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Abstract 

Data reliability of distributed brick storage sys-
tems critically depends on the replica placement policy, 
and the two governing forces are repair speed and 
sensitivity to multiple concurrent failures. In this paper, 
we provide an analytical framework to reason and 
quantify the impact of replica placement policy to sys-
tem reliability. The novelty of the framework is its con-
sideration of the bounded network bandwidth for data 
maintenance. We apply the framework to two popular 
schemes, namely sequential placement and random 
placement, and show that both have drawbacks that 
significantly degrade data reliability. We then propose 
the stripe placement scheme and find the near-optimal 
configuration parameter such that it provides much 
better reliability. We further discuss the possibility of 
addressing the problem of correlated brick failures in 
our analytical framework. 

1. Introduction 

Storage solution using clustered “smart bricks” con-
nected with LAN is becoming an increasingly attrac-
tive alternative to the more expensive SAN (storage-
area network) solution. Some of the exemplary systems 
include Petal [11], NASD [9], GFS [8], FAB [7], Rep-
store [22], and Boxwood [14]. A smart brick is essen-
tially a stripped down PC with a CPU, memory, net-
work card, and a large disk. For these systems, provid-
ing strong data reliability is confronted with new 
challenges, because inexpensive commodity disks are 
more prone to permanent failures and failures are far 
more frequent in large systems. To guard against per-
manent loss of data, replication is often employed. If 
some replicas are lost due to disk failures, other repli-
cas are still available and can be used to regenerate 
new replicas to maintain the same level of reliability.  

Replica placement refers to the strategy of placing 
replicas among the participating bricks. The two 
widely used replica placement schemes are staggered 
sequential placement like in chained declustering [10] 
used by Petal [12] as well as in many proposals based 

on DHT (distributed hash table) [4][17], and the totally 
random placement like in GFS [8]. Mirroring can be 
viewed as a degenerated special case of sequential 
placement. 

Replica placement can significantly affect the reli-
ability of the system due to two factors. The first is the 
repair speed: the more bricks participate in the data 
repair process, subject to the available network band-
width, the sooner that the reliability level returns. The 
second is the sensitivity to multiple and concurrent 
failures: the more permutation choices that the place-
ment generates, the more likely a random failure of 
several bricks will wipe out some data permanently. 
These two factors are conflicting in nature. For in-
stance, the random placement has very fast repair 
speed, but is prone to concurrent failures, whereas the 
sequential placement is precisely the opposite. 

The contributions of the paper are mainly twofold. 
First, we provide a systematic framework not only to 
identify, but also to reason and quantify the impact of 
the replica placement policy to system reliability. In 
particular, our result points out that under different 
parameters, random and sequential placement can have 
vastly different results. Our framework captures the 
bounded available network bandwidth for data mainte-
nance, something no other models have done. 

Second, the insight that we gain from the first result 
leads us to propose the stripe placement scheme which 
attempts to achieve the best balance between the two 
competing forces. While it is difficult to derive a closed 
form, we do provide the near-optimal configuration 
parameter verified with simulations. This is the second 
contribution of this paper. 

Moreover, we also sketch a proposal to extend our 
framework to deal with correlated failures that fre-
quently occur in practice. 

The roadmap of the paper is as follows. In Section 2, 
we discuss the replica placement schemes and the data 
reliability metric. In Section 3, we present the analyti-
cal framework for the reliability study. In Section 4, we 
apply the framework to the two placement schemes and 
compare the results. In Section 5, we describe the 



 

stripe placement scheme, and find the near-optimal 
parameter for the scheme. We discuss how to deal with 
correlated failures in Section 6. Related work is sum-
marized in Section 7, and we conclude the paper in 
Section 8. There are a lot of symbols are using in this 
paper, we put also gives symbol table in Appendix A. 

2. Replica Placement and Reliability Metric 

Without loss of generality, we consider an ordered 
array of N bricks on which replicas are placed. The 
number of replicas of an object is called the replication 
degree of the object, and it is denoted by k. Replication 
degree may differ from object to object, but for simplic-
ity we assume all objects have the same k. The respon-
sibility of replica placement is to designate the bricks 
on which the replicas are hosted. All other issues, such 
as the interface of the system, are orthogonal to the 
reliability study.  

Each individual brick may fail permanently and lose 
all replicas stored on the brick. In this paper, we equate 
brick failures with disk failures, since disk failures 
ultimately cause data loss. When a brick fails, to keep 
data reliability of the system at the same level, the sys-
tem needs to automatically regenerate the lost replicas 
at the remaining bricks. This replica regeneration 
process is called data repair.  

2.1 Data reliability metric MTTDL 

To measure the data reliability of a system, we use 
the metric MTTDL – mean time to data loss in the en-
tire system. MTTDL indicates, after the system is 
loaded with data objects, how long on average the sys-
tem can sustain before it permanently loses the first 
data object in the system. This is a metric widely used 
in storage literature, e.g. on RAID storage [2].1 

There are two important factors that affect data reli-
ability. The first one is the speed of data repair. Fast 
data repair means that the lost replicas are likely to be 
repaired before further brick failures, so it reduces the 
time window in which concurrent brick failures occur 
and wipe out all replicas of some object.  

