
An Efficient Decision Procedure for UTVPI
Constraints

Shuvendu K. Lahiri Madanlal Musuvathi

June 15, 2005

Technical Report
MSR-TR-2005-67

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052



This page intentionally left blank.



An Efficient Decision Procedure for UTVPI
Constraints

Shuvendu K. Lahiri and Madanlal Musuvathi

Microsoft Research
{shuvendu,madanm}@microsoft.com

Abstract. A unit two variable per inequality (UTVPI) constraint is of
the form a.x+b.y ≤ d where x and y are integer variables, the coefficients
a, b ∈ {−1, 0, 1} and the bound d is an integer constant. This paper
presents an efficient decision procedure for UTVPI constraints. Given m
such constraints over n variables, the procedure checks the satisfiability of
the constraints in O(n.m) time and O(n+m) space. This improves upon
the previously known O(n2.m) time and O(n2) space algorithm based
on transitive closure. Our decision procedure is also equality generating,
proof generating, and model generating.

1 Introduction

A unit two variable per inequality (UTVPI) constraint is of the form a.x+b.y ≤ d
where x and y are integer variables, the coefficients a, b ∈ {−1, 0, 1} and the
bound d is an integer constant. This is a useful fragment of integer linear arith-
metic as many hardware and software verification queries are naturally expressed
in this fragment.

For example, Ball et al. [1] note that most queries that arise during the
predicate abstraction refinement process in SLAM [2] fit into this fragment.
Others, including Pratt [18] and Seshia et al. [19] have observed that significant
portion of linear arithmetic queries are restricted to difference logic (a fragment
of UTVPI constraints of the form x ≤ y + c.).

The fragment UTVPI is also important because it is the most expressive
fragment of linear arithmetic that enjoys a polynomial decision procedure [11].
Extending this fragment to contain three variables (with just unit coefficients)
per inequality or adding non-unit coefficients for two variable inequalities can
make the decision problem NP-Complete [12]. Having an integer solver is often
useful when dealing with variables for which rational solutions are unaccept-
able. Such examples often arise when modeling indices of an array or queues in
hardware or software [7, 13].

In this paper, we present an efficient decision procedure for UTVPI con-
straints. Given m such constraints over n variables, the procedure checks the
satisfiability of the constraints in O(n.m) time and O(n + m) space. This im-
proves upon the previously known O(n2.m) time and O(n2) space algorithm
provided by Jaffar et al. [11] based on transitive closure. The space improve-
ment of our algorithm is particularly evident when m is O(n), which occurs



very frequently in practice, as the number of constraints that arise in typical
verification queries have a sparse structure. In fact, the actual complexity of our
algorithm is O(NCD), which is the complexity of an algorithm that can deter-
mine if there is a negative weight cycle in a directed graph. 1 Accordingly, the
time bound of our algorithm can be further improved by using a more efficient
negative cycle detection algorithm [4].

In addition to checking satisfiability of a set of UTVPI constraints, the deci-
sion procedure is also equality generating, proof producing and generates models
for satisfiable formulas. The decision procedure generates equalities between vari-
ables implied by a set of UTVPI constraints in O(n.m) time. The algorithm can
generate a proof of unsatisfiability and equalities implied in O(n.m) time. Both
these algorithms use a linear O(n + m) space. The model generation algorithm
can run in O(n.m + n2.logn) time and O(n2) space.

Finally, we conclude the paper by showing that the problem of finding diverse
models for UTVPI constraints is NP-complete. A diverse model ρ for a set of
UTVPI constraints φ is an assignment from the set of variables of φ to integers,
such that ρ(x) = ρ(y) if and only if x = y is implied by φ. We also relate the
problem of generating disjunctions of equalities from the theory to the problem
of diverse model generation.

2 Background

2.1 Requirements from a decision procedure

For a given theory T , a decision procedure for T checks if a formula φ in the
theory is satisfiable, i.e. it is possible to assign values to the symbols in φ that
are consistent with T , such that φ evaluates to true.

Decision procedures, nowadays, do not operate in isolation, but form a part
of a more complex system that can decide formulas involving symbols shared
across multiple theories. In such a setting, a decision procedure has to support
the following operations efficiently:

1. Satisfiability Checking: Checking if a formula φ is satisfiable in the theory.
2. Model Generation: If a formula in the theory is satisfiable, find values for the

symbols that appear in the theory that makes it satisfiable. This is crucial
for applications that use theorem provers for test-case generation.

3. Equality Generation: The Nelson-Oppen framework for combining decision
procedures [17] requires that each theory (at least) produces the set of equal-
ities over variables that are implied by the constraints.

4. Proof Generation: Proof generation can be used to certify the output of
a theorem prover [16]. Proofs are also used to construct conflict clauses
efficiently in a lazy SAT-based theorem proving architecture [6].

1 The traditional Bellman-Ford algorithm for negative cycle detection runs in O(n.m)
time.



2.2 Graph Notations

Let G(V, E) be a directed graph with vertices V and edges E. For each edge
e ∈ E, we denote s(e), d(e) and w(e) to be the source, destination and the
weight of the edge. A path P in G is a sequence of edges [e1, . . . , en] such that
d(ei) = s(ei+1), for all 1 ≤ i ≤ n− 1. For a path P

.= [e1, . . . , en], s(P ) denotes
s(e1), d(P ) denotes d(en) and w(P ) denotes the sum of the weights on the edges
in the path, i.e.

∑
1≤i≤n w(ei). A cycle C is a sequence of edges [e1, . . . , en] where

s(e1) = d(en). We use u ; v in E to denote that there is a path from u to v
through edges in E.

