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Abstract

This paper introduces the specification of abortable caseim message passing systems with prob-
abilistic message delivery behaviors to address the tfhetween progress and agreement in asyn-
chronous consensus. The paper presents an abortable sasisggorithm, proves its correctness, and
shows how to configure the parameters of the algorithm tefgatie explicit requirement on the tradeoff
between progress and requirement. The probabilistic aisaly the algorithm is novel in that it covers
all possible failures and asynchrony allowed by the systesdehrather than some simple case studies
as conducted by most previous researches. The paper fsttbess how to apply abortable consensus
to probabilistic atomic broadcast, and shows that aba@tabhsensus provides stronger properties than
probabilistic atomic broadcast.
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1 Introduction

1.1 Motivation — Tradeoff between Progress and Agreement

Asynchronous consensigs a well-recognized problem in the area of distributed cotimg. In an asyn-
chronous message-passing distributed system subjecdeg® and/or communication failures, asynchronous
consensus specifies a problem in which each process propasdse and all processes eventually reach a
unanimous decision on one of the proposed values. Asynohsononsensus is typically defined by the
following properties (e.g. [7]):

e Uniform Validity. If a process decidesthen some process previously proposed

e AgreementCorrect processes (i.e., processes that do not crash)tdizcide different values.

e Termination Eventually all correct processes decide.



Asynchronous consensus is at the core of many importamibditgd agreement problems, such as atomic
broadcast, leader election, atomic commit, group memhigerahd mutual exclusion. Despite its importance,
the well-knownFLP impossibility resulf15] shows that consensus is not solvable in a purely asgnclus
system with the presence of even one possible process dmasircumvent this impossibility result, several
techniques, such as partial synchrony model [11, 12],raitletector model [7, 6], and randomization [4, 9],
were introduced.

Although asynchronous consensus has been extensiveligditutere are still some issues left without
satisfactory answers. This paper addresses an importare eoncerning the tradeoff between progress and
agreement in asynchronous consensus, as explained below.

The above consensus specification requires that all cgprecesses must always agree on the decision
value. To satisfy this requirement of absolute agreemduat,consensus algorithms may have to sacrifice
the progress of the consensus in certain situations. licpkt, when a process cannot communicate with
majority of the processes, the process cannot make a decifhis is because in an asynchronous system,
the process cannot reliably detect if other processes laded or not, and to avoid disagreement, the process
has to wait until the communication with a majority of proses resume. In the extreme case where majority
of processes fail, all remaining processes have to be bioickkefinitely. No progress can be made and the
system comes to a hdlt Therefore, unreliable communication channels and profgisses may delay or
even halt the progress of consensus, because consenswesatpsolute agreement and does not tolerate any
disagreement at all.

While many fault-tolerant systems, such as state-macleipkcation [23], do require absolute agreement,
there are cases in which a small degree of disagreemeneralidd, and thus sacrificing progress over agree-
ment may not always be the best solution. For example, csnseran be used to implement atomic broad-
cast [7], which guarantees the agreement on the total oglefi message deliveries. However, absolute
agreement on the total order may not be required. For instdrelber and Pedone [14] studied probabilistic
atomic broadcast, in which it is enough to guarantee messatpeing with a high probability. In this case,
consensus should be able to take advantage of the tolerbacarall probability of disagreement to achieve

faster progress.

LA majority of processes being correct is not required in abyonous systems augmented with a perfect failure det@mra
strong failure detecta$ [7]. However,? andS requires that at least some correct process never be sedpettich is essentially a
synchrony requirement. So these classes of failure degeate not of the concern here.



In general, the current asynchronous consensus spedificatid its implementations emphasize unilat-
erally on agreement over progress. As an alternative, tgiepproposes a more flexible version of asyn-
chronous consensus that makes the tradeoff between magrdsagreement explicit and adjustable, so that
applications can control this tradeoff according to th@ieafic needs. This new version of consensus in-
cludes the existing consensus as a special case, and thas ttein conflicting with the existing studies on

consensus, it is a significant extension that provides mexéfe control to the applications.

1.2 Main Results of the Paper

1.2.1 Introducing Abortable Consensus

To address the tradeoff between progress and agreemearpaibér introduces trabort action to consensus.
Intuitively, when a process cannot communicate with majaf processes, the process can choose to abort
the consensus instead of deciding a value, in order to avaitihg indefinitely for messages from the majority
processes. This version of the consensus is calbedtable consensus

The abort action is a compromise to the absolute agreemenneénsus. Instead of requiring every correct
process deciding on the same value, abortable consensus allat some of the correct processes abort the
consensus while others decide. However, for those prosdsaedo make decisions, they still have to agree on
the same value. Therefore, by allowing the abort action asrgocomise to the absolute agreement, abortable
consensus provides chances for a process to terminate tfzdineto be blocked indefinitely, meanwhile it still
maintains agreement for other processes that do decide.

To control the degree of potential disagreement allowechbyabort action, aabort probability threshold
« is introduced in the specification to limit the probabilityat a process aborts in a consensus run. The
thresholda can vary from0 to any value less thah Whenc is zero, abortable consensus does not tolerate
any abort actions, and it is reduced to the traditional dssomous consensus. Whenincreases, abortable
consensus is more tolerant to the abort action, and it withiteate the consensus faster. Therefore, by
varying the abort probability threshotgl abortable consensus covers a spectrum of consensus ciewifs
that provide different degrees of tradeoff between pragyeesl agreement. One end point of the spectrum is
the traditional consensus that does not compromise agraernall for progress.

The benefit that abortable consensus provides to applisat®its flexibility. If an application demands

absolute agreement, then it can use abortable consensus wit), which is equivalent to traditional consen-



sus. If an application can tolerate a certain degree of deesmgent, it can specify this degree of disagreement
as the abort probability thresholgl and use the abortable consensus to achieve faster progrbisspa-
per provides a specific example of using abortable consansoglement probabilistic atomic broadcast to

achieve an appropriate and provable tradeoff between @gse@nd agreement.

1.2.2 Abortable Consensus Algorithm and Its Analysis

The basic idea of using the abort action to terminate consdiaster is simple. Practical systems may already
use some sort of abort actions, such as killing the threadstocked by consensus, to allow the systems to
make progress. The challenging part, however, is to gusgahte abort probability threshadd This requires

a careful design and analysis of the consensus algorithm.

The paper presents an abortable consensus algorithm bagskd mtating coordinator algorithm of [7].
The algorithm has several modifications in order to faddités probabilistic analysis. The analysis of the
algorithm is based on the probabilistic network model (EL9, 3, 8]), where message delays and message
losses follow some probability distribution.

The analysis proves that the algorithm implements abatabiform consensus (a stronger version of
abortable consensus), and derives the abort probabiligstield« from the parameters of the algorithm
and the system. Moreover, it shows how to configure the pasmef the algorithm to satisfy the abort
probability thresholdy for any givena. This enables applications to specify the abort probgttititesholdo
and configure the consensus algorithm accordingly baseldeinneeds.

The probabilistic analysis of the algorithm is novel in tliatovers all possible scenarios that are allowed
by the system model, including process crashes, messaaygsdeaiessage losses, asynchronous progress of
consensus rounds, and even the asynchronous behavior pfojpese actions. Moreover, the performance
metrics are both asynchronous round-based and time-b@keds in contrast to most of the existing perfor-
mance analyses on asynchronous consensus (e.g. [22, 19),Which are only asynchronous round-based,
and are only conducted for several simple cases (such asnehprocess crashes, or when all crashes have
already occurred and the system becomes stable).

An analysis that considers all possible scenarios is imaporin practice because it provides insights to
the performance of a fault-tolerant system under all cirstiaimces instead of just a few good-case scenarios.

Despite the complexity of the analysis, the final resultsipoed in the paper are in simple closed forms that



can be used directly. To the best of the author's knowledgeanalysis in this paper is the first all-inclusive
analysis to any version of asynchronous consensus thateosall different kinds of failures and asynchrony

allowed by the underlying system model.

1.2.3 Application to Probabilistic Atomic Broadcast

In asynchronous systems, consensus is shown to be equit@alatomic broadcasf7]. Atomic broadcast
specifies that all correct processes deliver the same seesdages in the same order [16]. Felber and Pe-
done [14] proposegrobabilistic atomic broadcast (PABCastyhich does not require absolute agreement on
either the set of delivered messages or the order of messéigeriges. Instead, agreement on message deliv-
eries and orders only needs to satisfy certain probabfiitgsholds. Naturally, PABCast bears similarities to
abortable consensus.

The current paper studies the relationship between abbertabsensus and PABCast, shows how to imple-
ment PABCast using abortable consensus, and derives thahplity thresholds of PABCast from the abort
probability thresholdx of abortable consensus. The paper further shows that életansensus provides
more properties than those specified by PABCast. More migciabortable consensus is equivalent to an
enhanced version of PABCast. This demonstrates the abjliigaand the strength of abortable consensus
with respect to other distributed problems.

To summarize, the current paper has the following contidnst (@) it introduces the abortable consen-
sus specification in the message passing model to addressdesff between progress and agreement in
asynchronous consensus; (b) it presents an algorithmntipdéments abortable consensus, and shows how to
configure the algorithm to satisfy an application’s requieait on the abort probability threshalgl (c) it is the
first to provide an all-inclusive and quantitative perfomoa analysis to an asynchronous consensus algorithm
that considers all possible failure and asynchrony scesaliowed by the system model, yet the analytical
results are kept in simple closed forms; and (d) it shows lwimplement probabilistic atomic broadcast us-
ing abortable consensus, with provable probabilistic gii@es derived from the abort probability threshold

«, and it shows that abortable consensus is equivalent toleanead version of PABCast.



1.3 Related Work

To the best of the author’'s knowledge, there is no previoukwat introduces the abort action to the spec-
ification of consensus, or other asynchronous agreemehtepng, to address the tradeoff between progress
and agreement. The abort action in atomic commit [20] isedifiit, and the difference is further discussed in
Section 3.

In terms of the performance analysis to the consensus #igwj Keidar and Rajsbaum summarized the
results in this area in their PODC’02 tutorial [18]. Howevas the title of the tutorial suggested, most
of the existing studies only analyzed the performance obensus algorithms when there are no faults in
the system. This limits the applicability of a performancmlgsis to a fault-tolerant system. Keidar and
Rajsbaum also pointed out the weakness of the asynchroonousl-based performance metric used in the
existing performance analyses, and they posed an openiaquest what is a better performance metric.
This paper enriches the current research on performandgsasdo consensus by providing an analysis that
considers all failure and asynchrony scenarios allowedbysystem model. It also provides a time-based
performance metric as a better alternative to the asynolround-based metric.

In terms of the probabilistic network models and probatidianalysis, they have been used earlier in clock
synchronization protocols [10, 3], and later for severhkodistributed problems(e.qg. [2, 5, 13, 14, 8, 21, 24]).
The studies in [5, 13, 14] mainly focus on the scalabilityessf the reliable broadcast or multicast, and apply
probabilistic analysis on the gossip-style protocols. antipular, the work in [14] studies PABCast, which
can be implemented by abortable consensus as shown in tes. pehe study on PABCast in [14] differs
from the one in the current paper in several aspects: a) thieiwfil4] focuses on scalability, while this paper
focuses on the tradeoff between progress and agreementpiiplble consensus can be used to implement
more properties than those of PABCast; and c) for the préibatiiresholds of PABCast, [14] provides either
recursive formulas or simulation results, while this pgm@vides analytical results in closed forms.

The work in [8] studies failure detectors, one of the fundatakecomponents in fault-tolerant distributed
systems, and its quality-of-service guarantees undertimpilistic network model. The current paper can be
viewed as a continuation of the research in [8]: it uses timlai model and it addresses another fundamental
problem in fault-tolerant distributed systems, namelysaarsus, in the probabilistic network model.

The study in [24] also applies a probabilistic analysis tamasensus algorithm. Its probabilistic analysis



differs from the analysis in the current paper in that a) ikesasignificant simplifying assumptions in the
analysis, such as all processes start every consensus abihe same time, and all crashes occur at the
boundary between two successive rounds; and b) the aradlsgigult also seems to be more complicated than

the results presented in this paper.

The rest of the paper is organized as follows. Section 2 defime system model. Section 3 presents the
specification of abortable consensus, and discusses soitgimiplications. Section 4 provides the algo-
rithm that implements abortable uniform consensus. Se&iproves the correctness of the algorithm by a
probabilistic analysis, shows how to configure the parareettthe algorithm to satisfy the abort probability
thresholdx for any givena, and analyzes the performance of the algorithm under allioistances. Section 6
studies the relationship between abortable consensus/B@d3t. Finally, Section 7 concludes the paper

and discusses a few future directions.