The second factor is the likelihood of data loss when 
concurrent brick failures do occur. When k random 
bricks fail concurrently in the system, the likelihood 
that some object whose k replicas are located on the k 
failed bricks depends on the placement scheme used, as 
we will discuss shortly. In general, the more likely the 

                                                
1 One may also consider the amount of data loss when it happens. How-
ever, when the goal of a storage system is to provide nearly no-data-loss 
reliability, MTTDL is a more important metric than the amount of data 
loss. Thus the paper focuses on the analysis of MTTDL. 

concurrent brick failures happen to wipe out all repli-
cas of an object, the less reliable the system is.  

2.2 Sequential placement 

Sequential placement is simple in nature: one of the 
brick acts as the lead brick, and the k replicas are 
placed on the lead brick and its k-1 followers.  This is 
what the chained declustering [10] does and is em-
ployed in Petal [11]. This scheme is also a common 
strategy in peer-to-peer wide-area storage systems like 
CFS [4] and PAST [17], in which the lead brick is 
typically identified by the hash of the object.  

With sequential placement, when a brick fails, the k 
neighboring bricks on each side of the failed brick can 
participate in brick repair (Figure 1). The limited par-
allel repair degree leads to slow repair speed, which 
then negatively affects the data reliability of the system. 

However, the restrictive nature of placement reduces 
the sensitivity to concurrent failures. If and only if k 
simultaneous failures occur on k consecutive bricks in 
the ordered array can any object be lost. This is 
unlikely when N is much larger than k. Thus, sequen-
tial placement has a low likelihood of data loss when 
concurrent failures occur, which improves data reli-
ability. 

 

Note: Replication degree is 3. When brick 3 fails, 
data repair can be carried out as brick 1 copying 
Dataa to brick 4, brick 2 copying Datab to brick 5, 
and brick 4 copying Datac to brick 6. 

Figure 1. Data repair in sequential placement. 

2.3 Random placement 

In random placement, replicas are placed randomly 
among the N bricks, and this is used in the work of 
[8][19]. 2 The main objective here is to improve the 
speed of data repair. With random placement, when a 
brick fails, the replicas on the failed brick can be found 
on many other bricks, and thus many bricks can par-
ticipate in data repair in parallel, resulting in faster 

                                                
2 An indexing scheme is needed for random placement to access all 
objects in the system. However, indexing is orthogonal to our study of 
reliability, so we will not discuss it in detail.  



 

data repair speed. This is its main advantage over se-
quential placement in improving data reliability.  

However, crashing k random bricks will likely re-
move all the replicas of some objects with random 
placement. In the extreme case when there is a large 
volume of objects in the system and therefore the actual 
placement choices have exhausted all possible combi-
nations, any k crashes cause data loss. High sensitivity 
to multiple and concurrent failures, therefore, is the 
drawback of the random placement scheme. 

It is intuitive to see that neither placement scheme 
is perfect. As we will reveal in Section 4, under differ-
ent circumstances their difference can be dramatic. 

3. Analytical Framework 

In this section, we present the analytical framework 
for the data reliability analysis. The framework shows 
how to derive MTTDL from known system parameters. 
This framework can be applied to different object 
placement schemes, as we will show in the next section.  

The novelty of the framework is its consideration of 
the bounded network bandwidth available for data re-
pair, which directly affects data repair speed.  

3.1 System model for analysis 

We consider a system with N bricks and the replica-
tion degrees of all objects are k. The average amount of 
data stored on each brick is c. We assume a reasonable 
amount of free space on each brick for data repair. 
Brick failures follow an exponential distribution with 
MTTF (mean time to failure) as its mean. We first as-
sume that each brick fails independently, and later we 
will consider a model for correlated brick failures. We 
do not model transient failures of bricks that only affect 
data availability but not affect data loss. When a brick 
fails, we assume a new brick is added into the system 
immediately to keep the system scale at N all the time. 

All bricks are connected in a LAN with a root 
switch. The network provides certain bandwidth for 
data repair traffic, and the bound of which is given by 
B, which is called the backbone bandwidth. The back-
bone bandwidth can be viewed as a certain percentage 
of the bandwidth of the root switch that is allowed for 
data repair traffic, because in many simple topologies, 
all (or nearly all) data repair traffic goes through the 
root switch.  

We do not separately consider network failures. A 
network failure does not cause data loss directly, but it 
may reduce the data repair speed, and thus affect data 
reliability. We fold this aspect into the available data 
repair bandwidth B. 

3.2 Analysis 

3.2.1. Introducing MTTDLobj. To conduct the analysis 
for MTTDL, we first introduce an intermediate metric 
MTTDLobj, which is the mean time to data loss for an 
arbitrary object. MTTDLobj measures the data reliabil-
ity of an individual object stored in the system. If the 
system contains m objects, and these m objects have 
independent data loss distributions, then we have 
MTTDL = MTTDLobj / m. Intuitively, this is because 
that each object has a data loss rate of 1/MTTDLobj, and 
when they are considered together in a system, the total 
data loss rate is m/MTTDLobj since their individual data 
loss behaviors are independent. 