2.3 Negative Cycle Detection

Given a graph G(V, E), the problem of determining if G has a cycle C, such that
w(C) < 0 is called the negative cycle detection problem. Various algorithms can
be used to determine the existence of negative cycles in a graph [4]. Negative
cycle detection (NCD) algorithms have two properties:

1. The algorithm determines if there is a negative cycle in the graph. In this
case, the algorithm produces a particular negative cycle as a witness.

2. If there are no negative cycles, then the algorithm generates a feasible solu-
tion δ : V → Z, such that for every (u, v) ∈ E, δ(v) ≤ δ(u) + w(u, v).

For example, the Bellman-Ford [3, 8] algorithm for singe-source shortest path
in a graph can be used to detect negative cycles in a graph. The Bellman-Ford
algorithm can determine in O(n.m) time and O(n + m) space, if there is a
negative cycle in G, and a feasible solution otherwise.

In this paper, we assume that we use one such NCD algorithm. We will
define the complexity O(NCD) as the complexity of the NCD algorithm under
consideration. This allows us to leverage all the advances in NCD algorithms in
recent years [4], that have complexity better than the Bellman-Ford algorithm.

3 UTVPI Constraints

The unit two variables per inequality (UTVPI) constraints are a fragment of
linear arithmetic constraints of the form a.x+ b.y ≤ d where x and y are integer
variables, the coefficients a, b ∈ {−1, 0, 1} and the bound d is an integer constant.
The fragment also includes single variable per inequality (SVPI) constraints
a.x ≤ d.

Figure 1 describes the set of inference rules that is sound and complete for
this fragment. Jaffar et al. [11] showed that a set of UTVPI constraints C is
unsatisfiable if and only if the closure of C with respect to the transitive and
the tightening rule in Figure 1, contains a constraint 0 ≤ d, where d < 0.



a.x + b.y ≤ c − a.x + b′.z ≤ d

b.y + b′.z ≤ c + d
(Transitive)

a.x + b.y ≤ c a.x− b.y ≤ d a ∈ {−1, 1}
a.x ≤ b(c + d)/2c (Tightening)

a.x + b.y ≤ c − a.x− b.y ≤ d c + d < 0

⊥ (Contradiction)

Fig. 1. Inference rules for UTVPI. The constants a, b, b′ range over {−1, 0, 1}, and c, d
range over Z.

3.1 Existing Decision Procedures for UTVPI

The only algorithms known for solving a set of UTVPI constraints are based on
transitive (and tightening) closure.

Jaffar et al. [11] provided the first decision procedure for UTVPI. The algo-
rithm was based on incrementally processing a set of constraints C and main-
taining a transitive and tight closure C∗ of the set of constraints seen so far.
After the addition of a new constraint a.x + b.y ≤ d, the algorithm computes
the set of new UTVPI constraints as follows:

1. For every −a.x + b′.z ≤ d′ ∈ C∗, and for every −b.y + b′′.w ≤ d′′ ∈ C∗,
compute the closure of {−a.x + b′.z ≤ d′, a.x + b.y ≤ d,−b.y + b′′.w ≤ d′′}
using the transitive rule in Figure 1.

2. For any constraint 2a′.w ≤ d′ produced in step 1, we add the tightening
constraint a′.w ≤ bd′/2c to the closure.

3. For each new tightening constraint a′.w ≤ d′ produced in step 2, and for
every constraint b′.z−a′.w ≤ d′′, we add the transitive constraint b′.z ≤ d+d′′

to the closure, and compute the transitive closure.

The runtime of the algorithm is O(m.n2) and the space requirement is O(n2).
Harvey et al. [9] improved on this algorithm by showing that the transitive

and tightening steps can be combined together in a single step (i.e. step 1)
without the need for the subsequent steps. The asymptotic complexity of the
algorithm (both time and space), however, remains unchanged.

In this paper, we provide an O(NCD) time algorithm based on negative cy-
cle detection that strictly improves upon the previous decision procedures for
UTVPI constraints. Also, our algorithm has an O(n+m) space complexity that
performs better when m is O(n). On the downside, our algorithm is not incre-
mental and requires all the constraints to be provided at once. Currently, we
are using this decision procedure in a lazy SAT-based theorem proving frame-
work [6], where nonincremental decision procedures suffice. However, we hope to
make this algorithm incremental in our future work.



UTVPI Assoc. Difference Constraints Graph Edges

x− y ≤ k x+ − y+ ≤ k , y− − x− ≤ k y+ k→ x+ , x−
k→ y−

x + y ≤ k x+ − y− ≤ k , y+ − x− ≤ k y−
k→ x+ , x−

k→ y+

−x− y ≤ k x− − y+ ≤ k , y− − x+ ≤ k y+ k→ x− , x+ k→ y−

x ≤ k x+ − x− ≤ 2.k x−
2.k→ x+

−x ≤ k x− − x+ ≤ 2.k x+ 2.k→ x−

Table 1. Edges in constraint graphs

3.2 Constraint Graph

Given a set of UTVPI constraints, our algorithm reduces the problem of checking
the satisfiability of the constraints to finding negative cycles in an appropriate
graph. This transformation is a simple extension of a similar transformation for
difference constraints [5] and has been previously used by Miné [15], for solving
UTVPI constraints over rationals.

Let φ be a set of UTVPI constraints φ. One can construct the constraint
graph Gφ(V, E) as follows. For each variable x in φ, the vertex set V contains
two vertices x+ and x− that respectively represent the positive and negative
occurrences of x. For any vertex v ∈ V , −v represents its negative counterpart.
That is, −x+ represents x−, and −x− represents x+. To avoid confusion, we will
use x, y, z, . . . to represent variables in φ and u, v, w, . . . to represent vertices in
V .

