

On the Impact of Replica Placement to the
Reliability of Distributed Brick Storage Systems

Qiao Lian

Wei Chen

Zheng Zhang

June, 2005

 MSR-TR-2005-71

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

On the Impact of Replica Placement to the
Reliability of Distributed Brick Storage Systems

Qiao Lian, Wei Chen, Zheng Zhang
Microsoft Research Asia

{t-qiaol, weic, zzhang}@microsoft.com

Abstract

Data reliability of distributed brick storage sys-
tems critically depends on the replica placement policy,
and the two governing forces are repair speed and
sensitivity to multiple concurrent failures. In this paper,
we provide an analytical framework to reason and
quantify the impact of replica placement policy to sys-
tem reliability. The novelty of the framework is its con-
sideration of the bounded network bandwidth for data
maintenance. We apply the framework to two popular
schemes, namely sequential placement and random
placement, and show that both have drawbacks that
significantly degrade data reliability. We then propose
the stripe placement scheme and find the near-optimal
configuration parameter such that it provides much
better reliability. We further discuss the possibility of
addressing the problem of correlated brick failures in
our analytical framework.

1. Introduction

Storage solution using clustered “smart bricks” con-
nected with LAN is becoming an increasingly attrac-
tive alternative to the more expensive SAN (storage-
area network) solution. Some of the exemplary systems
include Petal [11], NASD [9], GFS [8], FAB [7], Rep-
store [22], and Boxwood [14]. A smart brick is essen-
tially a stripped down PC with a CPU, memory, net-
work card, and a large disk. For these systems, provid-
ing strong data reliability is confronted with new
challenges, because inexpensive commodity disks are
more prone to permanent failures and failures are far
more frequent in large systems. To guard against per-
manent loss of data, replication is often employed. If
some replicas are lost due to disk failures, other repli-
cas are still available and can be used to regenerate
new replicas to maintain the same level of reliability.

Replica placement refers to the strategy of placing
replicas among the participating bricks. The two
widely used replica placement schemes are staggered
sequential placement like in chained declustering [10]
used by Petal [12] as well as in many proposals based

on DHT (distributed hash table) [4][17], and the totally
random placement like in GFS [8]. Mirroring can be
viewed as a degenerated special case of sequential
placement.

Replica placement can significantly affect the reli-
ability of the system due to two factors. The first is the
repair speed: the more bricks participate in the data
repair process, subject to the available network band-
width, the sooner that the reliability level returns. The
second is the sensitivity to multiple and concurrent
failures: the more permutation choices that the place-
ment generates, the more likely a random failure of
several bricks will wipe out some data permanently.
These two factors are conflicting in nature. For in-
stance, the random placement has very fast repair
speed, but is prone to concurrent failures, whereas the
sequential placement is precisely the opposite.

The contributions of the paper are mainly twofold.
First, we provide a systematic framework not only to
identify, but also to reason and quantify the impact of
the replica placement policy to system reliability. In
particular, our result points out that under different
parameters, random and sequential placement can have
vastly different results. Our framework captures the
bounded available network bandwidth for data mainte-
nance, something no other models have done.

Second, the insight that we gain from the first result
leads us to propose the stripe placement scheme which
attempts to achieve the best balance between the two
competing forces. While it is difficult to derive a closed
form, we do provide the near-optimal configuration
parameter verified with simulations. This is the second
contribution of this paper.

Moreover, we also sketch a proposal to extend our
framework to deal with correlated failures that fre-
quently occur in practice.

The roadmap of the paper is as follows. In Section 2,
we discuss the replica placement schemes and the data
reliability metric. In Section 3, we present the analyti-
cal framework for the reliability study. In Section 4, we
apply the framework to the two placement schemes and
compare the results. In Section 5, we describe the

stripe placement scheme, and find the near-optimal
parameter for the scheme. We discuss how to deal with
correlated failures in Section 6. Related work is sum-
marized in Section 7, and we conclude the paper in
Section 8. There are a lot of symbols are using in this
paper, we put also gives symbol table in Appendix A.

2. Replica Placement and Reliability Metric

Without loss of generality, we consider an ordered
array of N bricks on which replicas are placed. The
number of replicas of an object is called the replication
degree of the object, and it is denoted by k. Replication
degree may differ from object to object, but for simplic-
ity we assume all objects have the same k. The respon-
sibility of replica placement is to designate the bricks
on which the replicas are hosted. All other issues, such
as the interface of the system, are orthogonal to the
reliability study.

Each individual brick may fail permanently and lose
all replicas stored on the brick. In this paper, we equate
brick failures with disk failures, since disk failures
ultimately cause data loss. When a brick fails, to keep
data reliability of the system at the same level, the sys-
tem needs to automatically regenerate the lost replicas
at the remaining bricks. This replica regeneration
process is called data repair.

2.1 Data reliability metric MTTDL

To measure the data reliability of a system, we use
the metric MTTDL – mean time to data loss in the en-
tire system. MTTDL indicates, after the system is
loaded with data objects, how long on average the sys-
tem can sustain before it permanently loses the first
data object in the system. This is a metric widely used
in storage literature, e.g. on RAID storage [2].1

There are two important factors that affect data reli-
ability. The first one is the speed of data repair. Fast
data repair means that the lost replicas are likely to be
repaired before further brick failures, so it reduces the
time window in which concurrent brick failures occur
and wipe out all replicas of some object.

The second factor is the likelihood of data loss when
concurrent brick failures do occur. When k random
bricks fail concurrently in the system, the likelihood
that some object whose k replicas are located on the k
failed bricks depends on the placement scheme used, as
we will discuss shortly. In general, the more likely the

1 One may also consider the amount of data loss when it happens. How-
ever, when the goal of a storage system is to provide nearly no-data-loss
reliability, MTTDL is a more important metric than the amount of data
loss. Thus the paper focuses on the analysis of MTTDL.

concurrent brick failures happen to wipe out all repli-
cas of an object, the less reliable the system is.

