
BoogiePL: A typed procedural language for checking
object-oriented programs

Robert DeLine
rdeline@microsoft.com

K. Rustan M. Leino
leino@microsoft.com

27 May 2005

Technical Report
MSR-TR-2005-70

This note defines BoogiePL, an intermediate language for program analy-
sis and program verification. The language is a simple coarsely typed im-
perative language with procedures and arrays, plus support for introducing
mathematical functions and declaring properties of these functions. Boo-
giePL can be used to represent programs written in an imperative source
language (like an object-oriented .NET language), along with a logical en-
coding of the semantics of such a source language. From the resulting
BoogiePL program, one can then generate verification conditions or per-
form other program analyses such as the inference of program invariants.
In this way, BoogiePL also serves as a programming-notation front end
to theorem provers. BoogiePL is accepted as input to Boogie, the Spec#
static program verifier.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1

0 Program and types

At the top level, a BoogiePL program is a set of declarations.

������� ��� ���	�

���	 ���
��� �
������� � �������� � �����
� ������	� � ��������� � ���	����������

Value-holding entities in BoogiePL are typed, despite the fact that a theorem prover
used on BoogiePL programs may be untyped. The purpose of types in BoogiePL,
like the purpose of explicit declarations of variables and functions, is to guard against
certain easy-to-make mistakes in the input.

There are four built-in basic types, user-defined types, one- and two-dimensional
arrays, and the supertype ��� :

��� ��� ���� � ��� � �	
 � ���	

� �� � ���
� “�”
��� “�”
���
� “�”
��� “� ”
��� “�”
���

The type ���� represents the boolean values
���	 and ��
	 (which we shall see
appear later in the grammar). The type ��� represents the mathematical integers. As
we shall see later, the language features integers and some arithmetic operations. The
type �	
 represents references (object, pointers, addresses). One of its values is the
built-in literal �
�� . The only operations defined by the language on �	
 are equality
and dis-equality tests. The type ���	 represents various kinds of defined names
(like types and field names). The only operations defined by the language on ���	

are equality and dis-equality tests and the partial order �� . Furthermore, symbolic
constants defined to have type ���	 have the special property that they have distinct
values (that is, it is not necessary to add an axiom that states this property; rather, that
“axiom” is provided automatically by the language).

The language allows arrays of up to two dimensions. (Arrays of arrays can be used
to encode more dimensions.) In an array type, the types of the array indices are given
first, followed by the type of the array elements. For example,

��	
 ����	����

denotes the type of arrays that, when indexed with a reference and a name, yield a
integer.

A user-defined type allows the user to identify certain sets of values. The declara-
tion

��� ��� ���	 ������ “� ”
������ ��� �� � “� ” ������ �

declares one of more user-defined types. An �� defined as a user-defined type must
be distinct from all other user-defined types in the program. The only operations on
user-defined types provided by the language are equality and dis-equality tests.

The type ��� is a supertype of all other types. This means that any expression can
be assigned to a variable or array element of type ��� . An expression � of type ���

2

can be treated as an expression of any other given type
 by using the cast expression
�������
 � . The cast expression is “unsafe”, in that there’s nothing in the language
that will make sure the expression � really is of the type
 . By providing type ���

and cast expressions, BoogiePL can provide many of the benefits of type systems, at the
same time providing the flexibility that is often useful in encoding program correctness
properties.

Pervasive in the BoogiePL grammar is �� , which stands for identifiers. An iden-
tifier is a sequence of alphabetic, numeric, and special characters, beginning with a
non-numeric character. A special character is a character from the set:

� � # � � � �

A BoogiePL program has three separate global namespaces: one namespace for user-
defined types, one for the names of functions and procedures, and one for the names
of symbolic constants and global variables. That is, a program is allowed to contain,
for example, a user-defined type with the same name as a procedure, since user-defined
types and procedures are in different namespaces. In addition, the block names in each
procedure implementation have their own namespace. In various local contexts, the
namespace containing symbolic constants and global variables is augmented also to
contain the names of formal parameters, local variables, and expression-bound vari-
ables.

1 Constants

A symbolic constant is an identifier that, throughout the execution of a program, has a
fixed, but possibly unknown, value of the declared type.

������� ��� ����� ��
������� “� ”
��
������� ��� ��
��� � “� ” ��
��� �
��
��� ��� �� “ � ”
���

An �� defined as a symbolic constant must be distinct from all other symbolic con-
stants and global variables in the program.

