a reliable broadcast algorithm tocoordinate the propose actions of the consensus

run, and thus the proposal delayV can be derived from the analysis to the reliable broadcast algorithm in this

case.
3If, when a process receives a consensus message before it proposes, it can immediately propose its own value and start its

consensus run, then the analysis does not need to consider the asynchrony of the propose actions, and the proposal delay in the
analytical results can be omitted. This, however, only applies to the situations where the processes are already running and already
know their proposals and the propose actions are not triggered by the application.

16

The following theorem summarizes the result of the analysisand shows that the algorithm given is correct.

Theorem 1 The algorithm given in Figure 1 satisfies Uniform Validity, Uniform Agreement, and Termination

properties. Furthermore, if the benchmark probabilityβ is nonzero, the algorithm with the abort round

thresholdN = j+kn, j, k ∈ {1, 2, 3, . . .}, satisfiesα-Abortability withα = γ+(1−γ)(1−β)k⌈(n+1)/2⌉ < 1,

whereγ = Pr(V > jTm), V is the proposal delay, andTm = min(TONR,TONE ,TOS ,TOE ,TOA).

Therefore, the algorithm implements abortable uniform consensus withα tending to zero asN tends to infinity.

Theα-Abortability given in the above theorem can be interpretedas follows. The abort probability thresh-

old is divided into two parts: a) the probability that some process aborts before a correct majority of processes

have proposed, and b) the probability that some process aborts after a correct majority of processes have pro-

posed. For a),γ is an upper bound on this probability, andj is the number of initial rounds needed to achieve

the boundγ. For b), first,(1−γ) is the probability that no process aborts when a correct majority of processes

have proposed; second,(1 − β)k⌈(n+1)/2⌉ is an upper bound on the probability that some process abortsafter

a correct majority of processes have proposed, andkn is the number of remaining rounds needed to achieve

this bound. Therefore, adding the two upper bounds, we reachan upper bound on the overall abort probability

with N = j + kn rounds.

5.2 Configure Algorithm Parameters Givenα

This section shows how to calculate the parameters of the algorithm to satisfy any givenα. This is important

in practice because it allows applications to configure the algorithm according to their tolerance to the abort

actions. The complete analysis is included in Appendix B.

Definition 6 Given a timeout valueTO , for any linkℓ, let λ(ℓ) be the probability that a message sent on link

ℓ is delivered withinTO time units after it is sent. Letdelivery probabilityλ of a network for the timeoutTO

be the minimum ofλ(ℓ)’s for all links in the network.

With the probabilistic network model defined in Section 2, one can writeλ = minℓ((1−pL(ℓ))·Pr(D(ℓ) ≤

TO)). Note that, in practice, one does not need to knowpL(ℓ) and the entire distribution ofD(ℓ) to getλ(ℓ).

In fact, some simple experiments will give very good estimates onλ(ℓ) for a link ℓ. Given an appropriateTO ,

λ should always be greater than zero.

The following lemma gives a lower bound on the benchmark probability β using the delivery probabilityλ.

17

Lemma 3 Suppose the delivery probability of a network for a given timeoutTO is λ > 0. Set the timeout

parameters of the abortable consensus algorithm as follows: TONR = TONE = TOS = 2TO , and

TOE = TOA = 3TO . Then the benchmark probabilityβ has a lower boundλ5n−4.

Note that all timeout settings are not the same. This reflectsthe fact that the responses toNEWROUND,

NEWESTIMATE andSKIP messages are immediate, while the responses toESTIMATE andACK messages are

not — the coordinator needs to wait for⌊n/2⌋ messages before sending out a response.

The following theorem shows how to configure the parameters of the algorithm to satisfy theα-Abortability

for any givenα, when the delivery probabilityλ of a network for a certain timeoutTO is known, .

Theorem 2 Suppose the delivery probability of a network for a given timeoutTO is λ > 0. For any value

α ∈ (0, 1), supposej ∈ {1, 2, 3, . . .} is such thatPr(V > 2jTO) ≤ α/2, whereV is the proposal delay.

Then the algorithm in Figure 1 satisfiesα-Abortability for the givenα if the parameters of the algorithm are

set up as follows:TONR = TONE = TOS = 2TO , TOE = TOA = 3TO , andN = j + kn where

k =

⌈

log(α/2)

⌈(n + 1)/2⌉ log(1 − λ5n−4)

⌉

.

To illustrate the application of Theorem 2, consider a simple example as follows. Suppose that in a network

with 10 processes, the probability that a message is delivered within 10ms on any link is at least .99, i.e.,

n = 10, and the delivery probability of the network isλ = .99 for timeoutTO = 10ms . Suppose the

requirement on theα-Abortability of the algorithm is that the probability thatsome process aborts when a

majority of processes are correct is at most .0001, i.e.α = .0001. Plugging these numbers into the formula

for calculatingk above, one obtainsk = 2. That is, after initialj rounds so that a correct majority of processes

propose,2n = 20 more rounds are needed for the algorithm to guarantee thatα = .0001. Since each process

spends at mostmax(TONR + TONE ,TOS + TOE + TOA) = 8TO time units in one round, the algorithm

will terminate at most20 ∗ 8 ∗ 10 = 1600ms after the initialj rounds.

In terms of the numberj of the initial rounds needed to ensure that a correct majority of processes have

proposed, it depends on the context in which the algorithm isused. If all processes propose at the same time,

thenj = 0. If all processes propose withinT time units, then it is enough to setj = T/(2TO). If the propose

actions of all processes are coordinated by some other distributed protocols, such as reliable broadcast, then

the distribution of the proposal delayV is likely to be close to some exponential distribution, in which case a

moderate valuej should be good enough to satisfyPr(V > 2jTO) ≤ α/2.

18

An important result given by Theorem 2 is that the relationship betweenα andk is a log-relationship. That

is, a much stronger requirement onα only requires a small increase ink to satisfy it. For example, in the

above numerical example, if the requirement onα is strengthened from.0001 to .00001, the computedk only

increases from2 to 3.

Furthermore, when timeoutTO increases, the delivery probabilityλ usually increases, and it leads to

smaller values forj andk, i.e. less rounds are needed to achieveα-Abortability. On the other hand, asTO

increases, each round takes more time to complete. Therefore there is a tradeoff between using a longer

timeouts in each round and using more rounds to achieveα-Abortability. With the result in Theorem 2, it is

possible to compute an optimalTO so that the total time each process spends on one consensus run is minimal.

5.3 The Special Case:N = ∞

The algorithm has a special case whereN = ∞. In this case, the algorithm continues running until all

processes decide, and no process ever aborts. Obviously, the abort probability thresholdα is zero. The

Uniform Validity and Uniform Agreement properties still hold. For the Termination property, Theorem 1

shows that as the number of round tends to infinity, the probability that some process has not decided tends

to zero. Thus, whenN = ∞, all correct processes eventually decide with probabilityone. So the algorithm

with N = ∞ satisfies the following property:

• Probability-One Termination: For any failure pattern, with probability one eventually all correct pro-

cesses decide.

Technically, the above property is not exactly the same as the Termination property of asynchronous con-

sensus given in Section 1.1, but for all practical purposes,they do not have essential difference. Therefore, the

algorithm with the special caseN = ∞ implements asynchronous consensus (with the Termination property

replaced by the Probability-One Termination property).

5.4 Performance of the Algorithm

The analysis of the algorithm leads to several performance metrics of the algorithm. Suppose the algorithm

uses the settings as given by Theorem 2. First, since each process spends at most8TO time units in one

round, the longest time any process may take in one run of the algorithm is8(j + kn)TO , wherej andk are

determined by Theorem 2.

19

Second, and more interestingly, is to derive the expected number of rounds and the expected time the algo-

rithm spends before reaching a decision or abort, when a majority of processes are correct. From Lemma 3,

one knows that the probability of a successful round is at least λ5n−4, given that a majority of processes as

well as the coordinator of the round are correct. Let acorrect rounddenote a round in which the coordinator

is correct, and afaulty rounddenote a round in which the coordinator is faulty. Thus, whena majority of

processes are correct, after the processes pass the initialj rounds such that a correct majority of processes

have proposed, the expected number of correct rounds neededis at most1/λ5n−4. Suppose there aref < n/2

faulty processes. For everyn consecutive rounds, there aref faulty rounds andn − f correct rounds. Let

f0 = f⌈1/(λ5n−4(n−f))⌉. So among the1/λ5n−4 correct rounds, there are at mostf0 faulty rounds. There-

fore, the expected number of rounds for any process to complete one run of the algorithm (after the initial

j rounds) is at mostf0 + 1/λ5n−4, and the corresponding expected time to complete one consensus run is

at most8TO(f0 + 1/λ5n−4). Using the same numerical example given in Section 5.2 and let f = 4, the

expected number of rounds is at most5.59, and the expected running time is at most447ms .

Note that the above analysis only considers that eventuallythere is always a round that is successful, which

meansN is infinity and no process ever aborts. This is the reason why the expected values are only affected

by TO , λ, f andn, but is not affected byα. With N being a finite value, no process will go beyond roundN ,

so the expected number of rounds for termination should be smaller. This is exactly the tradeoff that abortable

consensus is providing: with some probability of the abort actions, processes may terminate the algorithm

faster. The following is an informal analysis on this tradeoff provided by the algorithm.