2.2 Sequential placement

Sequential placement is simple in nature: one of the
brick acts as the lead brick, and the k replicas are
placed on the lead brick and its k-1 followers. This is
what the chained declustering [10] does and is em-
ployed in Petal [11]. This scheme is also a common
strategy in peer-to-peer wide-area storage systems like
CFS [4] and PAST [17], in which the lead brick is
typically identified by the hash of the object.

With sequential placement, when a brick fails, the k
neighboring bricks on each side of the failed brick can
participate in brick repair (Figure 1). The limited par-
allel repair degree leads to slow repair speed, which
then negatively affects the data reliability of the system.

However, the restrictive nature of placement reduces
the sensitivity to concurrent failures. If and only if k
simultaneous failures occur on k consecutive bricks in
the ordered array can any object be lost. This is
unlikely when N is much larger than k. Thus, sequen-
tial placement has a low likelihood of data loss when
concurrent failures occur, which improves data reli-
ability.

Note: Replication degree is 3. When brick 3 fails,
data repair can be carried out as brick 1 copying
Dataa to brick 4, brick 2 copying Datab to brick 5,
and brick 4 copying Datac to brick 6.

Figure 1. Data repair in sequential placement.

2.3 Random placement

In random placement, replicas are placed randomly
among the N bricks, and this is used in the work of
[8][19]. 2 The main objective here is to improve the
speed of data repair. With random placement, when a
brick fails, the replicas on the failed brick can be found
on many other bricks, and thus many bricks can par-
ticipate in data repair in parallel, resulting in faster

2 An indexing scheme is needed for random placement to access all
objects in the system. However, indexing is orthogonal to our study of
reliability, so we will not discuss it in detail.

data repair speed. This is its main advantage over se-
quential placement in improving data reliability.

However, crashing k random bricks will likely re-
move all the replicas of some objects with random
placement. In the extreme case when there is a large
volume of objects in the system and therefore the actual
placement choices have exhausted all possible combi-
nations, any k crashes cause data loss. High sensitivity
to multiple and concurrent failures, therefore, is the
drawback of the random placement scheme.

It is intuitive to see that neither placement scheme
is perfect. As we will reveal in Section 4, under differ-
ent circumstances their difference can be dramatic.

3. Analytical Framework

In this section, we present the analytical framework
for the data reliability analysis. The framework shows
how to derive MTTDL from known system parameters.
This framework can be applied to different object
placement schemes, as we will show in the next section.

The novelty of the framework is its consideration of
the bounded network bandwidth available for data re-
pair, which directly affects data repair speed.

3.1 System model for analysis

We consider a system with N bricks and the replica-
tion degrees of all objects are k. The average amount of
data stored on each brick is c. We assume a reasonable
amount of free space on each brick for data repair.
Brick failures follow an exponential distribution with
MTTF (mean time to failure) as its mean. We first as-
sume that each brick fails independently, and later we
will consider a model for correlated brick failures. We
do not model transient failures of bricks that only affect
data availability but not affect data loss. When a brick
fails, we assume a new brick is added into the system
immediately to keep the system scale at N all the time.

All bricks are connected in a LAN with a root
switch. The network provides certain bandwidth for
data repair traffic, and the bound of which is given by
B, which is called the backbone bandwidth. The back-
bone bandwidth can be viewed as a certain percentage
of the bandwidth of the root switch that is allowed for
data repair traffic, because in many simple topologies,
all (or nearly all) data repair traffic goes through the
root switch.

We do not separately consider network failures. A
network failure does not cause data loss directly, but it
may reduce the data repair speed, and thus affect data
reliability. We fold this aspect into the available data
repair bandwidth B.

3.2 Analysis

3.2.1. Introducing MTTDLobj. To conduct the analysis
for MTTDL, we first introduce an intermediate metric
MTTDLobj, which is the mean time to data loss for an
arbitrary object. MTTDLobj measures the data reliabil-
ity of an individual object stored in the system. If the
system contains m objects, and these m objects have
independent data loss distributions, then we have
MTTDL = MTTDLobj / m. Intuitively, this is because
that each object has a data loss rate of 1/MTTDLobj, and
when they are considered together in a system, the total
data loss rate is m/MTTDLobj since their individual data
loss behaviors are independent.

Of course, when object replicas are placed in the
system, their data loss behaviors depend on the failures
of the bricks, and thus may not be independent of each
other. In particular, if the replicas of two objects are
co-located at the same set of bricks, their data loss be-
haviors are perfectly correlated. In this case, they
should be considered as one object instead of two inde-
pendent objects.

For the above reason, we only consider objects
whose replica placements are different. Let m be the
total number of different replica placement combina-
tions under a placement scheme. We thus have 3

MTTDL = MTTDLobj / m. (1)
In a system with N bricks, m could be as large as

C(N,k).4

3.2.2. Markov Chain Model. To analyze MTTDLobj,
we introduce a Markov model as in Figure 2 to model
the evolution of the system with brick failures and data
repair. In the model, state i represents the state of the
system where exactly i bricks have failed, and the lost
replicas on the failed bricks have not been completely
repaired.

