On the Impact of Replica Placement to the
Reliability of Distributed Brick Storage Systems

Qiao Lian
Wei Chen
Zheng Zhang

June, 2005

MSR-TR-2005-71

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

On the Impact of Replica Placement to the
Reliability of Distributed Brick Storage Systems

Qiao Lian, Wei Chen, Zheng Zhang
Microsoft Research Asia
{t-giaol, weic, zzhang}@microsoft.com

Abstr act on DHT (distributed hash table) [4][17], and theatly
random placement like in GFS [8]. Mirroring can be

Data reliability of distributed brick storage sys- \iewed as a degenerated special case of sequential
tems critically depends on the replica placemericgo lacement.

and the two goveming forces are repair speed and Repjica placement can significantly affect the-reli
senS|t|V|ty to multiple cpncurrent failures. Indipaper, ability of the system due to two factors. The fissthe
we provide an analytical framework to reason andenair speed: the more bricks participate in thea da

quantify the impact of replica placement policys§s- repair process, subject to the available networkdba
tem reliability. The novelty of the framework B @nN- igth the sooner that the reliability level retarhe
sideration of the bounded network bandwidth foradat ¢acond is the sensitivity to multiple and concurren

maintenance. We apply the framework to two populagyjjyres: the more permutation choices that thela

schemes, namely sequential placement and randofjent generates, the more likely a random failure of

placement, and show that both have drawbacks thaleyeral bricks will wipe out some data permanently.
significantly degrade data reliability. We then pase These two factors are conflicting in nature. For in

the stripe placement scheme and find the near-@ptim stance, the random placement has very fast repair
configuration parameter such that it provides mUChspeed, but is prone to concurrent failures, whetieas
better reliability. We further discuss the posstpilof sequential placement is precisely the opposite.
addressing the problem of correlated brick failuras The contributions of the paper are mainly twofold.

our analytical framework. First, we provide a systematic framework not ordy t

. identify, but also to reason and quantify the impafc
1. Introduction the replica placement policy to system reliability.
"_con particular, our result points out that under difer
c-parameters, random and sequential placement can hav
tive alternative to the more expensive SAN (stoaragevas'tIy differept results. Our framgwork capturee. th
area network) solution. Some of the exemplary syste bounded avaulgble network bandwidth for data mainte
include Petal [11], NASD [9], GFS [8], FAB [7], Rep nance, something no other models have done.

store [22], and Boxwood [14]. A smart brick is esse Second, the insight that we gain from the firsulhes
tially a stripped down PC with a CPU, memory, r]et_leads us to propose tls&ripe placemenscheme which

work card, and a large disk. For these systemsjgro attempt.s to achieve t.he'b.est.b.alance between the tw
ing strong data reliability is confronted with new competing forces. Whlle it is d|ff|cult't0 derlvec_:iaosed'
challenges, because inexpensive commodity disks af@™M: we do g.roc;/ldghthg nltaar-optlmﬁ_l 90“29232;'0”
more prone to permanent failures and failures are f parar.rl;et(.ar ve? 'ﬁ, with simulations. This is the

more frequent in large systems. To guard against pecontn ution of this paper.

manent loss of data, replication is often employéd. Moreover, we also sketch a proposal to extend our
some replicas are lost due to disk failures, otiegpti- framework to deal with correlated failures that-fre
cas are still available and can be used to regtmeraquently occur in practice.

new replicas to maintain the same level of relighil 'I;jhe roadnr':ap Ofl'Fhe plaper IS as forl1lows. In Sdecﬁ,ond
Replica placementefers to the strategy of placing we discuss the replica placement schemes and tae da

replicas among the participating bricks. The th)rellabmty metric. In Section 3, we present theabfi-

widely used replica placement schemes are stagger&?i‘I flrar;:ev]:/ork for thke reILabiIity stludy. In SectLdm W:s
sequential placement like in chained declusterity [apply the framework to the two placement schemes an

used by Petal [12] as well as in many proposaleas compare the results. In Section 5, we describe the

Storage solution using clustered “smart bricks
nected with LAN is becoming an increasingly attra

stripe placement scheme, and find the near-optimatoncurrent brick failures happen to wipe out aplire
parameter for the scheme. We discuss how to de¢l wi cas of an object, the less reliable the system is.
correlated failures in Section 6. Related work ums 2.2 Sequential placement

marized in Section 7, and we conclude the paper in”
Section 8. There are a lot of symbols are usinthis Sequential placement is simple in nature: one ef th
paper, we put also gives symbol table in Appendix A brick acts as the lead brick, and tkereplicas are

. . e . placed on the lead brick and ksl followers. This is
2. Replica Placement and Reliability Metric what thechained declustering10] does and is em-

Without loss of generality, we consider an ordereddloyed in Petal [11]. This scheme is also a common
array of N bricks on which replicas are placed. Thestrategy in peer-to-peer wide-area storage systiéens
number of replicas of an object is called thplication ~ CFS [4] and PAST [17], in which the lead brick is
degreeof the object, and it is denoted kyReplication typically identified by the hash of the object.
degree may differ from object to object, but fanplic- With sequential placement, when a brick fails, khe
ity we assume all objects have the sam&he respon- neighboring bricks on each side of the failed bigek
sibility of replica placement is to designate thchs ~ participate in brick repair (Figure 1). The limitgdr-
on which the replicas are hosted. All other isssash allel repair degree leads to slow repair speedchvhi
as the interface of the system, are orthogonahéo t then negatively affects the data reliability of gystem.
reliability study. However, the restrictive nature of placement regluce

Each individual brick may fail permanently and losethe sensitivity to concurrent failures. If and orifiyk
all replicas stored on the brick. In this paper,ageate Simultaneous failures occur ¢nconsecutive bricks in
brick failures with disk failures, since disk faiks the ordered array can any object be lost. This is
ultimately cause data loss. When a brick failskeep ~ unlikely whenN is much larger thak. Thus, sequen-
data reliability of the system at the same levst $ys- tial placement has a low likelihood of data lossewh
tem needs to automatically regenerate the lostcaspl concurrent failures occur, which improves data-reli
at the remaining bricks. This replica regeneration2bility.
process is calledata repairt