2 System Model

2.1 Probabilistic Network Model

The system considered in the paper consists of a sepobcessed] = {1,2,...,n}. Processes communi-
cate with each other by message passing through a commionic&twork, which is modeled as a complete
graph with bidirectional links connecting every pair of pegses. Message passing is asynchronous, that is,
messages may be delayed without bound or may be lost. Tdtdeeitjuantitative analysis, the model as-
sumes that message delay and message loss behaviors fettain @robabilistic distribution, but the actual
probabilistic distribution may not be completely known. tdapecifically, each link connecting a process
p to a procesg is characterized by the following two parametersnigssage loss probabiliyz, (¢), which
is the probability that a message fraimo ¢ is dropped by link¢, and 2)message delay(¢), which is a
random variable with rang@, co) representing the delay from the time a message is septdyhe time it
is received byy, under the condition that the message is not dropped byrkd€horrowing the same termi-
nologies from [8]). The network is not necessarily symneetitiat is, the probabilistic behavior of each link
may be different. The message delay and loss behaviorsfefatit messages are independent.

The model ignores the execution delays of local actiondudficg the send and receive actions, of the

processes. This assumption could be justified as followthellocal execution delays were considered, one



would have to model the atomic steps of local executions #isag¢he delay behaviors between atomic steps.
Such a model could easily get very complicated and very diffto analyze. Moreover, in our distributed
environment, a process cannot distinguish whether angitoeess is slow in executing local steps or the
message from that process is slow. Thus, to some extent édgealition delays can be viewed as part of
message delays. Therefore, explicitly modeling local etien delays introduces much complexity without
providing more insight, so the paper chooses to ignore tted kExecution delays.

Time is treated as continuous with range fréno oco. Each process has access to a local clock, which can
be used by the process to time out on messages or other adtioced clocks may be skewed from the real
time and from each other, but for simplicity, they are assaitode drift-free, i.e., local clocks run at the same
speed as the real time. In practice, clock drift rate is uguary small (in the order 010~ [10]). Thus,
clock drift is negligible for the duration of one run of conses, which is at the level of seconds, or at most

minutes.
2.2 Process Failure Model

Processes may fail by crashing, i.e., stopping all its astincluding sending and receiving messages. For
simplicity, the model does not include process recoveryrdcess iorrectif it never crashes; a process is
faultyif it is not correct. Afailure patternF’ describes when a faulty process crashes in each run of carsen
Formally, failure patterr¥ is a function fromlI to [0, co|. For each procegs F'(p) denotes the time at which
proces9 crashes in this failure pattern; #(p) = oo, it means does not crash, i.ep,is correct.

Process crashes may occur at any time, even between twacatimedocal actions on a process, although
the model ignores the execution delays of local actions fiahaical purposes. The model does not assume
that process crashes can be predicted either determatiigtic probabilistically. That is, the state of the sys-
tem at any given time has no information whatsoever (detastiially or probabilistically) on the occurrence
of future crashes. Moreover, the delay and loss behavidieahessages that a process sends are independent
of whether and when the process crashes.

There are several reasons why process crashes are not thpdelabilistically as message delays and
losses. First, conceptually it distinguishes the netwakaviors from process crash behaviors, and empha-
sizes that the quantitative results of the paper are basdbeoquantitative characteristics of the network,

but not on any quantitative assumptions on process craSeeand, technically if the model does not make



assumptions on process crashes, the results obtainedramgest in that they are also correct when pro-
cess crashes do follow certain probabilistic distributiomhird, typically in practice, it is relatively easier to

estimate and predict message delay and loss behaviorsotieatirhate or predict process crashes.
3 Specification of Abortable Consensus

In abortable consensugach process proposes a value and eventually every cprometss either decides a

value or aborts. Abortable consensus is required to satisf§ollowing properties:

e Uniform Validity. If a process decidesthen some process previously proposed
e AgreementCorrect processes do not decide different values.
e Termination Eventually all correct processes either decide or abort.

e «-Abortability: There exists anr < 1 such that for any failure pattern in which a majority of preses
are correct, the probability that there exists some protegsaborts in a run with the failure pattern is

at mosta.

The« in the a-Abortability property is called thabort probability threshold The property allows that some
process aborts the consensus while other processes dewidelimits the probability of this situation by
when a majority of processes are correct. The Agreemenepson the other hand, requires that among the
correct processes that decide, they still decide on the salne. A stronger version of abortable consensus,

calledabortable uniform consensufuirther requires:
e Uniform AgreementProcesses (correct and faulty) do not decide differentesl

Several important points about the above specificationuatedr explained below.
Restricting abort probability only when a majority of proce sses are correct. In the probabilistic net-
work model with a non-zero message loss probability or unded message delays, it is still necessary to
have a majority of processes being correct to implementdspnous consensus, as stated by the following

proposition.

Proposition 1 In the probabilistic network model, if the message loss aliliiy is non-zero, or message
delays have no upper bound, itis necessary that a majoripyaniesses be correct to implement asynchronous

consensus as defined in Section 1.1.



A standard partition argument similar to the one given indai be applied here to prove this proposition,
because even though message passing follows certain isti@blistribution, it is still allowed a positive
probability that arbitrary messages are lost or delayedifoarbitrarily long time, which is the key to estab-
lishing the partition argument.

The above proposition implies that the abort action is etqubevhen a majority of processes are faulty,
because no algorithm can guarantee that all correct preseieside in this case. Therefore, the abort action
should only be restricted when a majority of processes arec as stated in the-Abortability property.
Restricting the abort probability per failure pattern. Propertya-Abortability restricts the probability of
the abort action ta for eachfailure pattern where a majority of processes are correne @ay suggest an
alternative that restricts the abort probability for alldee patterns together, such as “the overall probability
that a process aborts in some run where a majority of prosessecorrect is limited by”. This, however,
requires that process crashes be probabilistic in ordanmtotke abort probabilities among all possible failure
patterns. As explained in Section 2.2, analytical reshlis &re not based on the probabilistic assumption on
process crashes can also be applied to the situations wiwresp crashes do follow probabilistic distribu-
tions. Therefore, tha-Abortability specified for each failure pattern is a strengroperty than the alternative
specified over all failure patterns.

Traditional asynchronous consensus and abortable consams When the abort probability threshotdis
zero, no abort action is allowed when a majority of processescorrect. Of course, the specification still
allows abort actions when a majority of processes are faltgwever, in asynchronous systems (even if
message delays are probabilistic), processes canndilyetiatermine if a process has crashed or not. So no
algorithm can take advantage of a specification that allsbort actions when a majority of processes are
faulty. Therefore, for all practical purposes, wheiis zero, abortable consensus is reduced to the traditional
asynchronous consensus as defined in Section 1.1.

Distinction between abortable consensus and atomic commiEven though both abortable consensus and
atomic commit [20] have agreement properties and an abtdnagon-blocking atomic commit also has a
termination property parallel to the termination propetyabortable consensus), they are different in several
aspects. First, in atomic commit, abort could be one of thetivalues, while in abortable consensus, abort

is not part of the input; it is only an output option intended &xceptional cases. Second, atomic commit
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requires that if all processes are correct and they all m®pommit, they all eventually commit, and if any
process proposes abort, all processes have to abort; whilbdrtable consensus, there is no requirement
on when processes have to decide or when they have to alduet,tbin the probabilistic restriction on the
abort action. Finally, atomic commit requires that the ala@tion always be agreed among all processes,
while abortable consensus does not require agreement aabtreaction. Therefore, abortable consensus

and atomic commit are two different problems.
4 Algorithm for Abortable Uniform Consensus

The algorithm given in Figure 1 implements abortable umif@onsensus. It is based on the rotating coor-
dinator algorithm with failure detecto®S [7]. In particular, the algorithm is also a round-based tinta
coordinator algorithm with the same mechanism for lockimgdecision value and a similar messaging struc-
tures as the one in [7]. However, several modifications amene#ther to allow progress even when a majority
of processes are faulty, or to simplify the probabilisti@lgsis. These modifications include: (a) allowing
the coordinator to skip the current round after waiting agle@mough time without successfully gathering
a majority of responses; (b) allowing a process to abort &ftecuting too many rounds; (c) replacing the
failure detector with a timeout mechanism; (d) replacirgggbparate reliable broadcast for decision propaga-
tion with a simple built-in propagation scheme; and (e)wiim every process to skip the current round and
immediately join the higher round when receiving a messdgehigher round:

In the algorithm, the processes proceed in asynchronousisolEach round hascaordinatorexchanging
messages with other processes (cafladicipantg in several phases in order to reach a final decision. The
coordinator executes two phasesNEWROUND andNEWESTIMATE — in each round. In each of these two
phases, the coordinator sends some messages to all artsipollects a certain type of response messages
from |n/2] participants, and executes some local actions accorditigetoesponses. Note that the coordi-
nator always collects the response from itself automdgiceb together with theén /2| responses from the
participants, the coordinator always collects a majorftyesponses before it proceeds.

Each participant executes two or three phasesk+P, ESTIMATE andACK — in a round. In each of these
phases, each participant sends a message to the coordimatisrfor a response from the coordinator, and

then executes some local actions.

2Modifications (d) and (e) are similar to the schemes used]in [1

11



For every process:
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upon propose(vp):

(rp, estimatey, tsp) — (1,vp,0) {initialization}
if r, > NN then output abort; return {entry point of each rounjd
cp — (rp modn) +1 {¢p is the coordinator of round, }
if p = ¢, then {p is the coordinator of the current roung}

send(rp,, NEWROUND) to all processes il \ {p} {begin PhaselEWROUND}

wait until one of the following conditions is true, and execute theamstifollowing the condition:

(1) [received(ry, estimateq, tsq, ESTIMATE) from |n/2| participants=- continue online 12

(2) [waiting time is longer tharT"O yg time units]—- r, « r, + 1; gotoline 3

(3) [received messade, . . .) with r > r,] = r, < r; gotoline 3

(4) [received messagestimate, DECIDE)] = estimate, < estimate; output decide(estimate); gotoline 23
t — largesttsq in {tsq | p received(rp, estimateq, tsq, ESTIMATE) OF ¢ = p}
estimate, «— select onesstimate, from

{estimateq | p received(rp, estimateq, t, ESTIMATE)Or (g = pandts, =t) }
tsp «— Tp {end Phas&/EWROUND}
send(ry, estimate,,, NEWESTIMATE) to all processes ifil \ {p} {begin Phas®/EWESTIMATE}
wait until one of the following conditions is true, and execute theamstifollowing the condition:

(1) [received(r,, ACK) from |n/2| participants}=- continue online 22

(2) [waiting time is longer thatT’O yg time units]|=—- r, < r, + 1; gotoline 3

(3) [received messagde, . . .) with > r,] = r, < r; gotoline 3

(4) [received messagestimate, DECIDE)] = estimate, < estimate; output decide(estimate); gotoline 23

output decide(estimate,) {end Phase EWESTIMATE}
send(estimate,, DECIDE) to all processes ifil \ {p}; return {broadcast the decision to all processes
else {p is a participant of the current roung }
if not yet receivedr,, NEWROUND) from ¢,, then
send(rp, SKIP) to ¢p {begin Phasekir}

wait until one of the following conditions is true, and execute theaastifollowing the condition:
(1) [received(r,, NEWROUND) from ¢,] = continue online 33
(2) [received(r;, estimate.,, NEWESTIMATE) from ¢,] = gotoline 39
(3) [waiting time is longer thar?’O 5 time units]—> r, < r, + 1; gotoline 3
(4) [received messade, . . .) withr > r,] = r, < r; gotoline 3
(5) [received messadestimate, DECIDE)] = output decide(estimate); return {end PhasekIr}
send(rp, estimatep, tsp, ESTIMATE) tO ¢p {begin PhasesTIMATE}
wait until one of the following conditions is true, and execute theamstifollowing the condition:
(1) [received(ry, estimate.,, NEWESTIMATE) from ¢,] = continue online 39
(2) [waiting time is longer thar¥"O g time units]|—- r, <« r, + 1; gotoline 3
(3) [received messagde, . . .) with r > r,] = r, < r; gotoline 3
(4) [received messagestimate, DECIDE)] = output decide(estimate); return
(estimatey, tsp) < (estimate.,, rp) {end PhasesSTIMATE}
send(rp, ACK) to ¢, {begin Phaseck}
wait until one of the following conditions is true, and execute theamstifollowing the condition:
(1) [received messagestimate, DECIDE)] = output decide(estimate); return
(2) [waiting time is longer tharT’O 4 time units]—- r, « r, + 1; gotoline 3

(3) [received messade, . . .) with r > r,] = r, < r; gotoline 3 {end Phaseck }
upon receivem from ¢: {passive propagation of the decision vglue
if m = (r,...) and decide(estimate) has occurrethen
if p= (r mod n) 4+ 1 then {p is the coordinator of round}
send(estimate, DECIDE) to all processes ifil \ {p} {broadcast the decision to all processes
else
send(estimate, DECIDE) t0 ¢ {send the decision to the coordinatoof roundr}

Figure 1: Algorithm solving abortable uniform consensus
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In the ideal cases when all the timings are right, all proegskecide at the end of a round, which is the
successful round as defined later in Section 5.1. Figured&icts a typical successful round, as explained
below. First, some procegsenters the round and sends& P message to the coordinaterf the round
(line 26, phaseskiP). When the coordinatat receives theskiP message, it jumps to this round immediately,
and sends REWROUND message to every participant (line 6, phaigs&vROUND). When a participant receives
the NEWROUND message from, it enters this round (if not yet so), and sendsamIMATE message with its
current estimate of the decision value to the coordinaitine 33, phas&sTIMATE). When the coordinator
¢ has receivedESTIMATE messages from at least /2| participants, it selects an estimate value with the
latest timestamp, stores the new estimate value and itstimg (lines 12-15, phaséeewROUND), and
then it sends alEWESTIMATE message with the newly selected value to every particidar {6, phase
NEWESTIMATE). When a participant receives tReWESTIMATE message from, it updates its local estimate
and the timestamp (line 39, phassTIMATE), and then sends axtk message back to(line 40, phaseck).
When the coordinator has received theck messages from at leagt /2| participants, it decides on its
estimate value (line 22, phas&WESTIMATE), and sends out theECIDE message with the decision value to
every participant before it returns from the consensus lina 23). Finally, when every participant receives
theDECIDE message from, it decides on the value attached with the message and sé¢tom the consensus
run (line 42, phasack).