The arcs in the figure represent the transitions be-
tween different states in the system. From state i to i+1,
one more brick failure occurs, and this could occur on
any of the N-i remaining bricks. Thus, the rate of tran-
sition is (N-i)/MTTF, since the brick failures are inde-
pendent. Transition from state i to state 0 represents

3 The formula is still an approximation, because different objects may
have some but not all their replicas co-located on the same set of bricks
and thus their data loss behaviors are correlated. However, such co-
locations are dictated by the replication degree k. Thus, when the system
scale N is much larger than the replication degree k, the correlated data
loss of objects caused by partial co-locations can be ignored. For sequen-
tial placement, we compared the approximation with an accurate analy-
sis and the result shows that the approximation matches with the accu-
rate analysis very well.
4 C(x,y) denotes the total number of combinations of picking y objects
from x objects.

that data repair is completed before a new brick fails.
Let MTTR(i) denote the mean time to repair all the
failed replicas in state i. Thus the transition rate from
state i to state 0 is 1/MTTR(i). MTTR(i) depends on the
size of data to be repaired and the available bandwidth
for repair, and it will be determined shortly. In the next
section, we will show the advantage of random place-
ment over sequential placement in that random place-
ment has a much smaller MTTR(i).

Figure 2. Markov model for reliability analysis

The Markov model of Figure 2 assumes that there is
no transition from state i back to state j with 0<j<i,
which means that data repair for all failed bricks com-
plete at the same time. In reality, data repair for a brick
that failed early is likely to be completed early, even
without centralized scheduling of data repair. Hence
the assumption is a conservative one.

The Markov model of Figure 2 models the evolution
of the entire storage system, as opposed to other models
(e.g. [20]) that only model the evolution of one object.
The reason is that in our environment, data repair traf-
fic is limited by the backbone bandwidth. Thus, more
brick failures are likely to slow down data repair be-
cause more data repair traffic are sharing the limited
bandwidth. Therefore, we have to look at the state of
the entire system to determine the speed of data repair.

3.2.3. Deriving MTTDLobj. First, we define MTBF(i)
to be the mean time between two consecutive occur-
rences of state i in the Markov model. Each time when
the system is in state i, there is a chance that a particu-
lar object is lost. We denote L(i) as the probability that
the object is lost when i bricks fail concurrently. We
then have the following formula to compute MTTDLobj.

11])()([−

=

−∑ ⋅=
N

ki
obj iLiMTBFMTTDL . (2)

The reasoning of the above formula is as follows. We
consider a stochastic process where the event is an ob-
ject being lost, and we assume that as soon as the ob-

ject is lost, a new object is generated with exactly the
same probability distribution of the time to data loss.
Let N(t) be the number of object loss events by time t.
Thus we have

)(
lim

tN

t
MTTDL

t
obj ∞→

= . (3)

Let N(i,t) be the number of times state i appears by
time t. Each time state i appears, with probability L(i)
the object is lost, so when considering state i, the event
of object loss by time t occurs N(i,t)·L(i) times. When
summing up all the different states together, we have ∑

=

⋅=
N

ki

iLtiNtN)(),()(. (4)

Moreover, by the definition of MTBF(i), we have

),(
lim)(

tiN

t
iMTBF

t ∞→
= . (5)

Plug in (4) and (5) in to (3), we thus obtain the formula
in (2).

Probability L(i) is easy to compute. An object with
replication degree k can be located on C(N,k) possible
combinations of k bricks, where N is the total number
bricks. When i bricks fail concurrently, totally C(i,k)
combinations will cause data loss. Thus the probability
of losing the object when i bricks fail is C(i,k) / C(N,k).

Figure 3. Extracting timing period for state i-1
for the derivation of MTBF(i).

We now need to derive MTBF(i). To do so, consider
a continuous timeline separated by different time seg-
ments corresponding to different states of the system
(Figure 3). Based on the Markov model, on the time
line a period of state i-1 is followed either by a period
of state i or a period of state 0. We extract the time
period for state i-1 out and put them next to each other
to build a new time line (Figure 3). That is, the new
timeline only records the period when the system stays
in state i-1. In the new timeline, the boundary of each
period corresponds to either the transition from state i-
1 to state i, or the transition from state i-1 to state 0.
From one transition to state i to the next transition to

state i, one of the remaining N-i+1 bricks fail. Since
brick failures are memoryless, we can simply concate-
nate the time segments of state i-1 together in the new
timeline without changing its stationary probabilistic
behavior. Therefore, the mean time between two transi-
tions to state i in the new timeline is MTTF/(N-i+1).

Let P(i) be the probability of the system staying in state
i. Therefore, the new timeline we constructed only cor-
responds to the P(i-1) portion of the original timeline.
In other words, when we match the period between two
transitions to state i in the new timeline back to the
original timeline, the period is amplified by a factor of
1/P(i-1). Hence, in the original timeline, the mean time
between two occurrences of state i is

)1()1(
)(

−⋅+−
=

iPiN

MTTF
iMTBF .

The next calculation is for probability P(i). This is
given by the fact that in the equilibrium state of the
Markov model, the total incoming transition rate must
be equal to the total outgoing transition rate. The for-
mulas are as follows.

  =
+−

+−=
−∑ 1)(

)(/1/)(

/)1(

)1(

)(

iP
iMTTRMTTFiN

MTTFiN

iP

iP
, for all i≥1

3.2.4. Deriving MTTR(i). MTTR(i) depends on both
the amount of data to repair and repair bandwidth. Let
D(i) and rb(i) be the amount of data to repair and the
repair bandwidth in state i, respectively. Let T be the
time to detect a failure in the system (10sec is used for
all analysis and simulation). Then

MTTR(i)= T + D(i)/rb(i). (6)

The amount of data to repair D(i) depends on both c
(the amount of data in the last failed brick), and the
amount of the un-repaired data ur(i) left from the pre-
vious state i-1.

ciuriD +=)()(.