2.1 Datareliability metric MTTDL

To measure the data reliability of a system, we use /'
the metricMTTDL — mean time to data loss in the en- -
tire system.MTTDL indicates, after the system is
loaded with data objects, how long on average ye s
tem can sustain before it permanently losesfitse
Fiata ObJeCt.m the system. This is a meric wideigd Note: Replication degree is 3. When brick 3 fails,
In storage Ilteratu're, e.g. on RAID Storagel[Z]. . data repair can be carried out as brick 1 copying
There are two important factors that affect data re Dataa to brick 4, brick 2 copying Datap to brick 5,
ability. The first one is the speed of data repkist and brick 4 copying Datac to brick 6.
data repair means that the lost replicas are liteelye
repaired before further brick failures, so it reglsithe Figure 1. Data repair in sequential placement.
time window in which concurrent brick failures occu
and wipe out all replicas of some object. 2.3 Random placement
The second factor is the likelihood of data losemh
concurrent brick failures do occur. Whénrandom
bricks fail concurrently in the system, the likeldd
that some object whodereplicas are located on the
failed bricks depends on the placement scheme ased,
we will discuss shortly. In general, the more likdte

In random placementeplicas are placed randomly
among theN bricks, and this is used in the work of
[8][19].2 The main objective here is to improve the
speed of data repair. With random placement, when a
brick fails, the replicas on the failed brick caamfound
on many other bricks, and thus many bricks can par-
ticipate in data repair in parallel, resulting iasfer

! One may also consider the amount of data loss vitreppens. How-
ever, when the goal of a storage system is to geonearly no-data-loss 2 An indexing scheme is needed for random placerertccess all
reliability, MTTDL is a more important metric than the amount of data objects in the system. However, indexing is ortmaddo our study of
loss. Thus the paper focuses on the analy$&TafDL reliability, so we will not discuss it in detail.

data repair speed. This is its main advantage sser 3.2 Analysis

guential placement in improving data reliability.
However, crashing random bricks will likely re-

move all the replicas of some objects with randomfo

placement. In the extreme case when there is @ larg' . X L
volume of objects in the system and therefore theaa arbitrary object. MTTDL,, measures the data reliabil-

placement choices have exhausted all possible eoml:jfy of an individual object stored in the systerhthie

nations, ank crashes cause data loss. High sensitivit)?yjtem gontalgsn otleects,Ci_anqbthesm ObAeCtS havE
to multiple and concurrent failures, therefore,the Independent data loss distributions, then we have

drawback of the random placement scheme. MTTDL = MTTDL, / m. Intuitively, this is because

It is intuitive to see that neither placement schem that each object ha§ a data loss rat?WJUDLObJ' and
is perfect. As we will reveal in Section 4, undéfed- when they are.con5|dered tqgether Ina sys_tentpthb
ent circumstances their difference can be dramatic. data loss rate isYMTTDLoy, since their individual data

loss behaviors are independent.
3. Analytical Framework Of course, when object replicas are placed in the
system, their data loss behaviors depend on thedai
of the bricks, and thus may not be independentiofie
other. In particular, if the replicas of two obgdare
co-located at the same set of bricks, their dada be-
haviors are perfectly correlated. In this case,ythe
should be considered as one object instead ofride-i
pendent objects.

For the above reason, we only consider objects
whose replica placements are different. bebe the
3.1 System modd for analysis total number of different replica placement combina
tions under a placement scheme. We thus have

3.2.1. Introducing MTTDL,;. To conduct the analysis
r MTTDL, we first introduce an intermediate metric
TTDL,;, which is the mean time to data loss for an

In this section, we present the analytical framéwor
for the data reliability analysis. The frameworlogis
how to deriveMTTDL from known system parameters.
This framework can be applied to different object
placement schemes, as we will show in the nextosect

The novelty of the framework is its consideratidn o
the bounded network bandwidth available for data re
pair, which directly affects data repair speed.

We consider a system witlh bricks and the replica-
tion degrees of all objects akeThe average amount of MTTDL = MTTDLg / M. D
data stored on each brickdsWe assume a reasonable In a system withN bricks, m could be as large as
amount of free space on each brick for data repaifC(N,K).*

Brick failures follow an exponential distributionitiv .
: . .) 3.2.2. Markov Chain Model. To analyzeMTT DLy,
MTTF (mean time to failure) as its mean. We first as- yz Lob

. o we introduce a Markov model as in Figure 2 to model
sume that each brick fails mdependen_tly, apd ol the evolution of the system with brick failures atfetta
will consider a model for correlated brick failuréde

46 not model transient failures of bricks that ot repair. In the model, staterepresents the state of the
N mnl&e' system where exactlybricks have failed, and the lost
data availability but not affect data loss. Whehrigk Y Y

. S . replicas on thdailed bricks have not been completel
fails, we assume a new brick is added into theegyst regaired pietely
|mr£|e|zd|baFe|I(y to keep the S}[/S;em ScaIFAﬁI th.?ht'me' i The arcs in the figure represent the transitions be

itch r_;_%s arte ccl)(nnec ‘?d n at . bWId %trrlo? tween different states in the system. From st&te+1,
Switch. The network: provides certain banawic %" one more brick failure occurs, and this could oconr
data repair traffic, and the bound of which is giv®y

N X any of theN-i remaining bricks. Thus, the rate of tran-
B, which is called thdackbone bandwidthrhe back- sition is (N-)/MTTF, since the brick failures are inde-

. .) endent. Transition from stateto state O represents
of the bandwidth of the root switch that is allowfed % P

data repair traffic, because in many simple topekg

all (or pearly all) data repair traffic goes throuthe % The formula is still an approximation, becausdediit objects may
root switch. have some but not all their replicas co-locatedhensame set of bricks
We do not separately consider network failures. Aand thus their data loss behaviors are correldtesvever, such co-