Each UTVPI constraint in φ can be transformed to a set of difference con-
straints over vertices as shown in Table 1. For each such difference constraint
u−v ≤ k, the graph Gφ(V, E) contains an edge (v, u) with weight k. It is obvious
that if φ contains m UTVPI constraints in n variables then Gφ(V, E) will contain
at most 2.n vertices and 2.m edges. The following propositions are obvious.

Proposition 1. For every edge (u, v) ∈ E, the constraint graph Gφ(V, E) con-
tains an edge (−v,−u)withequalweight.

Proposition 2. If there is a path P from u to v in the constraint graph, then
there is a path P ′ from −v to −u such that w(P ) = w(P ′).

For vertices u, v ∈ V , let SP (u, v) represent any of the shortest path from u
to v in Gφ. Let wSP (u, v) represent w(SP (u, v)).

Proposition 3. Let u and v two vertices in Gφ such that u ; v. Also, let the
vertices respectively represent variables a.x and b.y. Then φ implies the tightest
bound b.y − a.x ≤ k exactly when k = wSP (u, v)

The proof follows by transitivity of constraints in φ.

Lemma 1. A set of UTVPI constraints φ is unsatisfiable in Q if and only if
the constraint graph Gφ(V, E) contains a negative weight cycle [15].



y + x ≤ −5 (1)

w − x ≤ 4 (2)

−w − x ≤ 3 (3)

z − y ≤ 2 (4)

−z − y ≤ 1 (5)

Fig. 2. UTVPI constraints that are unsatisfiable in Z, but satisfiable in Q

The proof of the lemma simply follows from a similar proof for the satisfiability
of difference constraints [5].

Lemma 1 essentially solves the satisfiability problem for rationals. However,
this lemma is not sufficient for integers. For instance, Figure 3.2 shows a set of
constraints which is unsatisfiable in integers but the corresponding constraint
graph has no negative cycles. In this example, Equations (2) and (3) imply
−2.x ≤ 7 which for integers can be tightened to −x ≤ 3. Similarly, Equations
(4) and (5) imply −y ≤ 1. These bounds on −x and −y contradict Equation (1).

4 Efficient Decision Procedure for UTVPI Constraints

As described in the previous section, the constraint graph Gφ of a set of con-
straints φ contains a negative cycle only if the φ are unsatisfiable in Q. To extend
this result for Z, this section describes a method to extend the constraint graph
by adding tightening edges. The resulting graph contains a negative cycle exactly
when the constraints are unsatisfiable in Z.

4.1 Tightening Edges

Given a constraint graph Gφ(V,E), our goal is to capture the tightening rule
in Figure 1. For a constraint graph Gφ, define the set of tightening edges T as
follows:

T = {(u,−u) | wSP (u,−u) is odd}
For each edge in T , the weight of the edge is defined as follows

wT (u,−u) = wSP (u,−u)− 1, for all edges (u,−u) ∈ T

Now, whenever φ implies the tightest bound 2.x ≤ k where k is odd, then by
Proposition 3, wSP (x−, x+) = k in Gφ. By the Tightening Rule in Figure 1, φ
implies 2.x ≤ k − 1. This “tightened” constraint is captured by the tightening
edge (x−, x+) in T . Note, that the weight of an edge in T is even.

Given a constraint graph Gφ, define the graph Gφ∪T as the one obtained by
adding all edges in T to Gφ. The following lemma describes a way to check if
the input constraints φ is satisfiable in Z.



Lemma 2. A set of UTVPI constraints φ is satisfiable in Z if and only if the
graph Gφ∪T has a negative cycle.

Lemma 2 leads to the following naive algorithm

Proposition 4. Naive Algorithm: The set of UTVPI constraints can decided in
O(nm + n2logn) time and O(n + m) space.

This algorithm uses a minor modification of Johnson’s All Pair Shortest Paths
algorithm to identify the edges in T in O(nm + n2logn) time and O(n + m)
space. Then, negative cycles in Gφ∪T can be found in O(NCD). Note, that this
is an improvement over the Harvey and Stuckey’s algorithm.

4.2 Efficient Decision Procedure

Our goal is to improve upon the naive algorithm to decide a set of UTVPI
constraints in O(NCD) time. The crucial insight is to notice that the naive
algorithm is computing all edges in T while only some of them might potentially
lead to negative cycles. Our algorithm precisely identifies those edges in T by
looking for zero-weighted cycles in Gφ.

We present the algorithm below:

Algorithm 1 NCD-UTVPI Algorithm:

1. Given a set of UTVPI constraints φ, construct the constraint graph Gφ(V, E).
2. Run a negative cycle detection algorithm.

(a) If Gφ contains a negative cycle, return UNSAT.
(b) Otherwise, the negative cycle detection algorithm returns a feasible so-

lution δ, such that δ(v)− δ(u) ≤ w(u, v) for all edges (u, v) ∈ E.
3. Let E′ be set of edges in G such that an edge (u, v) ∈ E′ if and only if

δ(v)− δ(u) = w(u, v)
4. Create the induced subgraph G′φ(V, E′) from Gφ(V, E).
5. Group the vertices in G′φ into strongly connected components (SCCs). Ver-

tices u and v are in the same SCC if and only if u ; v and v ; u in E′.
This can be done in linear time [20]. Moreover, u and v are in the same SCC
exactly when there is a zero-weight cycle in Gφ containing u and v.