The amount of un-repaired data left from the previ-
ous state ur(i) depends on (a) the total amount of the
previous state’s data to be repaired D(i-1), (b) the mean
time to the next failure in the previous state mf(i-1),
and (c) the previous state’s repair bandwidth rb(i-1).  −⋅−≤−

−⋅−>−−⋅−−−
=

))1()1()1((0

))1()1()1(()1()1()1(
)(

imfirbiDwhen

imfirbiDwhenimfirbiD
iur

In state i-1, the mean time to next failure mf(i-1) is
MTTF/(N-i+1). So we have

ciNMTTFirbiDiD ++−⋅−−−=]0),1/()1()1(max[)(

Once rb(i) is known, D(i) can be calculated itera-
tively by the above formula.

The repair bandwidth rb(i) at state i varies with dif-
ferent placement schemes. In the next section we will
determine this value for both sequential placement and
random placement.

4. Comparing Sequential Placement with
Random Placement

The previous section provides the general frame-
work to analyze the data reliability of a distributed
brick storage system with a bounded backbone repair
bandwidth. The two terms undecided in the analysis
are: (a) m, the possible replica placement combinations
in the system; and (b) rb(i), repair bandwidth at state i.
It is not hard to see that the larger the m, the worse the
data reliability, while the larger the rb(i), the faster the
data repair can be completed and thus the better the
data reliability.

Table 1. Key differentiating quantities for se-
quential placement and random placement

 m rb(i)
Sequential N)2/,min(ikbB ⋅⋅
Random))/()(),,(min(skcNkNC ⋅⋅)2/)(,min(iNbB −⋅

These two terms vary among different placement
schemes. In this section, we determine the two terms
for both sequential placement and random placement
and compute the reliability of the two schemes. Table 1
lists the results and the explanation follows, where s
denotes the average object size, and b denotes the brick
bandwidth.

4.1 Sequential placement

In sequential placement, replicas are restricted to be
placed on k consecutive bricks in the ordered array of
bricks. This restriction leads to only N possible place-
ment combinations, i.e. m=N, which benefits the reli-
ability of the system.

To calculate the repair bandwidth, let b be the maxi-
mum bandwidth of a brick. When one brick fails, the
replicas on the failed brick need to be regenerated on
the k consecutive bricks after the failed brick. So the
repair bandwidth could reach b·k. However, among
these k bricks, at least one brick would also serve as the
source for data repair (e.g., brick 4 in Figure 1), bring-
ing the effective bandwidth only to a half, i.e. b·k/2.
When i concurrent failures occur, this gives b·k·i/2 (we
ignore the situation when multiple failures are within
the range of k, and this makes the result optimistic).
Also, the maximum repair bandwidth cannot exceed
the backbone bandwidth B. Therefore, we have

)2/,min()(ikbBirb ⋅⋅= .

4.2 Random placement

In random placement, replicas are scattered ran-
domly among the bricks in the system. When one brick
fails, many other replicas contain the replicas that are
lost on the failed brick. So many replicas can act as the
source of data repair, vastly bringing up the degree of
parallel repair and hence the repair bandwidth.

Quantitatively, the repair bandwidth of the random
placement scheme is given by rb(i)=min(B, b(N-i)/2).
The term b(N-i)/2 means that when a brick fails, half
of the remaining bricks contain the replicas need to be
generated, and they copy the replicas to the other half
of the bricks, which is a good-case scenario but can be
closely approximated.

Comparing rb(i) of the two schemes as listed in
Table 1, it is clear that the repair bandwidth of the ran-
dom placement is much higher than that of sequential
placement, for relatively small i’s that are mostly rele-
vant to the data reliability. This is the advantage of the
random placement scheme.

For the possible placement combination m, it de-
pends on the number of objects, which is determined
by the size of the object in our environment. Let s de-
note the average size of an object in the system. When
the system has N bricks with the amount of data stored
on each brick being c and the replication degree of k,
the number of objects in the system is N·c/(k·s). Thus,
the possible placement combination m is given by

))/(),,(min(skcNkNC ⋅⋅ .5 This value could be much

larger than N, the corresponding value of m in sequen-
tial placement, especially when the object size is small.
This is the major drawback of the random placement
scheme that significantly reduces the reliability of the
system.

4.3 Comparison

Using the result in Table 1, we can calculate the
MTTDL given a set of system configuration parameters.
Figure 4 shows the analytical result comparing Se-
quential placement with random placement.

The figure shows several results. First, after the sys-
tem scale passes a certain point, all schemes essentially
stop working: bricks fail so frequently that, with the
network bandwidth staying the same, data repair can-
not keep up with the brick failures, and the data reli-
ability drops significantly. This means that given a

5 More rigorously, m is the expected number of possible placement
combinations for random placement, and it is slightly smaller than

))/(),,(min(skcNkNC ⋅⋅ . We ignore this minor difference in our calcula-

tion.

certain backbone bandwidth, the system has a scalabil-
ity limit.

Second, given the same user capacity, random
placement is sensitive to object sizes. The sequential
placement scheme is better than random placement for
small object size but is worse than that with large ob-
ject size.

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

system scale in user data capacity (TB)
M

T
T

D
L

(y
ea

r)

random placement, object size=3.3GB
sequential placement
random placement, object size=4KB

Note: The user data capacity of the system is c·N/k.
MTTF=1000days, k=3, B=3GB/s, b=20MB/s,
c=500GB.The object size of 4KB in random place-
ment is when m reaches C(N,k).

Figure 4. MTTDL of a system vs. the system
scale, with sequential placement and random
placement.

KB MB GB
10

0

10
2

10
4

10
6

10
8

10
10

10
12

object size

M
T

T
D

L
(y

ea
r)

k=4 sequential placement
k=4 random placement
k=3 sequential placement
k=3 random placement

Note: The user capacity of the system is fixed at
1PB=1000TB. Other system parameters are the
same as in Figure 4.

Figure 5. Comparing sequential placement
with random placement when varying object
size.