; irebtiy, locations are dictated by the replication dedgce€Ehus, when the system
network failure does not cause data loss dire it scaleN is much larger than the replication degkethe correlated data

may reduce the data repair speed, and thus afféat d |oss of objects caused by partial co-locationstEaignored. For sequen-
reliability. We fold this aspect into the availalilata tial placement, we compared the approximation witraccurate analy-
repair bandwidt!B. sis and the_ result shows that the approximatiorcmestwith the accu-
rate analysis very well.
4 C(xy) denotes the total number of combinations of pigkiobjects
from x objects.

that data repair is completed before a new bridk.fa ject is lost, a new object is generated with exatite
Let MTTR(i) denote the mean time to repair all thesame probability distribution of the time to dated.
failed replicas in state Thus the transition rate from Let N(t) be the number of object loss events by time
statei to state 0 is MTTR(i). MTTR(i) depends on the Thus we have
size of data to be repaired and the available batidw

for repair, and it will be determined shortly. lmetnext

section, we will show the advantage of random place

ment over sequential placement in that random place
ment has a much smallsfTTR(). Let N(i,t) be the number of times stateappears by

time t. Each time state appears, with probability(i)
NN the object is lost, so when considering statbe event
(NS SYMTTF of object loss by time occursN(i,t)-L(i) times. When
¥

Q IMTTRG summing up all the different states together, washa
e MMITR() @ /@
/) (N-i+1 KMTTF (4)

1IMTTR(i-1 N(t) = ZN: N(,t) OL(i)-

1IMTTR(i i
\ ”MTTR“”;\Q Moreover, by the definition dITBHi), we have

UMTTR(N) ™ \&(/MTTF
@5 \ MTBE() = lim — ®)
e t

(N--1)MTTF == N(i,t) .

Ve

MTTDL,, =|i @)

m_t.
SN

(N-1)MTT

1MTTF— -
Plug in (4) and (5) in to (3), we thus obtain tbenfula
in (2).

The Markov model of Figure 2 assumes that there is
no transition from staté back to statg¢ with 0<<i,
which means that data repair for all failed bricksn-
plete at the same time. In reality, data repairafdarick
that failed early is likely to be completed earyen
without centralized scheduling of data repair. Henc
the assumption is a conservative one.

Figure 2. Markov model for reliability analysis

ProbabilityL(i) is easy to compute. An object with
replication degre& can be located o€(N,k) possible
combinations ok bricks, whereN is the total number
bricks. Wheni bricks fail concurrently, totallyC(i,k)
combinations will cause data loss. Thus the praiabi
of losing the object whenbricks fail isC(i k) / C(N,K).

The Markov model of Figure 2 models the evolution--{=2] =t [i f~fe] it Jof-de] w0 [of-die] &t [i) —t>
of the entire storage system, as opposed to othdels M o T T /-/
(e.g. [20]) that only model the evolution of ongeaty T . R A
The reason is that in our environment, data repaf¥ Map back, he nferval shouid [¥ ¥ |
fic is limited by the backbone bandwidth. Thus, enor et E—— ¢ ?BM LA
brick failures are likely to slow down data rephg- MTTF/N-i+1) ahipfeen"s—>]
cause more data repair traffic are sharing thetdihi Figure 3. Extracting timing period for state i-1
bandwidth. Therefore, we have to look at the stdte for the derivation of MTBF(i).

the entire system to determine the speed of datirre
We now need to deriviiTBH(i). To do so, consider

3.2.3. Deriving MTTDLy;. First, we defineMTBHi) a continuous timeline separated by different tirag-s

to be the mean time between two COI’ISGC.U'[IVG OCCURents corresponding to different states of theegyst
rences of statein the Markov model. Each time when

h . teth : h h .~ (Figure 3). Based on the Markov model, on the time
the system Is In statethere Is a chance that a particu- jine 5 period of statel is followed either by a period

lar objgct ig lost. We dgno_te(i) as_the probability that of statei or a period of state 0. We extract the time
the object is lost Whe'" bricks fail concurrently. We period for staté-1 out and put them next to each other
then have the following formula to comp®& TDLop; to build a new time line (Figure 3). That is, thewn

) timeline only records the period when the systeaysst
in statei-1. In the new timeline, the boundary of each

) . period corresponds to either the transition froatedt
The reasoning of the above formula is as follow® W 1 tg state, or the transition from statel to state 0.

consider a stochastic process where the event @an From one transition to stateto the next transition to
ject being lost, and we assume that as soon ashthe

MTTDL,, = [i MTBF™ (i) CL(i)] ™

i=k

statei, one of the remainindy-i+1 bricks fail. Since Oncerb(i) is known,D(i) can be calculated itera-
brick failures are memoryless, we can simply cogcat tively by the above formula.

nate the time segments of statke together in the new The repair bandwidthb(i) at stata varies with dif-
timeline without changing its stationary probalitis ferent placement schemes. In the next section We wi
behavior. Therefore, the mean time between twastran determine this value for both sequential placenaert
tions to staté in the new timeline iIMTTFH/(N-i+1). random placement.

Let P(i) be the probability of the system staying in state4, Comparing Sequential Placement with

i. Therefore, the new t|mgl|ne we congtructeq oqiy ¢ Random Placement

responds to th@(i-1) portion of the original timeline. . . '

In other words, when we match the period between tw ~ The previous section provides the general frame-
transitions to staté in the new timeline back to the work to analyze the data reliability of a distriedt

original timeline, the period is amplified by a facof ~ brick storage system with a bounded backbone repair
1/P(i-1). Hence, in the original timeline, the mean timebandwidth. The two terms undecided in the analysis

between two occurrences of stais are: (a)m, the possible replica placement combinations
MTTE in the system; and (lob(i), repair bandwidth at state
MTBF(i)=———" It is not hard to see that the larger thethe worse the

(N=1+DP(-1) data reliability, while the larger thé(i), the faster the
The next calculation is for probabilitp(i). This is data repair can be completed and thus the beteer th
given by the fact that in the equilibrium statetioé data reliability.
Markov model, the total incoming transition rateshu Tpje 1. Key differentiating quantities for se-

be equal to the total outgoing transition rate. Tdre quential placement and random placement
mulas are as follows.