6. For each vertex u ∈ V ,
(a) if −u is in the same SCC as u and if δ(u) − δ(−u) is odd, then return

UNSAT.
7. return SAT

In the algorithm above, all steps except step 2 can be done in linear time. Thus
the algorithm has O(NCD) time complexity and O(n+m) space complexity. To
prove the soundness and completeness of this algorithm, we need the following
definitions and lemmas.

Given a feasible solution δ for the constraint graph Gφ, define the slack of an
edge as: slδ(u, v) = δ(u)−δ(v)+w(u, v). When the feasible solution δ is obvious
from the context, sl(u, v) refers to slδ(u, v). From the definition of feasibility of



δ, we have the fact that sl(u, v) ≥ 0 for all edges (u, v) in Gφ. Note, the step 3
of the algorithm above identifies E′ to be the set of edges with slack zero. Also,
the slack of a path P is defined as sl(P) = Σe∈Psl(e).

Proposition 5. Let P be a path from u to v in Gφ. Then, w(P ) = sl(P) +
δ(v)− δ(u).

The proof follows from a simple induction on the length of the path P .

Proposition 6. For any cycle C in Gφ, w(C) = sl(C ).

The proof follows from Proposition 5 when P forms a cycle.

Proposition 7. If P is a path from u to v and all edges in P have a slack zero,
then wSP (u, v) = δ(v)− δ(u).

Proof. We have sl(P) = 0 . Thus w(P ) = δ(v)− δ(u) from Proposition 5. How-
ever, as slacks of all edges are nonnegative, sl(SP(u, v)) ≥ 0 . From Proposition 5,
we have wSP (u, v) ≥ w(P ), which can be possible only when the inequality is
tight. Thus, the proposition is true.

Theorem 1. The NCD-UTVPI algorithm is sound.

Proof. The algorithm returns UNSAT at two places. In step 2a, the graph Gφ

contains a negative cycle and thus by Lemma 1, φ is unsatisfiable in Q and
thus in Z. If the algorithm returns UNSAT in step 6a, then we show that φ is
unsatisfiable in Z (but satisfiable in Q). We have two vertices u and −u that are
in the same SCC in G′φ such that δ(−u)−δ(u) is odd. Since the vertices are in the
same SCC, we have a path in from u to −u in G′φ. By Proposition 7, wSP (u,−u)
is odd, and thus T contains an edge (u,−u) of weight δ(−u)−δ(u)−1. Similarly,
T contains an edge (−u, u) of weight δ(u)− δ(−u)− 1. These two edges form a
negative cycle (of weight −2) in Gφ∪T . Thus, φ is unsatisfiable by Lemma 2.

To prove the completeness, we have to show that given a set of UTVPI
constraints φ that is unsatisfiable, the NCD-UTVPI algorithm returns UNSAT.
The proof of this theorem is more involved, and requires the following lemmas.

Lemma 3. If C is a cycle in Gφ∪T , then there is a cycle C ′ in Gφ∪T with at
most two edges from T such that either w(C ′) < 0 or w(C ′) ≤ w(C).

Proof. This lemma is crucial for restricting negative cycle detection to those
cycles with at most two tightening edges. The proof of this lemma is as follows.
The lemma is trivially true if Gφ∪T only contains cycles with at most two edges
from T . Otherwise, let C be a cycle in Gφ∪T such that C contains n tightening
edges with n > 2. For 0 ≤ i < n, let ti = (vi,−vi) be the tightening edges in
the order they appear in C. Also, the fragment Pi of C denotes a path from −vi

to vi+1 in Gφ, where the addition is performed modulo n. From Proposition 2,
there is a path P ′i from −vi+1 to vi in Gφ, such that w(P ′i ) = w(Pi). Define Ci as
the cycle consisting of ti, Pi, ti+1, P

′
i . Obviously, Ci contains only two tightening

edges, for 0 ≤ i < n.



We can show that at least one of the Ci satisfies the conditions of the lemma.
Suppose this is not the case, then w(Ci) ≥ 0 and w(Ci) > w(C), for all 0 ≤ i < n.
We have,
∑n−1

i=0 w(Ci) = Σn−1
i=0 w(ti) + w(Pi) + w(ti+1) + w(P ′i )

= Σn−1
i=0 w(ti) + 2 ∗ w(Pi) + w(ti+1) as w(P ) = w(P ′)

= Σn−1
i=0 2 ∗ w(ti) + 2 ∗ w(Pi) by reordering the sum

= 2 ∗ w(C)

By assumption, the left hand side Σn−1
i=0 w(Ci) ≥ 0, which implies that w(C) ≥ 0.

Also by assumption, 2 ∗ w(C) = Σn−1
i=0 w(Ci) > n ∗ w(C). However, this contra-

dicts with the fact that n > 2. Thus, at least there is a Ci that satisfies the
requirements of the lemma.

Corollary 1. Gφ∪T contains a negative cycle precisely when it contains a neg-
ative cycle with at most most two edges from T .

Lemma 4. Suppose Gφ contains no negative cycles but Gφ∪T contains a nega-
tive cycle. Then there is a zero weight cycle in Gφ containing vertices u and −u
such that SP (u,−u) is odd.