Figure 5 further illustrates the effect of object size
on the reliability of the system under the same system
scale. In sequential placement, reliability is not af-
fected by object size, because data loss is determined
only by the concurrent failures of k consecutive bricks.
However, in random placement small object size means
a large number of objects, and thus they are more likely

to exhaust the possible placement combinations, giving
low reliability. When the object size is large, the possi-
ble combinations are small, and the benefit of parallel
data repair wins over and thus the data reliability is
better than sequential placement. But if the object size
continues to grow larger, the benefit of parallel repair
diminishes and the reliability in random placement
returns to the same level as sequential placement.

The figure also compares the result of replication
degree of 3 versus 4. Replication degree of 4 provides
close to four orders of magnitude better reliability. In
general replication degree of 3 or 4 is suffice to provide
enough reliability for most systems.

Overall, no single placement scheme wins in all
cases. Random placement gains in fast parallel repair
but resulting in too many possible placement combina-
tions when the objects are small, while sequential
placement restricts possible placement combinations
but is much slower in data repair.

5. Stripe Placement for Near-Optimal Reli-
ability

Ideally, what we want is the optimal reliability pro-
vided by the random placement scheme at its optimal
object size, but extending it such that the reliability
remains at the same level even for small object sizes.
To achieve this effect, we need to group small objects
together to make them behave like a large object in
terms of placement and repair. Then we can signifi-
cantly reduce the possible placement combinations that
the random placement suffers from, while maintaining
a good repair speed. This is the stripe placement
scheme we introduce in this section.

5.1 Stripe placement

Figure 6. Stripe placement and stripe repair.

We group small object replicas together to form a
large chunk, which is the unit for placement and repair.

The sizes of the chunks are the same and will be de-
termined later. The k replicated chunks of the same set
of objects form a set called a stripe. A stripe migrates
among the bricks in the system with brick failures and
data repairs. Figure 6 illustrates the concept of stripe
and its repair.

Let stripe number ns be the number of different
stripes that can be hosted by one brick. Stripe number
determines the degree of parallel data repair. When a
brick hosting ns stripes fails, ns different chunks need
to be repaired and thus the parallel repair degree is at
most ns. We will determine the optimal ns shortly. In-
tuitively, ns should be related to the backbone band-
width B such that the backbone bandwidth can be fully
utilized.

We use random placement of chunks and randomly
selecting chunk repair sources and destinations to man-
age the stripes, which is simple in a distributed envi-
ronment to allow the parallel repair degree to be close
to ns in spite of brick failures and repairs. In addition to
managing random placement of chunks, stripe place-
ment also needs to manage the grouping of objects into
stripes. The grouping needs to guarantee that when a
new object is added into a stripe, every chunk within
the stripe should have enough space to accommodate
one replica of the object. To do so, when the stripe is
first created, every chunk in the stripe should pre-
allocate enough space for the entire chunk. Other man-
agement details are omitted here.

5.2 Finding the optimal ns

We now need to find the optimal ns so that the reli-
ability of the system is the highest. To do so, we use
the analytical framework to calculate the reliability of
the system for different ns, and then locate the ns that
provides the optimal reliability.

First, for the number of possible placement combi-
nations, we have m=ns·N/k, since each brick hosts ns
stripes and each stripe is hosted by k bricks. Second,
for the repair bandwidth, ideally all ns chunks on the
failed brick will be repaired by ns different pairs of
sources and destinations, in which case the repair
bandwidth is rb(i) = min(B, b·ns). However, with ran-
dom chunk placement the repair load may not be even:
Some bricks may have more chunks to repair than oth-
ers. The bottleneck brick is the one with the highest
repair load. Let H be the number of stripes to be re-
paired in the bottleneck brick. We call H/ns the bottle-
neck load, and denote it as lb. We use a Monte-Carlo
simulation to calculate lb, and the result is shown in
Figure 7. The key result is that when ns is close to N,
the bottleneck load could be one order of magnitude
larger than 1/ns, the load in the ideal case.

10
0

10
2

10
4

10
6

10
−4

10
−3

10
−2

10
−1

10
0

stripe number n
s

bo
ttl

en
ec

k
lo

ad

N=100
N=1000
N=10000

Note: The dotted lines represent the ideal cases
where there is no bottleneck brick. The Monte-Carlo
simulation is basically throwing ns balls (chunks) into
N-1 slots (remaining bricks) and look for the slot with
the largest number of balls.

Figure 7. Bottleneck load vs. the stripe number

Given the bottleneck load, we can have the repair
time based on the bottleneck load, which is c·lb/b,
where c is the amount of data in a brick, and b is the
brick bandwidth. Combining this with the repair time
calculation in the framework (formula (2)), we have
the following repair time formula for the stripe place-
ment scheme:

]/),,min(/)(max[)(blcnbBiDTiMTTR bs ⋅⋅+=

Plugging in the above formula in the analytical frame-
work, together with m=ns·N/k, we can compute the
reliability of the stripe placement scheme.

The results of the analysis are shown here as a se-
ries of contour plots (Figure 8). In Figure 8(a), we see
that when the stripe number increases while fixing the
backbone bandwidth (walking up vertically through the
contour), MTTDL increases first because the repair
bandwidth increases when more bricks are involved in
repair. After reaching a peak MTTDL drops, because

the repair bandwidth is restricted by the backbone
bandwidth so that repair speed has no further im-
provement, but the number of possible placement com-
binations continues to increase as ns increases. So for
each backbone bandwidth value, there is an optimal
stripe number to give the best MTTDL. From the plot,
we can see that the best MTTDL values are located
along the ridge in the contour plot, and along this ridge,
the stripe number ns increases proportionally to the
backbone bandwidth.