Of course, when object replicas are placed in the 
system, their data loss behaviors depend on the failures 
of the bricks, and thus may not be independent of each 
other. In particular, if the replicas of two objects are 
co-located at the same set of bricks, their data loss be-
haviors are perfectly correlated. In this case, they 
should be considered as one object instead of two inde-
pendent objects. 

For the above reason, we only consider objects 
whose replica placements are different. Let m be the 
total number of different replica placement combina-
tions under a placement scheme. We thus have 3 

MTTDL = MTTDLobj / m.  (1) 
In a system with N bricks, m could be as large as 

C(N,k).4  

3.2.2. Markov Chain Model. To analyze MTTDLobj, 
we introduce a Markov model as in Figure 2 to model 
the evolution of the system with brick failures and data 
repair. In the model, state i represents the state of the 
system where exactly i bricks have failed, and the lost 
replicas on the failed bricks have not been completely 
repaired. 

The arcs in the figure represent the transitions be-
tween different states in the system. From state i to i+1, 
one more brick failure occurs, and this could occur on 
any of the N-i remaining bricks. Thus, the rate of tran-
sition is (N-i)/MTTF, since the brick failures are inde-
pendent. Transition from state i to state 0 represents 

                                                
3 The formula is still an approximation, because different objects may 
have some but not all their replicas co-located on the same set of bricks 
and thus their data loss behaviors are correlated. However, such co-
locations are dictated by the replication degree k. Thus, when the system 
scale N is much larger than the replication degree k, the correlated data 
loss of objects caused by partial co-locations can be ignored. For sequen-
tial placement, we compared the approximation with an accurate analy-
sis and the result shows that the approximation matches with the accu-
rate analysis very well. 
4 C(x,y) denotes the total number of combinations of picking y objects 
from x objects. 



 

that data repair is completed before a new brick fails.  
Let MTTR(i) denote the mean time to repair all the 
failed replicas in state i. Thus the transition rate from 
state i to state 0 is 1/MTTR(i). MTTR(i) depends on the 
size of data to be repaired and the available bandwidth 
for repair, and it will be determined shortly. In the next 
section, we will show the advantage of random place-
ment over sequential placement in that random place-
ment has a much smaller MTTR(i). 

 

Figure 2. Markov model for reliability analysis 

The Markov model of Figure 2 assumes that there is 
no transition from state i back to state j with 0<j<i, 
which means that data repair for all failed bricks com-
plete at the same time. In reality, data repair for a brick 
that failed early is likely to be completed early, even 
without centralized scheduling of data repair. Hence 
the assumption is a conservative one.  

The Markov model of Figure 2 models the evolution 
of the entire storage system, as opposed to other models 
(e.g. [20]) that only model the evolution of one object. 
The reason is that in our environment, data repair traf-
fic is limited by the backbone bandwidth. Thus, more 
brick failures are likely to slow down data repair be-
cause more data repair traffic are sharing the limited 
bandwidth. Therefore, we have to look at the state of 
the entire system to determine the speed of data repair. 

3.2.3. Deriving MTTDLobj. First, we define MTBF(i) 
to be the mean time between two consecutive occur-
rences of state i in the Markov model. Each time when 
the system is in state i, there is a chance that a particu-
lar object is lost. We denote L(i) as the probability that 
the object is lost when i bricks fail concurrently. We 
then have the following formula to compute MTTDLobj. 

11 ])()([ −
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The reasoning of the above formula is as follows. We 
consider a stochastic process where the event is an ob-
ject being lost, and we assume that as soon as the ob-

ject is lost, a new object is generated with exactly the 
same probability distribution of the time to data loss. 
Let N(t) be the number of object loss events by time t. 
Thus we have  
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Let N(i,t) be the number of times state i appears by 
time t. Each time state i appears, with probability L(i) 
the object is lost, so when considering state i, the event 
of object loss by time t occurs N(i,t)·L(i) times. When 
summing up all the different states together, we have  ∑

=
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Moreover, by the definition of MTBF(i), we have 
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Plug in (4) and (5) in to (3), we thus obtain the formula 
in (2). 

Probability L(i) is easy to compute. An object with 
replication degree k can be located on C(N,k) possible 
combinations of k bricks, where N is the total number 
bricks. When i bricks fail concurrently, totally C(i,k) 
combinations will cause data loss. Thus the probability 
of losing the object when i bricks fail is C(i,k) / C(N,k). 

 

Figure 3. Extracting timing period for state i-1 
for the derivation of MTBF(i). 

We now need to derive MTBF(i). To do so, consider 
a continuous timeline separated by different time seg-
ments corresponding to different states of the system 
(Figure 3). Based on the Markov model, on the time 
line a period of state i-1 is followed either by a period 
of state i or a period of state 0. We extract the time 
period for state i-1 out and put them next to each other 
to build a new time line (Figure 3). That is, the new 
timeline only records the period when the system stays 
in state i-1. In the new timeline, the boundary of each 
period corresponds to either the transition from state i-
1 to state i, or the transition from state i-1 to state 0. 
From one transition to state i to the next transition to 



 

state i, one of the remaining N-i+1 bricks fail. Since 
brick failures are memoryless, we can simply concate-
nate the time segments of state i-1 together in the new 
timeline without changing its stationary probabilistic 
behavior. Therefore, the mean time between two transi-
tions to state i in the new timeline is MTTF/(N-i+1).  