Proof. Let C be a negative cycle in Gφ∪T . By Corollary 1, C has at most two
tightening edges without loss of generality. Since Gφ contains no negative cycles,
C contains at least one tightening edge. Thus, there are the following two cases:
Case 1: C contains exactly one tightening edge (u,−u). Define P as the fragment
of C from −u to u. Consider the cycle C ′ formed by P along with SP (u,−u). By
definition of the tightening edge, w(C) = wSP (u,−u)−1+w(P ) = w(C ′)−1 < 0.
Also, as C ′ is a cycle in Gφ, we have w(C ′) ≥ 0. These constraints imply that
w(C ′) = 0 and is the cycle required by the lemma.
Case 2: C contains two tightening edges. Let (u,−u) and (v,−v) be the tight-
ening edges in order they appear in C. Define Pu as the fragment of C from −u
to v and define Pv as the fragment of C from −v to u. Without loss of general-
ity, w(Pu) ≤ w(Pv). Also, by Proposition 2, there is a path P ′u from −v to u, such
that w(Pu) = w(P ′u). Consider the cycle C ′ consisting of SP (u,−u), Pu, SP (v,−v), P ′u.
By definition of tightening edges both wSP (u,−u) and wSP (v,−v) are odd.
Thus, w(C ′) is even. Also,

w(C) = wSP (u,−u)− 1 + w(Pu) + wSP (v,−v)− 1 + w(Pv)
≥ wSP (u,−u)− 1 + w(Pu) + wSP (v,−v)− 1 + w(Pu) by assumption
= w(C ′)− 2 as w(Pu) = w(P ′u)

Thus, w(C ′) ≤ w(C) + 2. Since C is a negative cycle, we have w(C ′) ≤ 1.
However, we can tighten this constraint as w(C ′) is even. Thus, we have w(C ′) ≤
0. Since, C ′ is a cycle in Gφ w(C ′) ≥ 0. Thus, C ′ is the cycle required by the
lemma.

The proof of completeness of the NCD-UTVPI algorithm follows from the
above lemma.



Theorem 2. The NCD-UTVPI algorithm is complete.

Proof. Let φ be a set of UTVPI constraints. If φ is unsatisfiable in Q, then the
constraint graph Gφ has a negative cycle by Lemma 1. The NCD-UTVPI algo-
rithm returns UNSAT in step 2a. Suppose φ is satisfiable in Q but unsatisfiable
in Z. Then, by Lemma 2, Gφ∪T contains a negative cycle, while Gφ does not.
Thus, by Lemma 4, Gφ contains a zero weight cycle with a vertex u such that
SP (u,−u) is odd. By Proposition 6, all edges in C have a slack equal to zero.
Thus u and −u are in the same SCC in the graph G′ defined in step 5 of the
NCD-UTVPI algorithm. Finally, SP (u,−u) = δ(−u, u) by Proposition 7. Thus,
the NCD-UTVPI algorithm will detect the vertex u in step 6a.

5 Equality Generation

This section describes how to generate variable equalities implied by a set of
UTVPI constraints. This is very essential when the UTVPI decision procedure
is combined with other theories in a Nelson-Oppen framework. Given a set of m
UTVPI constraints φ over n variables, we show how to infer variable equalities
from Gφ in O(n.m) time and O(n + m) space.

5.1 Naive Algorithm

Akin to the decision procedure described in Section 4, we first provide a naive
algorithm for generating equalities in O(nm+n2logn) time to capture the main
intuition, and then improve to a O(nm) algorithm. Though m can be n2 in the
worst case, this improvement is motivated by the fact that in practice m is O(n).

The naive algorithm proceeds as in Proposition 4 by explicitly constructing
Gφ∪T by identifying all tightening edges in O(nm + n2logn) time. Given Gφ∪T

with no negative cycles (§2), the following lemma provides a way to generate
variable equalities in O(NCD) time

Lemma 5. Let δφ∪T be a feasible solution produced by a negative cycle detection
algorithm for Gφ∪T . The set of constraints φ implies x = y exactly when the
following is true:

1. δφ∪T (x+) = δφ∪T (y+), and
2. there is a zero weight cycle in Gφ∪T that contains both x+ and y+.

Proof. This lemma is directly derived from the equality generation algorithm for
difference constraints [14]. First, we will show that the conditions in the lemma
imply a variable equality. By the second condition, there is a path Pxy from
x+ to y+ and a path Pyx from y+ to x+ such that sl(Pxy) = sl(Pyx ) = 0 . By
Proposition 7, we have wSP (x+, y+) = δφ∪T (y+)− δφ∪T (x+) = 0. Moreover, by
Proposition 3, φ implies x−y ≤ 0. Similarly, φ implies y−x ≤ 0, which together
imply that x = y. The proof of the other direction is similar.



The conditions in this lemma can be checked by performing a SCC compu-
tation on the subgraph of Gφ∪T induced by edges with slack zero, similar to
the NCD-UTVPI algorithm. Now, φ implies x = y whenever x and y are in the
same SCC with the same δφ∪T values. This can be done in average linear time
using a hashtable, or in O(nlogn) time by sorting all vertices in the same SCC
according to their δφ∪T values.

We state the naive algorithm below.

Algorithm 2 EqGen-Naive Algorithm:

1. Starting with Gφ∪T , run a negative cycle detection algorithm to produce a
feasible solution δφ∪T .

2. Let E0 be the set of edges such that e ∈ E0 if and only if sl(e) = 0 .
3. Create the subgraph G0 induced by E0.
4. Group the vertices of G0 into strongly connected components.
5. If vertices x+ and y+ are in the same SCC and δφ∪T (x+) = δφ∪T (y+), then

report the variable equality x = y.

5.2 Efficient Equality Generation

In this section, we improve the naive algorithm by precisely inferring those tight-
ening edges that can result in a zero-weighted cycle in Gφ∪T . We do this by using
the following lemma, similar to Lemma 4.

Lemma 6. Assuming Gφ∪T has no negative cycles and if C is a zero weight
cycle in Gφ∪T containing a tightening edge (u,−u), then there is a cycle C ′ in
Gφ containing u and −u, and such that w(C ′) ≤ 2.