For simplicity, assume that there are a correct majority of processes and they have proposed. Given an

N , suppose that the actual probability that a process may abort is α0, which must be less thanα. Let RN

be the expected number of rounds that the algorithm takes to terminate the consensus, by either reaching a

successful round by roundN or aborting at the end of roundN . Let R∞ be the special case ofRN where

N = ∞. Let R−
N be the expected number of rounds that the algorithm takes to terminate the consensus,

given the condition that the algorithm reaches a successfulround by roundN . The probability that the above

condition is true is(1 − α0). Let R+
N be the expected number ofadditional rounds that the algorithm has

to take to reach a successful round after roundN , given the condition that it does not reach a successful

round by roundN and it continues without ever aborting the consensus. The probability that the above

20

condition is true isα0. Therefore, we have the following equations:R∞ = (1−α0)R
−
N + α0(N + R+

N), and

RN = (1−α0)R
−
N +α0N . SinceR+

N is the expected number of the additional rounds needed afterroundN ,

and in each round processes run the same protocol and requirethe same condition to have a successful round,

R+
N is essentially the same asR∞.4 Thus, we haveRN = (1 − α0)R∞.

The above argument shows that by compromising a certain degree of agreement (allowing an abort prob-

ability α0), abortable consensus does gain in progress, i.e., early termination of the consensus, by a factor of

(1 − α0); and the higher the abort probability, the faster the termination of the consensus.

Finally, message complexity can also be obtained. In each round (except the rounds in which the coordi-

nator already decides), at most6(n − 1) messages are exchanged in the network, so the total number and the

expected number of messages exchanged in one run of the algorithm can be derived using the above results

on the total number and the expected number of rounds.

It is important to point out that the above performance metrics apply to all consensus runs with all possible

failure and asynchrony scenarios allowed by the system model, and they provide both round-based and time-

based performance results. In contrast, most of the existing researches only provide performance analyses

that are asynchronous round-based and are limited to several simple cases. Moreover, the above performance

results are simple and can be easily applied in practice, despite the apparent complexity to consider all possible

failure and asynchrony scenarios.

6 Application to Probabilistic Atomic Broadcast

6.1 Specification of Probabilistic Atomic Broadcast

In atomic broadcast, each processes broadcasts a number of messages (could be infinite) and messages have

to be delivered on all correct processes in the same order. Asshown in [7], atomic broadcast is equivalent to

consensus in asynchronous systems. Recently, Felber and Pedone [14] propose probabilistic atomic broadcast

(PABCast), in which the set and the order of the messages delivered by each process only need to agree with

each other with certain probability thresholds. This specification allows them to use gossip-style protocols to

achieve good scalability.

Our paper demonstrates that abortable consensus can be usedto implement PABCast such that the proba-

4The argument omits some details such as the number of crashesmay be different before or after roundN , which may cause the
R+

N andR∞ not being the same. However, the argument is intended as a simple and intuitive discussion on the performance gain
with the abort action, so such omissions should be tolerable.

21

bility thresholds of PABCast can be analytically derived from the abort probability thresholdα of abortable

consensus. It will further show that abortable consensus can provide stronger properties than PABCast.

The specification of PABCast is given by the following properties, which are essentially the same as the

ones given in [14].

• Integrity: Every message is delivered at most once at each process, andonly if it was previously broad-

cast.

• Probabilistic Agreement: There exists aγa > 0 such that for any failure pattern in which processesp

andq are correct, ifp delivers messagem, then the probability thatq deliversm is at leastγa.

• Probabilistic Validity: There exists aγv > 0 such that for any failure pattern in which processp is

correct, ifp broadcasts messagem, then the probability thatp deliversm is at leastγv.

• Probabilistic Order: There exists aγo > 0 such that for any failure pattern in which processesp andq

are correct, ifp andq both deliverm andm′, then the probability that they do so in the same order is at

leastγo.

In order to implement PABCast using abortable consensus, another component, probabilistic reliable broad-

cast, is needed. This is introduced in the next section.

6.2 Probabilistic Reliable Broadcast

Probabilistic reliable broadcast (PRBCast) is another broadcast specification that requires the Integrity, Prob-

abilistic Agreement, and Probabilistic Validity properties as defined in Section 6.1. So the difference between

PRBCast and PABCast is that PRBCast does not require the Probabilistic Order property.

Figure 3 shows the algorithm that implements PRBCast, basedon the algorithm in [16]. It is a basic flooding

algorithm with repeated send actions (lines 8–11) to overcome possible message losses. To distinguish the

broadcast and deliver primitives of PRBCast and PABCast, these primitives are prefixed with ’PR’ or ’PA’

whenever necessary, both in the algorithms and in the analyses.

The algorithm in Figure 3 is meant to show that PRBCast is implementable in the probabilistic network

model. In practice, the algorithm could be replaced by more scalable algorithms such as the one given in [5].

The following theorem summarizes the correctness of the algorithm, and its proof is given in Appendix C.

22

For every processp:

1 upon PR-broadcast(m):
2 PR-send(m) to all processes excludingp
3 PR-deliver(m)

4 upon PR-receive(m) from q:
5 if p has not previously executedPR-deliver(m) then
6 PR-send(m) to all processes excludingp
7 PR-deliver(m)

8 upon PR-send(m) to q:
9 repeat at mostk times
10 sendm to q
11 until received(ACK , m) from q

12 upon receivem from q:
13 send(ACK , m) to q
14 if p has not previously executedPR-receive(m) then PR-receive(m)

Figure 3: Implementing PRBCast

Theorem 3 The algorithm in Figure 3 implements probabilistic reliable broadcast in the probabilistic net-

work model, with the probability thresholdsγv = 1 andγa = 1 − pk
L, wherepL is the maximum of message

loss probabilitypL(ℓ)’s for all communication linksℓ in the system, andk is the maximum number of repeated

send actions on a message as described in the algorithm.

6.3 Implementing PABCast with Abortable Consensus

With PRBCast and abortable consensus, one can implement PABCast, as shown in Figure 4. The algorithm is

based on the atomic broadcast algorithm using consensus in [7], with one important addition. The basic idea

of the algorithm is to use PRBCast to deliver the messages to the processes, and then use abortable consensus

to agree on the delivery order. The addition to the original algorithm is on how to treat the abort actions of

abortable consensus: If a process aborts, it will atomically deliver the messages proposed by itself (line 15).

This addition is an important factor that affects the analytical results on the probability thresholds of PABCast.

The following theorem summarizes the correctness of the algorithm and provides the probability thresholds

it satisfies. The complete analysis is given in Appendix D.

Theorem 4 Suppose the probabilistic reliable broadcast algorithm used in Figure 4 hasγR
a and γR

v as the

thresholds for the Probabilistic Agreement and Probabilistic Validity properties, respectively. Suppose the

abortable consensus algorithm used in Figure 4 hasα as the threshold for theα-Abortability property. The

PABCast algorithm given in Figure 4 satisfies the Integrity property, the Probabilistic Agreement property with

23

For every processp:

1 Initialization:
2 R delivered ← ∅; A delivered ← ∅; k← 0;

3 upon PA-broadcast(m):
4 PR-broadcast(m) {to PABCast a message, PRBCast it first}

5 upon PR-deliver(m):
6 R delivered ← R delivered ∪ {m}

7 whenR delivered − A delivered 6= ∅:
8 k ← k + 1;
9 A undelivered ← R delivered − A delivered

10 propose(k,A undelivered) {call abortable consensus to decide on the delivery order}
11 wait until decide(k,msgSetk) or abort
12 if decided on a value(k, msgSetk) then
13 A deliverk ← msgSetk − A delivered {if decided on a set of messages, they are the ones to be PA-delivered next}
14 else {thek-th consensus is aborted}
15 A deliverk ← A undelivered {if aborted, messages in my own proposal are the ones to be PA-delivered next}
16 PA-deliver(m) for all m ∈ A deliverk in some deterministic order
17 A delivered ← A delivered ∪A deliverk

Figure 4: Implementing PABCast using abortable consensus

thresholdγA
a = γR

a (1−α), the Probabilistic Validity property with thresholdγA
v = γR

v γR
a (1−α). If a majority

of processes are correct, it also satisfies the Probabilistic Order property with thresholdγA
o = (1 − α)2.

Therefore, the algorithm implements probabilistic atomicbroadcast when a majority of processes are correct.

The probability thresholds of PABCast given in the above theorem have the following intuitive interpreta-

tions:

• For the probability thresholdγA
a on the Probabilistic Agreement property, for two correct processesp

andq to PA-deliver a messagem, it is sufficient that both processes PR-deliverm (with probability

at leastγR
a), and then both processes decide in a consensus run withm as part of the decision (with

probability at least(1 − α)), soγA
a is at leastγR

a (1 − α).5

• For the probability thresholdγA
o on the Probabilistic Order property, to PA-deliver two messagesm

andm′ in the same order, it is sufficient that the two messages are part of the decision values of two

consensus runs with no abort actions at all, and thusγA
o is at least(1 − α)2.

• For the probability thresholdγA
v on the Probabilistic Validity property, the interpretation may not be as

5This interpretation is still a simplified version, because the use of the abort probability thresholdα requires that a majority of
processes be correct, but the resultγA

a = γR
a (1− α) does not require that. For a complete argument, see the proofs of Lemmata 20

and 21.

24

straightforward. For a correct processp to PA-deliver a messagem that it has previously PA-broadcast,

it is sufficient thatp first PR-deliversm (with probability at leastγR
v), and thenp PA-deliversm after

a consensus run. The probability thatp PA-deliversm given thatp PR-deliversm is proven to be at

leastγR
a (1 − α), which may not be immediately intuitive (see the proof of Lemma 22 in Appendix D).