Figure 8(b) shows the contour plot of MTTDL with
different brick bandwidth and stripe numbers. Similar
to Figure 8(a), we can see that the optimal MTTDL
values are also located on the ridge of the plot. How-
ever, in this case, the optimal stripe number is reverse-
proportional to the brick bandwidth. Figure 8(c) shows
that the optimal stripes number does not rely on the
system scale.

Therefore, from the three plots, the conclusion we
reach is that the optimal stripe number ns should be
proportional to the backbone bandwidth B, reverse-
proportional to the brick bandwidth b, and not related
to the system scale N. Based on this result, we propose
that the optimal stripe number ns can be given by B/b.
In the above three plots, the dash-dotted lines corre-
spond to the stripe numbers with B/b. We can see that
they are all very close to the ridges, i.e., the best
MTTDL values.

The formula ns=B/b is a “guideline” formula. Given
a set of system parameters, one can use our analytical
framework and some numerical method to find the true
optimal ns, and the result may be a little different from
B/b. However, from our analysis, we see that B/b pro-
vides near-optimal system reliability. Thus, the optimal
chunk size is c·b/B as a function of disk bandwidth,
backbone bandwidth and disk capacity.

The recommendation of ns=B/b allows a simple and
intuitive explanation. In the ideal situation, ns pairs of
sources and destinations participate in data repair in

0.1 1 10
1

10

100

1K

10K

100K

1M

10M

backbone bandwidth B (GB/s)

nu
m

be
r

of
 s

tr
ip

es
 p

er
 b

ric
k

n s

MTTDL (years)

0.1
1

1

10

10

10

100

100

100

100

1000

1000

1000
1000

1000 1000 1000 1000

10000

10000

10000

10000
10000 10000 10000

50000

50000

50000 50000

n
s
=B/b

(a) Vary with backbone bandwidth.
MTTF=1000days, b=20MB/s,
c=500GB, k=3, user capacity = 1PB.

1 10 100
1

10

100

1K

10K

100K

1M

10M

brick bandwidth b (MB/s)

nu
m

be
r

of
 s

tr
ip

es
 p

er
 b

ric
k

n s

MTTDL (years)

1
10

10 10 10

100

100

100 100 100

1000

1000

10
00

1000 1000 1000

10000

10000

10000

10000 10000

50000

50000

50000 50000

n
s
=B/b

(b) Vary with brick bandwidth.
MTTF=1000days, B=3GB/s,
c=500GB, k=3, user capacity = 1PB.

1 10 100
1

10

100

1K

10K

100K

1M

10M

system scale in user data capacity (PB)

nu
m

be
r

of
 s

tr
ip

es
 p

er
 b

ric
k

n s

MTTDL (years)
0.11

1

1

10

10

10

10
100

100

100
100

100

100

1000
1000

1000

1000

1000

1000

10000
10000

10000

10000

1000050000
50000

50000

50000

n
s
=B/b

(c) Vary with system scale.
MTTF=1000days, B=3GB/s,
b=20MB/s, c=500GB, k=3.

Figure 8. Contour plot for system MTTDL

parallel, and each pair can have maximum bandwidth
of b. If ns=B/b, then the overall repair bandwidth is
nsb=B, which means the repair exactly saturates the
available network bandwidth. This is the best that one
can expect. Therefore ns=B/b provides near optimal
reliability.

With ns=B/b, stripe placement provides much better
reliability than sequential placement and random
placement. As a numerical example, with our typical
setting of B=3GB/s, b=20MB/s, k=3, c=500GB, and
total user capacity of 1PB, our optimal stripe placement
achieves an MTTDL of 9.41·104 years, and this does
not vary with object size. In contrast, the sequential
placement has an MTTDL of 7.66·103 years, and the
random placement has MTTDL values worse than se-
quential placement when the average object size is less
than a few tens of megabytes, and its MTTDL is only
getting close to the optimal value when the average
object size is in the gigabyte range, as shown in Figure
5.

Furthermore, Figure 8 shows that a reasonable
range around the optimal stripe number (e.g. within an
order of magnitude change) still permits good reliabil-
ity that is close to the optimal MTTDL. This means that
the guideline of B/b is reasonably robust and may still
be applicable even when the network or disks are up-
graded over the years.

5.3 Simulation results

To verify our analytical results, we run simulations
of a brick storage system to see if the reliability
matches with the theoretical prediction and if stripe
placement indeed provides better reliability.

The simulation is done in an event-driven model.
There are two kinds of events pushing the virtual time
forward. One is brick failure events, which are trig-
gered by exponentially distributed and independent
brick failures. The other is stripe repair finish events,
which are triggered at the time when the first stripe
repair session is finished. When any event occurs,
simulator re-calculates the repair bandwidth for every
remaining stripe repair session based on the brick and
backbone bandwidth constraints. All stripes have the
same weight when competing for bandwidth.

Figure 9 shows the results of both the simulation
and the theoretical analysis on stripe placement and
sequential placement. The main results are: (a) stripe
placement is better than sequential placement, and (b)
for stripe placement, simulation results match well
with theoretical results, while for sequential placement,
simulation results show much lower MTTDL because
the theoretical analysis on sequential placement is op-
timistic.

10
1

10
2

10
3

10
−2

10
0

10
2

system scale in user data capacity (TB)

M
T

T
D

L
(y

ea
r)

stripe placement theoretical
sequential placement theoretical
stripe placement experimental
sequential placement experimental

Note: Each simulation result is computed as the average from 50
simulations, with 99% confidence interval shown in the figure.
MTTF=30days, B=1GB/s, b=20MB/s, c=500GB, k=3. The artifi-
cially small value of MTTF is to shorten the MTTDL of the system
so that the simulations can end within a reasonable amount of
time.

Figure 9. Simulation result on MTTDL compar-
ing with the theoretical analysis.

For pure random placement, the simulation with
large object size is relatively close to sequential place-
ment, while the simulation with small object size is not
done because the bandwidth allocation calculation in
this case is prohibitively slow.