In less-than-ideal cases, message delays and losses aedgfailures may prevent processes from reach-
ing a decision in a round. The algorithm uses several schamasid blocking the progress of the processes
in such cases. First, each of the five phases has a timeouatsaatiprocess is blocked in one phase forever.
If a process times out in a phase, it directly goes to the raxta (lines 9, 19, 30, 36, and 43). Second, if a
process receives a higher round message, it jumps to thad icunediately (lines 10, 20, 31, 37, and 44).
This guarantees that processes respond to the latest roesghges immediately, which is important to the
probabilistic analysis. Third, if a process receiveBECIDE message, it decides immediately on the value
contained in the message (lines 11, 21, 32, 38, and 42). ffribeess is the coordinator of the round, it further
broadcasts the decision value to all participants beforetitrns (line 23). Fourth, after a process decides,
it still helps other processes by sending o&CIDE messages whenever it receives a DEEGIDE message

(lines 45-50). This guarantees that a temporarily discctedeprocess can still decide after it reconnects

13



< TOnr < TOng TOnNRr TONE

le
~

AN e YWLTNC SR
W/ L AAN W VAL AN
Y Vi N Vil Vi

(a) a succesful round of the abortable consensus algorithm (b) a benchmark run of algorithmd

=
hS]

Q

Q

m1—SKIP messagein o —NEWROUND messagein3—ESTIMATE messagein4—NEWESTIMATE messagein 5 —ACK messageing—DECIDE message;

Figure 2: Comparison between a successful round of thea#lertonsensus algorithm and a benchmark run
of algorithm A

with the rest of the processes that already decided. Fjriiflyprocesses advances to a round higher than a
thresholdN, it gives up on reaching a decision and aborts (line 3). Tharantees the termination of the
CONSensus run.

The algorithm has six parameters: thigort round thresholdV, which is the number of the highest round
that any process may enter before the process chooses tpatibfive timeout values'O yg, TO ng, TOg,
TOg, and TO 4, one for each of the five phases. A few obvious improvementisg@lgorithm are ignored

to make the algorithm more understandable and easier ftysima

5 Analysis of the Algorithm

5.1 Correctness of the Algorithm

To prove the correctness of the algorithm, one needs to shatitie algorithm satisfies Uniform Validity,
Termination, Uniform Agreement, ang-Abortability. This section focuses on tleAbortability property
and provides the main idea on how to analyze the abort priityathireshold of the algorithm. The complete

proof of correctness is included in Appendix A.

Definition 1 Let asuccessful rounah a run of the algorithm be the round such that there existsesprocess

entering the round, and all processes entering the rourfteeitiecide or crash in this round.
The following lemma shows that some process aborting theesmus is directly related to the lack of a

successful round.

Lemma 2 Suppose there is at least one process that enters rouiitiere is a process that aborts in a run of

the algorithm if and only if there is no successful round ia thn.
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For the purpose of analysis, consider the following fictifi@lgorithmA that resembles one round of the
abortable consensus algorithm.
Definition 2 Let ¢ be a process called the coordinator, and other processegalied participants. Lep
be one of the participants. Define algorithmwith ¢ as the coordinator angh as the starting process as
follows. The algorithm starts with procepssending askiP message to the coordinater Whenc receives
theskip message from, ¢ sends alEWROUND message to every participant. When a participant receives t
NEWROUND message from, it sends areSTIMATE message to. Afterc sends out the EWROUND messages
for TO ng time units,c sends alEWESTIMATE message to every participant. When a participant receives t
NEWESTIMATE message from, it sends arnCK message to. Afterc sends out theEWESTIMATE messages

for TO g time units,c sends aDECIDE message to every participant.

Definition 3 Let abenchmark rurof algorithm A be a run in which all processes are correct, and it satisfies
the following conditions for every participagt (a) the time elapsed from sending theskiP message tq
receiving theNEWROUND message from is at mostTOg; (b) the time elapsed from sending theNew-
ROUND message te receiving theeSTIMATE message from is at mostTO yg; () the time elapsed from
sending theeSTIMATE message tq receiving theNEWESTIMATE message from is at mostTO g; (d) the
time elapsed frona sending theNEWESTIMATE message te receiving theack message frong is at most
TOng; (e) the time elapsed fromsending theack message tq receiving theDECIDE message fromis at

mostTO 4 (see Figure 2(b)).

A benchmark run resembles a clean successful round of thahl® consensus algorithm, with the fol-
lowing important difference: in a benchmark run, the cooatibr always waits until the end of the timeout to
send a new type of messages, while in a successful round ebtbrtable consensus algorithm, the coordi-
nator sends a new type of messages to all participants asasdbreceives the expected messages from half
of the participants (see Figure 2(a) for a comparison). e point is used to establish a key result in the
analysis ofa-Abortability, which shows the relationship in probalyilbetween the successful rounds of the
abortable consensus algorithm and the benchmark runs afghdthm A, as explained below.

Definition 4 Consider the runs of algorithr in which all processes are correct, apds the starting process
andc # p is the coordinator. Leti(p, c) be the probability that among these runs a run of algoritdns a
benchmark run. Since the network may not be symmetrigi(fhe:)’s may be different with different pairs of

p andc. Letbenchmark probabilitys be the minimum among all(p, ¢)’s.
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The major technical analysis is to establish the result(tloaighly speaking) the probability of any round
being successful when a majority of processes as well asoibrelioator of the round are correct is at least
the benchmark probability (Lemma 15 in Appendix A). This is the key to the entire anaysiecause it
masks many complicated behaviors, such as process crasbssage losses and message delays that could
occur in a successful round, and reduces all different plessases of successful rounds into a simple and
tractable type of benchmark runs. Itis easy to see that giveasonable set of timeout values, the benchmark
probability 5 should be greater than zero. Then as the number of roundsses, the probability of no round
being successful, which is the same as the probability thraesprocess aborts in the run, should decrease
exponentially fast.

To complete the analysis, one also has to consider the asynchf the propose actions of the processes.
At one extreme, if all processes propose at the same timenggsis is relatively simple, but it is an unreal-
istic synchrony assumption. At the opposite extreme, ifghg no restriction whatsoever on when a process
proposes, the abortable consensus becomes impossilgle tisépropose actions on a majority of processes
can be delayed for an arbitrarily long time such that a mtgpai processes that proposed early always abort,
even though all processes are correct and eventually pgofjoamake the proposal asynchrony tractable, the

probabilistic restriction is applied to the delay in the poee actions.

Definition 5 Suppose that a majority of processes are correct. dreposal delay be a random variable
representing the elapsed time from the time when the firstego proposes to the time by which a correct
majority of processes (processes that form a majority amdcarrect) have proposed. The probability that

is within a given value, denoted byr(V < ¢), tends tol whent tends toso.

The above probabilistic restriction on the propose actismeasonable, since when a consensus algorithm
is used as a component to solve other distributed probldragpropose actions on all processes are usually
coordinated in some fashion. For example, the algorithni7JntHat implements atomic broadcast with a
consensus algorithm uses a reliable broadcast algorithtodadinate the propose actions of the consensus
run, and thus the proposal del&ycan be derived from the analysis to the reliable broadcgstighm in this

case.

3If, when a process receives a consensus message beforgdspsp it can immediately propose its own value and start its
consensus run, then the analysis does not need to consaasyhchrony of the propose actions, and the proposal delthei
analytical results can be omitted. This, however, only iggpo the situations where the processes are already gianih already
know their proposals and the propose actions are not tiégidey the application.
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The following theorem summarizes the result of the analgsibshows that the algorithm given is correct.

Theorem 1 The algorithm given in Figure 1 satisfies Uniform Validitynitbrm Agreement, and Termination
properties. Furthermore, if the benchmark probabililyis nonzero, the algorithm with the abort round
thresholdN = j+kn, j, k € {1,2,3,...}, satisfiesy-Abortability witha = v+ (1—~)(1—3)k(»+D/2] < 1,
wherey = Pr(V > jT,,), V is the proposal delay, and@},,, = min(7Oxngr, TOng, TOg, TOR, TO 4).

Therefore, the algorithm implements abortable uniformsesrsus witlw tending to zero adv tends to infinity.

The a-Abortability given in the above theorem can be interpretsdollows. The abort probability thresh-
old is divided into two parts: a) the probability that someqass aborts before a correct majority of processes
have proposed, and b) the probability that some process$sadifter a correct majority of processes have pro-
posed. For a)y is an upper bound on this probability, and the number of initial rounds needed to achieve
the boundy. For b), first,(1 —~) is the probability that no process aborts when a correct ityajaf processes
have proposed; second, — 5)kf(n+1)/21 is an upper bound on the probability that some process abibets
a correct majority of processes have proposed,/and the number of remaining rounds needed to achieve
this bound. Therefore, adding the two upper bounds, we raacipper bound on the overall abort probability

with N = j + kn rounds.
5.2 Configure Algorithm Parameters Givena

This section shows how to calculate the parameters of thegitign to satisfy any givem. This is important
in practice because it allows applications to configure therdhm according to their tolerance to the abort

actions. The complete analysis is included in Appendix B.

Definition 6 Given a timeout valug'O, for any link?, let \(¢) be the probability that a message sent on link
£ is delivered withinT'O time units after it is sent. Letelivery probability\ of a network for the timeoul’O

be the minimum ok(¢)’s for all links in the network.

With the probabilistic network model defined in Section 22 ean write\ = min,((1—pz(¢))-Pr(D(¥¢) <
TO)). Note that, in practice, one does not need to kpe\i¢) and the entire distribution db(¢) to getA(¢).
In fact, some simple experiments will give very good estesain\(¢) for a link ¢. Given an appropriatd'O,
A should always be greater than zero.

The following lemma gives a lower bound on the benchmark gibdiby 3 using the delivery probability.
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Lemma 3 Suppose the delivery probability of a network for a giveretot 770 is A > 0. Set the timeout
parameters of the abortable consensus algorithm as folloW® yg = TOyg = TOg = 2TO, and

TOg = TO 4 = 3TO. Then the benchmark probabilityhas a lower bound®”—4,

Note that all timeout settings are not the same. This refibetgact that the responses N@WROUND,
NEWESTIMATE and SKIP messages are immediate, while the responsestaMATE andACK messages are
not — the coordinator needs to wait fpi /2| messages before sending out a response.

The following theorem shows how to configure the parametitisealgorithm to satisfy tha-Abortability

for any givena, when the delivery probability of a network for a certain timeouf'O is known, .