. . m rb(i)
PO ____ (NZi+D/MTTF) Sequential N min(B,bIK1i /2)
Pi-1) (N-i)/MTTF+1/MTTR()’ - Random | min(C(N,k),(N[c)/(k(s) | min(B,bI(N—-i)/2)

P(i) =1
z ® These two terms vary among different placement
3.2.4. Deriving MTTR(i). MTTR({i) depends on both schemes. In this section, we determine the twogerm
the amount of data to repair and repair bandwidéh. for both sequential placement and random placement
D(i) andrb(i) be the amount of data to repair and theand compute the reliability of the two schemes.l&db
repair bandwidth in statie respectively. Lefl be the lists the results and the explanation follows, weher
time to detect a failure in the system (10sec elfer denotes the average object size, hrtknotes the brick

all analysis and simulation). Then bandwidth.
MTTR(i)= T + D(i)/rb(i). (6) 4.1 Sequential placement
The amount of data to repdi(i) depends on botb In sequential placement, replicas are restricteoeto

(the amount of data in the last failed brick), ahd placed onk consecutive bricks in the ordered array of

amount of the un-repaired dai&(i) left from the pre- bricks. This restriction leads to onlly possible place-

vious state-1. ment combinations, i.er=N, which benefits the reli-
D(i) =ur(i) +c. ability of the system.

The amount of un-repaired data left from the previ- T calculate the repair bandwidth, bebe the maxi-
ous stateur(i) depends on (a) the total amount of themum bandwidth of a brick. When one brick fails, the
previous state’s data to be repaif(@-1), (b) the mean replicas on the failed brick need to be regenerated
time to the next failure in the previous statgi-1), the k consecutive bricks after the failed brick. So the
and (c) the previous state’s repair bandwiditfi-1). repair bandwidth could reach-k. However, among

thesek bricks, at least one brick would also serve as the

ur(i)={D(i_1)_rb(i_l)m(i_l) (when D(i=2) >rh(i =) (mf (i ~1) source for data repair (e.g., brick 4 in Figuretit)ng-

0 (when D=1 = =Himi(-1) ing the effective bandwidth only to a half, ilek/2.
In statei-1, the mean time to next failunef(i-1) is Wheni concurrent failures occur, this giviek-i/2 (we
MTTH(N-i+1). So we have ignore the situation when multiple failures arehivit

the range ok, and this makes the result optimistic).
Also, the maximum repair bandwidth cannot exceed
the backbone bandwidf Therefore, we have

D(i) = maxP(i 1) —rb(i) IMTTH(N—i +1 0] +c

tb(i) =min(B,bIkli/2). certain backbone bandwidth, the system has a skalab
ity limit.

4.2 Random placement Second, given the same user capacity, random
In random placement, replicas are scattered rarlacement is sensitive to object sizes. The sedplent
domly among the bricks in the system. When onekbric placement scheme is better than random placement fo

fails, many other replicas contain the replicag tr@ ~ Small object size but is worse than that with laoge
lost on the failed brick. So many replicas canaacthe Ject size.
source of data repair, vastly bringing up the degke

—0— random placement, object size=3.3GB

parallel repair and hence the repair bandwidth. 10%— | & sequential placement

—&- random placement, object size=4KB

Quantitatively, the repair bandwidth of the random
placement scheme is given by(i)=min(B, b(N-i)/2).
The termb(N-i)/2 means that when a brick fails, half
of the remaining bricks contain the replicas neebtd
generated, and they copy the replicas to the diadr
of the bricks, which is a good-case scenario batlm 0y
closely approximated.

Comparingrb(i) of the two schemes as listed in ‘ ‘ ‘
Table 1, it is clear that the repair bandwidthh# tan- 10* 10 10° 10° 10°
dom placement is much higher than that of sequentia system scale in user data capacity (TE)
placement, for relatively smaills that are mostly rele-

MTTDL (year)

Note: The user data capacity of the system is c-N/k.

vant to the data reliability. This is the advantafi¢che MTTF=1000days, k=3, B=3GB/s, b=20MB/s
random placement scheme. o c=500GB.The object size of 4KB in random place-
For the possible placement combination it de- ment is when m reaches C(N,k).

pends on the number of objects, which is determined
by the size of the object in our environment. kete- Figure 4. MTTDL of a system vs. the system
note the average size of an object in the systetierlV scale, with sequential placement and random
the system hal bricks with the amount of data stored placement.
on each brick being and the replication degree kf

the number of objects in the systenN/(k's). Thus, [e
the possible placement combination is given by ol|
min(C(N, k), N [c/(k [s)) .> This value could be much -

larger thanN, the corresponding value of in sequen-
tial placement, especially when the object sizamsall.
This is the major drawback of the random placement
scheme that significantly reduces the reliabilifythoe 10°
system. ,

=4 sequential placement
=4 random placement

=3 sequential placement
=3 random placement

MTTDL (year)

) KB MB GB
4.3 Comparison object size

Using the result in Table 1, we can calculate the Note: The user capacity of the system is fixed at
MTTDL given a set of system configuration parameters. 1PB=1000TB. Other system parameters are the
Figure 4 shows the analytical result comparing Se- same as in Figure 4.
guential placement with random placement.