Proof. By Lemma 3, we can assume that C has at most two tightening edges.
Let P be the fragment of C from −u to u. Consider the cycle C1 formed by
SP (u,−u), P . By definition of the tightening edge, this cycle has weight w(C1) =
wSP (u,−u) + w(P ) = w(C) + 1 = 1. If C contains no other tightening edge,
then C1 is a cycle in Gφ proving the lemma. Otherwise, C contains at most one
other tightening edge, which can be removed like before to obtain C2 such that
w(C2) = 2. Now, C2 is the required cycle in Gφ.

By Lemma 6, we only need to add tightening edges whose endpoints are in
cycles of weight less than or equal to two. Moreover, under any feasible solution
δ, any edge e in such a cycle will have sl(e) ≤ 2 . By identifying such edges,
the following algorithm generates all variable equalities implied by φ in O(n.m)
time.

Algorithm 3 EqGen Algorithm:

1. Given a set of UTVPI constraints φ, construct the constraint graph Gφ(V, E).
2. Assume NCD-UTVPI algorithm returns SAT. Also, assume that a feasible

solution δ exists for Gφ.



3. Let E2 = {(u, v)|sl(u, v) ≤ 2}, and let G2(V, E2) be the subgraph of Gφ

induced by E2.
4. Let T2 be the set of tightening edges, initially set to the empty set.
5. For each vertex v

(a) Find Pv the path in G2 from v to −v with the smallest slack, if any. This
can be done in O(m) by using a modified breadth-first-search.

(b) If Pv exists,
i. Let wSP (v,−v) = δ(−v)− δ(v) + sl(Pv ).
ii. If wSP (v,−v) is odd, then add the edge (v,−v) to T2 and assign a

weight wT2(v,−v) = wSP (v,−v)− 1.
6. Consider the graph Gφ∪T2 obtained by adding all the edges in T .
7. Now proceed as in the EqGen-Naive algorithm with Gφ∪T2 instead of Gφ∪T .

Proposition 8. When the EqGen algorithm computes wSP (v,−v) in step 5(b)i,
the value computed correctly represents the weight of the shortest path between v
and −v.

Lemma 7. Gφ∪T contains a zero weight cycle exactly when Gφ∪T2 contains a
zero weight cycle.

Proof. Since Gφ∪T2 is a subgraph of tightT , one way of the proof is trivial.
Suppose tightG contains a zero weight cycle C. If C has no tightening edges,
then C is a cycle in Gφ∪T2 . Otherwise, let (u,−u) be a tightening edge in C. By
Lemma 6, there is a cycle C ′ in Gφ such that w(C ′) ≤ 2 and C ′ contains u and
−u. Since sl(C ′) ≤ 2 , all edges in C ′ have a slack less than or equal to 2, and
thus are in E2. Thus, the EqGen algorithm will add the tightening edge in T2.

6 Proof Generation

Using the UTVPI decision procedure in a lazy-proof-explication framework re-
quires the procedure to produce proofs whenever it reports the input constraints
as unsatisfiable, or whenever it propagates an implied variable equality. This sec-
tion describes how to generate the proofs for the decision procedure described
in this paper.

Both the NCD-UTVPI algorithm and the EqGen algorithm rely on two
vertices u and v (say) being in the same SCC in an appropriate graph. As a
witness for this fact, we need a path from u to v and a path from v to u.
We assume that the standard SCC algorithm can be modified to provide this
witness.2.

6.1 Generating Unsatisfiability Proofs

The NCD-UTVPI algorithm returns UNSAT in two cases. In the first case, the
constraint graph Gφ has a negative cycle. By assumption, the negative cycle

2 For details refer [14]



detection algorithm produces a witness which is the proof of unsatisfiability of
the input constraints. In the second case, the algorithm produces a vertex u and
−u in the same SCC of G′φ. Applying the transitivity rule along the path from
u to −u, we have −2.a.x ≤ k where a.x is the variable corresponding to u and
k = δ(−v) − δ(v) is an odd number. By applying the tightening rule, we get
−2.a.x ≤ k − 1. Using the path from −u to u we have 2.a.x ≤ −k which by
tightening we get 2.a.x ≤ −k − 1. This is the proof of the contradiction.

6.2 Generating Proofs for Implied Variable Equalities

The EqGen algorithm detects zero-weight cycles in the graph Gφ∪T2 . First, every
tightening edge in Gφ∪T2 has a proof involving transitivity along a particular
path of odd length, followed by a tightening rule. Also, whenever the EqGen
algorithm reports an equality x = y, x+ and y+ are in the same SCC. The proof
of this equality can be inferred along the proof of Lemma 5.

7 Model Generation

In this section, we describe how to generate models for a set of constraints C,
when C is satisfiable.

Let ρ be a function that maps each variable to an integer. Let ¹ be a linear
order of the variables that appear in C. The assignment ρ is constructed using
the following algorithm that assigns values to the variables in the order ¹:

1. Construct the set of UTVPI constraints C∗ that is the closure of C under
transitivity and tightening.

2. Vρ ← {}.
3. For each variable x ∈ V in the order ¹:

(a) Obtain the set of bounds for x (Bx) as follows:

Bx
.= {x ≤ c− b.ρ(y) | x + b.y ≤ c ∈ Cx, and y ¹ x}
∪ {x ≥ −c + b.ρ(y) | − x + b.y ≤ c ∈ Cx, and y ¹ x}
∪ {x ≤ c | x ≤ c ∈ C∗}
∪ {x ≥ −c | − x ≤ c ∈ C∗}.