Theorem 2 Suppose the delivery probability of a network for a giveretit 770 is A > 0. For any value
a € (0,1), supposej € {1,2,3,...}is such thatPr(V > 25T0) < «/2, whereV is the proposal delay.
Then the algorithm in Figure 1 satisfiesAbortability for the givenx if the parameters of the algorithm are

setup as followsTOngr = TOng = TOg =2T0O, TOp = TO4 =3TO,andN = j + kn where

_ log(a/2)
k= M(n +1)/2]log(1 — )\5”_4)-‘ '

To illustrate the application of Theorem 2, consider a sex@lample as follows. Suppose that in a network
with 10 processes, the probability that a message is deliverednwifims on any link is at least .99, i.e.,
n = 10, and the delivery probability of the network ¥ = .99 for timeout TO = 10ms. Suppose the
requirement on the-Abortability of the algorithm is that the probability thabme process aborts when a
majority of processes are correct is at most .0001,a.e- .0001. Plugging these numbers into the formula
for calculatingk above, one obtains = 2. That is, after initialj rounds so that a correct majority of processes
propose2n = 20 more rounds are needed for the algorithm to guaranteexthat0001. Since each process
spends at moshax(TOnr + TOng, TOs + TOg + TO 4) = 8TO time units in one round, the algorithm
will terminate at mosR0 * 8 « 10 = 1600ms after the initialj rounds.

In terms of the numbej of the initial rounds needed to ensure that a correct mgjofifprocesses have
proposed, it depends on the context in which the algorithoségl. If all processes propose at the same time,
thenj = 0. If all processes propose withifitime units, then it is enough to set= T/(2T0). If the propose
actions of all processes are coordinated by some otheibdigtd protocols, such as reliable broadcast, then
the distribution of the proposal deldy is likely to be close to some exponential distribution, iniethcase a

moderate valug should be good enough to satidty(V > 25 T0) < «/2.

18



An important result given by Theorem 2 is that the relatigm&fetweeny andk is a log-relationship. That
is, a much stronger requirement anonly requires a small increase into satisfy it. For example, in the
above numerical example, if the requirementoois strengthened fron®001 to .00001, the computed: only
increases from to 3.

Furthermore, when timeoul’O increases, the delivery probability usually increases, and it leads to
smaller values foy andk, i.e. less rounds are needed to achiavAbortability. On the other hand, a0
increases, each round takes more time to complete. Therdfere is a tradeoff between using a longer
timeouts in each round and using more rounds to achieortability. With the result in Theorem 2, it is

possible to compute an optim&lD so that the total time each process spends on one consenssigninimal.

5.3 The Special CaselN = ¢

The algorithm has a special case whé&fe= co. In this case, the algorithm continues running until all
processes decide, and no process ever aborts. Obviouslgbtirt probability threshold: is zero. The
Uniform Validity and Uniform Agreement properties still ldo For the Termination property, Theorem 1
shows that as the number of round tends to infinity, the priihyathat some process has not decided tends
to zero. Thus, whelv = oo, all correct processes eventually decide with probabditg. So the algorithm

with N = oo satisfies the following property:

e Probability-One TerminationFor any failure pattern, with probability one eventuallyarrect pro-

cesses decide.

Technically, the above property is not exactly the same e§émmination property of asynchronous con-
sensus given in Section 1.1, but for all practical purpobes;, do not have essential difference. Therefore, the
algorithm with the special cas€ = oo implements asynchronous consensus (with the Terminatimpepty

replaced by the Probability-One Termination property).

5.4 Performance of the Algorithm

The analysis of the algorithm leads to several performanegics of the algorithm. Suppose the algorithm
uses the settings as given by Theorem 2. First, since eacegwg®pends at mo3T'O time units in one
round, the longest time any process may take in one run ofigfeeitam is8(j + kn) TO, wherej andk are

determined by Theorem 2.
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Second, and more interestingly, is to derive the expectatbeu of rounds and the expected time the algo-
rithm spends before reaching a decision or abort, when aritya@i§ processes are correct. From Lemma 3,
one knows that the probability of a successful round is attld2—4, given that a majority of processes as
well as the coordinator of the round are correct. Lebaect rounddenote a round in which the coordinator
is correct, and daulty rounddenote a round in which the coordinator is faulty. Thus, whenajority of
processes are correct, after the processes pass the jnitiahds such that a correct majority of processes
have proposed, the expected number of correct rounds neeaeaiostl /\>"~*. Suppose there afe< n/2
faulty processes. For everyconsecutive rounds, there afefaulty rounds andr — f correct rounds. Let
fo = f[1/(X>*(n— f))]. So among th& /\>"~* correct rounds, there are at mggtfaulty rounds. There-
fore, the expected number of rounds for any process to caenplee run of the algorithm (after the initial
4 rounds) is at mosf, + 1/A"~4, and the corresponding expected time to complete one ceusenn is
at most8 TO(fo + 1/A%"~%). Using the same numerical example given in Section 5.2 anfl le 4, the
expected number of rounds is at mdsi9, and the expected running time is at mé$ims.

Note that the above analysis only considers that eventtlahe is always a round that is successful, which
meansh is infinity and no process ever aborts. This is the reason Wwhekpected values are only affected
by TO, A, f andn, but is not affected by. With IV being a finite value, no process will go beyond rouvd
so the expected number of rounds for termination should la#lemThis is exactly the tradeoff that abortable
consensus is providing: with some probability of the abotioms, processes may terminate the algorithm
faster. The following is an informal analysis on this traifigoovided by the algorithm.

For simplicity, assume that there are a correct majorityrotesses and they have proposed. Given an
N, suppose that the actual probability that a process may &bap, which must be less than. Let Ry
be the expected number of rounds that the algorithm takesrairiate the consensus, by either reaching a
successful round by roundy or aborting at the end of roun®. Let R, be the special case @ty where
N = oo. Let Ry be the expected number of rounds that the algorithm takesrmainate the consensus,
given the condition that the algorithm reaches a successfuld by roundV. The probability that the above
condition is true is(1 — «y). Let R}, be the expected number afiditional rounds that the algorithm has
to take to reach a successful round after rotdgiven the condition that it does not reach a successful

round by roundN and it continues without ever aborting the consensus. Thbghility that the above
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condition is true isy. Therefore, we have the following equatio;, = (1 — ap) Ry + (N + Rﬁ), and
Ry = (1—ap)Ry + aoN. SinceRy, is the expected number of the additional rounds neededrafied V,

and in each round processes run the same protocol and réggisame condition to have a successful round,
R} is essentially the same &&,..* Thus, we haveRy = (1 — ag) Reo.

The above argument shows that by compromising a certairedegfragreement (allowing an abort prob-
ability «g), abortable consensus does gain in progress, i.e., eamynition of the consensus, by a factor of
(1 — ap); and the higher the abort probability, the faster the teatidm of the consensus.

Finally, message complexity can also be obtained. In eashdr¢except the rounds in which the coordi-
nator already decides), at m@gt. — 1) messages are exchanged in the network, so the total numtbénean
expected number of messages exchanged in one run of thétalg@an be derived using the above results
on the total number and the expected number of rounds.

It is important to point out that the above performance rostaipply to all consensus runs with all possible
failure and asynchrony scenarios allowed by the system Inadle they provide both round-based and time-
based performance results. In contrast, most of the egiséaearches only provide performance analyses
that are asynchronous round-based and are limited to $eimizle cases. Moreover, the above performance
results are simple and can be easily applied in practicgjtégbe apparent complexity to consider all possible

failure and asynchrony scenarios.

6 Application to Probabilistic Atomic Broadcast

6.1 Specification of Probabilistic Atomic Broadcast

In atomic broadcast, each processes broadcasts a numbessages (could be infinite) and messages have
to be delivered on all correct processes in the same ordeshésn in [7], atomic broadcast is equivalent to
consensus in asynchronous systems. Recently, Felber dodd’Hd.4] propose probabilistic atomic broadcast
(PABCast), in which the set and the order of the messagegededi by each process only need to agree with
each other with certain probability thresholds. This sfeation allows them to use gossip-style protocols to
achieve good scalability.

Our paper demonstrates that abortable consensus can b®usgidement PABCast such that the proba-

“The argument omits some details such as the number of crashebe different before or after rourd, which may cause the
R}, and R not being the same. However, the argument is intended asmesand intuitive discussion on the performance gain
with the abort action, so such omissions should be tolerable
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bility thresholds of PABCast can be analytically derivednfrthe abort probability threshold of abortable
consensus. It will further show that abortable consensnguoavide stronger properties than PABCast.
The specification of PABCast is given by the following prdjeey, which are essentially the same as the

ones given in [14].

e Integrity. Every message is delivered at most once at each processninilit was previously broad-

cast.

o Probabilistic AgreementThere exists a, > 0 such that for any failure pattern in which procesges

andgq are correct, ifp delivers message:, then the probability thaj deliversm is at leasty,.

e Probabilistic Validity There exists ay, > 0 such that for any failure pattern in which processs

correct, ifp broadcasts message then the probability that deliversm is at leasty,,.

o Probabilistic Order There exists &, > 0 such that for any failure pattern in which procesgesdg
are correct, ifp andg both deliverm andm/’, then the probability that they do so in the same order is at

leasty,.

In order to implement PABCast using abortable consensathancomponent, probabilistic reliable broad-

cast, is needed. This is introduced in the next section.
6.2 Probabilistic Reliable Broadcast

Probabilistic reliable broadcast (PRBCast) is anotheadicast specification that requires the Integrity, Prob-
abilistic Agreement, and Probabilistic Validity propegtias defined in Section 6.1. So the difference between
PRBCast and PABCast is that PRBCast does not require thalpllisbic Order property.

Figure 3 shows the algorithm that implements PRBCast, baséuk algorithm in [16]. Itis a basic flooding
algorithm with repeated send actions (lines 8—11) to ovapossible message losses. To distinguish the
broadcast and deliver primitives of PRBCast and PABCaskdlprimitives are prefixed with 'PR’ or 'PA
whenever necessary, both in the algorithms and in the agmlys

The algorithm in Figure 3 is meant to show that PRBCast is émgntable in the probabilistic network
model. In practice, the algorithm could be replaced by moa¢able algorithms such as the one given in [5].

The following theorem summarizes the correctness of therigign, and its proof is given in Appendix C.
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For every process:

1 upon PR-broadcast(m):
2 PR-send(m) to all processes excluding
PR-deliver(m)

w

4 upon PR-receive(m) from ¢:

5 if p has not previously executéR-deliver(m) then
6 PR-send(m) to all processes excluding

7 PR-deliver(m)

g8 uponPR-send(m) tog¢:

9 repeatat mostk times

10 sendm to q

11 until received( ACK, m) from ¢

12 upon receivem from q:
13 send(ACK,m) togq
14 if p has not previously executdR-receive(m) then PR-receive(m)

Figure 3: Implementing PRBCast

Theorem 3 The algorithm in Figure 3 implements probabilistic reliabbroadcast in the probabilistic net-
work model, with the probability thresholds = 1 and~v, = 1 — p%, wherep;, is the maximum of message
loss probabilitypy,(¢)’s for all communication linkg in the system, anilis the maximum number of repeated

send actions on a message as described in the algorithm.
6.3 Implementing PABCast with Abortable Consensus

With PRBCast and abortable consensus, one can implemerE&&Bas shown in Figure 4. The algorithm is

based on the atomic broadcast algorithm using consensuy imifh one important addition. The basic idea

of the algorithm is to use PRBCast to deliver the messagd®etprocesses, and then use abortable consensus

to agree on the delivery order. The addition to the origingbdthm is on how to treat the abort actions of

abortable consensus: If a process aborts, it will atonyiailiver the messages proposed by itself (line 15).

This addition is an important factor that affects the arnedytresults on the probability thresholds of PABCast.
The following theorem summarizes the correctness of tharigigm and provides the probability thresholds

it satisfies. The complete analysis is given in Appendix D.

Theorem 4 Suppose the probabilistic reliable broadcast algorithnedisn Figure 4 hasy? and % as the
thresholds for the Probabilistic Agreement and Probabdid/alidity properties, respectively. Suppose the
abortable consensus algorithm used in Figure 4 haas the threshold for the-Abortability property. The

PABCast algorithm given in Figure 4 satisfies the Integritygerty, the Probabilistic Agreement property with
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For every process:

Initialization:
R_delivered «— 0; A_delivered «— 0; k < O;

upon PA-broadcast(m):
PR-broadcast(m) {to PABCast a message, PRBCast it first

upon PR-deliver(m):
R_delivered «— R_delivered U {m}

when R_delivered — A_delivered # (:
k—k+1;
A_undelivered «— R_delivered — A_delivered
propose(k, A_undelivered) {call abortable consensus to decide on the delivery ¢rder
wait until decide(k, msgSet®) or abort
if decided on a valu@, msgSet*) then

A_deliver® «— msgSet® — A_delivered {if decided on a set of messages, they are the ones to be Ridelinex}
else {the k-th consensus is abortgd
A_deliver® — A_undelivered {if aborted, messages in my own proposal are the ones to belReid nex}

PA-deliver(m) for all m € A_deliver® in some deterministic order
A_delivered — A_delivered U A_deliver®

Figure 4: Implementing PABCast using abortable consensus

thresholdy! = v£(1—«), the Probabilistic Validity property with threshotg! = v#~%(1—a). If a majority

of processes are correct, it also satisfies the Probabili€irder property with threshold? = (1 — a)?.