Let P(i) be the probability of the system staying in state 
i. Therefore, the new timeline we constructed only cor-
responds to the P(i-1) portion of the original timeline. 
In other words, when we match the period between two 
transitions to state i in the new timeline back to the 
original timeline, the period is amplified by a factor of 
1/P(i-1). Hence, in the original timeline, the mean time 
between two occurrences of state i is 

)1()1(
)(

−⋅+−
=

iPiN

MTTF
iMTBF . 

The next calculation is for probability P(i). This is 
given by the fact that in the equilibrium state of the 
Markov model, the total incoming transition rate must 
be equal to the total outgoing transition rate. The for-
mulas are as follows. 
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3.2.4. Deriving MTTR(i). MTTR(i) depends on both 
the amount of data to repair and repair bandwidth. Let 
D(i) and rb(i) be the amount of data to repair and the 
repair bandwidth in state i, respectively. Let T be the 
time to detect a failure in the system (10sec is used for 
all analysis and simulation). Then  

MTTR(i)= T + D(i)/rb(i). (6) 

The amount of data to repair D(i) depends on both c 
(the amount of data in the last failed brick), and the 
amount of the un-repaired data ur(i) left from the pre-
vious state i-1.  

ciuriD += )()( . 

The amount of un-repaired data left from the previ-
ous state ur(i) depends on (a) the total amount of the 
previous state’s data to be repaired D(i-1), (b) the mean 
time to the next failure in the previous state mf(i-1),  
and (c) the previous state’s repair bandwidth rb(i-1).   −⋅−≤−
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In state i-1, the mean time to next failure mf(i-1) is 
MTTF/(N-i+1). So we have 

ciNMTTFirbiDiD ++−⋅−−−= ]0),1/()1()1(max[)(  

Once rb(i) is known, D(i) can be calculated itera-
tively by the above formula. 

The repair bandwidth rb(i) at state i varies with dif-
ferent placement schemes. In the next section we will 
determine this value for both sequential placement and 
random placement.  

4. Comparing Sequential Placement with 
Random Placement 

The previous section provides the general frame-
work to analyze the data reliability of a distributed 
brick storage system with a bounded backbone repair 
bandwidth. The two terms undecided in the analysis 
are: (a) m, the possible replica placement combinations 
in the system; and (b) rb(i), repair bandwidth at state i. 
It is not hard to see that the larger the m, the worse the 
data reliability, while the larger the rb(i), the faster the 
data repair can be completed and thus the better the 
data reliability.  

Table 1. Key differentiating quantities for se-
quential placement and random placement 

 m rb(i) 
Sequential  N )2/,min( ikbB ⋅⋅  
Random ))/()(),,(min( skcNkNC ⋅⋅  )2/)(,min( iNbB −⋅  

These two terms vary among different placement 
schemes. In this section, we determine the two terms 
for both sequential placement and random placement 
and compute the reliability of the two schemes. Table 1 
lists the results and the explanation follows, where s 
denotes the average object size, and b denotes the brick 
bandwidth. 

4.1 Sequential placement 

In sequential placement, replicas are restricted to be 
placed on k consecutive bricks in the ordered array of 
bricks. This restriction leads to only N possible place-
ment combinations, i.e. m=N, which benefits the reli-
ability of the system.  

To calculate the repair bandwidth, let b be the maxi-
mum bandwidth of a brick. When one brick fails, the 
replicas on the failed brick need to be regenerated on 
the k consecutive bricks after the failed brick. So the 
repair bandwidth could reach b·k. However, among 
these k bricks, at least one brick would also serve as the 
source for data repair (e.g., brick 4 in Figure 1), bring-
ing the effective bandwidth only to a half, i.e. b·k/2. 
When i concurrent failures occur, this gives b·k·i/2 (we 
ignore the situation when multiple failures are within 
the range of k, and this makes the result optimistic). 
Also, the maximum repair bandwidth cannot exceed 
the backbone bandwidth B. Therefore, we have  



 

)2/,min()( ikbBirb ⋅⋅= . 

4.2 Random placement 

In random placement, replicas are scattered ran-
domly among the bricks in the system. When one brick 
fails, many other replicas contain the replicas that are 
lost on the failed brick. So many replicas can act as the 
source of data repair, vastly bringing up the degree of 
parallel repair and hence the repair bandwidth. 

Quantitatively, the repair bandwidth of the random 
placement scheme is given by rb(i)=min(B, b(N-i)/2). 
The term b(N-i)/2 means that when a brick fails, half 
of the remaining bricks contain the replicas need to be 
generated, and they copy the replicas to the other half 
of the bricks, which is a good-case scenario but can be 
closely approximated.  