(b) Assign ρ(x) to be a value that satisfies all the bounds in Bx.
(c) Vρ ← Vρ ∪ {x}.

4. Return ρ.

At any point in the above algorithm, ρ has assigned a subset of the variables
(Vρ) in C∗ values over integers. For all the variables for which ρ is undefined,
ρ(x) = x. If ρ be such a partial assignment, let us define Cρ to be the set of
constraints C ∪ {y = ρ(y) | y ∈ Vρ}. It is easy to see that at any point in the
above algorithm, Cρ implies x 6= c for any x ∈ V if and only if Cρ implies either
x < c or x > c.



Lemma 8. A set of UTVPI constraints C implies x 6= d for some d ∈ Z if and
only if C implies x < d or C implies x > d.

Proof. We only prove the “if” direction of this lemma. The proof relies on the
following two claims:

1. The set of constraints C ′ .= C ∪ {x = d} is unsatisfiable (or equivalently
C ⇒ x 6= d) if and only if there is negative cycle in the constraint graph
(described in Section 4.1) after adding all the difference constraints for each
constraint in C ′ and all the resulting tightening edges to the graph.

2. Adding x = d to the set C does not imply any new tightening constraints.

The property 1 follows from Lemma 2. Since any tightening constraint for a
variable y1 can only result from two constraints y1 − y2 ≤ c1 and y1 + y2 ≤ c2

and the constraint x = d can’t give rise to a constraint with two variables (under
transitive and tightening steps), the property 2 holds.

Therefore, adding the edges x+ − x− ≤ 2.d and x− − x+ ≤ −2.d for the
constraint x = d can result in a negative cycle in the difference graph, if and
only there is a path from x− to x+ of length less than −2.d (that implies x > d)
or there is a path from x+ to x− of length less than 2.d (that implies x < d).

Lemma 9. During the step 3a of the above algorithm, the set of constraints Cρ

implies x 6= c if and only if Bx contains either x ≤ d with d < c or x ≥ d with
d > c.

Proof. We will only prove the “if” direction. The other direction is obvious.
Let us first define the partial evaluation of the constraints in C∗ with respect

to ρ, 〈C∗〉ρ .= {a.ρ(x) + b.ρ(y) ≤ c | a.x + b.y ≤ c ∈ C∗}. If C∗ is the transitive
and tight closure of C, then the transitive and tight closure of C ∪ {y = c1} can
be obtained by simply replacing y with c1 in all the constraints in C∗ (see [9]).
Hence, at any point in the above algorithm, 〈C∗〉ρ represents the transitive and
tight closure of Cρ.

Now, let us assume that Cρ implies x 6= c. Clearly, either x ≤ d with d < c
or x ≥ d with d > c is present in Bx (by Lemma 8).

Theorem 3. The assignment ρ generated by the algorithm above satisfies all
the constraints in C.

The proof follows from a simple induction on the size of Vρ. At each point in
the algorithm, the assignment ρ and the set of constraints C are consistent.

An easy implementation of the above algorithm can be obtained in O(n3)
time and O(n2) space. The transitive and tight closure C∗ can be computed
by first constructing the difference graph for C as described in Section 3 and
performing the transitive closure. After the transitive closure operation, if the
edge between x+ and x− is odd for any variable x in the difference graph, then
we add the corresponding tightening constraint for x. Finally, we traverse all the
constraints in the transitive closure and generate bounds for other variables that
are implied by the tightened edges. The rest of the algorithm can be performed



in O(n2) time if we maintain a adjacency list representation of the edges, where
the edge list for a variable x contains only those constraints in C∗ involving
variables that precede x in ¹. This would ensure a single pass over the edges
in C∗. The time complexity can be improved to O(n.m + n2.lg(n)), when using
Johnson’s [5] algorithm for performing the all-pair shortest path.

7.1 Model generation in Nelson-Oppen Framework

For a conjunction of UTVPI constraints C, the assignment ρ computed above
satisfies all the constraints in C. However, this is not sufficient to produce a model
in the Nelson-Oppen combination framework. We assume that the user is familiar
with the high-level description of the Nelson-Oppen combination method [17].
Consider the following example where a formula involves the logic of equality
with uninterpreted functions (EUF) and UTVPI constraints.

Let ψ = (f(x) 6= f(y)∧ x ≤ y) be a formula in the combined theory. Nelson-
Oppen framework will add ψ1

.= f(x) 6= f(y) to the EUF theory (T1) and
ψ2

.= x ≤ y to the UTVPI theory (T2). Since there are no equalities implied
by either theory, and each theory Ti is consistent with ψi, the formula ψ is
satisfiable. Now, the UTVPI theory generates the model ρ

.= 〈x 7→ 0, y 7→ 0〉 for
ψ2. However, this is not a model for ψ.

To generate an assignment for the variables that are shared across two theo-
ries, each theory Ti needs to ensure that the variable assignment ρ for Ti assigns
two shared variables x and y equal values if and only if the equality x = y is
implied by the constraints in theory Ti.

Definition 1. For a set of UTVPI constraints C, an assignment ρ for the
variables in C is called diverse, if for any two variables x and y in vars(C ),
ρ(x) = ρ(y) if and only if x = y is implied by C.

We will show that the problem of checking if a set of UTVPI constraints
has a diverse model is NP-Complete. Clearly, the problem is in NP. We will
reduce the following (NP-complete) pipeline scheduling problem to this problem
to show NP-hardness.