Therefore, the algorithm implements probabilistic atoimioadcast when a majority of processes are correct.

The probability thresholds of PABCast given in the abovetbm have the following intuitive interpreta-

tions:

e For the probability thresholg:* on the Probabilistic Agreement property, for two correcigassep
and ¢ to PA-deliver a message., it is sufficient that both processes PR-deliver(with probability
at leasty), and then both processes decide in a consensus rumwith part of the decision (with

probability at least1 — «)), sov/ is at leasty*(1 — «).5

e For the probability thresholg?* on the Probabilistic Order property, to PA-deliver two naggsm
andm’ in the same order, it is sufficient that the two messages ateopthe decision values of two

consensus runs with no abort actions at all, and thuis at least1 — «)?.

e For the probability thresholg! on the Probabilistic Validity property, the interpretatimay not be as

5This interpretation is still a simplified version, because tise of the abort probability threshaldrequires that a majority of

processes be correct, but the resylt= vZ(1 — «) does not require that. For a complete argument, see thesppbbemmata 20
and 21.
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straightforward. For a correct procgsto PA-deliver a message that it has previously PA-broadcast,
it is sufficient thatp first PR-deliversn (with probability at leasty?), and therp PA-deliversm after

a consensus run. The probability thaPA-deliversm given thatp PR-deliversm is proven to be at
leasty(1 — «), which may not be immediately intuitive (see the proof of lreen22 in Appendix D).

Therefore 4 is at leasty*vR(1 — a).

The theorem shows that abortable consensus can be usediémiemp PABCast. Furthermore, the prob-
ability thresholds of PABCast can be easily derived fromahert probability threshold: of abortable con-

Sensus.

6.4 Enhancement to PABCast

The above section shows that abortable consensus can be irsgdement PABCast. However, the algorithm
in Figure 4 does not fully utilize the potential of the abbteaconsensus specification. In particular, when
a procesy aborts in a consensus run, it merely PA-delivers all messageoposes for this consensus run
(line 15 of Figure 4), as if those messages are actual dacigitues of the consensus run. But procgss
is aware that it does not make a decision, and thus the mesgageposed are likely not the ones that
other processes will decide on in the same consensus rurs, places® could add a flag to each of these
messages indicating that they are potentially out of orfleeseout-of-order flaggprovide further information

to applications about orderings of the messages.

With the out-of-order flags, it is easy to see that the enraatgorithm guarantees that all messages PA-
delivered prior to the first message with the out-of-ordey éla each process must follow the same order. That
is, the first out-of-order flag on each process marks the bamyrioefore which the messages are guaranteed
to be PA-delivered in the same order. Furthermore,dhibortability also guarantees that the probability
that the out-of-order flag is attached to a message is atamaghen a majority of processes are correct. The

above is summarized by the following two properties.

e Pre-Flag Complete OrderFor two correct processgsandq, and for the two sequences of messages
thatp andq deliver before their first out-of-order flags respectivalge sequence is the prefix of the

other sequence.

o Flag Restriction There exists an. < 1 such that for any failure pattern in which a majority of preses
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are correct, the probability that with this failure patténere exists some process that delivers its first

message with an out-of-order flag is at mast

The Pre-Flag Complete Order property also has a uniforniorgra/hich does not requirgandg to be cor-
rect processes. If the abortable consensus satisfiesmrafgreement, then the corresponding implementation
of PABCast satisfies the uniform version of the Pre-Flag QetepOrder property. Moreover, the Pre-Flag
Complete Order is a stronger property than an ordering pipg®at only requires any two pre-flag messages
delivered byp andgq following the same order. For example, it excludes the igsgiof processp delivering
messages, my andmg while ¢ deliversm, andmg, before their first out-of-order flags respectively.

It will be shown in this next section that the above two prdipsrare important in distinguishing the strength
between abortable consensus and PABCast.

Note that ordering is only guaranteed for messages beferéirgt out-of-order flag on a process. After
the first out-of-order flag, even if some messages are nathattwith the out-of-order flags, they may not
be delivered in the same order as in other processes. Foipéxasnppose there are three messagesm,
andmg to be delivered by three runs of abortable consensus. Intterdin, every process except process
p decidesmy, while processp aborts and delivers on its own proposal. So after the first consensus
run, p PA-deliversmo with an out-of-order flag, while others PA-deliver; without the flag. In the second
consensus run, every process includingecidesms, and so they all PA-deliveihg without the flag. In the
third consensus rum proposesn, since it has not deliverech, yet, and all processes decide. Thusp
PA-deliversm without the flag, but others skim; since they already PA-delivered; before. The result is
thatp PA-deliversms beforemy, while other processes PA-deliver; beforemg, and none of the deliveries
is attached with a flag. Therefore, after the first out-ofeorfag, further ordering is not guaranteed by the
absence of the flag, but the flags may still be useful in pragidiints on which messages are likely to be out

of order.

6.5 Relationship between Abortable Consensus and PABCast

The previous sections already shows that abortable camsara be used to implement PABCast, which
implies that abortable consensus is at least as strong a€&#BIs the reverse true? That is, can abortable
consensus be implemented using PABCast, and hence theguavalent of each other?

Before we proceed to study this problem, one important iaseels to be clarified first. With the probabilis-
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tic network model, both abortable consensus and PABCagbeamplemented. When studying the relative
strength between two implementable specifications, onadias careful in choosing the transformation al-
gorithm to show that one can be implemented by the other. elfetlis no restriction on the transformation
algorithm, of course any implementable specification cafttamsformed” from any other specification —
just let the transformation algorithm itself implement gpecification. Such transformations are useless in
studying the relative strength between two specifications.

Therefore, to study the relative strength between two impletable specifications, we need to use re-
stricted transformations that are not strong enough toémpht the specifications by themselves. Studying
restricted transformations in asynchronous distributexdiesns is an interesting research topic by itself, but
the full treatment is out of the scope of this paper. For theopse of understanding the relationship be-
tween abortable consensus and PABCast, this paper usepla sype of restricted transformations sitent
transformations which means that the transformation itself does not iree@gnding or receiving any mes-
sages. Since such transformations cannot be used to impleang meaningful distributed specifications
by themselves, they are good candidates to be used to stadgldtionship between two implementable
specifications.

In fact, the algorithm in Figure 4 is a silent transformatfoom abortable consensus to PABCast, built on
top of the probabilistic network model and PRBCast. Thabésides the PRBCast part, the algorithm only
calls abortable consensus and there is no more messagenggsh@eeded by the algorithm. Therefore, as
long as PRBCast itself is not as strong as PABCast, whichtibamal to believe, the algorithm indeed shows
that abortable consensus provides enough properties terimept PABCast.

For the remaining discussion, we will also use silent tramshtions to study whether PABCast is good
enough to implement abortable consensus.

In the case of consensus and atomic broadcast, implemestimgensus using atomic broadcast is very
simple [11]. To propose a value, a process atomically brastddt. To decide a value, a process picks the
value of the first message that it atomically delivered. Nbég this is a silent transformation, since it only
calls atomic broadcast and no messages are exchanged bgrtsitmation algorithm itself.

This silent transformation is however not good enough foBEAst to implement abortable consensus.

There are two problems that prevent the above simple tramatmn to work. First, in PABCast, the first
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messages delivered by processes are not necessarily tealsano the Probabilistic Agreement and Proba-
bilistic Order properties. So if processes decide on thesir dielivered messages, it may violate the Agreement
property of abortable consensus. But if a process does nitedla value, there is no further information that a

process can deduce in order to abort the consensus withaeed abort probability threshald Therefore,

it is reasonable to suspect that the PABCast specificatigivas in Section 6.1 is not strong enough to solve

abortable consensus.

This problem can be circumvented with the two enhancemengpties provided in Section 6.4. With the
enhancement properties, if a process delivers the firstagessith an out-of-order flag, then it aborts the
consensus; otherwise, it decides on the first message. EREl&y Complete Order guarantees that the first
messages without an out-of-order flag are the same, and thaegses have to decide on the same value —
Agreement property is satisfied. The Flag Restriction pttypguarantees that when a majority of processes
are correct, the probability that a flag appears in the firdsage is at most, and thus the probability that
any process aborts is at mast— «a-Abortability is satisfied.

Even with the two enhancement properties, it is still notugoto implement abortable consensus. The
specification of PABCast allows a positive probability thatorrect process never delivers any message. If a
correct process does not even deliver one message, irtgxtannot decide on any value. The process cannot
abort either, because the PABCast specification has naaitnalicon how long it will wait before aborting the
consensus run to guarantee a small probability of abortifButorrect process neither decides nor aborts, it
violates the Termination property of abortable consensus.

To circumvent this problem, yet another property is needed®PABCast:

e Guaranteed Progressf a correct process broadcasts a message, then everitudglivers some mes-

sage.

With the Guaranteed Progress property, a process hasverdsime message after broadcasting a message,
and thus depending on whether it delivers the first messatfe ami out-of-order flag, the process either
decides or aborts — Termination property is satisfied. lasyeo verify that the PABCast algorithm using
abortable consensus given in Figure 4, together with the@RBimplementation given in Figure 3, satisfies
the Guaranteed Progress property.

Therefore, with the three enhancement properties (Prg-Etanplete Order, Flag Restriction, and Guar-
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anteed Progress), there is a silent transformation thedfsems the enhanced PABCast to abortable consen-
sus. Moreover, all these enhancement properties can tsfiezhtby an implementation of PABCast using
abortable consensus. Hence, abortable consensus isleguieaPABCast enhanced by all three properties
stated above.

It is interesting to note that, with the introduction of thieose three enhancement properties, abortable
consensus can be implemented by PABCast without using timaBitistic Agreement, Probabilistic Validity
or Probabilistic Order properties in the original speciiima of the PABCast. These three properties have
been superseded by the new properties introduced.

The following theorem summarizes the relationship betwadmrtable consensus and PABCast.

Theorem 5 Abortable consensus is equivalent to PABCast enhancedheitiire-Flag Complete Order, Flag
Restriction, and Guaranteed Progress properties. Moreave above three properties together with the

Integrity property of PABCast are enough to implement adtalegt consensus.
7 Concluding Remarks

This paper studies abortable consensus to address theffrhééveen progress and agreement in asyn-
chronous consensus. It also shows the application of didertamnsensus to probabilistic atomic broadcast
and shows their relationships. There are several possilleef research directions based on this research
work. One is to further improve the algorithm and perforneanalysis to provide better performance guar-
antees. More importantly, the tradeoff between progredsagmeement is also an important issue for many
other distributed problems, so the techniques introduoethis paper can potentially be applied to these
problems as well. Finally, this research, together withdhe in [8] and possible others following the same
direction, may provide the basic components and analytaab that could be used to build fault-tolerant

distributed systems with well-studied performance anditydaf-service guarantees.
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Appendix
A Proof of Theorem 1

For completeness, the definitions, lemmata, and the themirethe main text are restated here in the Appen-
dices.

This appendix proves the correctness of the abortable nensealgorithm given in Figure 1. All line
numbers in this appendix refer to the lines in Figure 1.

A processp enters roundr if it finishes executing line 3 withr, = r. Proces® decides in round- if p
enters round and then outputdecide (est) for someest without entering any other round > r. Proces®

aborting in roundr andcrashing in round- are similarly defined.

Lemma 4 (Uniform Validity) If a process decides then some process previously proposed

Proof. Trivial. O

Lemma 5 (Termination) Eventually all correct processes either decide or abort.

Proof. Due to the timeout mechanism in each phase of the algoritlincprrect process stays in any phase
of the algorithm forever, and thus no correct process stagay round of the algorithm forever. Therefore, a
correct process either decides or eventually advancesaioral thigher than the round threshdid in which

case it aborts the consensus run. O

Lemma 6 Suppose that the coordinaterof roundr outputsdecide(est) in line 22. In every round’ > r,

if the coordinatorc’ updatesestimate., to some valuest’ in lines 13-14, therst’ = est.

Proof. The proof is done by induction on the round numbér For the base case’(= r), if ¢ outputs
decide(est) in line 22 of roundr, thenc must have updatedstimate. with value est in lines 13-14 of the
same round. Thus the base case is correct.

Now assume that the lemma holds for #llr < ' < k. Let ¢ be the coordinator of round. The
following shows that the lemma holds for= k.

Suppose that in round, ¢’ updatesestimate., to some valueest’ in lines 13—14. Thenr’ has received
messages of the forifk, x, x, ESTIMATE) from |n /2] participants (according to line 8). L& = {p | ¢ has

received(k, *, x, ESTIMATE) from p} U {¢'}. Sincec executes line 22 in round, ¢ has receivedr, ACK)
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from |n/2]| participants (according to line 18). L& = {p | c has receivedr, AcK) from p} U {c}. Since
|P1| = |Py| = |n/2]| + 1, it follows thatPy N P> # . Letp € Py N Ps.