Therefore,γA
v is at leastγR

v γR
a (1 − α).

The theorem shows that abortable consensus can be used to implement PABCast. Furthermore, the prob-

ability thresholds of PABCast can be easily derived from theabort probability thresholdα of abortable con-

sensus.

6.4 Enhancement to PABCast

The above section shows that abortable consensus can be usedto implement PABCast. However, the algorithm

in Figure 4 does not fully utilize the potential of the abortable consensus specification. In particular, when

a processp aborts in a consensus run, it merely PA-delivers all messages it proposes for this consensus run

(line 15 of Figure 4), as if those messages are actual decision values of the consensus run. But processp

is aware that it does not make a decision, and thus the messages it proposed are likely not the ones that

other processes will decide on in the same consensus run. Thus, processp could add a flag to each of these

messages indicating that they are potentially out of order.Theseout-of-order flagsprovide further information

to applications about orderings of the messages.

With the out-of-order flags, it is easy to see that the enhanced algorithm guarantees that all messages PA-

delivered prior to the first message with the out-of-order flag on each process must follow the same order. That

is, the first out-of-order flag on each process marks the boundary before which the messages are guaranteed

to be PA-delivered in the same order. Furthermore, theα-Abortability also guarantees that the probability

that the out-of-order flag is attached to a message is at mostα, when a majority of processes are correct. The

above is summarized by the following two properties.

• Pre-Flag Complete Order: For two correct processesp andq, and for the two sequences of messages

that p andq deliver before their first out-of-order flags respectively,one sequence is the prefix of the

other sequence.

• Flag Restriction: There exists anα < 1 such that for any failure pattern in which a majority of processes

25

are correct, the probability that with this failure patternthere exists some process that delivers its first

message with an out-of-order flag is at mostα.

The Pre-Flag Complete Order property also has a uniform version, which does not requirep andq to be cor-

rect processes. If the abortable consensus satisfies uniform agreement, then the corresponding implementation

of PABCast satisfies the uniform version of the Pre-Flag Complete Order property. Moreover, the Pre-Flag

Complete Order is a stronger property than an ordering property that only requires any two pre-flag messages

delivered byp andq following the same order. For example, it excludes the possibility of processp delivering

messagesm1, m2 andm3 while q deliversm1 andm3, before their first out-of-order flags respectively.

It will be shown in this next section that the above two properties are important in distinguishing the strength

between abortable consensus and PABCast.

Note that ordering is only guaranteed for messages before the first out-of-order flag on a process. After

the first out-of-order flag, even if some messages are not attached with the out-of-order flags, they may not

be delivered in the same order as in other processes. For example, suppose there are three messagesm1, m2

andm3 to be delivered by three runs of abortable consensus. In the first run, every process except process

p decidesm1, while processp aborts and delivers on its own proposalm2. So after the first consensus

run, p PA-deliversm2 with an out-of-order flag, while others PA-deliverm1 without the flag. In the second

consensus run, every process includingp decidesm3, and so they all PA-deliverm3 without the flag. In the

third consensus run,p proposesm1 since it has not deliveredm1 yet, and all processes decidem1. Thusp

PA-deliversm1 without the flag, but others skipm1 since they already PA-deliveredm1 before. The result is

thatp PA-deliversm3 beforem1, while other processes PA-deliverm1 beforem3, and none of the deliveries

is attached with a flag. Therefore, after the first out-of-order flag, further ordering is not guaranteed by the

absence of the flag, but the flags may still be useful in providing hints on which messages are likely to be out

of order.

6.5 Relationship between Abortable Consensus and PABCast

The previous sections already shows that abortable consensus can be used to implement PABCast, which

implies that abortable consensus is at least as strong as PABCast. Is the reverse true? That is, can abortable

consensus be implemented using PABCast, and hence they are equivalent of each other?

Before we proceed to study this problem, one important issueneeds to be clarified first. With the probabilis-

26

tic network model, both abortable consensus and PABCast canbe implemented. When studying the relative

strength between two implementable specifications, one hasto be careful in choosing the transformation al-

gorithm to show that one can be implemented by the other. If there is no restriction on the transformation

algorithm, of course any implementable specification can be“transformed” from any other specification —

just let the transformation algorithm itself implement thespecification. Such transformations are useless in

studying the relative strength between two specifications.

Therefore, to study the relative strength between two implementable specifications, we need to use re-

stricted transformations that are not strong enough to implement the specifications by themselves. Studying

restricted transformations in asynchronous distributed systems is an interesting research topic by itself, but

the full treatment is out of the scope of this paper. For the purpose of understanding the relationship be-

tween abortable consensus and PABCast, this paper uses a simple type of restricted transformations —silent

transformations, which means that the transformation itself does not involve sending or receiving any mes-

sages. Since such transformations cannot be used to implement any meaningful distributed specifications

by themselves, they are good candidates to be used to study the relationship between two implementable

specifications.

In fact, the algorithm in Figure 4 is a silent transformationfrom abortable consensus to PABCast, built on

top of the probabilistic network model and PRBCast. That is,besides the PRBCast part, the algorithm only

calls abortable consensus and there is no more message exchanges needed by the algorithm. Therefore, as

long as PRBCast itself is not as strong as PABCast, which is not hard to believe, the algorithm indeed shows

that abortable consensus provides enough properties to implement PABCast.

For the remaining discussion, we will also use silent transformations to study whether PABCast is good

enough to implement abortable consensus.

In the case of consensus and atomic broadcast, implementingconsensus using atomic broadcast is very

simple [11]. To propose a value, a process atomically broadcasts it. To decide a value, a process picks the

value of the first message that it atomically delivered. Notethat this is a silent transformation, since it only

calls atomic broadcast and no messages are exchanged by the transformation algorithm itself.

This silent transformation is however not good enough for PABCast to implement abortable consensus.

There are two problems that prevent the above simple transformation to work. First, in PABCast, the first

27

messages delivered by processes are not necessarily the same due to the Probabilistic Agreement and Proba-

bilistic Order properties. So if processes decide on their first delivered messages, it may violate the Agreement

property of abortable consensus. But if a process does not decide a value, there is no further information that a

process can deduce in order to abort the consensus with a guaranteed abort probability thresholdα. Therefore,

it is reasonable to suspect that the PABCast specification asgiven in Section 6.1 is not strong enough to solve

abortable consensus.

This problem can be circumvented with the two enhancement properties provided in Section 6.4. With the

enhancement properties, if a process delivers the first message with an out-of-order flag, then it aborts the

consensus; otherwise, it decides on the first message. The Pre-Flag Complete Order guarantees that the first

messages without an out-of-order flag are the same, and thus processes have to decide on the same value —

Agreement property is satisfied. The Flag Restriction property guarantees that when a majority of processes

are correct, the probability that a flag appears in the first message is at mostα, and thus the probability that

any process aborts is at mostα — α-Abortability is satisfied.

Even with the two enhancement properties, it is still not enough to implement abortable consensus. The

specification of PABCast allows a positive probability thata correct process never delivers any message. If a

correct process does not even deliver one message, it certainly cannot decide on any value. The process cannot

abort either, because the PABCast specification has no indication on how long it will wait before aborting the

consensus run to guarantee a small probability of abort. Butif a correct process neither decides nor aborts, it

violates the Termination property of abortable consensus.

To circumvent this problem, yet another property is needed for PABCast:

• Guaranteed Progress: if a correct process broadcasts a message, then eventuallyit delivers some mes-

sage.

With the Guaranteed Progress property, a process has to deliver some message after broadcasting a message,

and thus depending on whether it delivers the first message with an out-of-order flag, the process either

decides or aborts — Termination property is satisfied. It is easy to verify that the PABCast algorithm using

abortable consensus given in Figure 4, together with the PRBCast implementation given in Figure 3, satisfies

the Guaranteed Progress property.

Therefore, with the three enhancement properties (Pre-Flag Complete Order, Flag Restriction, and Guar-

28

anteed Progress), there is a silent transformation that transforms the enhanced PABCast to abortable consen-

sus. Moreover, all these enhancement properties can be satisfied by an implementation of PABCast using

abortable consensus. Hence, abortable consensus is equivalent to PABCast enhanced by all three properties

stated above.

It is interesting to note that, with the introduction of the above three enhancement properties, abortable

consensus can be implemented by PABCast without using the Probabilistic Agreement, Probabilistic Validity

or Probabilistic Order properties in the original specification of the PABCast. These three properties have

been superseded by the new properties introduced.

The following theorem summarizes the relationship betweenabortable consensus and PABCast.

Theorem 5 Abortable consensus is equivalent to PABCast enhanced withthe Pre-Flag Complete Order, Flag

Restriction, and Guaranteed Progress properties. Moreover, the above three properties together with the

Integrity property of PABCast are enough to implement abortable consensus.

7 Concluding Remarks

This paper studies abortable consensus to address the tradeoff between progress and agreement in asyn-

chronous consensus. It also shows the application of abortable consensus to probabilistic atomic broadcast

and shows their relationships. There are several possible future research directions based on this research

work. One is to further improve the algorithm and performance analysis to provide better performance guar-

antees. More importantly, the tradeoff between progress and agreement is also an important issue for many

other distributed problems, so the techniques introduced in this paper can potentially be applied to these

problems as well. Finally, this research, together with theone in [8] and possible others following the same

direction, may provide the basic components and analyticaltools that could be used to build fault-tolerant

distributed systems with well-studied performance and quality-of-service guarantees.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus in the crash-recovery model.

Distributed Computing, 13(2):99–125, Apr. 2000.