The figure shows several results. First, afterqyge Figure 5. Comparing sequential placement
tem scale passes a certain point, all schemestedgen with random placement when varying object
stop working: bricks fail so frequently that, withe size.
network bandwidth staying the same, data repair can
not keep up with the brick failures, and the dahk r
ability drops significantly. This means that given

Figure 5 further illustrates the effect of objetzes
on the reliability of the system under the sameesys
scale. In sequential placement, reliability is radt
: . _ ‘ fected by object size, because data loss is datedni
More rigorouslymis the expected number of possible placement on|y by the concurrent failures &fconsecutive bricks.
combinations for random placement, and it is dijgémaller than . . .
min(C(N.K).N (¢ /(k!s)) - We ignore this minor difference in our calcula- However, in random placement small object size raean
a large number of objects, and thus they are niloeby |

tion.

to exhaust the possible placement combinationsg@iv The sizes of the chunks are the same and will be de
low reliability. When the object size is large, thassi- termined later. Thé& replicated chunks of the same set
ble combinations are small, and the benefit of lbglra of objects form a set calledstripe. A stripe migrates
data repair wins over and thus the data reliabiity among the bricks in the system with brick failueesd
better than sequential placement. But if the olgex® data repairs. Figure 6 illustrates the concepttiipes
continues to grow larger, the benefit of paralghair and its repair.
diminishes and the reliability in random placement Let stripe number n be the number of different
returns to the same level as sequential placement. stripes that can be hosted by one brick. Stripelbmum
The figure also compares the result of replicationdetermines the degree of parallel data repair. When
degree of 3 versus 4. Replication degree of 4 gesvi brick hostingns stripes fails,ng different chunks need
close to four orders of magnitude better reliapilin to be repaired and thus the parallel repair degred
general replication degree of 3 or 4 is sufficptovide mostns. We will determine the optimais shortly. In-
enough reliability for most systems. tuitively, ns should be related to the backbone band-
Overall, no single placement scheme wins in allwidth B such that the backbone bandwidth can be fully
cases. Random placement gains in fast parallelirrepautilized.
but resulting in too many possible placement combin We use random placement of chunks and randomly
tions when the objects are small, while sequentiatelecting chunk repair sources and destinationsato-
placement restricts possible placement combinationage the stripes, which is simple in a distributedi-e
but is much slower in data repair. ronment to allow the parallel repair degree to losec
. . . tons in spite of brick failures and repairs. In additim
5. Stripe Placement for Near-Optimal Reli- managinpg random placement of crilunks, stripe place-

ability ment also needs to manage the grouping of objefris i
Ideally, what we want is the optimal reliabilityqer ~ S{TiPes. The grouping needs to guarantee that vahen
vided by the random placement scheme at its optimd]®V Ot_’]eCt is added into a stripe, every chunk with
object size, but extending it such that the religbi the strlpg should haye enough space to accommodate
remains at the same level even for small objeassiz ON€ replica of the object. To do so, when the stip

To achieve this effect, we need to group small aisje first created, every chunk in thg stripe should- pre
together to make them behave like a large object iflocate enough space for the entire chunk. Otrer-m
terms of placement and repair. Then we can signifid9ément details are omitted here.
cantly reduce the possible placement combinatibas t 5.2 Finding the optimal Ns
the random placement suffers from, while maintagnin]]]
a good repair speed. This is tistripe placement We now need to flnd the optlma4 so that the reli-
scheme we introduce in this section. ability of the system is the highest. To do so, wge

) the analytical framework to calculate the relidbilof
5.1 Stripe placement the system for differents, and then locate thes that

provides the optimal reliability.
BrickA BrickB BrickC B’richD\ BrickE BrickF

9 iglec 9 9 First, for the number of possible placement combi-
[o] e bl L Stripe #0 nations, we haven=nsN/k since each brick hosts
— [r?‘l : = : m———g :’::s::; stripes and each stripe is hostedkbigricks. Second,
=1 = T= Stripe #3 for the repair bandwidth, ideally atl chunks on the
[It | L] 7] || [*] |Stripe#4 failed brick will be repaired by, different pairs of
i - H — . = e sources and destinations, in which case the repair
= — [mm BT [stie# bandwidth isrb(i) = min(B, b-ny). However, with ran-
[e 1 =] Stripe #8 dom chunk placement the repair load may not be:even
= \’T‘J L'_! ,_’: L/ E‘/ Stripe #9 Some bricks may have more chunks to repair than oth
Bl Lost repicas because of brick D crash ers. Thebottleneck brickis the one with the highest
New generated replicas by parallel repair repair load. LetH be the number of stripes to be re-
Repair traffic Healthy replicas paired in the bottleneck brick. We céllng the bottle-
neck load,and denote it ak. We use a Monte-Carlo
Figure 6. Stripe placement and stripe repair. simulation to calculaté, and the result is shown in

Figure 7. The key result is that whagis close toN,

We group s.malll object Tep"cas together to form.athe bottleneck load could be one order of magnitude
largechunk which is the unit for placement and repalr.Iarger than T the load in the ideal case

10

the repair bandwidth is restricted by the backbone
bandwidth so that repair speed has no further im-
provement, but the number of possible placement com-
binations continues to increase msincreases. So for
each backbone bandwidth value, there is an optimal
stripe number to give the beMITTDL. From the plot,

we can see that the beSITTDL values are located
along the ridge in the contour plot, and along this ridge,
the stripe numbemng increases proportionally to the
backbone bandwidth.

Figure 8(b) shows the contour plot MTTDL with
different brick bandwidth and stripe numbers. Similar
to Figure 8(a), we can see that the optifvell TDL
values are also located on the ridge of the plot. How-
ever, in this case, the optimal stripe number is reverse
proportional to the brick bandwidth. Figure 8(c) shows
that the optimal stripes number does not rely on the
system scale.