Fromp € P,, one has that either = ¢ or ¢ has receivedr, ACK) from p. In either casep has updated
its estimate to the round-coordinator’s estimatest (lines 13-14 ifp = c or line 39 ifp # ¢). Therefore, in
roundr, the value ofp’s timestamp variables,, is updated to. Fromp € P;, one has that eithgr= ¢’ or ¢/
has receivedk, *, x, ESTIMATE) from p in roundk. In either casep enters round: > r. Since the value of
ts, Is non-decreasing, whenenters rounds > r, its ¢s, value is at least. Thus, whern’ selects value in
line 12 in roundk, ¢ is at least as large as the valuetof at the time, i.et > r. Itis easy to see that evety,
participated in the selection ¢fin line 12 of roundk hasts, < k. So,r <t < k.

Let g be the process whose estimate vatug is selected by the coordinaterin lines 13—14 of round:.
Thus,q updates its estimate tat’ in roundt, either in lines 13—14 or in line 39. In either case, the cioaitr
c’ of roundt updatedestimate.~ to est’ in lines 13-14. Since < t < k, by the induction hypothesis, one

hasest’ = est. O

Lemma 7 (Uniform Agreement) Processes (correct and faulty) do not decide differenteslu
Proof. Suppose that processgsndyp’ decide on valuesst and est’, respectively. Note that the only place
in the algorithm where decision is not caused by receivimgalDE message is line 22. Thus, by a simple
induction on the number afECIDE messages that cause the decisions, there must be coorsinated ¢’
decide on valuesst andest’ in line 22 of roundr andr’, respectively. Without loss of generality, assume
r’ > r. Since coordinatoe’ outputsdecide(est’) in line 22 of roundr’, it must have updatedstimate to
est’ in lines 13—-14 of round’. By Lemma 6,est’ = est. 0
The rest of the section is for the probabilistic analysistert-Abortability property of the algorithm. The
analysis presented below chooses to omit some mathemdétails, such as the formal definitions on the
runs of the algorithm, probability spaces, probability sweas, and so on. It is enough to point out that the
probability space underlying the probabilistic analysisuid be the set of all runs of the algorithm given a
certain failure pattern. Further details are not essettidie understanding of the algorithm and its analysis.
Definition 1 Let asuccessful rounih a run of the algorithm be the round such that there existsesprocess

entering the round, and all processes entering the rourftkeitiecide or crash in this round.

Proposition 8 If a processp enters round- > 1, then for all roundr’ with 1 < 7/ < r, there must be some
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process’ that enters round’ and later enters round’ + 1 due to a timeout in one of the phases (lines 9, 19,
30, 36 and 43).

Proof. According to the algorithm, procegsenters a round > 1 either by receiving a message of round
when it is still in a lower round, or by timing out in one of thkgses of round — 1 and advancing to round
(lines 9, 19, 30, 36 and 43). Thus, by a simple induction tiseadways a process that enters round 1 and
later enters round due to a timeout in one of the phases (lines 9, 19, 30, 36 andl4®)proposition can be

obtained by repeating the above argument on roundl, » — 2, and so on. 0

Proposition 9 No process enters round> N in any run of the algorithm.
Proof. Suppose, for a contradiction, that a processters rounda > N. By Proposition 8, there is a process
p’ that entersV and later enterV + 1. However, right before enterinly + 1, p’ executes line 3 and since

ry > N, p’ aborts, and thug’ never enters round’ + 1 — a contradiction. O

Proposition 10 If round r is a successful round, then no process enters rating r. That is, the successful
round is always the final round of the run of the algorithm.

Proof. Suppose, for a contradiction, that a procesanters a round’ > r. Then by Proposition 8 there
must be a procegs that enters round and later enters round+ 1. However, since round is a successful
round, after entering round p’ either decides or crashes in roundand thug’ never enters round + 1 —

a contradiction. O

Proposition 11 There is at most one successful round in every run of the isgpor

Proof. Immediate from Proposition 10. O

Proposition 12 If there is a successful round in a run of the algorithm, therprocess aborts in this run.
Proof. Suppose, for a contradiction, that a procgsgborts in the run. Sincg can only abort at the end of
round N, p enters roundV. Letr be the successful round. By Propositionr9< N. If » = N, then by
definitionp either decides or crashes in rould contradicting with the assumption thaaborts in roundV.

If » < N, then by Proposition 10, no process enters rol¥@ggain contradicting with the assumption tpat

enters roundV. Thus, no process aborts in the run. 0

Proposition 13 For anyr € {1,2,...,N — 1}, if a process enters roundand roundr is not a successful

round, then there is a process that enters roungd 1.
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Proof. Since some process enters roundnd roundr is not successful, by definition there is a procgss
that neither decides nor crashes in this round. Sinee NV, p cannot abort in this round either. Becayse
has timeout in each phase of the algorithm, it cannot stagundr forever, so it must enter a higher round

r’ > r. By Proposition 8, there is a processhat enters round + 1. O

Proposition 14 Suppose there is at least one process enters rduntd no process aborts in a run of the

algorithm, then there must be a successful round in the run.

Proof. Suppose, for a contradiction, that there is no successiudan the run. Since some process enters
round1 and roundl is not successful, by Proposition 13, there must be a prélcasenters round. Repeating
the same argument, one can conclude that there must be a&pthet enters round¥. Since roundV is not
successful either, then there must be some process thas abtne end of round/. O
Lemma 2 Suppose there is at least one process that enters roufidhere is a process that aborts in a run

of the algorithm if and only if there is no successful roundhia run.

Proof. Immediate from Propositions 12 and 14. 0
Definition 2 Let ¢ be a process called the coordinator, and other processesalfed participants. Let
p be one of the participants. Define algorithiwith ¢ as the coordinator ang as the starting process as
follows. The algorithm starts with procegssending askiIP message to the coordinater Wher receives the
SKIP message from, ¢ sends aNEWROUND message to every participant. When a participant receilies t
NEWROUND message from, it sends areSTIMATE message to. Afterc sends out th& EWROUND messages
for TO ng time units,c sends alEWESTIMATE message to every participant. When a participant receives t
NEWESTIMATE message from, it sends arnCk message to. Afterc sends out theEWESTIMATE messages
for TO g time units,c sends aDECIDE message to every participant.

Definition 3 Let abenchmark rurof algorithm A be a run in which all processes are correct, and it satisfies
the following conditions for every participagt (a) the time elapsed from sending theskiP message tq
receiving theNEWROUND message from is at mostTOg; (b) the time elapsed from sending theNew-
ROUND message te receiving theeSTIMATE message from is at mostTO yg; () the time elapsed from
sending theeSTIMATE message tq receiving theNEwWESTIMATE message from is at most7TO g; (d) the
time elapsed frona sending theNEWESTIMATE message te receiving theack message frong is at most

TOnE; (e) the time elapsed fromsending theaxck message tq receiving theDECIDE message fromis at
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mostTO 4 (see Figure 2(b)).

Since there are now two algorithms, the following convemii® used to reduce possible confusion when
referring to runs of an algorithm: the runs of algoritbhare always referred to explicitly as “runs of algorithm
A”, while the runs of the abortable consensus algorithm iruféidl are simply referred to as “runs”.

To study the probability of a successful round, one needssarae that a correct majority of processes
(processes that form a majority and are correct) have pegpas that there are enough processes participating
in the algorithm to make progress. The following definitisrused to address the behaviors of the propose

actions.

Definition 7 A proposal pattern Bescribes when a process proposes in a run. Formally, pelgmstern P
is a function fromlI to [0, co). For each procesp, P(p) denotes the time at which procesproposes in this

proposal pattern.

The following lemma is the key element to the entire analy@@ause it masks many complicated behav-
iors, such as process crashes, message losses and meszggehdé could occur in a successful round, and

reduces all different possible cases of successful rouridsaisimple and tractable type of benchmark runs.

Lemma 15 Let r be a round number i{1,2,...,N}. Let F be a failure pattern in which a majority of
processes are correct and the coordinator of rounid also correct. Given a time, let P be a proposal
pattern in which a correct majority of processeshhas well as the coordinator of roundhave proposed
by timet. LetX be the set of all runs with failure patterA and proposal patterr? such that (a) the first
process that enters rounddoes so after timg and (b) none of the rounds 2, ..., r — 1 are successful. The
probability that a run inX has a successful roundis at leasts.
Proof. For any runo € X, since there are correct processes inauby Proposition 13, it is easy to see that
some process enters rounth o. First, letX; be the set of runs ik such that all processes entering round
crash right away before sending out any messages. By definitie round- of every run in; is successful.
Let ¥y, = ¥\ X;. Every run in3, has some process entering roundnd sending out at least one message
in roundr. Since the probability of a run ik, having a successful roundis 1, to show the lemma it is
sufficient to show that the probability of a runiiy having a successful rounds at leasts.

Leto be arun inX,. Letp be the first process that sends a roundessage ir. and letty be the time at

which p sends the first round message. By the assumption of the lemma, at least a majbitypoesses as

36



well as the coordinator of roundalready propose by timg, which means that these processes participate
in the abortable consensus algorithm and are able to respomsediately to messages received. kgtbe
the partial run ot from time0 to timet,. There could be other runs ki, that have the same partial rap, .
The rest of this proof is to show the following claim:

Claim 1: Given any partial rurv,, the probability that the full run extended from, has a successful
roundr is at leasts.

Once the above claim is proven, the lemma follows immedjiaiice the claim holds for any partial run
Otq -

Let X3 C 3y be the set of full runs extended from,. Let c be the coordinator of round Consider the

following two cases ob, .

e Case 1:p # ¢, i.e. p is a participant of roundr. The proof is carried out in three steps. The first
step is to show that given any benchmark guaf algorithm A with ¢ as the coordinator andas the
starting process, one can construct a full suextended fronw,, by following a set of rules that match
message delays of certain messagestio the delays of messagessinLet >, C >3 be the set of full
runs constructed following these rules. The second step shaw that the probability that a full run
extended fronvy, is one of the constructed runs using the rules given in stepalleasti(p, c) > S,
i.e.,Pr(c € ¥4 | 0 € ¥3) > B(p,c). The third and final step is to show that every rurtiphas a

successful round.

Let p be a benchmark run of algorithrh with ¢ as the coordinator andas the starting process. Note
that inp, (a) coordinator sends out three sets of messages to all participantsnfirst NEWROUND
messages, next — 1 NEWESTIMATE messages, and finally — 1 DECIDE messages; (b) participant
p sends three messagesctdirst the skip message, then tresTIMATE message, and finally theck
messages; (c) any other participgntends two messages d¢ofirst the ESTIMATE message and then
the ACK message. Based on the delay behaviors of these messaged, rilne o € ¥, extended from

oy, IS constructed according to the following rules.

Rule 1 If p sends akIP message of round to ¢, set the delay of this message to the delay ofske

message ip.

Rule 2 For any message of roundgent fromg; to ¢o with the tag beingNEWROUND, NEWESTIMATE,
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ESTIMATE, Or ACK, set the delay of the message to be the delay of the message;fto ¢, with
the corresponding tag in Note that one of;; andgs must be the coordinatar, and thus every

such round- message has a corresponding message in

Rule 3 If ¢ already decides before entering roundhen whenc receives the first round messageg
sendsDECIDE messages to all processedin {c} (line 48). For each procegse 11\ {c}, set
the delay of the aboveECIDE message frona to ¢ to be the delay of theEWROUND message

fromctogqin p.

Rule 4 Ifc decides after sending oNEwROUND messages of roundbut before entering PhaseEwES
TIMATE, thenc sendsDECIDE messages to all processediin {c} right after making the decision
(line 23). For each procegse 11\ {c}, set the delay of the aboweECIDE message from to g to

be the delay of theEWESTIMATE message from to ¢ in p.

Rule 5 Ifc decides in PhaseEWESTIMATE after sending oUNEWESTIMATE messages of roung then
¢ sendDECIDE messages to all processedin {c} right after making the decision (line 23). For
each procesg € 1T\ {c}, set the delay of the abowxECIDE message from to ¢ to be the delay

of the DECIDE message from to ¢ in p.

Rule 6 If a procesg different fromc receives alEWROUND message of round from ¢, andgq already
decides by this timeg sends aDECIDE message te (line 50). Set the delay of thiseCIDE

message to the delay of tEsTIMATE message from to ¢ in p.

Rule 7 If a process different fromc receives alEWESTIMATE message of roundfrom ¢, andq already
decides by this timeq sends eDECIDE message te (line 50). Set the delay of thisECIDE

message to the delay of thek message from to c in p.