6. Discussion on Correlated Failures

So far, our analysis assumes that brick failures are
independent of each other. However, correlated failures
are frequently observed in practice, because bricks are
usually from the same manufacturer, and they are op-
erated under the same environment with similar access
patterns. The primary difficulty here is how to model
correlated failures.

Figure 10: Correlated failure model.

Our assumption is that correlated failures do not
change the MTTF of each individual brick, because

MTTF is measured in a typical operational environ-
ment. However, when looking at a large number of
bricks, their failures are correlated in the sense that
when one brick failures, more bricks are likely to fail
soon. Thus, the overall failure behavior is the cluster-
ing of failures each separated by a quiet period with
fewer failures.

Accordingly, we convert the failure behavior of the
independent failure model into the behavior of corre-
lated failure model as illustrated in Figure 10. Initially,
we have a time line spread with independent brick fail-
ures. From this time line, for every period of timeline
segment, we squeeze brick failure events proportionally
into a small event window and project them onto a new
timeline. Then after the event window, there is a silent
window the size of which is the difference of timeline
segment vs. event window. In the silent window, there
is no failure. Therefore, in the new correlated failure
timeline, the failure events are more clustered, but the
overall failure rates remain the same, which means
individual MTTF remains the same.

With this model, we can apply the analysis of
MTTDL easily. First, we define the correlation degree
r as the proportion of the silent window: r = (silent
window length) / (timeline segment length). Thus, r= 0
means there is no correlation at all, whereas r=1 means
failures are perfectly correlated and a bunch of failures
always occur at the same time.

In the correlated timeline, if we drop all the silent
windows and concatenate all event windows together,
we obtain a virtual timeline whose time is compressed
to (1-r) proportional to the real timeline. In the virtual
timeline failure event rate is 1/(1-r) times of the real
timeline, i.e., MTTFvirtual = MTTF·(1-r). With MTTFvir-

tual we can compute the data reliability MTTDLvirtual in
the virtual timeline. Then we map MTTDLvirtual back to
the real timeline by inflating the time with the ratio
1/(1-r). Thus we get MTTDL= MTTDLvirtual /(1-r).

Figure 11 shows the reliability of the system when
the correlation degree varies from 0 to 1. We can see
that the reliability of the system drops about an order of
magnitude from r=0 to r=0.5, and drops even faster
with higher correlation degree. In actual systems, it is
possible to collect past failure statistic to obtain an es-
timate on the correlation degree based on the clustering
behavior of the failures. Then one can use the above
model to calculate the reliability of system, or to esti-
mate the bandwidth of the root switch needed for sup-
porting a certain level of system reliability.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

10
5

correlation degree

M
T

T
D

L(
ye

ar
s)

C
t
=1PB, B=3GB/s

C
t
=1PB, B=1GB/s

C
t
=10PB, B=3GB/s

C
t
=10PB, B=1GB/s

Figure 11: MTTDL when correlation degree
varies. MTTF=1000days, b=20MB/s, c=500GB,
k=3.

7. Related Work

Reliability is one of the key aspects of storage sys-
tems, and it has been studied extensively, especially for
disk arrays like RAID systems [15]. Reliability studies
on disk arrays investigate the impact of disk organiza-
tions on MTTDL, and typically use Markov models to
study the system with independent and exponentially
distributed disk failures, e.g. [2] [20]. Our work can be
viewed as an extension of these studies into distributed
brick storage systems as a generic object store. The
important new addition to previous models is the con-
sideration of bounded network bandwidth to data repair.

Many studies [12][1][8][22][14][18] are on similar
brick storage systems, but their focuses are not on the
systematic study of data reliability. Many of them do
address replica placement issues for various reasons.
The sequential placement strategy has been widely
used. For example, Petal [12] uses chained declustering
[10] mainly as a way to improve load balancing, and
many P2P systems such as PAST [17] and CFS [4] use
it to simplify management. GFS [8] uses random
placement to improve data repair performance, but it
does not provide a study on the resulting reliability of
the system. In our paper, we study the tradeoff to reli-
ability between sequential and random placement.

Several works have investigated the impact of rep-
lica placement on availability, not reliability. In Farsite
[1], Douceur and Wattenhofer studies dynamic replica
placement strategies that improve the overall availabil-
ity of files [5][6]. In [18][19], van Renesse and Schnei-
der study DHT-based placement (which is categorized
as sequential placement in this paper) and random
placement and their effects on the availability of a dis-
tributed storage system. They use simulation methods

and do not consider the effect of available network
bandwidth on data reliability.

We have proposed the stripe placement policy with
near optimal configuration parameters. Grouping ob-
jects is not a new concept. The 64MB chunk size in
GFS is based on its workload and read/write perform-
ance considerations, while the work in [18] groups a
set of objects into volumes but it is not clear how the
number of volumes is determined. This study points
out that, from a reliability point of view, the chunk size
should be a function of available bandwidth, disk
bandwidth and disk capacity.

Many coding schemes, in particular Reed-Solomon
coding [16], are used in RAID-like storage systems.
We do not incorporate such coding schemes into the
analysis of reliability, partly because brick storage sys-
tems can typically afford more bricks to support simple
replication and avoid the complexity and performance
penalty associated with the coding schemes.

Some previous work (e.g. [3]) studies the effect of
correlated failures, but we do not find a generic model
that can facilitate the analysis of system reliability. Our
model is simple enough to incorporate into our frame-
work for reliability study, but its effectiveness needs to
be further validated in practice.

8. Concluding Remarks

With an analytical framework that incorporates
available network bandwidth consideration, we study
the reliability of distributed storage systems with dif-
ferent replica placement schemes. We show that both
sequential placement and pure random placement have
their drawbacks and propose the stripe placement
scheme to achieve near-optimal reliability.

