
()

Generative CSG Models for Real Time Graphics

B. Guenter & M. Gavriliu

Abstract
Generative parametric CSG models, introduced by Snyder in 1992, have many desirable properties. Their func-
tional representation is generally quite compact and resolution independent, since surfaces are represented as
piecewise continuous functional programs. However, in practice they have proven impractical for real time ren-
dering because of the difficulty of compactly and exactly representing the implicit curves of intersection between
general parametric surfaces and because there was no published algorithm for triangulating the surfaces in real
time. Our new algorithm computes an exact, piecewise parametric representation for the implicit curves of inter-
section. The new piecewise parametric curve representation is very compact and can be evaluated efficiently at
run time, making it possible to change triangulation density dynamically. We have also developed a triangulation
algorithm which effectively uses modern GPU’s to render generative CSG models at high speed. Complex genera-
tive CSG models made with our system have a memory footprint of just 7-11 KBytes, which is orders of magnitude
smaller than the equivalent polygonal mesh representation.

1. Introduction

Figure 1: Procedural model of a speaker. Memory footprint
of the object is approximately 8.9 KBytes. Rendering speed
is 20 million triangles/sec.

Generative parametric CSG models for 3D surfaces, first

described in Snyder’s seminal work [Sny92a], have many
desirable characteristics for real time rendering. They are
powerful enough to model many types of objects, especially
manufactured things which frequently have simple proce-
dural descriptions. The intrinsic generative model descrip-
tion is very compact and resolution independent because sur-
faces are represented as piecewise continuous functions.

Compactness is particularly important because of a long
term trend in computer hardware: GPU processor perfor-
mance has been increasing at a rate of roughly 71% per year
while memory bandwidth has been increasing at only 25%
per year [Owe05]. Fetching data from memory is steadily
becoming more expensive relative to compututation. A more
compact representation can be faster to render than a larger
one, even if much more computation is required to process
the compact representation. In terms of compactness genera-
tive models are a better fit to this trend than polygon meshes.

Compactness is also important for memory constrained
platforms such as game consoles where large virtual worlds
must be stored in RAM or streamed off of slow serial devices
such as DVD drives. Bandwidth limited applications, such
as online games, would also benefit from a more compact
model representation.

In spite of these desirable qualities generative CSG mod-
els, introduced almost 15 years ago, are not used for real
time rendering. Generative CSG modeling today is ap-
proximately where subdivision surfaces, introduced in 1978

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

[CC78, DS78], were 10 years ago. For a decade after their
introduction they were a subject of much academic research
but were hampered by various technical problems, such as
the inability to easily specify creases. They were essen-
tially unused commercially until approximately 10 years
ago when solutions to some of these problems were found
[DKT98, Sta98] and now they are ubiquitous.

Generative models have suffered from similar technical
problems. Up to now it has not been possible to both render
them quickly and retain their compact nature. For example,
in Snyder’s implementation of generative CSG models, till
now the state of the art, the shape representation language
was interpreted so evaluating points on the surface of the
CSG object was far too slow for real time rendering.

A deeper problem was that the curve of intersection be-
tween the general parametric surfaces involved in the CSG
operation was known only implicity. Triangulating the ob-
ject required computing points on the implicit intersection
curve. This required robust root finding techniques for gen-
eral, not just algebraic, functions. Snyder used Interval New-
ton root finding. This was much too slow to be used at run
time so curve points had to be pre-computed offline and
the CSG model triangulated at some fixed resolution. As a
consequence the resulting pre-triangulated generative CSG
models were no longer resolution independent nor compact.

The primary contribution of this paper is a new algorithm
for finding a piecewise parametric representation for the im-
plicit curve of intersection between two general parametric
surfaces involved in a CSG operation. This parametric rep-
resentation is compact and exact to the limits of precision of
floating point arithmetic. Arbitrary points on the intersection
curve can be efficiently evaluated at run time which allows
triangulation density to be adapted dynamically.

A secondary contribution is that we have developed an al-
gorithm for efficiently triangulating generative CSG models
in real time which effectively uses the capabilities of modern
graphics hardware.

We have also developed a new language, called Shapes,
for representing generative CSG models, and a compiler that
transforms the high level Shapes programs to HLSL code
which is executed directly on the GPU. The Shapes language
is powerful enough to be used as the basis for a reasonably
general purpose 3D modeling tool, much as the PostScript
programming language can be used to represent 2D shapes
for a 2D modeling program.

All of the objects illustrated in this paper are Shapes pro-
grams that were generated with a simple 3D modeling tool
we created to demonstrate the potential of generative CSG
modeling. Space limitations preclude a comprehensive dis-
cussion of the Shapes language, compiler, and symbolic dif-
ferentiation system. These topics will be the subject of a sep-
arate paper. The important feature of Shapes to be aware of
for the remainder of the paper is that generative CSG models

are represented as Shapes programs which are compiled and
then executed on the GPU in order to render the object.