29

[2] C. Almeida and P. Verı́ssimo. Timing failure detection and real-time group communication in quasi-

synchronous systems. InProceedings of the 8th Euromicro Workshop on Real-Time Systems, June 1996.

[3] K. Arvind. Probabilistic clock synchronization in distributed systems.IEEE Transactions on Parallel

and Distributed Systems, 5(5):475–487, May 1994.

[4] M. Ben-Or. Another advantage of free choice: Completelyasynchronous agreement protocols. In

Proceedings of the 2nd ACM Symposium on Principles of Distributed Computing, pages 27–30, Aug.

1983.

[5] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, andY. Minsky. Bimodal multicast.ACM

Transactions on Computer Systems, 17(2):41–88, May 1999.

[6] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.Journal

of the ACM, 43(4):685–722, July 1996. An extended abstract appeared in Proceedings of the 11th ACM

Symposium on Principles of Distributed Computing, August, 1992, 147–158.

[7] T. D. Chandra and S. Toueg. Unreliable failure detectorsfor reliable distributed systems.Journal of

the ACM, 43(2):225–267, Mar. 1996. A preliminary version appearedin Proceedings of the 10th ACM

Symposium on Principles of Distributed Computing, Aug., 1991, 325–340.

[8] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of failure detectors.IEEE Transactions

on Computers, 51(5):561–580, May 2002.

[9] B. Chor and C. Dwork. Randomization in byzantine agreement. Advances in Computer Research,

5:443–497, 1989.

[10] F. Cristian. Probabilistic clock synchronization.Distributed Computing, 3(3):146–158, 1989.

[11] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed for distributed consensus.

Journal of the ACM, 34(1):77–97, Jan. 1987.

[12] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.Journal of

the ACM, 35(2):288–323, Apr. 1988.

30

[13] P. T. Engster and R. Guerraoui. Probabilistic multicast. In Proceedings of the 2002 International Con-

ference on Dependable Systems and Networks, pages 313–324, June 2002.

[14] P. Felber and F. Pedone. Probabilistic atomic broadcast. In Proceedings of the 21st Symposium on

Reliable Distributed Systems, pages 170–179, Oct. 2002.

[15] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty

process.Journal of the ACM, 32(2):374–382, Apr. 1985.

[16] V. Hadzilacos and S. Toueg. Fault-tolerant broadcastsand related problems. In S. J. Mullender, editor,

Distributed Systems, chapter 5, pages 97–145. Addison-Wesley, 1993.

[17] M. Hurfin and M. Raynal. A simple and fast asynchronous consensus protocol based on a weak failure

detector.Distributed Computing, 12(4):209–223, 1999.

[18] I. Keidar and S. Rajsbaum. On the cost of fault-tolerantconsensus when there are no faults – a

tutorial, July 2002. In Tutorial of 21st ACM Symposium on Principle of Distributed Computing

(http://theory.lcs.mit.edu/ idish/ftp/podc02-tutorial.ppt).

[19] L. Lamport. The part-time parliament.ACM Transactions on Computer Systems, 16(2):133–169, 1998.

[20] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[21] M. Raynal and F. Tronel. Group membership failure detection: a simple protocol and its probabilistic

analysis.Distributed Systems Engineering Journal, 6(3):95–102, 1999.

[22] A. Schiper. Early consensus in an asynchronous system with a weak failure detector.Distributed

Computing, 10(3):149–157, 1997.

[23] F. B. Schneider. Replication management using the state-machine approach. In S. J. Mullender, editor,

Distributed Systems, chapter 7, pages 169–198. Addison-Wesley, 1993.

[24] F. Tronel. A probabilistic analysis of the consensus problem (fast abstract). InProceedings of the 2000

International Conference on Dependable Systems and Networks, pages B16–17, June 2000. Full version

as technical report 1226, IRISA, by E. Fronmentin and F. Tronel, 1999.

31

Appendix

A Proof of Theorem 1

For completeness, the definitions, lemmata, and the theorems in the main text are restated here in the Appen-

dices.

This appendix proves the correctness of the abortable consensus algorithm given in Figure 1. All line

numbers in this appendix refer to the lines in Figure 1.

A processp enters roundr if it finishes executing line 3 withrp = r. Processp decides in roundr if p

enters roundr and then outputsdecide(est) for someest without entering any other roundr′ ≥ r. Processp

aborting in roundr andcrashing in roundr are similarly defined.

Lemma 4 (Uniform Validity) If a process decidesv then some process previously proposedv.

Proof. Trivial. 2

Lemma 5 (Termination) Eventually all correct processes either decide or abort.

Proof. Due to the timeout mechanism in each phase of the algorithm, no correct process stays in any phase

of the algorithm forever, and thus no correct process stays in any round of the algorithm forever. Therefore, a

correct process either decides or eventually advances to a round higher than the round thresholdN , in which

case it aborts the consensus run. 2

Lemma 6 Suppose that the coordinatorc of roundr outputsdecide(est) in line 22. In every roundr′ ≥ r,

if the coordinatorc′ updatesestimatec′ to some valueest ′ in lines 13–14, thenest ′ = est .

Proof. The proof is done by induction on the round numberr′. For the base case (r′ = r), if c outputs

decide(est) in line 22 of roundr, thenc must have updatedestimatec with valueest in lines 13–14 of the

same round. Thus the base case is correct.

Now assume that the lemma holds for allr′, r ≤ r′ < k. Let c′ be the coordinator of roundk. The

following shows that the lemma holds forr′ = k.

Suppose that in roundk, c′ updatesestimatec′ to some valueest ′ in lines 13–14. Thenc′ has received

messages of the form(k, ∗, ∗, ESTIMATE) from ⌊n/2⌋ participants (according to line 8). LetP1 = {p | c′ has

received(k, ∗, ∗, ESTIMATE) from p} ∪ {c′}. Sincec executes line 22 in roundr, c has received(r, ACK)

32

from ⌊n/2⌋ participants (according to line 18). LetP2 = {p | c has received(r, ACK) from p} ∪ {c}. Since

|P1| = |P2| = ⌊n/2⌋ + 1, it follows thatP1 ∩ P2 6= ∅. Let p ∈ P1 ∩ P2.

Fromp ∈ P2, one has that eitherp = c or c has received(r, ACK) from p. In either case,p has updated

its estimate to the round-r coordinator’s estimateest (lines 13–14 ifp = c or line 39 ifp 6= c). Therefore, in

roundr, the value ofp’s timestamp variabletsp is updated tor. Fromp ∈ P1, one has that eitherp = c′ or c′

has received(k, ∗, ∗, ESTIMATE) from p in roundk. In either case,p enters roundk > r. Since the value of

tsp is non-decreasing, whenp enters roundk > r, its tsp value is at leastr. Thus, whenc′ selects valuet in

line 12 in roundk, t is at least as large as the value oftsp at the time, i.e.t ≥ r. It is easy to see that everytsq

participated in the selection oft in line 12 of roundk hastsq < k. So,r ≤ t < k.

Let q be the process whose estimate valueest ′ is selected by the coordinatorc′ in lines 13–14 of roundk.

Thus,q updates its estimate toest ′ in roundt, either in lines 13–14 or in line 39. In either case, the coordinator

c′′ of roundt updatedestimatec′′ to est ′ in lines 13–14. Sincer ≤ t < k, by the induction hypothesis, one

hasest ′ = est . 2

Lemma 7 (Uniform Agreement) Processes (correct and faulty) do not decide different values.

Proof. Suppose that processesp andp′ decide on valuesest andest ′, respectively. Note that the only place

in the algorithm where decision is not caused by receiving aDECIDE message is line 22. Thus, by a simple

induction on the number ofDECIDE messages that cause the decisions, there must be coordinators c andc′

decide on valuesest andest ′ in line 22 of roundr andr′, respectively. Without loss of generality, assume

r′ ≥ r. Since coordinatorc′ outputsdecide(est ′) in line 22 of roundr′, it must have updatedestimatec′ to

est ′ in lines 13–14 of roundr′. By Lemma 6,est ′ = est . 2

The rest of the section is for the probabilistic analysis on theα-Abortability property of the algorithm. The

analysis presented below chooses to omit some mathematicaldetails, such as the formal definitions on the

runs of the algorithm, probability spaces, probability measures, and so on. It is enough to point out that the

probability space underlying the probabilistic analysis would be the set of all runs of the algorithm given a

certain failure pattern. Further details are not essentialto the understanding of the algorithm and its analysis.

Definition 1 Let asuccessful roundin a run of the algorithm be the round such that there exists some process

entering the round, and all processes entering the round either decide or crash in this round.

Proposition 8 If a processp enters roundr > 1, then for all roundr′ with 1 ≤ r′ < r, there must be some

33

processp′ that enters roundr′ and later enters roundr′ + 1 due to a timeout in one of the phases (lines 9, 19,

30, 36 and 43).

Proof. According to the algorithm, processp enters a roundr > 1 either by receiving a message of roundr

when it is still in a lower round, or by timing out in one of the phases of roundr− 1 and advancing to roundr

(lines 9, 19, 30, 36 and 43). Thus, by a simple induction thereis always a process that enters roundr − 1 and

later enters roundr due to a timeout in one of the phases (lines 9, 19, 30, 36 and 43). The proposition can be

obtained by repeating the above argument on roundr − 1, r − 2, and so on. 2

Proposition 9 No process enters roundr > N in any run of the algorithm.