Symbolic constants can be used in expressions and commands. To define some or
all virtues of their values, one can use axiom declarations. All constants of type ���	

are considered to have distinct values.

2 Uninterpreted functions

An uninterpreted function (or function for short) is similar to a symbolic constant,
except that the function can take parameters.

�������� ���

������ ������ “�” � �����
������� � “�”
�	�
��� “�” �����
��� “�” “� ”

�����
��� ��� � �� “ � ” �
���
�����
������� ��� �����
��� � “� ” �����
������� �

3

This declaration introduces each �� in the first ������ as a function name with the
given signature. Each �� defined as a function must be distinct from all other functions
and procedures in the program. The �� ’s given among the in- and out-parameters must
be different from each other.

Uninterpreted functions can be used in expressions and commands. To define some
or all virtues of their values, one can use axiom declarations.

3 Axioms

An axiom specifies a constraint on the symbolic constants and functions.

����� ��� ����� ���������� “� ”

The given expression must be of type ���� . It cannot have any free variables other
than symbolic constants.

4 Variables

So far, we’ve only seen the “mathematical part” of the BoogiePL language. In what
remains, we present what defines the state space of a BoogiePL program and what
defines the operations on that state space.

The state space of a BoogiePL program consists of a number of variables. Vari-
ables come in four flavors: global variables, procedure parameters, local variables,
and expression-bound variables. During name resolution, variable identifiers are first
looked up in smaller enclosing scopes. That is, a variable identifier is first looked up
among the expression-bound variables in the context, then (if it is not present among
the expression-bound variables) among the local variables in the context, then among
the parameters in the context, and finally among the global variables and symbolic con-
stants. A variable identifier that is not present among any of these sets of variables in
the context is an “undeclared variable identifier” error.

A global variable is a variable that is accessible to all procedures.

������	� ��� ��� ��
������� “� ”

An �� defined as a global variable must be distinct from all other global variables and
symbolic constants in the program.

4

5 Procedures and implementations

A procedure is a name for a parameterized operation on the state space.

��������� ��� ����	�
�	 �� ��������� “� ” �����

� ����	�
�	 �� ��������� ����� ����

��������� ��� ��������� � �	�
��� ��������� �
��������� ��� “�” � ��
������� � “�”

���� ��� �	�
��	� ���������� “� ”
� �����	� � ������ � “� ”
� 	��
�	� ���������� “� ”

An �� defined as a procedure must be distinct from all other procedures and functions
in the program. The �� ’s given among the in- and out-parameters of a procedure must
be different from each other.

The procedure specification consists of a number of �	�
��	� , �����	� , and
	��
�	� clauses. The expressions in the �	�
��	� and 	��
�	� clauses must be
of type ���� . Every �� mentioned in a �����	� clause must name a global vari-
able. The in-parameters are in scope in the �	�
��	� clause, and both in- and out-
parameters are in scope in the 	��
�	� clause.

Each �	�
��	� clause specifies a condition that must hold at each call to the pro-
cedure (we shall see calls later). Any implementation of the procedure is allowed to
assign only to those global variables listed in a �����	� clause. Each 	��
�	�

clause specifies a condition that must hold on exit from any implementation of the pro-
cedure. The expression in an 	��
�	� clause is a two-state predicate, which means
that it can refer to both the initial and final states of the procedure (using ��� ex-
pressions, which we shall see later). The 	��
�	� condition thus specifies a relation
between the initial and final states of the procedure.

Procedures can be given implementations. For convenience, one implementation
can optionally be given as part of a procedure declaration. More generally, procedure
implementations are declared separately:

���	���������� ��� ����	�	������� �� ��������� ����

���� ��� “�” ����	������	� �	���� “�”
����	������	 ��� ��� ��
������� “� ”

Here, �� must refer to a declared procedure. (There are no restrictions on the num-
ber of implementations that one procedure can have.) The types of the in- and out-
parameters in the implementation declaration must be identical to those in the proce-
dure declaration, but the parameter names are allowed to be different. However, the
�� ’s given among the in- and out-parameters in the implementation declaration must
be different from each other.

The implementation consists of a number of local-variable declarations followed
by a number of basic blocks (described later). An �� defined as a local variable must
be distinct from the in- and out-parameters and other local variables of the procedure
implementation.