Theorem 4 (Minimum precedence constrained sequencing with de-
lays [10]). Given a set T of tasks, a directed acyclic graph G(T, E) defining
precedence constraints for the tasks, a positive integer D, and for each task t an
integer delay 0 ≤ d(t) ≤ D. The problem of determining a one-processor sched-
ule for T that obeys the precedence constraints and delays, within a deadline k,
is NP-Complete. That is, checking if there exists an injective function for the
start times S : T → Z such that for every (ti, tj) ∈ E, S(tj)−S(ti) > d(ti), and
S(ti) ≤ k for all ti ∈ T is NP-complete.

It is easy to construct a set of UTVPI constraints C such that C has a diverse
model if and only if a one-processor schedule for tasks in T exists. Observe
that the problem can be mapped to the fragment of UTVPI that contains only
x− y < c constraints with positive c.



Corollary 2. For a given set of constraints C
.= {xi − yi < ci | ci ≥ 0}, the

complexity of finding a diverse model for C is NP-complete.

We now show an interesting consequence of Corollary 2 for combining the
UTVPI theory with other theories in Nelson-Oppen setting.

7.2 Generating disjunction of equalities

To combine the decision procedures of a non-convex theory T1 (e.g. UTVPI)
with a convex theory T2 (e.g. EUF) in Nelson-Oppen framework, T1 needs to
infer the strongest disjunction of equalities between variables that is implied by
the set of T1 constraints. That is, if C1 is the set of UTVPI constraints, then
we need to generate a disjunction of equalities {e1, . . . , ek} over variables such
that C1 ⇒ e1 ∨ . . . ∨ ek, and the disjunction of no proper subset of {e1, . . . , ek}
is implied by C1.

Theorem 5. For a set of UTVPI constraints C that does not imply any equality
between variables in vars(C ), C has a diverse model ρ if and only if C does not
imply any disjunction of equalities {e1, . . . , ek} (for k > 1) over pairs of variables
in vars(C ).

Proof. Throughout this proof we consider a set of constraints C that does not
imply any equality between a pair of variables.

First, let us assume that C implies a disjunction over a minimal set of equal-
ities {u1 = v1, . . . , uk = vk}, for k > 1. This means that any model ρ for C is
also a model for C ∧ (u1 = v1 ∨ . . . uk = vk), and therefore must satisfy at least
of the equalities. Hence ρ can’t be diverse.

For the other direction, assume that C does not have any diverse models.
This implies that for any model ρ of C, there is at least a pair of variables u
and v such that ρ(u) = ρ(v). Thus the formula C ∧∧{u 6= v | u ∈ vars(C ), v ∈
vars(C ), u 6≡ v} does not have any models or is unsatisfiable. Therefore C implies∨{u = v | u ∈ vars(C ), v ∈ vars(C ), u 6≡ v}. Since none of the equalities in this
set (in isolation) is implied by C, there has to be a minimal subset of equalities
whose disjunction is implied by C.

The above theorem illustrates that the problem of checking if a set of UTVPI
constraints imply a disjunction of equalities over the variables is NP-Complete.

References

1. T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic Theorem Proving
for Software Predicate Abstraction Refinement. In Computer Aided Verification
(CAV ’04), LNCS 3114. Springer-Verlag, 2004.

2. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. In Programming Language Design and Implementation
(PLDI ’01), Snowbird, Utah, June, 2001. SIGPLAN Notices, 36(5), May 2001.



3. R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87–90,
1958.

4. B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. In
European Symposium on Algorithms, pages 349–363, 1996.

5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

6. C. Flanagan, R. Joshi, X. Ou, and J. Saxe. Theorem Proving usign Lazy Proof
Explication. In Computer-Aided Verification (CAV 2003), LNCS 2725, pages 355–
367. Springer-Verlag, 2003.

7. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’02), pages 234–245, 2002.

8. L. R. Ford, Jr., and D. R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

9. W. Harvey and P. J. Stuckey. A unit two variable per inequality integer constraint
solver for constraint logic programming. In Proceedings of the 20th Australasian
Computer Science Conference (ACSC ’97), pages 102–111, 1997.

10. J. L. Hennessy and T. R. Gross. Postpass code optimization of pipeline constraints.
ACM Trans. Program. Lang. Syst., 5(3):422–448, 1983.

11. J. Jaffar, M. J. Maher, P. J. Stuckey, and H. C. Yap. Beyond Finite Domains. In
Proceedings of the Second International Workshop on Principles and Practice of
Constraint Programming, PPCP’94.

12. J. C. Lagarias. The computational complexity of simultaneous diophantine ap-
proximation problems. SIAM Journal of Computing, 14(1):196–209, 1985.

13. S. K. Lahiri and R. E. Bryant. Deductive verification of advanced out-of-order
microprocessors. In Computer-Aided Verification (CAV 2003), LNCS 2725, pages
341–354. Springer-Verlag, 2003.

14. S. K. Lahiri and M. Musuvathi. An efficient nelson-oppen decision procedure for
difference constraints over rationals. Technical Report MSR-TR-2005-61, Microsoft
Research, 2005.

15. A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, pages
310–319. IEEE CS Press, October 2001.

16. G. C. Necula and P. Lee. Proof generation in the touchstone theorem prover. In
Conference on Automated Deduction, LNCS 1831, pages 25–44, 2000.

17. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):245–
257, 1979.

18. V. Pratt. Two easy theories whose combination is hard. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, Mass., September 1977.

19. S. A. Seshia and R. E. Bryant. Deciding quantifier-free presburger formulas using
parameterized solution bounds. In 19th IEEE Symposium of Logic in Computer
Science(LICS ’04). IEEE Computer Society, July 2004.

20. R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of
Computing, 1(2):146–160, 1972.