Proof. Suppose, for a contradiction, that a processp enters roundr > N . By Proposition 8, there is a process

p′ that entersN and later entersN + 1. However, right before enteringN + 1, p′ executes line 3 and since

rp′ > N , p′ aborts, and thusp′ never enters roundN + 1 — a contradiction. 2

Proposition 10 If round r is a successful round, then no process enters roundr′ > r. That is, the successful

round is always the final round of the run of the algorithm.

Proof. Suppose, for a contradiction, that a processp enters a roundr′ > r. Then by Proposition 8 there

must be a processp′ that enters roundr and later enters roundr + 1. However, since roundr is a successful

round, after entering roundr, p′ either decides or crashes in roundr, and thusp′ never enters roundr + 1 —

a contradiction. 2

Proposition 11 There is at most one successful round in every run of the algorithm.

Proof. Immediate from Proposition 10. 2

Proposition 12 If there is a successful round in a run of the algorithm, then no process aborts in this run.

Proof. Suppose, for a contradiction, that a processp aborts in the run. Sincep can only abort at the end of

roundN , p enters roundN . Let r be the successful round. By Proposition 9,r ≤ N . If r = N , then by

definitionp either decides or crashes in roundN , contradicting with the assumption thatp aborts in roundN .

If r < N , then by Proposition 10, no process enters roundN , again contradicting with the assumption thatp

enters roundN . Thus, no process aborts in the run. 2

Proposition 13 For any r ∈ {1, 2, . . . , N − 1}, if a process enters roundr and roundr is not a successful

round, then there is a process that enters roundr + 1.

34

Proof. Since some process enters roundr and roundr is not successful, by definition there is a processp

that neither decides nor crashes in this round. Sincer < N , p cannot abort in this round either. Becausep

has timeout in each phase of the algorithm, it cannot stay in roundr forever, so it must enter a higher round

r′ > r. By Proposition 8, there is a processp′ that enters roundr + 1. 2

Proposition 14 Suppose there is at least one process enters round1. If no process aborts in a run of the

algorithm, then there must be a successful round in the run.

Proof. Suppose, for a contradiction, that there is no successful round in the run. Since some process enters

round1 and round1 is not successful, by Proposition 13, there must be a processthat enters round2. Repeating

the same argument, one can conclude that there must be a process that enters roundN . Since roundN is not

successful either, then there must be some process that aborts at the end of roundN . 2

Lemma 2 Suppose there is at least one process that enters round1. There is a process that aborts in a run

of the algorithm if and only if there is no successful round inthe run.

Proof. Immediate from Propositions 12 and 14. 2

Definition 2 Let c be a process called the coordinator, and other processes arecalled participants. Let

p be one of the participants. Define algorithmA with c as the coordinator andp as the starting process as

follows. The algorithm starts with processp sending aSKIP message to the coordinatorc. Whenc receives the

SKIP message fromp, c sends aNEWROUND message to every participant. When a participant receives the

NEWROUNDmessage fromc, it sends anESTIMATE message toc. Afterc sends out theNEWROUNDmessages

for TONR time units,c sends aNEWESTIMATE message to every participant. When a participant receives the

NEWESTIMATE message fromc, it sends anACK message toc. Afterc sends out theNEWESTIMATE messages

for TONE time units,c sends aDECIDE message to every participant.

Definition 3 Let abenchmark runof algorithmA be a run in which all processes are correct, and it satisfies

the following conditions for every participantq: (a) the time elapsed fromp sending theSKIP message toq

receiving theNEWROUND message fromc is at mostTOS ; (b) the time elapsed fromc sending theNEW-

ROUND message toc receiving theESTIMATE message fromq is at mostTONR; (c) the time elapsed fromq

sending theESTIMATE message toq receiving theNEWESTIMATE message fromc is at mostTOE ; (d) the

time elapsed fromc sending theNEWESTIMATE message toc receiving theACK message fromq is at most

TONE ; (e) the time elapsed fromq sending theACK message toq receiving theDECIDE message fromc is at

35

mostTOA (see Figure 2(b)).

Since there are now two algorithms, the following convention is used to reduce possible confusion when

referring to runs of an algorithm: the runs of algorithmA are always referred to explicitly as “runs of algorithm

A”, while the runs of the abortable consensus algorithm in Figure 1 are simply referred to as “runs”.

To study the probability of a successful round, one needs to assume that a correct majority of processes

(processes that form a majority and are correct) have proposed so that there are enough processes participating

in the algorithm to make progress. The following definition is used to address the behaviors of the propose

actions.

Definition 7 A proposal pattern Pdescribes when a process proposes in a run. Formally, proposal patternP

is a function fromΠ to [0,∞). For each processp, P (p) denotes the time at which processp proposes in this

proposal pattern.

The following lemma is the key element to the entire analysis, because it masks many complicated behav-

iors, such as process crashes, message losses and message delays that could occur in a successful round, and

reduces all different possible cases of successful rounds into a simple and tractable type of benchmark runs.

Lemma 15 Let r be a round number in{1, 2, . . . , N}. Let F be a failure pattern in which a majority of

processes are correct and the coordinator of roundr is also correct. Given a timet, let P be a proposal

pattern in which a correct majority of processes inF as well as the coordinator of roundr have proposed

by timet. Let Σ be the set of all runs with failure patternF and proposal patternP such that (a) the first

process that enters roundr does so after timet, and (b) none of the rounds1, 2, . . . , r− 1 are successful. The

probability that a run inΣ has a successful roundr is at leastβ.

Proof. For any runσ ∈ Σ, since there are correct processes in runσ, by Proposition 13, it is easy to see that

some process enters roundr in σ. First, letΣ1 be the set of runs inΣ such that all processes entering roundr

crash right away before sending out any messages. By definition, the roundr of every run inΣ1 is successful.

Let Σ2 = Σ \ Σ1. Every run inΣ2 has some process entering roundr and sending out at least one message

in roundr. Since the probability of a run inΣ1 having a successful roundr is 1, to show the lemma it is

sufficient to show that the probability of a run inΣ2 having a successful roundr is at leastβ.

Let σ be a run inΣ2. Let p be the first process that sends a roundr message inσ. and lett0 be the time at

which p sends the first roundr message. By the assumption of the lemma, at least a majority of processes as

36

well as the coordinator of roundr already propose by timet0, which means that these processes participate

in the abortable consensus algorithm and are able to response immediately to messages received. Letσt0 be

the partial run ofσ from time0 to timet0. There could be other runs inΣ2 that have the same partial runσt0 .

The rest of this proof is to show the following claim:

Claim 1: Given any partial runσt0 , the probability that the full run extended fromσt0 has a successful

roundr is at leastβ.

Once the above claim is proven, the lemma follows immediately since the claim holds for any partial run

σt0 .

Let Σ3 ⊆ Σ2 be the set of full runs extended fromσt0 . Let c be the coordinator of roundr. Consider the

following two cases ofσt0 .

• Case 1: p 6= c, i.e. p is a participant of roundr. The proof is carried out in three steps. The first

step is to show that given any benchmark runρ of algorithmA with c as the coordinator andp as the

starting process, one can construct a full runσ extended fromσt0 by following a set of rules that match

message delays of certain messages inσ to the delays of messages inρ. Let Σ4 ⊆ Σ3 be the set of full

runs constructed following these rules. The second step is to show that the probability that a full run

extended fromσt0 is one of the constructed runs using the rules given in step 1 is at leastβ(p, c) ≥ β,

i.e., Pr(σ ∈ Σ4 | σ ∈ Σ3) ≥ β(p, c). The third and final step is to show that every run inΣ4 has a

successful roundr.

Let ρ be a benchmark run of algorithmA with c as the coordinator andp as the starting process. Note

that inρ, (a) coordinatorc sends out three sets of messages to all participants: firstn − 1 NEWROUND

messages, nextn − 1 NEWESTIMATE messages, and finallyn − 1 DECIDE messages; (b) participant

p sends three messages toc: first theSKIP message, then theESTIMATE message, and finally theACK

messages; (c) any other participantq sends two messages toc: first theESTIMATE message and then

theACK message. Based on the delay behaviors of these messages, thefull run σ ∈ Σ4 extended from

σt0 is constructed according to the following rules.

Rule 1 If p sends aSKIP message of roundr to c, set the delay of this message to the delay of theSKIP

message inρ.

Rule 2 For any message of roundr sent fromq1 to q2 with the tag beingNEWROUND, NEWESTIMATE,

37

ESTIMATE, or ACK, set the delay of the message to be the delay of the message from q1 to q2 with

the corresponding tag inρ. Note that one ofq1 andq2 must be the coordinatorc, and thus every

such roundr message has a corresponding message inρ.

Rule 3 If c already decides before entering roundr, then whenc receives the first roundr message,c

sendsDECIDE messages to all processes inΠ \ {c} (line 48). For each processq ∈ Π \ {c}, set

the delay of the aboveDECIDE message fromc to q to be the delay of theNEWROUND message

from c to q in ρ.

Rule 4 Ifc decides after sending outNEWROUNDmessages of roundr but before entering PhaseNEWES-

TIMATE , thenc sendsDECIDE messages to all processes inΠ\{c} right after making the decision

(line 23). For each processq ∈ Π \ {c}, set the delay of the aboveDECIDE message fromc to q to

be the delay of theNEWESTIMATE message fromc to q in ρ.

Rule 5 If c decides in PhaseNEWESTIMATE after sending outNEWESTIMATE messages of roundr, then

c sendsDECIDE messages to all processes inΠ \{c} right after making the decision (line 23). For

each processq ∈ Π \ {c}, set the delay of the aboveDECIDE message fromc to q to be the delay

of theDECIDE message fromc to q in ρ.