The execution of a procedure implementation consists of setting the out-parameters
and local variables to arbitrary values of their types, and then executing a sequence of

5

basic blocks, beginning with the first listed basic block and then continuing to other
basic blocks as per the block’s transfer-of-control manifesto (described below). If such
a transfer-of-control manifesto is a �	�
�� statement, then the execution of the pro-
cedure implementation ends.

6 Basic blocks

A basic block is a named sequence of commands followed by a transfer-of-control
manifesto.

�	��� ��� �� “ � ”
�������
�� ���!����

�� ���!���� ��� ���� ������ “� ”

� �	�
�� “� ”

An �� defined as a basic block must be distinct from all other basic blocks in the same
procedure implementation. Each �� listed in a goto statement must refer to a basic
block in the same procedure implementation.

The execution of a basic block starts with the execution of its commands, in or-
der. Then, if the transfer-of-control manifesto is a goto statement, program execution
continues in one of the named basic blocks. If the goto statement mentions several
basic blocks, then one is chosen arbitrarily. If the transfer-of-control manifesto is a
�	�
�� statement, then the execution of the enclosing procedure implementation ends
and control is transfered to the context that caused a call to the procedure.

7 Commands

Commands follow this grammar:

������ ��� �� “ �� ” ���������� “� ”
� �� ����� “ �� ” ���������� “� ”
� ���	�� ���������� “� ”
� ���
�	 ���������� “� ”
� ����� ������ “� ”
� ���� � ������ “ �� ” � �� “�” � �������������� � “�” “� ”

����� ��� “�” ���������� “�”
� “�” ���������� “� ” ���������� “�”

�������������� ��� ���������� � “� ” �������������� �

In the assignment command � �� � � , the identifier � must refer to a variable
in scope, that is, a parameter or local variable of the enclosing procedure or a global
variable. The type of � must be assignable to the type of � , meaning that either the
type of � is ��� or the types of � and � are identical.

In the array element assignment � �� � �� " � , the identifier � must refer to a vari-
able in scope. The type of � must be a one-dimensional array type, the type of �
must be assignable to the index type of � , and the type of " must be assignable to
the array-element type of � .

6

In the array element assignment � �� �� � �� " � , the identifier � must refer to a
variable in scope. The type of � must be a two-dimensional array type, the types of
� and � must be assignable to the corresponding index types of � , and the type of
" must be assignable to the array-element type of � .

The assert command ���	�� � � evaluates � , which must be of type ���� . If �
evaluates to ��
	 , then the command terminates (and the program execution continues
with the execution of the next command or transfer-of-control manifesto in the current
basic block). If � evaluates to
���	 , then the execution of the program goes wrong,
which indicates a non-recoverable error.

The assume command ���
�	 � � evaluates � , which must be of type ���� .
If � evaluates to ��
	 , then the command terminates. If � evaluates to
���	 , then
the execution of the program stalls forever, which entails that the program execution
no longer has any chance of going wrong.

In the command ����� # � , each identifier in the list # must refer to a variable in
scope. The command assigns to every variable � in # an arbitrary value of the type
of � .

In the call command ���� # �� ���� �� , � must refer to a procedure and #
must refer to distinct variables in scope. The length of the list # must equal the
number of out-parameters of � , and the types of the out-parameters of � must be
assignable to the types of the corresponding variables in # . The length of the list
�� of expressions must equal the number of in-parameters of � , and the types of
the expressions in �� must be the assignable to the types of the corresponding in-
parameters of � .

The call command evaluates the expressions in �� and passes these as parameters
to an implementation of � , meaning it binds the in-parameters of � ’s implementa-
tion and then transfers control to the implementation. Upon return from the � ’s imple-
mentation, the values of � ’s out-parameters are copied into the variables of # . The
particular implementation chosen as the one to which control is transferred is chosen
arbitrarily. In fact, it need not even be one of the implementations given in the pro-
gram (it could in principle be “made up” by the runtime system), as long as the chosen
implementation satisfies the procedure specification.