We believe that our solutions to the problems of repre-
senting the implicit curve of intersection and triangulating
generative CSG models in real time have finally made gen-
erative CSG models practical for real time rendering. Their
many advantages should lead to widespread adoption.

2. Previous Work

Our work has some superficial similarities to previous work
on real time CSG modeling but is distinguished by two char-
acteristics. First, the class of parametric surfaces that can be
represented in our system is quite general. The primary lim-
itation is that the surfaces must be at least piecewiseC2 and
must not be self intersecting. Some less important restric-
tions are noted in the body of the paper. Second, we com-
pute an exact boundary surface representation of the CSG
object which can be used for real time rendering. This is
in contrast to the work of [BKZ01, PKKG03, AD03] where
approximate intersections are computed and where surfaces
must be represented by a specific function type.

Screen space techniques such as [SLJ03] can also be used
to interactively compute CSG operations. These algorithms
work at image space resolution and can can haveO(n2) com-
plexity in the worst case wheren is the depth complexity at
a pixel. These algorithms require many writes and reads to
and from a Z-buffer. This type of memory intensive algo-
rithm does not match well with long term hardware trends.
In addition, Z-buffer precision problems can cause regions
near the intersection of two objects to have a more jagged
appearance than they would if the boundary of the surface
was explicitly represented.

Our exact boundary surface representation ensures that
only the parts of the object that result from the CSG oper-
ation will be rendered. No unnecessary writes will be made
to the frame buffer, and no reads from the frame buffer are
required.

3. Creating and Rendering a Shapes Object

Fig. 2 shows the steps involved in transforming a geomet-
ric object first into a Shapes program, and then, at runtime,
into triangles the GPU can render. The object is interactively
created on a conventional 3D modeling package, and the
sequence of operations used to create it is translated into
a Shapes program. This is directly analogous to the way
the 2D modeling program Adobe Illustrator converts user
strokes and interactions into a PostScript program.

The compiled Shapes program is used to compute the ex-
act representation of the CSG intersection curves. In our cur-
rent implementation this can take anywhere from a few sec-
onds up to 5 or 10 minutes so this process is done offline
after the object is modeled.

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

Next the domain is statically decomposed into a small
number of triangular domain regions called static domain
triangles. These domain regions have the property that they
can be easily subdivided and sampled at whatever resolution
is necessary at run time.

The compiled Shapes code, the intersection curve descrip-
tors, and the static domain triangles are bundled together
to make a runtime Shapes object which contains everything
necessary to triangulate the surface at run time.

The last phase of processing occurs at run time just before
the object needs to be displayed. First, the implicit curves
of intersection are used to dynamically trim the domain of
the general parametric surface function into regions. The
particular CSG operation used to create the object deter-
mines which of these regions will be triangulated and ren-
dered. Then the domain regions to be rendered are subdi-
vided into smaller, but still relatively large triangles, called
domain sampling triangles. The computation of curve inter-
section points and the dynamic subdivision of the static do-
main triangles into domain sampling triangles is done on the
CPU because it is cumbersome to implement these opera-
tions on current GPU’s.

The domain sampling triangles are passed to the GPU,
along with the compiled Shapes program representing the
surface. The Shapes program is evaluated on the GPU at a
large number of points in each sampling triangle and the re-
sulting n-dimensional surface points become vertices in a tri-
angle mesh. A typical vertex might be[x,y,z,nx,ny,nz,u,v]T

but one could have additional elements for color, reflection
parameters, etc. Shapes places no limitations on the dimen-
sion or contents of this vector.

4. Finding Exact Curves of Intersection

In our system surfaces are parametric functions of two vari-
ables. In a typical CSG operation two surfaces defined by

f1(u0,u1) = [f1x(u0,u1), f1y(u0,u1), f1z(u0,u1)]T

f2(u2,u3) = [f2x(u2,u3), f2y(u2,u3), f2z(u2,u3)]T

are intersected. The functionsfi : R2→R3 are assumed to be
non self-intersecting with a Lipschitz first derivative every-
where except perhaps at a set of points which can be found
with minimal computation as for example would be the case
if two curve segments were joined with a known first deriva-
tive discontinuity. This is essentially equivalent to requiring
the functions to be piecewiseC2.