Therefore, from the three plots, the conclusion we

Given the bottleneck load, we can have the repaiféach is that the optimal stripe numbershould be
time based on the bottleneck load, whichcig/b, Proportional to the backbone bandwidB) reverse-
wherec is the amount of data in a brick, ahds the proportional to the brick bandwidth, and not related
brick bandwidth. Combining this with the repair 6m to the system scals. Based on this result, we propose
calculation in the framework (formula (2)), we havethat the optimal stripe numbeg can be given by/b.
the following repair time formula for the stripeape- In the above three plots, the dash-dotted lines corre-
ment scheme: spond to the stripe numbers wildilb. We can see that

]]] they are all very close to the ridges, i.e., the best
MTTR(i) =T + max[D(i)/ min(B,b n,), cd, / b] MTTDL values.
The formulans=B/b is a “guideline” formula. Given

—A- N=100
-6~ N=1000
— N=10000 | |

10

10 ¢

bottleneck load

10

107 ‘ 2 ‘ 4
10 10
stripe number ng

10 10

Note: The dotted lines represent the ideal cases
where there is no bottleneck brick. The Monte-Carlo
simulation is basically throwing ns balls (chunks) into
N-1 slots (remaining bricks) and look for the slot with
the largest number of balls.

Figure 7. Bottleneck load vs. the stripe number

Plugging in the above formula in the analytical frame-
work, together withm=ngN/k, we can compute the
reliability of the stripe placement scheme.

The results of the analysis are shown here as a s
ries of contour plots (Figure 8). In Figure 8(a), we se
that when the stripe number increases while fixing th
backbone bandwidth (walking up vertically through the
contour), MTTDL increases first because the repair

bandwidth increases when more bricks are involved in

repair. After reaching a peadTTDL drops, because

MTTDL (years) MTTD

a set of system parameters, one can use our analytical

framework and some numerical method to find the true

gptimalns, and the result may be a little different from
/b. However, from our analysis, we see tBdb pro-

é/ides near-optimal system reliability. Thus, the optimal

chunk size isc'b/B as a function of disk bandwidth,
backbone bandwidth and disk capacity.

The recommendation ok=B/b allows a simple and
intuitive explanation. In the ideal situation, pairs of
sources and destinations participate in data repair i

L (years) MTTDL (years)

«» 10M » 10M

«» 10M

0
106

n
n

M
100K
10K
1K
100

-
<

100K
10K

-y

[N
=

[
o
=)

S

T

=
o

number of stripes per brick
number of stripes per brick

=)
Ll

f——3206—10

_——3006———31006——21006|
\6/—10009—]:000%

%\\!v@ifsoow

ON/™)

’.r.’.,

S\b}\JﬂO Q e

O~ 905 ° 0&"%@7
0 1

7

0
10

n

10
- ns:B/b ™M

100K
10
1K
100
10

S

number of stripes per brick

[N

1
backbone bandwidth B (GB/s)

(a) Vary with backbone bandwidth.
MTTF=1000days, b=20MB/s,

c=500GB, k=3, user capacity = 1PB. ¢c=500GB, k=3, usel

brick bandwidth b (MB/s)

(b) Vary with brick bandwidth.
MTTF=1000days, B=3GB/s,

1 00

system scale in user data capacity (PB)

(c) Vary with system scale.
MTTF=1000days, B=3GB/s,

r capacity = 1PB. b=20MB/s, c=500GB, k=3.

Figure 8. Contour plot for system MTTDL

parallel, and each pair can have maximum bandwidth 10° :
of b. If n=B/b, then the overall repair bandwidth is 3
nb=B, which means the repair exactly saturates the
available network bandwidth. This is the best thra¢

can expect. Therefora=B/b provides near optimal

4

5

reliability. 510 § N

With ns=B/b, stripe placement provides much better E] @\
reliability than sequential placement and random = %\
placement. As a numerical example, with our typical —— stripe placement theoretical
setting of B=3GB/s, b=20MB/%=3, c=500GB, and "o stine plucament experimental
total user capacity of 1PB, our optimal stripe ptaent L2l 2 auental placement experimenta ‘
achieves arMTTDL of 9.4110" years, and this does 10* 10° 10°

system scale in user data capacity (TB)

not vary with object size. In contrast, the seqiaént
placement has aMTTDL of 7.66 10 years, and the Note: Each simulation result is computed as the average from 50
random placement hadTTDL values worse than se- simulations, with 99% confidence interval shown in the figure.
guential placement when the average object sifgsss MTTF=30days, B=1GB/s, b=20MB/s, c=500GB, k=3. The artifi-
than a few tens of megabytes, andMETDL is only _Cmal e ofMTE it shorer e UTT DL of e oyster
getting close to the optimal value when the averag@me.

object size is in the gigabyte range, as shownigurie

5. Figure 9. Simulation result on MTTDL compar-

Furthermore, Figure 8 shows that a reasonabléng with the theoretical analysis.

range around the optimal stripe number (e.g. witltin
order of magnitude change) still permits good teka

ity that is close to the optimMTTDL. This means that
ment, while the simulation with small object sizeniot

the guideline oB/b is reasonably robust and may still .) o
9 y y done because the bandwidth allocation calculation i

be applicable even when the network or disks are uph.) hibitivelv sl
graded over the years. this case is prohibitively slow.

5.3 Simulation results 6. Discussion on Correated Failures

For pure random placement, the simulation with
large object size is relatively close to sequerntlate-

To verify our analytical results, we run simulaton So far, our analysis assumes that brick failurgs ar
of a brick storage system to see if the reliabilityindependent of each other. However, correlatedries
matches with the theoretical prediction and ifpsri are frequently observed in practice, because backs
placement indeed provides better reliability. usually from the same manufacturer, and they are op

The simulation is done in an event-driven model.€rated under the same environment with similar sscce
There are two kinds of events pushing the virtimt ~ Patterns. The primary difficulty here is how to rebd
forward. One is brick failure events, which aregtri correlated failures.
gered by exponentially distributed and independenraiiure happens evenly through the timeline
brick failures. The other is stripe repair finistents,
which are triggered at the time when the firstpstri - o .
repair session is finished. When any event occurs (orrelated failure clusters
simulator re-calculates the repair bandwidth foergy events into a smaller window constant low failure rate
remaining stripe repair session based on the laak ; /
backbong bandwidth cons.traints. All stripes hawe th L e e B
same weight when competing for bandwidth. L7 fail interval

Figure 9 shows the results of both the simulation o e e
and the theoretical analysis on stripe placement an s el T P
sequential placement. The main results are: (g)estr <« elvemel% silent %‘
placement is better than sequential placement,(bnd \ ""'”dmen'ﬂe Se""n'q’:j::w |
for stripe placement, simulation results match well 9 !
with theoretical results, while for sequential gaent,
simulation results show much lowdTTDL because

the theoretical analysis on sequential placemenpis Our assumption is that correlated failures do not
timistic. change theMTTF of each individual brick, because

high failure

Figure 10: Correlated failure model.