Comparing rb(i) of the two schemes as listed in 
Table 1, it is clear that the repair bandwidth of the ran-
dom placement is much higher than that of sequential 
placement, for relatively small i’s that are mostly rele-
vant to the data reliability. This is the advantage of the 
random placement scheme. 

For the possible placement combination m, it de-
pends on the number of objects, which is determined 
by the size of the object in our environment. Let s de-
note the average size of an object in the system. When 
the system has N bricks with the amount of data stored 
on each brick being c and the replication degree of k, 
the number of objects in the system is N·c/(k·s). Thus, 
the possible placement combination m is given by  

))/(),,(min( skcNkNC ⋅⋅ .5 This value could be much 

larger than N, the corresponding value of m in sequen-
tial placement, especially when the object size is small. 
This is the major drawback of the random placement 
scheme that significantly reduces the reliability of the 
system. 

4.3 Comparison 

Using the result in Table 1, we can calculate the 
MTTDL given a set of system configuration parameters. 
Figure 4 shows the analytical result comparing Se-
quential placement with random placement.  

The figure shows several results. First, after the sys-
tem scale passes a certain point, all schemes essentially 
stop working: bricks fail so frequently that, with the 
network bandwidth staying the same, data repair can-
not keep up with the brick failures, and the data reli-
ability drops significantly. This means that given a 

                                                
5 More rigorously, m is the expected number of possible placement 
combinations for random placement, and it is slightly smaller than 

))/(),,(min( skcNkNC ⋅⋅ . We ignore this minor difference in our calcula-

tion. 

certain backbone bandwidth, the system has a scalabil-
ity limit. 

Second, given the same user capacity, random 
placement is sensitive to object sizes. The sequential 
placement scheme is better than random placement for 
small object size but is worse than that with large ob-
ject size. 
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Note: The user data capacity of the system is c·N/k. 
MTTF=1000days, k=3, B=3GB/s, b=20MB/s, 
c=500GB.The object size of 4KB in random place-
ment is when m reaches C(N,k). 

Figure 4. MTTDL of a system vs. the system 
scale, with sequential placement and random 
placement.  
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Note: The user capacity of the system is fixed at 
1PB=1000TB. Other system parameters are the 
same as in Figure 4. 

Figure 5. Comparing sequential placement 
with random placement when varying object 
size.  

Figure 5 further illustrates the effect of object size 
on the reliability of the system under the same system 
scale. In sequential placement, reliability is not af-
fected by object size, because data loss is determined 
only by the concurrent failures of k consecutive bricks. 
However, in random placement small object size means 
a large number of objects, and thus they are more likely 



 

to exhaust the possible placement combinations, giving 
low reliability. When the object size is large, the possi-
ble combinations are small, and the benefit of parallel 
data repair wins over and thus the data reliability is 
better than sequential placement. But if the object size 
continues to grow larger, the benefit of parallel repair 
diminishes and the reliability in random placement 
returns to the same level as sequential placement. 

The figure also compares the result of replication 
degree of 3 versus 4. Replication degree of 4 provides 
close to four orders of magnitude better reliability. In 
general replication degree of 3 or 4 is suffice to provide 
enough reliability for most systems. 

Overall, no single placement scheme wins in all 
cases. Random placement gains in fast parallel repair 
but resulting in too many possible placement combina-
tions when the objects are small, while sequential 
placement restricts possible placement combinations 
but is much slower in data repair. 

5. Stripe Placement for Near-Optimal Reli-
ability 

Ideally, what we want is the optimal reliability pro-
vided by the random placement scheme at its optimal 
object size, but extending it such that the reliability 
remains at the same level even for small object sizes. 
To achieve this effect, we need to group small objects 
together to make them behave like a large object in 
terms of placement and repair. Then we can signifi-
cantly reduce the possible placement combinations that 
the random placement suffers from, while maintaining 
a good repair speed. This is the stripe placement 
scheme we introduce in this section. 

5.1 Stripe placement 

 

Figure 6. Stripe placement and stripe repair. 

We group small object replicas together to form a 
large chunk, which is the unit for placement and repair. 

The sizes of the chunks are the same and will be de-
termined later. The k replicated chunks of the same set 
of objects form a set called a stripe. A stripe migrates 
among the bricks in the system with brick failures and 
data repairs. Figure 6 illustrates the concept of stripe 
and its repair.  

Let stripe number ns be the number of different 
stripes that can be hosted by one brick. Stripe number 
determines the degree of parallel data repair. When a 
brick hosting ns stripes fails, ns different chunks need 
to be repaired and thus the parallel repair degree is at 
most ns. We will determine the optimal ns shortly. In-
tuitively, ns should be related to the backbone band-
width B such that the backbone bandwidth can be fully 
utilized.  

We use random placement of chunks and randomly 
selecting chunk repair sources and destinations to man-
age the stripes, which is simple in a distributed envi-
ronment to allow the parallel repair degree to be close 
to ns in spite of brick failures and repairs. In addition to 
managing random placement of chunks, stripe place-
ment also needs to manage the grouping of objects into 
stripes. The grouping needs to guarantee that when a 
new object is added into a stripe, every chunk within 
the stripe should have enough space to accommodate 
one replica of the object. To do so, when the stripe is 
first created, every chunk in the stripe should pre-
allocate enough space for the entire chunk. Other man-
agement details are omitted here. 