Rule 8 Any other message sent in the extensioa,ptan assume any message delay and message loss

behavior allowed by the probabilistic distribution.

The above construction is possible because each messagmittad through the same linkhas the
same message loss probability(¢) and the same message delay¢), and message delay and loss

behaviors are independent. The above construction rufexedbe set,.

Claim 2: The probability that a full run extended fram, is one of the constructed runs following the
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above rules is at least(p, ), i.e.,Pr(c € ¥4 | 0 € ¥3) > B(p, ¢).

The construction rules only restrict the delays of certagssages in the full rum. Moreover, it is easy

to verify that following the above rules, every message mtienchmark rump is used at most once

to set the delay of some message in the full sunSome messages may not be used at all because a
process may already crash or already decide. Thus, thehplibpghat the full runo is constructed
following the above rules is the probability that thoserniesdd messages follow the delay behaviors of
the corresponding messages in some benchmark run of &lgadAt The latter probability is no less
than the probability that the message delays in a run of iéfgorA result in a benchmark run, which

is B(p, ¢). Therefore, Claim 2 holds.
Claim 3: Every run inX4 has a successful round

Suppose, for a contradiction, that there exists a fullaun X4 in which the round- is not successful.
From the structure of the abortable consensus algorithia,gasy to see that there must exist some
process ino that enters round but times out in one of the phases in round Let ¢ be the first
process that times out in one of the phases in raunthus beforeg; times out in round-, there is no
other process that already enters a higher round. The fiigpease study, however, shows that it is

impossible forg to time out in any of the phases.

— Case 1.1 times out in PhasekIp (line 30).Let¢t; be the time at whicly sends &kiP message
of roundr to c in the full runo (line 26). Sincep is the first process that sendsiaP message of
roundr to ¢ andp does so at timey, it follows that¢; > ¢y. Let the delay of theskiP message
from p to ¢ bed;. By Rule 1,d; is also the delay of thekipP message fromp to ¢ in p. Since
c is correct,c receives theskip message fronp at timety + d; in o. If ¢ enters round- and
sends the3lEWROUND messages of roundto all participants (line 6), let; be the time at whicla
sends th&lEWROUND messages. K already decides before entering roundet ¢, be the time at
which ¢ receives the first roundmessage and sends back ECIDE messages to all participants
(line 48). In either casey < ty + d; (because: already proposes by timg so ¢ will respond
to the skIP message received fromat timety + d; immediately, ifc has not already sent out a
NEWROUND oOr aDECIDE message). Let the delay of the messagends tg; at timet, be ds.

By Rule 2 or Rule 3, is also the delay of th’eEWROUND message from to ¢ in p. Thus, by
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condition (@) in the definition of the benchmark ruh,+ ds < TOg. In runo, the time elapsed
from ¢ sending theskiP message to the time when tReWROUND or DECIDE message from
arrives aly isto +do —t1 < tg+di +dos —tyg = dy +ds < TOg. Thereforeg has not timed out
yet in Phaseskip wheng receives thelEWROUND or DECIDE message froma. In either casey

leaves PhasskIp without timing out in the phase — a contradiction.

Case 1.2:¢q times out in Phas@ewROUND (line 9). Thusg = ¢. Lett; be the time at whicl
sends OUNEWROUND messages to all participants én(line 6). Thust; > ty. Since there are
a correct majority of processes in the ranat least|n/2| participants are correct. Moreover,
by the assumption of the lemma, at le&st/2] correct participants has proposed by timge
so they will response to roundmessages from immediately. Thus, there must exist a correct
participanty’ such thaty’ has proposed by timig butc does not receive aasTIMATE or aDECIDE
message frony’ by the timet; + 70 yr; otherwise ¢ would have either decided or gathered/'2 |
ESTIMATE messages and moved to PhassvESTIMATE. Letd; be the delay of th& EWROUND
message of roundfrom c to ¢’. By Rule 2,d; is also the delay of theEWROUND message from
c to ¢ in p. By condition (b) in the definition of the benchmark ruh, < TO yr. So by time
t1 + di at whichg’ receivesSNEWROUND message of round from ¢, ¢ has not timed out yet.
Sincec is the first process to time out in roundq’ cannot have passed Phasep of roundr by
time t; + d;. Thus, there are only two possibilities gt eitherq’ has decided by timg + d;,

in which case;’ replies abECIDE message te (line 50) at timet, + dy, or ¢’ enters the Phase
ESTIMATE of roundr and sends aaSTIMATE message ta (line 33) at timet; + d;. Letds be
the delay of the messagésends ta: at timet¢; + d;. By Rule 2 or Rule 645 is also the delay
of the ESTIMATE message frong’ to ¢ in p. By condition (b) in the definition of the benchmark
run, d; + ds < TOyg. Thereforec receives &STIMATE or DECIDE message frong’ at time

t1 +di +dy < t1 + TO yr — contradicting to the definition af .

Case 1.3:¢ times out in PhaseSTIMATE (line 36). Let ¢; be the time at whicly sends the
ESTIMATE message of roundto c in o (line 33). According to the abortable consensus algorithm,
it is easy to see that if sends th&sSTIMATE message of round to ¢ at timety, theng receives

the NEWROUND message of round from ¢ at timet¢;. Letd; be the delay of th&tEWROUND
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message from to ¢, soc sends thelEWROUND messages at timg — d;. By Rule 2,d; is also
the delay of the3WEwROUND message fromto ¢ in p. Letd; be the delay of th&?lEWESTIMATE
message fromto ¢ in p. By condition (c) in the definition of the benchmark run, ahd tact that
in p, c sends th&lEWESTIMATE messages exactlfO yr time units after sending théewROUND
messagesl’O ygr + do —dy < TOg. This implies that cannot time out in PhaseewROUND or
receive a higher round message and skip the rest of roumecause if sa; or some other process
would have timed out in roundbefore the time; — dy + TOng < t1 + TO g — contradicting
to the assumption thatis the first to time out in round andq times out at tim&, + TOg. Thus,

c either collects enougHSTIMATE messages and moves to PhaswESTIMATE, or ¢ decides
in PhaseNEWROUND. In the first case, lety; be the time at whicle sends theNEWESTIMATE
messages of roundto the participants (line 16); in the second casetddie the time at which
¢ sends thedECIDE messages to the participants right after the decision 28)e In either case,
ty < t1 — di + TOng. By Rule 2 or 4, the delay of the message thaends tay at timets is
ds. Thus, the time elapsed fromsending theeSTIMATE message to the time at which either a
NEWESTIMATE Or aDECIDE message arrives atisto +dy —t1 <t;1 —di+ TOng +do —t1 <
TOg. That is,q receives aNEWESTIMATE message of round or a DECIDE message frone
beforeq times out in PhasesTIMATE. In either caseg leaves PhasesTIMATE without timing

out in the phase — a contradiction.

— Case 1.4 times out in PhaseEWESTIMATE (line 19). The argument in this case is very similar
to that of case 1.2, with Rule 2 and 7 and condition (d) in thinden of the benchmark run

being used in this case.

— Case 1.5;¢ times out in Phaseack (line 43). The argument in this case is very similar to that of
Case 1.3, with Rule 5 and condition (e) in the definition ofle@achmark run being used in this

case.

e Case 2:p = ¢, i.e. pis the coordinator of round. The proof in this case is very similar to that of Case
1. In this case, one can pick any participahind base the argument on the benchmark runs aath
the coordinator ang’ as the starting process. When constructing the fullordrom a benchmark run

p, the construction rules of Case 1 still apply, with the exioepthat Rule 1 can be omitted and Rule 3
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is void sincec enters round. Claims similar to Claims 2 and 3 of Case 1 can also be showm thvé

same structure of the argument.

Claim 1 is proven after both Case 1 and 2 are shown, and thusrtivea holds. 0

It is easy to see that given a reasonable set of timeout vahebenchmark probability should be greater
than zero. The rest of this section will show that a non-zeie sufficient to achieve--Abortability, for any
arbitrarily smalla.

The following lemma applies Lemma 15 and shows that after pnibaof processes propose and as-
suming that no process has aborted by that time, the prafyatfilconsecutive unsuccessful rounds declines

exponentially.

Lemma 16 Let F' be a failure pattern in which a majority of processes are eotr For some given, k €
{1,2,3,...}, let N = j + kn. Given a timet, let P be a proposal pattern in which a correct majority of
processes i’ have proposed by time Let be the set of runs with failure patterii and proposal pattern
P. Ifin any of the runs irt, no process has entered a round higher thamy timet, then the probability that

aruninX has none of the rounds 2, . . ., j + kn being successful is at mast — 3)+(+1)/21,

Proof. Fori € {1,2,...,j + kn}, letp; be the probability that a run iR does not have a successful round
i given that the run does not have successful rounds. .. ,i — 1. Thus, the probability that a run i has
none of the rounds, 2, ..., j + kn being successful |E[fif” i

LetT" be the set of the correct processes that have proposed by siceerding to the failure patterf and
the proposal patter#®. Thus|T'| > [(n + 1)/2]. For a roundi > j, if the coordinator of round is in T,
then Lemma 15 is applicable to rouadwhich meang; < 1 — 3. Since the coordinator rotates through all
processes, for any consecutive rounds, at ledst: + 1)/2] rounds are such that the coordinators of these
rounds are if". Thus, for at least[(n + 1)/2] rounds from round + 1 to round; + kn, the corresponding
probability p; is at mostl — 3. Therefore[[/F" p; < (1 — g)kl(n+1)/2], O
Definition 5 Suppose that a majority of processes are correct.preposal delay” be a random variable
representing the elapsed time from the time when the firsteg® proposes to the time by which a correct

majority of processes (processes that form a majority amdcarrect) have proposed. The probability that

is within a given value, denoted byr(V < ¢), tends tol whent tends toco.
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Proposition 17 Supposep is the first process that enters a roumd and it enters round- at timet¢. |If
a process enters round + 1, then it must enter round + 1 no sooner thant + T,,, whereT,, =
min(TONg, TOng, TOs, TOEg, TO 4).

Proof. Let ¢ be the first process that enters round 1. It must enter rouna + 1 by timing out in one of the
phases in round. Thus it must have spent at least one entire phase in roufitierefore, the time at which

g enters round- + 1 must be at least,, time units after the first process enters round O

Lemma 18 (x-Abortability) Suppose the benchmark probability> 0. Let N = j + kn for somej, k €
{1,2,3,...}. There existsy = v + (1 — v)(1 — B)*I»+D/21 < 1 wherey = Pr(V > jT},), V is the
proposal delay, and’,,, = min(TOngr, TOng, TOg, TOR, TO 4), such that for any failure pattern in
which a majority of processes are correct, the probabilitgttthere exists some process that aborts in a run

with the failure pattern is at most.

Proof. Let F' be a failure pattern in which a majority of processes areecbri_ety be the set of runs with
failure pattern/'. Let>; C X be the set of runs in which some process aborts. Thén € ¥, |0 € ) is the
probability that some process aborts in the failure pattérhet ¥, C X be the set of runs such that within
jT,, time units after the first process proposes, a majority ofggses have proposed. By the definition of

proposal delay, Pr(o € ¥3]0 € ¥) = Pr(V < jT,,) = 1 — . Thus, one has

Prce¥iloed) = PrceXinNXsloeX)+PriceXin(X\ Xg)|o € %)
< Pr(oc e Xilo€Xy) -Pr(oc € ¥s3lc € ¥)+Pr(oc € ¥\ Xalo € X)

= Pr(ceXilo € X2)(1—7)+7.

The termPr(o € ¥1|o € 33) denotes the probability that some process aborts giveratbatrect majority
of processes have proposed withifi,, time units after the first process proposes. By Lemma 2, aepeoc
aborting in a run is equivalent to no rounds franto j + kn of the run being successful. Lét be a
proposal pattern in which a correct majority of processe$’ inave proposed withinT,, time units after
the first process proposes, and dgtbe the time at which the first process proposeginLet ¥’ be the
set of runs i, with proposal patterr. By Proposition 17, each round lasts at |I€Bgttime units. Thus
no process has entered a round higher thdy time ¢y + j7,,. Therefore, Lemma 16 is applicable to

>, which means the probability that some process aborSiiris at most(1 — 3)*/(»+1)/21 " Since the
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above holds for every proposal pattdPrin which a correct majority of processeskhhave proposed within
jT,, time units after the first process proposes, the probalitiag some process aborts Xy is at most
(1 — B)kI+1/21 i e, Pr(o € S1lo € B9) < (1 — B)FI(»+1D/21 This completes the proof to the inequality
Pr(c € Yilo € £) < v+ (1 — 7)1 — B)F+D/21 Finally, wheng > 0, it is obvious that the above
probability is less than. Therefore the lemma holds. O
Theorem 1 The algorithm given in Figure 1 satisfies Uniform Validitypitbrm Agreement, and Termination
properties. Furthermore, if the benchmark probabilifyis nonzero, the algorithm with the abort round
thresholdN = j+kn, j, k € {1,2,3,...}, satisfiesy-Abortability witha = v+ (1—~)(1—3)k[(+1/2] < 1,
wherey = Pr(V > jT,,), V is the proposal delay, and;,, = min(TOxNgr, TONg, TOgs, TOg, TO 4).