MTTF is measured in a typical operational environ-
ment.
bricks, their failures are correlated in the setis
when one brick failures, more bricks are likelyfad
soon. Thus, the overall failure behavior is thestdu
ing of failures each separated by a quiet periaih wi
fewer failures.

Accordingly, we convert the failure behavior of the
independent failure model into the behavior of eorr
lated failure model as illustrated in Figure 1(tiddly,
we have a time line spread with independent bradk f
ures. From this time line, for every periodtoheline

However, when looking at a large number of

MTTDL(years)

A C=1PB, B=3GBIs
_e- CF1PB, B=1GB/s

-4~ CF10PB, B=3GB/s
_o- CF10PB, B=1GB/s

0.4 0.6 0.8
correlation degree

0.2

segmentwe squeeze brick failure events proportionally

into a smallevent windovand project them onto a new
timeline. Then after the event window, there islens
window the size of which is the difference of timel
segment vs. event window. In the silent windowre¢he
is no failure. Therefore, in the new correlatedufa
timeline, the failure events are more clustered,tba

overall failure rates remain the same, which mean§e

individual MTTF remains the same.

With this model, we can apply the analysis of
MTTDL easily. First, we define theorrelation degree
r as the proportion of the silent window:= (silent
window length) / (timeline segment length). Thers)
means there is no correlation at all, whemsdsmeans
failures are perfectly correlated and a bunch itfifes
always occur at the same time.

In the correlated timeline, if we drop all the sile

we obtain avirtual timelinewhose time is compressed
to (1+) proportional to the real timeline. In the virtual
timeline failure event rate is 1/f)-times of the real
timeline, i.e., MTTRiua = MTTF(1-r). With MTTR;.
wal W€ can compute the data reliabilMT TDLyirtya in
the virtual timeline. Then we ma@TTDLyina back to
the real timeline by inflating the time with thetica
1/(1+). Thus we geMTTDL= MTTDLyirtya /(1-T).

Figure 11 shows the reliability of the system when
the correlation degree varies from 0 to 1. We cem s
that the reliability of the system drops about ateo of
magnitude fromr=0 to r=0.5, and drops even faster
with higher correlation degree. In actual systeihis
possible to collect past failure statistic to obtan es-
timate on the correlation degree based on theeriagt
behavior of the failures. Then one can use the ebo
model to calculate the reliability of system, oresti-
mate the bandwidth of the root switch needed f@- su
porting a certain level of system reliability.

windows and concatenate all event windows together,

Figure 11: MTTDL when correlation degree
varies. MTTF=1000days, b=20MB/s, c=500GB,
k=3.

7. Related Work

Reliability is one of the key aspects of storage sy
ms, and it has been studied extensively, espetoal
disk arrays like RAID systems [15]. Reliability dias
on disk arrays investigate the impact of disk oigan
tions onMTTDL, and typically use Markov models to
study the system with independent and exponentially
distributed disk failures, e.g. [2] [20]. Our wockn be
viewed as an extension of these studies into Higed
brick storage systems as a generic object store. Th
important new addition to previous models is the-co
sideration of bounded network bandwidth to datairep
Many studies [12][1][8][22][14][18] are on similar
brick storage systems, but their focuses are nahen
systematic study of data reliability. Many of theta
address replica placement issues for various reason
The sequential placement strategy has been widely
used. For example, Petal [12] uses chained dediugte
[10] mainly as a way to improve load balancing, and
many P2P systems such as PAST [17] and CFS [4] use
it to simplify management. GFS [8] uses random
placement to improve data repair performance, but i
does not provide a study on the resulting religbibif
the system. In our paper, we study the tradeofttie
ability between sequential and random placement.

Several works have investigated the impact of rep-
lica placement on availability, not reliability. Farsite

Jl], Douceur and Wattenhofer studies dynamic replic

placement strategies that improve the overall alsdil

ity of files [5][6]. In [18][19], van Renesse andlBei-

der study DHT-based placement (which is categorized
as sequential placement in this paper) and random
placement and their effects on the availabilitydis-
tributed storage system. They use simulation method

and do not consider the effect of available networkneous brick components, and the reliability of ptac

bandwidth on data reliability.

ment schemes that are aware of network topologies.

We have proposed the stripe placement policy Wmheferenc&e

near optimal configuration parameters. Grouping ob-
jects is not a new concept. The 64MB chunk size irf1]
GFS is based on its workload and read/write perform
ance considerations, while the work in [18] groaps
set of objects into volumes but it is not clear hie
number of volumes is determined. This study pointd2l
out that, from a reliability point of view, the ahki size
should be a function of available bandwidth, disk
bandwidth and disk capacity.

Many coding schemes, in particular Reed-Solomon
coding [16], are used in RAID-like storage systems.
We do not incorporate such coding schemes into thﬁ]
analysis of reliability, partly because brick stpeasys-
tems can typically afford more bricks to suppontsie
replication and avoid the complexity and performe&anc
penalty associated with the coding schemes. 5]

Some previous work (e.g. [3]) studies the effect of
correlated failures, but we do not find a generimst
that can facilitate the analysis of system relighiOur
model is simple enough to incorporate into our feam [6]
work for reliability study, but its effectivenesgets to
be further validated in practice.