5.2 Finding the optimal ns 

We now need to find the optimal ns so that the reli-
ability of the system is the highest. To do so, we use 
the analytical framework to calculate the reliability of 
the system for different ns, and then locate the ns that 
provides the optimal reliability. 

First, for the number of possible placement combi-
nations, we have m=ns·N/k, since each brick hosts ns 
stripes and each stripe is hosted by k bricks. Second, 
for the repair bandwidth, ideally all ns chunks on the 
failed brick will be repaired by ns different pairs of 
sources and destinations, in which case the repair 
bandwidth is rb(i) = min(B, b·ns). However, with ran-
dom chunk placement the repair load may not be even: 
Some bricks may have more chunks to repair than oth-
ers. The bottleneck brick is the one with the highest 
repair load. Let H be the number of stripes to be re-
paired in the bottleneck brick. We call H/ns the bottle-
neck load, and denote it as lb. We use a Monte-Carlo 
simulation to calculate lb, and the result is shown in 
Figure 7. The key result is that when ns is close to N, 
the bottleneck load could be one order of magnitude 
larger than 1/ns, the load in the ideal case. 
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Note: The dotted lines represent the ideal cases 
where there is no bottleneck brick. The Monte-Carlo 
simulation is basically throwing ns balls (chunks) into 
N-1 slots (remaining bricks) and look for the slot with 
the largest number of balls. 

Figure 7. Bottleneck load vs. the stripe number  

Given the bottleneck load, we can have the repair 
time based on the bottleneck load, which is c·lb/b, 
where c is the amount of data in a brick, and b is the 
brick bandwidth. Combining this with the repair time 
calculation in the framework (formula (2)), we have 
the following repair time formula for the stripe place-
ment scheme: 

]/),,min(/)(max[)( blcnbBiDTiMTTR bs ⋅⋅+=  

Plugging in the above formula in the analytical frame-
work, together with m=ns·N/k, we can compute the 
reliability of the stripe placement scheme.  

The results of the analysis are shown here as a se-
ries of contour plots (Figure 8). In Figure 8(a), we see 
that when the stripe number increases while fixing the 
backbone bandwidth (walking up vertically through the 
contour), MTTDL increases first because the repair 
bandwidth increases when more bricks are involved in 
repair. After reaching a peak MTTDL drops, because 

the repair bandwidth is restricted by the backbone 
bandwidth so that repair speed has no further im-
provement, but the number of possible placement com-
binations continues to increase as ns increases. So for 
each backbone bandwidth value, there is an optimal 
stripe number to give the best MTTDL. From the plot, 
we can see that the best MTTDL values are located 
along the ridge in the contour plot, and along this ridge, 
the stripe number ns increases proportionally to the 
backbone bandwidth. 

Figure 8(b) shows the contour plot of MTTDL with 
different brick bandwidth and stripe numbers. Similar 
to Figure 8(a), we can see that the optimal MTTDL 
values are also located on the ridge of the plot. How-
ever, in this case, the optimal stripe number is reverse-
proportional to the brick bandwidth. Figure 8(c) shows 
that the optimal stripes number does not rely on the 
system scale.  

Therefore, from the three plots, the conclusion we 
reach is that the optimal stripe number ns should be 
proportional to the backbone bandwidth B, reverse-
proportional to the brick bandwidth b, and not related 
to the system scale N. Based on this result, we propose 
that the optimal stripe number ns can be given by B/b. 
In the above three plots, the dash-dotted lines corre-
spond to the stripe numbers with B/b. We can see that 
they are all very close to the ridges, i.e., the best 
MTTDL values. 

The formula ns=B/b is a “guideline” formula. Given 
a set of system parameters, one can use our analytical 
framework and some numerical method to find the true 
optimal ns, and the result may be a little different from 
B/b. However, from our analysis, we see that B/b pro-
vides near-optimal system reliability. Thus, the optimal 
chunk size is c·b/B as a function of disk bandwidth, 
backbone bandwidth and disk capacity. 

The recommendation of ns=B/b allows a simple and 
intuitive explanation. In the ideal situation, ns pairs of 
sources and destinations participate in data repair in 
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(a) Vary with backbone bandwidth. 
MTTF=1000days, b=20MB/s, 
c=500GB, k=3, user capacity = 1PB. 
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(b) Vary with brick bandwidth. 
MTTF=1000days, B=3GB/s, 
c=500GB, k=3, user capacity = 1PB. 
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(c) Vary with system scale. 
MTTF=1000days, B=3GB/s, 
b=20MB/s, c=500GB, k=3. 

Figure 8. Contour plot for system MTTDL 



 

parallel, and each pair can have maximum bandwidth 
of b. If ns=B/b, then the overall repair bandwidth is 
nsb=B, which means the repair exactly saturates the 
available network bandwidth. This is the best that one 
can expect. Therefore ns=B/b provides near optimal 
reliability.  