Therefore, the algorithm implements abortable uniformsemsus witla tending to zero as/ tends to infinity.

Proof. The theorem follows from Lemmata 4, 5, 7, and 18. O
B Proof of Theorem 2

Definition 6 Given a timeout valug'O, for any link¢, let A\(¢) be the probability that a message sent on link
£ is delivered withinT'O time units after it is sent. Letelivery probability\ of a network for the timeoul’O

be the minimum ok(¢)’s for all links in the network.

Lemma 3 Suppose the delivery probability of a network for a giveretiot 70 is A > 0. Set the timeout
parameters of the abortable consensus algorithm as folloW® yg = TOyg = TOg = 2TO, and

TOg = TO 4 = 3TO. Then the benchmark probabilityhas a lower bound®”—4,

Proof. First, when all processes are correct, every run of algorithalways ha$n — 4 messages: ornexip
message, and — 1 NEWROUND, ESTIMATE, NEWESTIMATE, ACK, andDECIDE messages each.

Claim: If each of the abovén — 4 message is delivered withiflO time units, then the resulting run is a
benchmark run.

In fact, the total delay of thekiP message and any one of tkewWROUND message is at mo&tr'o =
TOg. Since the coordinataralways sends theewROUND messages immediately when it receivessher
message from, condition (a) in the definition of the benchmark run is degts For any processg, the total
delay of theNEWROUND message tg and theesTIMATE message from to c is at mos2 TO = TO yg, and

q sends th&STIMATE message immediately when it receives HBVROUND message, so condition (b) of
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the benchmark run is satisfied. For any proggsgcannot send out thesTIMATE message earlier than the
time ¢ sends out th& EWROUND messages, angreceives thelEWESTIMATE message no later thaho time
units afterc sends the\EWESTIMATE messages. Sinegesends the3W\EWESTIMATE messages exactlyO yr
time units after it sends oMEWROUND messages, the time elapsed frgsending th&eSTIMATE message to
q receiving theNEWESTIMATE message is at mo§tO ygr + TO = 3TO = TOg time units. Thus, condition
(c) of the benchmark run is satisfied. Condition (d) and (@) loa similarly verified. Therefore, the claim
holds.

The claim implies that the benchmark probabilityis bounded from below by the probability that each
of the 5n — 4 messages is delivered withifiO time units. By the definition of delivery probability, the
probability that each of thén — 4 messages is delivered withifO time units is at least®” 4. The lemma
holds. O
Theorem 2 Suppose the delivery probability of a network for a giveretmt 770 is A > 0. For any value
a € (0,1), suppose € {1,2,3,...}is such thatPr(V > 25T0) < «/2, whereV is the proposal delay.
Then the algorithm in Figure 1 satisfiesAbortability for the givenx if the parameters of the algorithm are

setup as followsTOyr = TOng = TOg =2T0, TOg = TO4 = 3T0O,andN = j + kn where

_ log(a/2)
k= M(n +1)/2]log(1 — )\5”_4)-‘ '

Proof. By Theorem 1, the algorithm wittv = j + kn has an upper bound on the abort probability as
ap = v+ (1 —~)(1 — B)FI»+1)/21 With the timeout settings as given in the theorem statepignt=
min(TONg, TOng, TOgs, TOg, TO 4) = 2T0, and thusy = Pr(V > jT,,) = Pr(V > 2jTO) < «a/2.

From thek given in the theorem statement,

log(r/2)
k=2 [(n+1)/2]log(1 — A5n—4)’

and thus,

(1 o )\5n74)k((n+1)/2] < a/2
By Lemma 3,3 > A>»~%. Thus,
6o = 7+ (1=)(1 = HHHI/
ao < e+ (1 - @D/
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ap < a/2 + (1 o )\5n—4)k]'(n+1)/2]

< a/2+a/2=q.

Therefore, the algorithm satisfies theAbortability for the givena. O
C Proof of Theorem 3

This appendix proves the correctness of the PRBCast digogiven in Figure 3.

Theorem 3 The algorithm in Figure 3 implements probabilistic reliakdbroadcast in the probabilistic net-
work model, with the probability thresholds = 1 and~, = 1 — plz, wherep;, is the maximum of message
loss probabilitypy, (¢)'s for all communication linkg in the system, anklis the maximum number of repeated

send actions on a message as described in the algorithm.

Proof. Integrity property is obviously satisfied. Validity is alsatisfied withry, = 1, since a correct process
p always PR-deliversn if p PR-broadcasts:. For the Agreement property, if and ¢ are correct angh
PR-deliversm, thenp must have PR-sent to ¢q. Sincep andgq are correct ang will sendm to ¢ k times

if not receivingg’s acknowledgment, the probability thatloes not receiven at all is the probability that all
thesek messages are lost, whichyig (¢)* where? is the link fromp to ¢. So the probability thag receives
m from p is at leastl — pz(£)F > 1 — plz. If ¢ receivesm, theng PR-receivesn and thusy PR-deliversm.

Therefore, the threshold for Agreement= 1 — p. O
D Proof of Theorem 4

This appendix proves the correctness of the PABCast atgoriven in Figure 4.

Lemma 19 (Integrity) Every message is delivered at most once at each processpgnidliowas previously
broadcast.

Proof. Trivial. O

Lemma 20 If a correct proces® executes the abortable consensus for an infinite numbemastiand has
an infinite number of decide outputs from these executiortieofibortable consensus, then a majority of
processes must be correct.

Proof. Suppose, for a contradiction, that a majority of processedaalty in the system. Lad be the set of

faulty processes. Letbe the time when the last faulty process crashes. At leastxamution of the abortable
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consensus is started after tima which p decides a valué.Suppose decidesy in this consensus. Let,
denote this run of consensus.

Consider a different run; in which all processes iy are correct and all other processes crashes at time
0, and all processes i} proposev; # vg. Since@ has a majority of processes, by theAbortability of the
abortable consensus, the probability that some proce@sainorts is at most < 1. Thus, there exists a run
in which all processes i) decides, and by the Uniform Validity property, the decisiatue has to be; .

Now consider rurnr, combined from runy andrq, in which all processes are correct, but initially, all
messages sent between processe&g andIl \ @ are delayed for a long time. Processesjrehave just
like in run r{, in which case they decide on valug. Processes not iy behave like in run-y, in which
casep decides on valuey # v;. With the probabilistic network model, this run may occuemthough the
probability is small. However, in this run, correct proasslecide on different values, violating Agreement
property of the abortable consensus. O

Let v2 and % be the probability thresholds for the Probabilistic Agrestand Probabilistic Validity

properties of PRBCast, respectively.

Lemma 21 (Probabilistic Agreement) There exists 82 = v2(1 — ) > 0 such that for any failure pattern
in which processeg andq are correct, ifp PA-delivers message, then the probability thay PA-deliversm

is at leasty.

Proof. If p PA-deliversm, thenp PR-deliversn. By the Probabilistic Agreement of PRBCagPR-delivers

m with probability at leasty’*. Consider the case whegePR-deliversm but does not PA-deliver. Theng
executes an infinite number of the abortable consensusrwithits proposals. In none of these executions
q has the abort output, because otherwisgould PA-deliver its own proposal, which includes. Thus,

q decides an infinite number of times. By Lemma 20, a majoritproicesses are correct in the run. ket
be the index of the abortable consensus execution at thefemidich p PA-deliversm. In this execution, at
least one op andg aborts, because otherwise they would decide on the same, vathich implies that; will
PA-deliverm. Thus there is a correct process that aborts inktile abortable consensus execution when a
majority of processes are correct. By theAbortability of the abortable consensus, the probabtlizt this

occurs is at most.. Therefore, the probability that PA-deliversm given thatp PA-deliversm is at least

SImplicitly we require that there be only a finite number of sensus executions during any finite time period. This is § ver
realistic requirement for all practical purposes.
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fyf(l —a). O

Lemma 22 If a correct proces® PR-delivers message, then the probability thap PA-deliversm is at
leasty(1 — a).
Proof. If p PR-deliversm, thenm € R_delivered,. Supposeé does not PA-delivem. We need to analyze
the probability of this case. In this case, ¢ A_delivered,. There exists a numbek, such that for all
k > Ky, processp calls propose(k, A_undelivered,) with m € A_undelivered,. By the Termination
property of abortable consensus, each propose call rettitimgither decide or abort. None of the calls could
return abort, because otherwigevould PA-deliver all messages i undelivered,, includingm. So for all
k > Ky, p has decided in thé-th abortable consensus run, but none of the decision valibhese consensus
runs is its own proposal. By Lemma 20, a majority of processesorrect in this run.

Since a faulty process can only make a finite number of prdpogeere exists a numbédf; such that for
all £ > K, all the decision values are from correct processes. These tis at least one correct process
g # p such that an infinite number of decision values for consermusdsk > K7 are proposed by. None
of these proposals include message There are two possible cases here. Firstever PR-deliversn. By
the Probabilistic Agreement property of PRBCast, this caséd happen with probability at most— ~/*.
Secondg PR-deliversm. In this caseg must PA-delivern at some point. Otherwise, after sofig, every
proposal made by will include m, contradicting to the fact that decides an infinite number of times on
¢’'s proposals that do not include. Let k be the index of the abortable consensus execution at thefend o
which g PA-deliversm. In this execution, eithef aborts the consensus run and decides on its local proposal,
or ¢ decides a value including: butp aborts the consensus run. Since we know that a majority aegs®es
are correct, by ther-Abortability of the abortable consensus, the probabtlitgt eitherp or ¢ aborts thek-th
abortable consensus execution is at naost

Therefore, the probability that PA-deliversm is the probability that neither of the above two cases occur,

which is at leasty?(1 — «). m

Lemma 23 (Probabilistic Validity) There exists an = vF4(1—a) > 0 such that for any failure pattern
in which proces® is correct, ifp PA-broadcasts message, then the probability thap PA-deliversm is at

leasty;'.
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Proof. If p PA-broadcastsn, thenp PR-broadcasts:. By the Probabilistic Validity of PRBCasp PR-
deliversm with probability at leasty?. By Lemma 22, ifp PR-deliversm, thenp PA-deliversm with
probability at least//*(1 — «). Therefore, the probability thatPA-deliversm given thatp PA-broadcasts»

is at leasty/*y2(1 — a). m

Lemma 24 (Probabilistic Order) Suppose a majority of processes are correct. There exist$ & (1 —
a)? > 0 such that for any failure pattern in which procesgesndq are correct, ifp andq both PA-delivern

andm/, then the probability that they do so in the same order is astig/.

Proof. Suppose PA-deliversm andm/' at the end of thé,-th and thek;-th abortable consensus executions,
andq PA-deliversm andm' at the end of the,-th and thek;-th abortable consensus executions. ket
min(ky, k,) andk’ = min(k;,, k). Sop andq have not PA-deliveredh before thek-th consensus, and they
have not PA-delivered:’ before thek’-th consensus. If both andq decide in both thé-th and thek’-th

of the abortable consensus executions, by the Agreemepeiyoof the abortable consensus, they decide on
the same set of valuessgSet* andmsgSet”’, respectively, withn € msgSet® andm’ € msgSet* . Sincep
andgq have not PA-deliveredr andm’ before thek-th and thek’-th consensus, respectively, they PA-deliver
m andm’ in the same order. The probability of this case is at leasptbbability that no process aborts in
the k-th or thek’-th consensus. Since a majority of processes are correttglay-Abortability of abortable
consensus, the probability thatndg PA-deliverm andm/’ in the same order is at leadt — «)?. O
Theorem 4 Suppose the probabilistic reliable broadcast algorithredisn Figure 4 hasy®* and+/* as the
thresholds for the Probabilistic Agreement and Probahiid/alidity properties, respectively. Suppose the
abortable consensus algorithm used in Figure 4 haas the threshold for the-Abortability property. The
PABCast algorithm given in Figure 4 satisfies the Integritygerty, the Probabilistic Agreement property with
thresholdy”! = v{(1—a), the Probabilistic Validity property with threshotg? = v2~v2(1—a). If a majority

of processes are correct, it also satisfies the Probakili€ider property with threshold? = (1 — «)2.

Therefore, the algorithm implements probabilistic atoilmioadcast when a majority of processes are correct.

Proof. Direct from Lemmata 19, 21, 23, and 24. O
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