Rule 6 If a processq different fromc receives aNEWROUND message of roundr from c, andq already

decides by this time,q sends aDECIDE message toc (line 50). Set the delay of thisDECIDE

message to the delay of theESTIMATE message fromq to c in ρ.

Rule 7 If a processq different fromc receives aNEWESTIMATE message of roundr from c, andq already

decides by this time,q sends aDECIDE message toc (line 50). Set the delay of thisDECIDE

message to the delay of theACK message fromq to c in ρ.

Rule 8 Any other message sent in the extension ofσt0 can assume any message delay and message loss

behavior allowed by the probabilistic distribution.

The above construction is possible because each message transmitted through the same linkℓ has the

same message loss probabilitypL(ℓ) and the same message delayD(ℓ), and message delay and loss

behaviors are independent. The above construction rules define the setΣ4.

Claim 2: The probability that a full run extended fromσt0 is one of the constructed runs following the

38

above rules is at leastβ(p, c), i.e.,Pr(σ ∈ Σ4 | σ ∈ Σ3) ≥ β(p, c).

The construction rules only restrict the delays of certain messages in the full runσ. Moreover, it is easy

to verify that following the above rules, every message in the benchmark runρ is used at most once

to set the delay of some message in the full runσ. Some messages may not be used at all because a

process may already crash or already decide. Thus, the probability that the full runσ is constructed

following the above rules is the probability that those restricted messages follow the delay behaviors of

the corresponding messages in some benchmark run of algorithm A. The latter probability is no less

than the probability that the message delays in a run of algorithm A result in a benchmark run, which

is β(p, c). Therefore, Claim 2 holds.

Claim 3: Every run inΣ4 has a successful roundr.

Suppose, for a contradiction, that there exists a full runσ ∈ Σ4 in which the roundr is not successful.

From the structure of the abortable consensus algorithm, itis easy to see that there must exist some

process inσ that enters roundr but times out in one of the phases in roundr. Let q be the first

process that times out in one of the phases in roundr. Thus beforeq times out in roundr, there is no

other process that already enters a higher round. The following case study, however, shows that it is

impossible forq to time out in any of the phases.

– Case 1.1:q times out in PhaseSKIP (line 30).Let t1 be the time at whichq sends aSKIP message

of roundr to c in the full runσ (line 26). Sincep is the first process that sends aSKIP message of

roundr to c andp does so at timet0, it follows that t1 ≥ t0. Let the delay of theSKIP message

from p to c bed1. By Rule 1,d1 is also the delay of theSKIP message fromp to c in ρ. Since

c is correct,c receives theSKIP message fromp at time t0 + d1 in σ. If c enters roundr and

sends theNEWROUND messages of roundr to all participants (line 6), lett2 be the time at whichc

sends theNEWROUND messages. Ifc already decides before entering roundr, let t2 be the time at

whichc receives the first roundr message and sends back theDECIDE messages to all participants

(line 48). In either case,t2 ≤ t0 + d1 (becausec already proposes by timet0 so c will respond

to theSKIP message received fromp at timet0 + d1 immediately, ifc has not already sent out a

NEWROUND or a DECIDE message). Let the delay of the messagec sends toq at timet2 bed2.

By Rule 2 or Rule 3,d2 is also the delay of theNEWROUND message fromc to q in ρ. Thus, by

39

condition (a) in the definition of the benchmark run,d1 + d2 ≤ TOS . In runσ, the time elapsed

from q sending theSKIP message to the time when theNEWROUND or DECIDE message fromc

arrives atq is t2 + d2 − t1 ≤ t0 + d1 + d2 − t0 = d1 + d2 ≤ TOS . Therefore,q has not timed out

yet in PhaseSKIP whenq receives theNEWROUND or DECIDE message fromc. In either case,q

leaves PhaseSKIP without timing out in the phase — a contradiction.

– Case 1.2:q times out in PhaseNEWROUND (line 9). Thusq = c. Let t1 be the time at whichc

sends outNEWROUND messages to all participants inσ (line 6). Thust1 ≥ t0. Since there are

a correct majority of processes in the runσ, at least⌊n/2⌋ participants are correct. Moreover,

by the assumption of the lemma, at least⌊n/2⌋ correct participants has proposed by timet0,

so they will response to round-r messages fromc immediately. Thus, there must exist a correct

participantq′ such thatq′ has proposed by timet0 butc does not receive anESTIMATE or aDECIDE

message fromq′ by the timet1+TONR; otherwise,c would have either decided or gathered⌊n/2⌋

ESTIMATE messages and moved to PhaseNEWESTIMATE. Let d1 be the delay of theNEWROUND

message of roundr from c to q′. By Rule 2,d1 is also the delay of theNEWROUND message from

c to q′ in ρ. By condition (b) in the definition of the benchmark run,d1 ≤ TONR. So by time

t1 + d1 at whichq′ receivesNEWROUND message of roundr from c, c has not timed out yet.

Sincec is the first process to time out in roundr, q′ cannot have passed PhaseSKIP of roundr by

time t1 + d1. Thus, there are only two possibilities forq′: eitherq′ has decided by timet1 + d1,

in which caseq′ replies aDECIDE message toc (line 50) at timet1 + d1, or q′ enters the Phase

ESTIMATE of roundr and sends anESTIMATE message toc (line 33) at timet1 + d1. Let d2 be

the delay of the messageq′ sends toc at timet1 + d1. By Rule 2 or Rule 6,d2 is also the delay

of the ESTIMATE message fromq′ to c in ρ. By condition (b) in the definition of the benchmark

run, d1 + d2 ≤ TONR. Therefore,c receives aESTIMATE or DECIDE message fromq′ at time

t1 + d1 + d2 ≤ t1 + TONR — contradicting to the definition ofq′.

– Case 1.3:q times out in PhaseESTIMATE (line 36). Let t1 be the time at whichq sends the

ESTIMATE message of roundr to c in σ (line 33). According to the abortable consensus algorithm,

it is easy to see that ifq sends theESTIMATE message of roundr to c at timet1, thenq receives

the NEWROUND message of roundr from c at timet1. Let d1 be the delay of theNEWROUND

40

message fromc to q, soc sends theNEWROUND messages at timet1 − d1. By Rule 2,d1 is also

the delay of theNEWROUND message fromc to q in ρ. Let d2 be the delay of theNEWESTIMATE

message fromc to q in ρ. By condition (c) in the definition of the benchmark run, and the fact that

in ρ, c sends theNEWESTIMATE messages exactlyTONR time units after sending theNEWROUND

messages,TONR +d2 −d1 ≤ TOE . This implies thatc cannot time out in PhaseNEWROUND or

receive a higher round message and skip the rest of roundr, because if so,c or some other process

would have timed out in roundr before the timet1 − d1 + TONR ≤ t1 + TOE — contradicting

to the assumption thatq is the first to time out in roundr andq times out at timet1 +TOE . Thus,

c either collects enoughESTIMATE messages and moves to PhaseNEWESTIMATE, or c decides

in PhaseNEWROUND. In the first case, lett2 be the time at whichc sends theNEWESTIMATE

messages of roundr to the participants (line 16); in the second case, lett2 be the time at which

c sends theDECIDE messages to the participants right after the decision (line23). In either case,

t2 ≤ t1 − d1 + TONR. By Rule 2 or 4, the delay of the message thatc sends toq at timet2 is

d2. Thus, the time elapsed fromq sending theESTIMATE message to the time at which either a

NEWESTIMATE or aDECIDE message arrives atq is t2 + d2 − t1 ≤ t1 − d1 + TONR + d2 − t1 ≤

TOE . That is,q receives aNEWESTIMATE message of roundr or a DECIDE message fromc

beforeq times out in PhaseESTIMATE. In either case,q leaves PhaseESTIMATE without timing

out in the phase — a contradiction.

– Case 1.4:q times out in PhaseNEWESTIMATE (line 19).The argument in this case is very similar

to that of case 1.2, with Rule 2 and 7 and condition (d) in the definition of the benchmark run

being used in this case.

– Case 1.5:q times out in PhaseACK (line 43). The argument in this case is very similar to that of

Case 1.3, with Rule 5 and condition (e) in the definition of thebenchmark run being used in this

case.

• Case 2:p = c, i.e. p is the coordinator of roundr. The proof in this case is very similar to that of Case

1. In this case, one can pick any participantp′ and base the argument on the benchmark runs withc as

the coordinator andp′ as the starting process. When constructing the full runσ from a benchmark run

ρ, the construction rules of Case 1 still apply, with the exception that Rule 1 can be omitted and Rule 3

41

is void sincec enters roundr. Claims similar to Claims 2 and 3 of Case 1 can also be shown with the

same structure of the argument.

Claim 1 is proven after both Case 1 and 2 are shown, and thus thelemma holds. 2

It is easy to see that given a reasonable set of timeout values, the benchmark probabilityβ should be greater

than zero. The rest of this section will show that a non-zeroβ is sufficient to achieveα-Abortability, for any

arbitrarily smallα.

The following lemma applies Lemma 15 and shows that after a majority of processes propose and as-

suming that no process has aborted by that time, the probability of consecutive unsuccessful rounds declines

exponentially.