With ns=B/b, stripe placement provides much better 
reliability than sequential placement and random 
placement. As a numerical example, with our typical 
setting of B=3GB/s, b=20MB/s, k=3, c=500GB, and 
total user capacity of 1PB, our optimal stripe placement 
achieves an MTTDL of 9.41·104 years, and this does 
not vary with object size. In contrast, the sequential 
placement has an MTTDL of 7.66·103 years, and the 
random placement has MTTDL values worse than se-
quential placement when the average object size is less 
than a few tens of megabytes, and its MTTDL is only 
getting close to the optimal value when the average 
object size is in the gigabyte range, as shown in Figure 
5.  

Furthermore, Figure 8 shows that a reasonable 
range around the optimal stripe number (e.g. within an 
order of magnitude change) still permits good reliabil-
ity that is close to the optimal MTTDL. This means that 
the guideline of B/b is reasonably robust and may still 
be applicable even when the network or disks are up-
graded over the years.  

5.3 Simulation results 

To verify our analytical results, we run simulations 
of a brick storage system to see if the reliability 
matches with the theoretical prediction and if stripe 
placement indeed provides better reliability. 

The simulation is done in an event-driven model. 
There are two kinds of events pushing the virtual time 
forward. One is brick failure events, which are trig-
gered by exponentially distributed and independent 
brick failures. The other is stripe repair finish events, 
which are triggered at the time when the first stripe 
repair session is finished. When any event occurs, 
simulator re-calculates the repair bandwidth for every 
remaining stripe repair session based on the brick and 
backbone bandwidth constraints. All stripes have the 
same weight when competing for bandwidth. 

Figure 9 shows the results of both the simulation 
and the theoretical analysis on stripe placement and 
sequential placement. The main results are: (a) stripe 
placement is better than sequential placement, and (b) 
for stripe placement, simulation results match well 
with theoretical results, while for sequential placement, 
simulation results show much lower MTTDL because 
the theoretical analysis on sequential placement is op-
timistic. 
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Note: Each simulation result is computed as the average from 50 
simulations, with 99% confidence interval shown in the figure. 
MTTF=30days, B=1GB/s, b=20MB/s, c=500GB, k=3. The artifi-
cially small value of MTTF is to shorten the MTTDL of the system 
so that the simulations can end within a reasonable amount of 
time. 

Figure 9. Simulation result on MTTDL compar-
ing with the theoretical analysis.  

For pure random placement, the simulation with 
large object size is relatively close to sequential place-
ment, while the simulation with small object size is not 
done because the bandwidth allocation calculation in 
this case is prohibitively slow. 

6. Discussion on Correlated Failures 

So far, our analysis assumes that brick failures are 
independent of each other. However, correlated failures 
are frequently observed in practice, because bricks are 
usually from the same manufacturer, and they are op-
erated under the same environment with similar access 
patterns. The primary difficulty here is how to model 
correlated failures.  

 

Figure 10: Correlated failure model. 

Our assumption is that correlated failures do not 
change the MTTF of each individual brick, because 



 

MTTF is measured in a typical operational environ-
ment.  However, when looking at a large number of 
bricks, their failures are correlated in the sense that 
when one brick failures, more bricks are likely to fail 
soon. Thus, the overall failure behavior is the cluster-
ing of failures each separated by a quiet period with 
fewer failures. 

Accordingly, we convert the failure behavior of the 
independent failure model into the behavior of corre-
lated failure model as illustrated in Figure 10. Initially, 
we have a time line spread with independent brick fail-
ures. From this time line, for every period of timeline 
segment, we squeeze brick failure events proportionally 
into a small event window and project them onto a new 
timeline. Then after the event window, there is a silent 
window the size of which is the difference of timeline 
segment vs. event window. In the silent window, there 
is no failure. Therefore, in the new correlated failure 
timeline, the failure events are more clustered, but the 
overall failure rates remain the same, which means 
individual MTTF remains the same. 

With this model, we can apply the analysis of 
MTTDL easily. First, we define the correlation degree 
r as the proportion of the silent window: r = (silent 
window length) / (timeline segment length). Thus, r= 0 
means there is no correlation at all, whereas r=1 means 
failures are perfectly correlated and a bunch of failures 
always occur at the same time. 

In the correlated timeline, if we drop all the silent 
windows and concatenate all event windows together, 
we obtain a virtual timeline whose time is compressed 
to (1-r) proportional to the real timeline. In the virtual 
timeline failure event rate is 1/(1-r) times of the real 
timeline, i.e., MTTFvirtual = MTTF·(1-r). With MTTFvir-

tual we can compute the data reliability MTTDLvirtual in 
the virtual timeline. Then we map MTTDLvirtual back to 
the real timeline by inflating the time with the ratio 
1/(1-r). Thus we get MTTDL= MTTDLvirtual /(1-r).  