[7]

With an analytical framework that incorporates [8]
available network bandwidth consideration, we study
the reliability of distributed storage systems watif-
ferent replica placement schemes. We show that botjg]
sequential placement and pure random placement have
their drawbacks and propose the stripe placement
scheme to achieve near-optimal reliability. [10]

We wish that this study could serve as a guideline
for system designers and administrators to deterrain
number of system parameters when building suctk bric[]
storage systems, including the root switch bandwidt
the stripe number, the replication degree, etc.bate
lieve that, even though our calculations are basedn [12]
idealized framework, the recommendations derived
(e.g. usingB/b as the stripe number) are applicable to[13]
many practical situations, because a reasonablgeran
of values around the computed values provide thesa
level of reliability as shown by our results. Fuatinore,
after removing the backbone bandwidth constrah, t [14]
framework should be able to adapt to wide-area-peer
to-peer storage settings.

As the next step, we plan to implement stripe place[15]
ment in BitVault [21], a data retention platformilbu
with a large number of storage bricks. Future nefea
also includes the study on the reliability with drege-

8. Concluding Remarks

A. Adya, W. J. Bolosky, M. Castro, et al, “FARSITE:
Federated, Available, and Reliable Storage forran |
completely Trusted Environment”, iRroc. of the 5th
OSDI, December 2002.

W. A. Burkhard, J. Menon, “Disk Array Storage Sys-
tem Reliability”, in Proc. of Symposium on Fault-
Tolerant Computing1993.

P. Corbett, B. English, A. Goel, et.al., “Row-diagb
parity for double disk failure correction”, iRroc. of
39 Usenix conference on File and Storage Technolo-
gies (FAST'04)April 2004.

F. Dabek, M. F. Kaashoek, D. Karger, et al, “Wide-
area cooperative storage with CF®toc. of the 18
ACM Symposium on Operating System Princjples
2001.

J. R. Douceur and R. P. Wattenhofer. “Competitive
hill-climbing strategies for replica placement indis-
tributed file system”, irProc. of the 1% Symp. on Dis-
tributed ComputingOct. 2001.

J. R. Douceur and R. P. Wattenhofer, “Optimizirg fi
availability in a secure serverless distributee flys-
tem”, in Proc. Of the 281 Symp. on Reliable Distrib-
uted SystemsEEE, 2001

S. Frolund, A. Merchant, Y. Saito, et al, “FAB: ent
prise storage systems on a shoestring”, HOTOS'03.
S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google File System”, ifProc. of the 18 ACM Sympo-
sium on Operating System Principl€xt. 2003

G. A. Gibson, D. F. Nagle, K. Amiri, K., et al. “A
Cost-Effective, High-Bandwidth Storage Architecture
ASPLOS, October, 1998.

H-I. Hsiao and D. J. DeWitt, “Chained declusteriag:
new availability strategy for multiprocessor datsda
machines”, Technical Report CS TR 854, University o
Wisconsin, Madison, June, 1989.

J. Kubiatowicz, D. Bindel, Y. Chen, et al, “Oceam®t
An Architecture for Global-Scale Persistent Stofage
ASPLOS 2000.

E. K. Lee and C. A. Thekkath, “Petal: Distributed-V
tual Disks”, ASPLOS 1996.

Q. Lian, W. Chen, and Z. Zhang, “On the impact of
replica placement to the reliability of distributstbr-
age systems”, Microsoft Research Technical Report,
appear.

J. MacCormick, N. Murphy, M, Najork, et.al, “Box-
wood: Abstractions as the Foundations for Storage |
frastructure”, InProc. of OSDI'04 Dec. 2004.

D. A. Patterson, G. Gibson, R. H. Katz, “A case for
redundant arrays of inexpensive disks (RAID)”, hod?

of the 1988 ACM SIGMOD international conference
on Management of datd09 - 116, 1988.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systemsSoftware ---
Practice and Experien®7(9):995-1012, Sept. 1997.

A. Rowstron and P. Druschel, “Storage management
and caching in PAST, a large scale, persistent-foeer
peer storage utility. IfProc. Of the 18 ACM Symp.
On Operating Systems Princip)e3ctober 2001.

R. van Renesse, F. B. Schneider, “Chain replicgtion
Supporting High Throughout and Availability”, Proc.

of OSDI'04 Dec. 2004.

R. van Renesse, “Efficient Reliable Internet Stefag
Workshop on Dependable Distributed Data Manage-
ment. Oct., 2004.

Q. Xin, E. L. Miller, D. D. E. Long, S. A. BrandT,.
Schwarz, W. Litwin, “Reliability Mechanisms for \ier
Large Storage Systems”, iAroc. of 20th |IEEE/11th
NASA Goddard Conference on Mass Storage Systems
& TechnologiesApr., 2003

Z. Zhang, Q. Lian, S. D. Lin, et al, “BitVault: Adhly
reliable distributed data retention platform”, sutied

for publication.

Z. Zhang, S. D. Lin, Q. Lian, et al, “RepStore: AlfS
Managing and Self-Tuning Storage Backend with
SmartBricks”, InProc. Of the first IEEE International
Conference on Autonomic Computifday 2004.

Appendix

A. Main symbols used in the paper

symbol Sample values
MTTDL Mean time to data loss of thel~1Q years
system
MTTDLy, | Mean time to data loss for ja>10° years
i specific object
k Replication degree 3
Site-wide number of bricks 60~600,00(
m Possible replica placementN~C(N,K
combinations
B Backbone bandwidth 3GB/s
b Brick bandwidth 20MB/s
MTTF Mean time to permanent failunre1000 days
of a brick.
c Average amount of data storedb00GB
in a brick
S Average size for a single obje¢t4KB~10GB
T Detection delay, from the time 10 seconds
a brick crashes to the time
other bricks are notified about
the failure
Ns Number of stripes hosted dgnk~C(N,k-1)

one brick

Correlation degree of failures

0~1