Lemma 16 Let F be a failure pattern in which a majority of processes are correct. For some givenj, k ∈

{1, 2, 3, . . .}, let N = j + kn. Given a timet, let P be a proposal pattern in which a correct majority of

processes inF have proposed by timet. LetΣ be the set of runs with failure patternF and proposal pattern

P . If in any of the runs inΣ, no process has entered a round higher thanj by timet, then the probability that

a run inΣ has none of the rounds1, 2, . . . , j + kn being successful is at most(1 − β)k⌈(n+1)/2⌉.

Proof. For i ∈ {1, 2, . . . , j + kn}, let pi be the probability that a run inΣ does not have a successful round

i given that the run does not have successful rounds1, 2, . . . , i − 1. Thus, the probability that a run inΣ has

none of the rounds1, 2, . . . , j + kn being successful is
∏j+kn

i=1 pi.

Let Γ be the set of the correct processes that have proposed by timet according to the failure patternF and

the proposal patternP . Thus|Γ| ≥ ⌈(n + 1)/2⌉. For a roundi > j, if the coordinator of roundi is in Γ,

then Lemma 15 is applicable to roundi, which meanspi ≤ 1 − β. Since the coordinator rotates through all

processes, for anyn consecutive rounds, at least⌈(n + 1)/2⌉ rounds are such that the coordinators of these

rounds are inΓ. Thus, for at leastk⌈(n + 1)/2⌉ rounds from roundj + 1 to roundj + kn, the corresponding

probabilitypi is at most1 − β. Therefore,
∏j+kn

i=1 pi ≤ (1 − β)k⌈(n+1)/2⌉. 2

Definition 5 Suppose that a majority of processes are correct. Letproposal delayV be a random variable

representing the elapsed time from the time when the first process proposes to the time by which a correct

majority of processes (processes that form a majority and are correct) have proposed. The probability thatV

is within a given valuet, denoted byPr(V ≤ t), tends to1 whent tends to∞.

42

Proposition 17 Supposep is the first process that enters a roundr, and it enters roundr at time t. If

a process enters roundr + 1, then it must enter roundr + 1 no sooner thant + Tm, whereTm =

min(TONR,TONE ,TOS ,TOE ,TOA).

Proof. Let q be the first process that enters roundr + 1. It must enter roundr + 1 by timing out in one of the

phases in roundr. Thus it must have spent at least one entire phase in roundr. Therefore, the time at which

q enters roundr + 1 must be at leastTm time units after the first process enters roundr. 2

Lemma 18 (α-Abortability) Suppose the benchmark probabilityβ > 0. Let N = j + kn for somej, k ∈

{1, 2, 3, . . .}. There existsα = γ + (1 − γ)(1 − β)k⌈(n+1)/2⌉ < 1 whereγ = Pr(V > jTm), V is the

proposal delay, andTm = min(TONR,TONE ,TOS ,TOE ,TOA), such that for any failure pattern in

which a majority of processes are correct, the probability that there exists some process that aborts in a run

with the failure pattern is at mostα.

Proof. Let F be a failure pattern in which a majority of processes are correct. LetΣ be the set of runs with

failure patternF . LetΣ1 ⊆ Σ be the set of runs in which some process aborts. ThenPr(σ ∈ Σ1|σ ∈ Σ) is the

probability that some process aborts in the failure patternF . Let Σ2 ⊆ Σ be the set of runs such that within

jTm time units after the first process proposes, a majority of processes have proposed. By the definition of

proposal delayV , Pr(σ ∈ Σ2|σ ∈ Σ) = Pr(V ≤ jTm) = 1 − γ. Thus, one has

Pr(σ ∈ Σ1|σ ∈ Σ) = Pr(σ ∈ Σ1 ∩ Σ2|σ ∈ Σ) + Pr(σ ∈ Σ1 ∩ (Σ \ Σ2)|σ ∈ Σ)

≤ Pr(σ ∈ Σ1|σ ∈ Σ2) · Pr(σ ∈ Σ2|σ ∈ Σ) + Pr(σ ∈ Σ \ Σ2|σ ∈ Σ)

= Pr(σ ∈ Σ1|σ ∈ Σ2)(1 − γ) + γ.

The termPr(σ ∈ Σ1|σ ∈ Σ2) denotes the probability that some process aborts given thata correct majority

of processes have proposed withinjTm time units after the first process proposes. By Lemma 2, a process

aborting in a run is equivalent to no rounds from1 to j + kn of the run being successful. LetP be a

proposal pattern in which a correct majority of processes inF have proposed withinjTm time units after

the first process proposes, and lett0 be the time at which the first process proposes inP . Let ΣP
2 be the

set of runs inΣ2 with proposal patternP . By Proposition 17, each round lasts at leastTm time units. Thus

no process has entered a round higher thanj by time t0 + jTm. Therefore, Lemma 16 is applicable to

ΣP
2 , which means the probability that some process aborts inΣP

2 is at most(1 − β)k⌈(n+1)/2⌉. Since the

43

above holds for every proposal patternP in which a correct majority of processes inF have proposed within

jTm time units after the first process proposes, the probabilitythat some process aborts inΣ2 is at most

(1 − β)k⌈(n+1)/2⌉, i.e. Pr(σ ∈ Σ1|σ ∈ Σ2) ≤ (1 − β)k⌈(n+1)/2⌉. This completes the proof to the inequality

Pr(σ ∈ Σ1|σ ∈ Σ) ≤ γ + (1 − γ)(1 − β)k⌈(n+1)/2⌉. Finally, whenβ > 0, it is obvious that the above

probability is less than1. Therefore the lemma holds. 2

Theorem 1 The algorithm given in Figure 1 satisfies Uniform Validity, Uniform Agreement, and Termination

properties. Furthermore, if the benchmark probabilityβ is nonzero, the algorithm with the abort round

thresholdN = j+kn, j, k ∈ {1, 2, 3, . . .}, satisfiesα-Abortability withα = γ+(1−γ)(1−β)k⌈(n+1)/2⌉ < 1,

whereγ = Pr(V > jTm), V is the proposal delay, andTm = min(TONR,TONE ,TOS ,TOE ,TOA).

Therefore, the algorithm implements abortable uniform consensus withα tending to zero asN tends to infinity.

Proof. The theorem follows from Lemmata 4, 5, 7, and 18. 2

B Proof of Theorem 2

Definition 6 Given a timeout valueTO , for any linkℓ, letλ(ℓ) be the probability that a message sent on link

ℓ is delivered withinTO time units after it is sent. Letdelivery probabilityλ of a network for the timeoutTO

be the minimum ofλ(ℓ)’s for all links in the network.

Lemma 3 Suppose the delivery probability of a network for a given timeoutTO is λ > 0. Set the timeout

parameters of the abortable consensus algorithm as follows: TONR = TONE = TOS = 2TO , and

TOE = TOA = 3TO . Then the benchmark probabilityβ has a lower boundλ5n−4.

Proof. First, when all processes are correct, every run of algorithm A always has5n − 4 messages: oneSKIP

message, andn − 1 NEWROUND, ESTIMATE, NEWESTIMATE, ACK, andDECIDE messages each.

Claim: If each of the above5n − 4 message is delivered withinTO time units, then the resulting run is a

benchmark run.

In fact, the total delay of theSKIP message and any one of theNEWROUND message is at most2TO =

TOS . Since the coordinatorc always sends theNEWROUND messages immediately when it receives theSKIP

message fromp, condition (a) in the definition of the benchmark run is satisfied. For any processq, the total

delay of theNEWROUND message toq and theESTIMATE message fromq to c is at most2TO = TONR, and

q sends theESTIMATE message immediately when it receives theNEWROUND message, so condition (b) of

44

the benchmark run is satisfied. For any processq, q cannot send out theESTIMATE message earlier than the

timec sends out theNEWROUNDmessages, andq receives theNEWESTIMATE message no later thanTO time

units afterc sends theNEWESTIMATE messages. Sincec sends theNEWESTIMATE messages exactlyTONR

time units after it sends outNEWROUNDmessages, the time elapsed fromq sending theESTIMATE message to

q receiving theNEWESTIMATE message is at mostTONR +TO = 3TO = TOE time units. Thus, condition

(c) of the benchmark run is satisfied. Condition (d) and (e) can be similarly verified. Therefore, the claim

holds.

The claim implies that the benchmark probabilityβ is bounded from below by the probability that each

of the 5n − 4 messages is delivered withinTO time units. By the definition of delivery probabilityλ, the

probability that each of the5n − 4 messages is delivered withinTO time units is at leastλ5n−4. The lemma

holds. 2

Theorem 2 Suppose the delivery probability of a network for a given timeoutTO is λ > 0. For any value

α ∈ (0, 1), supposej ∈ {1, 2, 3, . . .} is such thatPr(V > 2jTO) ≤ α/2, whereV is the proposal delay.

Then the algorithm in Figure 1 satisfiesα-Abortability for the givenα if the parameters of the algorithm are

set up as follows:TONR = TONE = TOS = 2TO , TOE = TOA = 3TO , andN = j + kn where

k =

⌈

log(α/2)

⌈(n + 1)/2⌉ log(1 − λ5n−4)

⌉

.

Proof. By Theorem 1, the algorithm withN = j + kn has an upper bound on the abort probability as

α0 = γ + (1 − γ)(1 − β)k⌈(n+1)/2⌉. With the timeout settings as given in the theorem statement, Tm =

min(TONR,TONE ,TOS ,TOE ,TOA) = 2TO , and thusγ = Pr(V > jTm) = Pr(V > 2jTO) ≤ α/2.