7

8 Expressions

Expressions follow this grammar:

���������� ��� �$��%�	����

�$��%�	���� ��� ���	������� � “ � ” �$��%�	���� �
���	������� ��� ������	���� � “ � ” ���	������� �
������	���� ��� &�	�����

� &�	����� “ � ” �������
� &�	����� “ � ” ������

������� ��� &�	����� � “ � ” ������� �
������ ��� &�	����� � “ � ” ������ �
&�	����� ���
��� � &�	��
��� �

��� ��� �
��� ����� � ������
������ ��� � ������ �	�� � '��������

'�������� ��� ��������� � “�” '�������� � “	 ” '��������
��������� ��� ���� � ��������� �����

���� ���
���	 � ��
	 � �
�� � 	 �
 � � �

� �� � �� “�” � �������������� � “�”
� ��� “�” ���������� “�”
� ���� “�” ���������� “� ”
��� “�”
� (�����)������ � “�” ���������� “�”

(�����)������ ��� “�” (������ ��
������� “ � ” ���������� “�”
&�	�� ��� “ � ” � “ �� ” � “ � ” � “ � ” � “ � ” � “ � ” � “ �� ”
����� ��� “ � ” � “	 ”
 �	�� ��� “
 ” � “�” � “
”

(������ ��� “�” � “�”

To explain these expressions, we refer to the following table, which shows the the
supported type signatures of the operators and common names for the operations. For

8

each line, we use � to any particular type.

� � ����� ����� ���� logical equivalence
� � ����� ����� ���� logical implication
� � ����� ����� ���� logical conjunction
� � ����� ����� ���� logical disjunction
� � �� �� ���� equality
�� � �� �� ���� disequality
� � ���� ���� ���� arithmetic less-than
� � ���� ���� ���� arithmetic at-most
� � ���� ���� ���� arithmetic at-least
� � ���� ���� ���� arithmetic greater-than
�� � ���	� ���	� ���� partial order on names
� � ���� ���� ��� addition
	 � ���� ���� ��� subtraction

 � ���� ���� ��� multiplication
� � ���� ���� ��� integer division

 � ���� ���� ��� integer modulo
� � ����� ���� logical negation
	 � ���� ��� arithmetic negation

��� � �� � initial state
�
� � �� � parentheses

Logical equivalence is the same as boolean equality, just with a weaker binding
power.

The expression ����� � is only allowed to appear in 	��
�	� clauses.
In the expression ������ �
 � , either the type of � or
 itself must be ��� .

The type of the cast expression is
 .
In the identifier expression � , � must refer to a variable or to a symbolic constant.

The type of the expression � is the type of the variable or symbolic constant � .
The index expression ��� � requires the type of � to be a one-dimensional array

type. The type of � must be assignable to the index types of � . The type of the index
expression is the array-element type of � .

The index expression ��� �� � requires the type of � to be a two-dimensional
array type. The types of � and � must be assignable to the corresponding index
types of � . The type of the index expression is the array-element type of � .

The literal expressions
���	 and ��
	 have type ���� , the literal expression
�
�� has type �	
 , and the integer literals have type ��� .

In the function-application expression ! ��� � , ! must refer to an uninterpreted
function symbol. The number of expressions in the list �� must equal the num-
ber of number of in-parameters of ! , and the types of the expressions in �� must
be assignable to the types of the corresponding in-parameters of ! . The function-
application expression has the same type as the type of the out-parameter of ! .

The quantifier expression ��# � � � , where � is either � or � , defines the
identifiers in # as expression-bound variables that can be used in � . These identifiers
must be distinct from each other and from any other expression-bound variables, local
variables, or parameters in scope. The type of a quantifier expression is ���� .

9

9 ASCII representation

Some of the characters used above are not accessible from editors and keyboards that
use only ASCII. The following table shows ASCII synonyms for those characters.

� <==>
� ==>
� &&
� ||
� ==
�� !=

� <=
� >=
� !
� forall
� exists
� ::

10 Using Boogie to check BoogiePL programs

The Spec# programming system [1, 8] compiles Spec# programs into MSIL, the inter-
mediate language of the .NET virtual machine. The Spec# static program verifier,
codenamed Boogie, translates such MSIL programs into the intermediate language
BoogiePL. Boogie then generates verification conditions for the BoogiePL program
and passes these to an automatic theorem prover, which attempts to prove the verifi-
cation conditions (hence showing that the BoogiePL program and the original Spec#
program are correct) or find counterexamples to them (hence showing that there is an
error in the BoogiePL program and the original Spec# program). The Boogie tool can
also apply abstract interpretation to infer properties like loop invariants.