We wish that this study could serve as a guideline
for system designers and administrators to determine a
number of system parameters when building such brick
storage systems, including the root switch bandwidth,
the stripe number, the replication degree, etc. We be-
lieve that, even though our calculations are based on an
idealized framework, the recommendations derived
(e.g. using B/b as the stripe number) are applicable to
many practical situations, because a reasonable range
of values around the computed values provide the same
level of reliability as shown by our results. Furthermore,
after removing the backbone bandwidth constraint, the
framework should be able to adapt to wide-area peer-
to-peer storage settings.

As the next step, we plan to implement stripe place-
ment in BitVault [21], a data retention platform built
with a large number of storage bricks. Future research
also includes the study on the reliability with heteroge-

neous brick components, and the reliability of place-
ment schemes that are aware of network topologies.

References

[1] A. Adya, W. J. Bolosky, M. Castro, et al, “FARSITE:
Federated, Available, and Reliable Storage for an In-
completely Trusted Environment”, in Proc. of the 5th
OSDI, December 2002.

[2] W. A. Burkhard, J. Menon, “Disk Array Storage Sys-
tem Reliability”, in Proc. of Symposium on Fault-
Tolerant Computing, 1993.

[3] P. Corbett, B. English, A. Goel, et.al., “Row-diagonal
parity for double disk failure correction”, in Proc. of
3rd Usenix conference on File and Storage Technolo-
gies (FAST’04), April 2004.

[4] F. Dabek, M. F. Kaashoek, D. Karger, et al, “Wide-
area cooperative storage with CFS”, Proc. of the 18th
ACM Symposium on Operating System Principles,
2001.

[5] J. R. Douceur and R. P. Wattenhofer. “Competitive
hill-climbing strategies for replica placement in a dis-
tributed file system”, in Proc. of the 15th Symp. on Dis-
tributed Computing. Oct. 2001.

[6] J. R. Douceur and R. P. Wattenhofer, “Optimizing file
availability in a secure serverless distributed file sys-
tem”, in Proc. Of the 20th Symp. on Reliable Distrib-
uted Systems. IEEE, 2001

[7] S. Frolund, A. Merchant, Y. Saito, et al, “FAB: enter-
prise storage systems on a shoestring”, HOTOS’03.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google File System”, in Proc. of the 19th ACM Sympo-
sium on Operating System Principles, Oct. 2003

[9] G. A. Gibson, D. F. Nagle, K. Amiri, K., et al. “A
Cost-Effective, High-Bandwidth Storage Architecture”,
ASPLOS, October, 1998.

[10] H-I. Hsiao and D. J. DeWitt, “Chained declustering: a
new availability strategy for multiprocessor database
machines”, Technical Report CS TR 854, University of
Wisconsin, Madison, June, 1989.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, et al, “OceanStore:
An Architecture for Global-Scale Persistent Storage”,
ASPLOS 2000.

[12] E. K. Lee and C. A. Thekkath, “Petal: Distributed Vir-
tual Disks”, ASPLOS 1996.

[13] Q. Lian, W. Chen, and Z. Zhang, “On the impact of
replica placement to the reliability of distributed stor-
age systems”, Microsoft Research Technical Report, to
appear.

[14] J. MacCormick, N. Murphy, M, Najork, et.al, “Box-
wood: Abstractions as the Foundations for Storage In-
frastructure”, In Proc. of OSDI’04, Dec. 2004.

[15] D. A. Patterson, G. Gibson, R. H. Katz, “A case for
redundant arrays of inexpensive disks (RAID)”, In Proc.
of the 1988 ACM SIGMOD international conference
on Management of data, 109 - 116, 1988.

[16] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software ---
Practice and Experiene, 27(9):995-1012, Sept. 1997.

[17] A. Rowstron and P. Druschel, “Storage management
and caching in PAST, a large scale, persistent peer-to-
peer storage utility. In Proc. Of the 18th ACM Symp.
On Operating Systems Principles, October 2001.

[18] R. van Renesse, F. B. Schneider, “Chain replication for
Supporting High Throughout and Availability”, In Proc.
of OSDI’04, Dec. 2004.

[19] R. van Renesse, “Efficient Reliable Internet Storage”,
Workshop on Dependable Distributed Data Manage-
ment. Oct., 2004.

[20] Q. Xin, E. L. Miller, D. D. E. Long, S. A. Brandt, T.
Schwarz, W. Litwin, “Reliability Mechanisms for Very
Large Storage Systems”, in Proc. of 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems
& Technologies, Apr., 2003

[21] Z. Zhang, Q. Lian, S. D. Lin, et al, “BitVault: A highly
reliable distributed data retention platform”, submitted
for publication.

[22] Z. Zhang, S. D. Lin, Q. Lian, et al, “RepStore: A Self-
Managing and Self-Tuning Storage Backend with
SmartBricks”, In Proc. Of the first IEEE International
Conference on Autonomic Computing, May 2004.

Appendix

A. Main symbols used in the paper

symbol Sample values

MTTDL Mean time to data loss of the
system

1~105 years

MTTDLob

j
Mean time to data loss for a
specific object

>108 years

k Replication degree 3

N Site-wide number of bricks 60~600,000

m Possible replica placement
combinations

N~C(N,k)

B Backbone bandwidth 3GB/s

b Brick bandwidth 20MB/s

MTTF Mean time to permanent failure
of a brick.

1000 days

c Average amount of data stored
in a brick

500GB

s Average size for a single object 4KB~10GB

T Detection delay, from the time
a brick crashes to the time
other bricks are notified about
the failure

10 seconds

ns Number of stripes hosted on
one brick

k~C(N,k-1)

r Correlation degree of failures 0~1