From thek given in the theorem statement,

k ≥
log(α/2)

⌈(n + 1)/2⌉ log(1 − λ5n−4)
,

and thus,

(1 − λ5n−4)k⌈(n+1)/2⌉ ≤ α/2

By Lemma 3,β ≥ λ5n−4. Thus,

α0 = γ + (1 − γ)(1 − β)k⌈(n+1)/2⌉

α0 ≤ γ + (1 − β)k⌈(n+1)/2⌉

45

α0 ≤ α/2 + (1 − λ5n−4)k⌈(n+1)/2⌉

≤ α/2 + α/2 = α.

Therefore, the algorithm satisfies theα-Abortability for the givenα. 2

C Proof of Theorem 3

This appendix proves the correctness of the PRBCast algorithm given in Figure 3.

Theorem 3 The algorithm in Figure 3 implements probabilistic reliable broadcast in the probabilistic net-

work model, with the probability thresholdsγv = 1 andγa = 1 − pk
L, wherepL is the maximum of message

loss probabilitypL(ℓ)’s for all communication linksℓ in the system, andk is the maximum number of repeated

send actions on a message as described in the algorithm.

Proof. Integrity property is obviously satisfied. Validity is alsosatisfied withγv = 1, since a correct process

p always PR-deliversm if p PR-broadcastsm. For the Agreement property, ifp and q are correct andp

PR-deliversm, thenp must have PR-sentm to q. Sincep andq are correct andp will sendm to q k times

if not receivingq’s acknowledgment, the probability thatq does not receivem at all is the probability that all

thesek messages are lost, which ispL(ℓ)k whereℓ is the link fromp to q. So the probability thatq receives

m from p is at least1 − pL(ℓ)k ≥ 1 − pk
L. If q receivesm, thenq PR-receivesm and thusq PR-deliversm.

Therefore, the threshold for Agreementγa = 1 − pk
L. 2

D Proof of Theorem 4

This appendix proves the correctness of the PABCast algorithm given in Figure 4.

Lemma 19 (Integrity) Every message is delivered at most once at each process, and only if it was previously

broadcast.

Proof. Trivial. 2

Lemma 20 If a correct processp executes the abortable consensus for an infinite number of times and has

an infinite number of decide outputs from these executions ofthe abortable consensus, then a majority of

processes must be correct.

Proof. Suppose, for a contradiction, that a majority of processes are faulty in the system. LetQ be the set of

faulty processes. Lett be the time when the last faulty process crashes. At least oneexecution of the abortable

46

consensus is started after timet in which p decides a value.6 Supposep decidesv0 in this consensus. Letr0

denote this run of consensus.

Consider a different runr1 in which all processes inQ are correct and all other processes crashes at time

0, and all processes inQ proposev1 6= v0. SinceQ has a majority of processes, by theα-Abortability of the

abortable consensus, the probability that some process inQ aborts is at mostα < 1. Thus, there exists a run

in which all processes inQ decides, and by the Uniform Validity property, the decisionvalue has to bev1.

Now consider runr2 combined from runr0 and r1, in which all processes are correct, but initially, all

messages sent between processes inQ andΠ \ Q are delayed for a long time. Processes inQ behave just

like in run r1, in which case they decide on valuev1. Processes not inQ behave like in runr0, in which

casep decides on valuev0 6= v1. With the probabilistic network model, this run may occur even though the

probability is small. However, in this run, correct processes decide on different values, violating Agreement

property of the abortable consensus. 2

Let γR
a andγR

v be the probability thresholds for the Probabilistic Agreement and Probabilistic Validity

properties of PRBCast, respectively.

Lemma 21 (Probabilistic Agreement) There exists aγA
a = γR

a (1−α) > 0 such that for any failure pattern

in which processesp andq are correct, ifp PA-delivers messagem, then the probability thatq PA-deliversm

is at leastγA
a .

Proof. If p PA-deliversm, thenp PR-deliversm. By the Probabilistic Agreement of PRBCast,q PR-delivers

m with probability at leastγR
a . Consider the case whereq PR-deliversm but does not PA-deliverm. Thenq

executes an infinite number of the abortable consensus withm in its proposals. In none of these executions

q has the abort output, because otherwise,q would PA-deliver its own proposal, which includesm. Thus,

q decides an infinite number of times. By Lemma 20, a majority ofprocesses are correct in the run. Letk

be the index of the abortable consensus execution at the end of which p PA-deliversm. In this execution, at

least one ofp andq aborts, because otherwise they would decide on the same value, which implies thatq will

PA-deliverm. Thus there is a correct process that aborts in thek-th abortable consensus execution when a

majority of processes are correct. By theα-Abortability of the abortable consensus, the probabilitythat this

occurs is at mostα. Therefore, the probability thatq PA-deliversm given thatp PA-deliversm is at least

6Implicitly we require that there be only a finite number of consensus executions during any finite time period. This is a very
realistic requirement for all practical purposes.

47

γR
a (1 − α). 2

Lemma 22 If a correct processp PR-delivers messagem, then the probability thatp PA-deliversm is at

leastγR
a (1 − α).

Proof. If p PR-deliversm, thenm ∈ R deliveredp. Supposep does not PA-deliverm. We need to analyze

the probability of this case. In this case,m 6∈ A deliveredp. There exists a numberK0 such that for all

k ≥ K0, processp calls propose(k,A undeliveredp) with m ∈ A undeliveredp. By the Termination

property of abortable consensus, each propose call returnswith either decide or abort. None of the calls could

return abort, because otherwisep would PA-deliver all messages inA undeliveredp, includingm. So for all

k ≥ K0, p has decided in thek-th abortable consensus run, but none of the decision valuesin these consensus

runs is its own proposal. By Lemma 20, a majority of processesare correct in this run.

Since a faulty process can only make a finite number of proposals, there exists a numberK1 such that for

all k ≥ K1, all the decision values are from correct processes. Thus, there is at least one correct process

q 6= p such that an infinite number of decision values for consensusroundsk ≥ K1 are proposed byq. None

of these proposals include messagem. There are two possible cases here. First,q never PR-deliversm. By

the Probabilistic Agreement property of PRBCast, this casecould happen with probability at most1 − γR
a .

Second,q PR-deliversm. In this case,q must PA-deliverm at some point. Otherwise, after someK2, every

proposal made byq will include m, contradicting to the fact thatp decides an infinite number of times on

q’s proposals that do not includem. Let k be the index of the abortable consensus execution at the end of

which q PA-deliversm. In this execution, eitherq aborts the consensus run and decides on its local proposal,

or q decides a value includingm but p aborts the consensus run. Since we know that a majority of processes

are correct, by theα-Abortability of the abortable consensus, the probabilitythat eitherp or q aborts thek-th

abortable consensus execution is at mostα.

Therefore, the probability thatp PA-deliversm is the probability that neither of the above two cases occur,

which is at leastγR
a (1 − α). 2

Lemma 23 (Probabilistic Validity) There exists anγA
v = γR

v γR
a (1−α) > 0 such that for any failure pattern

in which processp is correct, ifp PA-broadcasts messagem, then the probability thatp PA-deliversm is at

leastγA
v .

48

Proof. If p PA-broadcastsm, thenp PR-broadcastsm. By the Probabilistic Validity of PRBCast,p PR-

deliversm with probability at leastγR
v . By Lemma 22, ifp PR-deliversm, thenp PA-deliversm with

probability at leastγR
a (1 − α). Therefore, the probability thatp PA-deliversm given thatp PA-broadcastsm

is at leastγR
v γR

a (1 − α). 2

Lemma 24 (Probabilistic Order) Suppose a majority of processes are correct. There exists aγA
o = (1 −

α)2 > 0 such that for any failure pattern in which processesp andq are correct, ifp andq both PA-deliverm

andm′, then the probability that they do so in the same order is at leastγA
o .

Proof. Supposep PA-deliversm andm′ at the end of thekp-th and thek′
p-th abortable consensus executions,

andq PA-deliversm andm′ at the end of thekq-th and thek′
q-th abortable consensus executions. Letk =

min(kp, kq) andk′ = min(k′
p, k

′
q). Sop andq have not PA-deliveredm before thek-th consensus, and they

have not PA-deliveredm′ before thek′-th consensus. If bothp andq decide in both thek-th and thek′-th

of the abortable consensus executions, by the Agreement property of the abortable consensus, they decide on

the same set of valuesmsgSetk andmsgSetk′

, respectively, withm ∈ msgSetk andm′ ∈ msgSetk′

. Sincep

andq have not PA-deliveredm andm′ before thek-th and thek′-th consensus, respectively, they PA-deliver

m andm′ in the same order. The probability of this case is at least theprobability that no process aborts in

thek-th or thek′-th consensus. Since a majority of processes are correct, bytheα-Abortability of abortable

consensus, the probability thatp andq PA-deliverm andm′ in the same order is at least(1 − α)2. 2

Theorem 4 Suppose the probabilistic reliable broadcast algorithm used in Figure 4 hasγR
a andγR

v as the

thresholds for the Probabilistic Agreement and Probabilistic Validity properties, respectively. Suppose the

abortable consensus algorithm used in Figure 4 hasα as the threshold for theα-Abortability property. The

PABCast algorithm given in Figure 4 satisfies the Integrity property, the Probabilistic Agreement property with

thresholdγA
a = γR

a (1−α), the Probabilistic Validity property with thresholdγA
v = γR

v γR
a (1−α). If a majority

of processes are correct, it also satisfies the Probabilistic Order property with thresholdγA
o = (1 − α)2.

Therefore, the algorithm implements probabilistic atomicbroadcast when a majority of processes are correct.

Proof. Direct from Lemmata 19, 21, 23, and 24. 2

49