In addition to accepting MSIL programs, Boogie also accepts BoogiePL programs
directly. The BoogiePL programs must be files whose names end with .bpl, and these
programs can be written in Unicode or ASCII. The fact that Boogie accepts BoogiePL
programs directly means that others can encode their verification tasks as BoogiePL
programs and then leverage the Boogie tool. (Also, the fact that Boogie first translates
MSIL into BoogiePL opens the possibility to use other BoogiePL checkers, should
such be developed by others.)

11 Example

Consider the following example Spec# program:

�
���� ����� �����	� �
��� � �
�
���� ���� ����� �� �
�
 �� � 	� �
� �� � �

�
�

�

After it is compiled by the Spec# compiler, it is translated by Boogie into a BoogiePL
program. Figure 0 shows an excerpt of that program.

10

��� �*��� � ��	
 ����	�����

������ ������! ��	
 � �	�
��� ����	��

������ �����������	� �	�
��� �������

������ �+��+�		����	� �	�
��� ����	��
����� �� � � ��! �
 � ���	 � ������
 � � � � ��		 � ������! ��� ��
 ��
����� �� � � ��! �
 � ���	 � ������ �+��+�		�
 �� � � �� �
�� � ������
 � ��

����� ������������ � ���	�
����� ���������,��� � ���	�
����� �����	� � ���	�
����� �����	� �� ���������,��� �

����� �����	��� � ���	�
����	�
�	 �����	������������������-�� � �	
 � ���� � �����
�����	� �*����

����	�	������� �����	������������������-�� � �	
 � ���� � ����
�
��� � � ���� �����	� � ���� �����	� � �����

����� �
���
�	 �����-�� � �+��+�		������	����
� �� �����
���
�	 ����� ���������������
���� �	���
����

�	���
��� �
�����	� �� 	�
�����	� �� � � �����	� �
���� ����
�����
���� !�	��
�����
����

����
�����
��� �
���
�	 �����	� � ��
	�
���� �	���
����

!�	��
�����
��� �
���
�	 �����	� �
���	�
���	�� �-�� �� �
���
�����	� �� ������*�����-�� ������	��� �� �����
���
�	 ���������	� ���������������
�����	� �� �����	� � � �
���	�� �-�� �� �
���
�*�����-�� ������	��� � �� �����	� �
���� �	���
����

�	���
��� �
�	�
���

�

Figure 0: An example BoogiePL program.

11

Acknowledgements

Mike Barnett, Rob Klapper, and Wolfram Schulte contributed various parts of the ini-
tial BoogiePL language and implementation. The language described in this note is a
revision of that initial language, incorporating, for example, types.

The mathematical part of the language (symbolic constants, functions, axioms) is
similar to other specification languages, including Larch [5]. It has been designed
to closely follow the abstract grammar of the input language of the theorem prover
Simplify [2]. The mathematical part is intended to allow background predicates (see,
e.g., [4]) to be coded directly in the BoogiePL language.

The command part of the language is similar to many Pascal-like languages and lan-
guages built on guarded commands [3, 7, 0]. It has commonalities with the ESC/Java
intermediate language [6].

References

[0] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Texts in Computer Science. Springer-Verlag, 1998.

[1] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming
system: An overview. In CASSIS 2004, Construction and Analysis of Safe, Secure
and Interoperable Smart devices, volume 3362 of Lecture Notes in Computer Sci-
ence, pages 49–69. Springer, 2005.

[2] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical Report HPL-2003-148, HP Labs, July 2003.

[3] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood
Cliffs, NJ, 1976.

[4] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In Proceedings of
the 2002 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), volume 37, number 5 in SIGPLAN Notices, pages 234–245.
ACM, May 2002.

[5] John V. Guttag and James J. Horning, editors. Larch: Languages and Tools for For-
mal Specification. Texts and Monographs in Computer Science. Springer-Verlag,
1993. With Stephen J. Garland, Kevin D. Jones, Andrés Modet, and Jeannette M.
Wing.

[6] K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java programs
via guarded commands. In Bart Jacobs, Gary T. Leavens, Peter Müller, and Arnd
Poetzsch-Heffter, editors, Formal Techniques for Java Programs, Technical Re-
port 251. Fernuniversität Hagen, May 1999. Also available as Technical Note
1999-002, Compaq Systems Research Center.

12

[7] Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Pro-
gramming Languages and Systems, 11(4):517–561, 1989.

[8] Spec# homepage. http://research.microsoft.com/SpecSharp,
2005.