Figure 11 shows the reliability of the system when 
the correlation degree varies from 0 to 1. We can see 
that the reliability of the system drops about an order of 
magnitude from r=0 to r=0.5, and drops even faster 
with higher correlation degree. In actual systems, it is 
possible to collect past failure statistic to obtain an es-
timate on the correlation degree based on the clustering 
behavior of the failures. Then one can use the above 
model to calculate the reliability of system, or to esti-
mate the bandwidth of the root switch needed for sup-
porting a certain level of system reliability. 
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Figure 11: MTTDL when correlation degree 
varies. MTTF=1000days, b=20MB/s, c=500GB, 
k=3. 

7. Related Work 

Reliability is one of the key aspects of storage sys-
tems, and it has been studied extensively, especially for 
disk arrays like RAID systems [15]. Reliability studies 
on disk arrays investigate the impact of disk organiza-
tions on MTTDL, and typically use Markov models to 
study the system with independent and exponentially 
distributed disk failures, e.g. [2] [20]. Our work can be 
viewed as an extension of these studies into distributed 
brick storage systems as a generic object store. The 
important new addition to previous models is the con-
sideration of bounded network bandwidth to data repair.  

Many studies [12][1][8][22][14][18] are on similar 
brick storage systems, but their focuses are not on the 
systematic study of data reliability. Many of them do 
address replica placement issues for various reasons. 
The sequential placement strategy has been widely 
used. For example, Petal [12] uses chained declustering 
[10] mainly as a way to improve load balancing, and 
many P2P systems such as PAST [17] and CFS [4] use 
it to simplify management. GFS [8] uses random 
placement to improve data repair performance, but it 
does not provide a study on the resulting reliability of 
the system. In our paper, we study the tradeoff to reli-
ability between sequential and random placement.  

Several works have investigated the impact of rep-
lica placement on availability, not reliability. In Farsite 
[1], Douceur and Wattenhofer studies dynamic replica 
placement strategies that improve the overall availabil-
ity of files [5][6]. In [18][19], van Renesse and Schnei-
der study DHT-based placement (which is categorized 
as sequential placement in this paper) and random 
placement and their effects on the availability of a dis-
tributed storage system. They use simulation methods 



 

and do not consider the effect of available network 
bandwidth on data reliability.  

We have proposed the stripe placement policy with 
near optimal configuration parameters. Grouping ob-
jects is not a new concept. The 64MB chunk size in 
GFS is based on its workload and read/write perform-
ance considerations, while the work in [18] groups a 
set of objects into volumes but it is not clear how the 
number of volumes is determined. This study points 
out that, from a reliability point of view, the chunk size 
should be a function of available bandwidth, disk 
bandwidth and disk capacity.  

Many coding schemes, in particular Reed-Solomon 
coding [16], are used in RAID-like storage systems. 
We do not incorporate such coding schemes into the 
analysis of reliability, partly because brick storage sys-
tems can typically afford more bricks to support simple 
replication and avoid the complexity and performance 
penalty associated with the coding schemes. 

Some previous work (e.g. [3]) studies the effect of 
correlated failures, but we do not find a generic model 
that can facilitate the analysis of system reliability. Our 
model is simple enough to incorporate into our frame-
work for reliability study, but its effectiveness needs to 
be further validated in practice. 

8.  Concluding Remarks 

With an analytical framework that incorporates 
available network bandwidth consideration, we study 
the reliability of distributed storage systems with dif-
ferent replica placement schemes. We show that both 
sequential placement and pure random placement have 
their drawbacks and propose the stripe placement 
scheme to achieve near-optimal reliability.  

We wish that this study could serve as a guideline 
for system designers and administrators to determine a 
number of system parameters when building such brick 
storage systems, including the root switch bandwidth, 
the stripe number, the replication degree, etc. We be-
lieve that, even though our calculations are based on an 
idealized framework, the recommendations derived 
(e.g. using B/b as the stripe number) are applicable to 
many practical situations, because a reasonable range 
of values around the computed values provide the same 
level of reliability as shown by our results. Furthermore, 
after removing the backbone bandwidth constraint, the 
framework should be able to adapt to wide-area peer-
to-peer storage settings. 

As the next step, we plan to implement stripe place-
ment in BitVault [21], a data retention platform built 
with a large number of storage bricks. Future research 
also includes the study on the reliability with heteroge-

neous brick components, and the reliability of place-
ment schemes that are aware of network topologies.  
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Appendix 

A. Main symbols used in the paper 

symbol  Sample values 

MTTDL Mean time to data loss of the 
system 

1~105 years 

MTTDLob

j 
Mean time to data loss for a 
specific object 

>108 years 

k Replication degree 3 

N Site-wide number of bricks 60~600,000 

m Possible replica placement 
combinations 

N~C(N,k) 

B Backbone bandwidth 3GB/s  

b Brick bandwidth 20MB/s 

MTTF Mean time to permanent failure 
of a brick. 

1000 days 

c Average amount of data stored 
in a brick 

500GB 

s Average size for a single object 4KB~10GB 

T Detection delay, from the time 
a brick crashes to the time 
other bricks are notified about 
the failure 

10 seconds 

ns Number of stripes hosted on 
one brick 

k~C(N,k-1) 

r Correlation degree of failures 0~1 

 