Each CSG operation gives rise to a set of closed 4D in-
tersection curves in the variablesu0,u1,u2,u3 defined by the
implicit function f : R4 → R3:

f (u0,u1,u2,u3) = f1(u0,u1)− f2(u2,u3) = [0,0,0]T (1)

The exact representation of the intersection curves is com-
puted in two steps. First we use the implicit function theo-
rem to partition the intersection curve into regions each of

Runtime Computation

Offline computation

Modeling
program

Differentiation
and compilation

Compute curve
parameterization

regions

Compute
convergence

regions

Statically
decompose

domains

Runtime
Shapes object

HLSL code,
convergence

regions, domain
triangles

Intersection curve
evaluation

Simple
region

triangulation

CPU

Convert to
Shapes high
level program

GPU

Compute domain
sampling triangles

Curve region
triangulation

Figure 2: Flow diagram of procedural model processing

which can be parameterized by at least one variable in each
domain. In a region parameterized by variableui the im-
plicit function theorem guarantees that there exists a func-
tion g(ui) : R1 → R3 which defines the remaining three vari-
ables in terms ofui :

g(ui) = [gu j (ui),guk(ui),gul (ui)]T j 6= k 6= l 6= i (2)

More generally we will write

g(uind) = udep (3)

whereudep is a 3 vector of functions that define the depen-
dent variables in terms of the scalar parameterizing variable
uind. The implicit function theorem asserts that such a func-
tion exists but does not offer any suggestions about how it
may be computed.

The second step of the algorithm finds an explicit, com-
putable representation of this implicit function that is valid
over the region parameterized by variableui . This step is the
fundamentally new part of our algorithm and is described in
section4.1.

The parameterization regions are computed using an al-
gorithm similar to that in [Sny92a]. The differences aren’t
very great, although our slightly stronger parameterization
requirements simplify our real time triangulation algorithm.
However this part of the work is not what we consider our
most significant contribution. We include this detailed de-
scription here because it forms the foundation for the next
section and because [Sny92a] is out of print and so may be
difficult to find. For those readers familiar with the parame-
terization algorithm we advise skipping to section4.1.

In Snyder’s algorithm the 4D domain was subdivided into

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

a set of boxes which completely enclosed the intersection
curve. Inside each box the curve could be parameterized by
at least one variable. Snyder then computed intersections of
the intersection curve with the box faces and approximated
the true curve as a polyline.

In our algorithm we subdivide the 4D domain into boxes
which completely enclose the intersection curve. Inside each
box the curve can be parameterized by at least one variable
in each domain, i.e., the curve must be parameterizable by at
least two variables. This slightly stronger parameterizability
requirement is necessary for the real time triangulation algo-
rithm. We then fuse boxes of common parameterization into
larger parameterization regions (Fig.3). These parameteri-
zation regions are used in the next phase of our algorithm
(section4.1) where we find a computable representation of
the implicit function.

f , the intersection curve function, is defined over a 4D
interval box

u = [u0,u1,u2,u3]
T (4)

whereu is initialized to the entire domain of the surface. The
notationx indicates an interval over the variablex wherex
is the upper andx the lower bound (see [HW04] for a good
recent introduction to interval analysis or [Sny92b, Duf92]
for applications to graphics). The initial vector intervalu is
then recursively subdivided until all boxesp

b
are found that

satisfy

0∈ f (p
b
) (5)

as well as

{0 /∈ Det(D−u1 f (p
b
)) or 0 /∈ Det(D−u0 f (p

b
))}

and{0 /∈ Det(D−u2 f (p
b
)) or 0 /∈ Det(D−u3 f (p

b
))}

(6)
where the dependent derivative,D−ui f , is D f minus the col-
umn containing derivatives with respect to variableui . For
example,D−u2 f is:

D−u2 f =


∂ fx
∂u0

∂ fx
∂u1

∂ fx
∂u3

∂ fy
∂u0

∂ fy
∂u1

∂ fy
∂u3

∂ fz
∂u0

∂ fz
∂u1

∂ fz
∂u3

 (7)

The conditions of (6) guarantee parameterizability. By the
implicit function theorem if 0/∈ D−ui (f (p

b
)) then there ex-

ists a functiong(ui) = udep, i.e., we can parameterize the
curve by variableui everywhere inp

b
. Since we require that

at least one of theD−ui be non-singular in each domain we
are guaranteed that we can parameterize every part of the
curve by at least one of the domain variables.

In general, the conditions of the implicit function theorem
will not be satisfied at points where the two surfaces are tan-
gent or at points where the parameterization itself is singular
as, for example, occurs at the north and south poles of the
simple parametric definition of a sphere. Tangent surfaces
give rise to a host of numerical robustness issues and one can

Figure 3: An intersection curve in one domain is partitioned
into regions parameterizable by at least one of the variables.

model many interesting surfaces without allowing them. As
a consequence CSG operations on tangent surfaces will not
be considered further in this paper, although extending our
work to handle this case is an interesting research problem.
Similarly our system does not currently allow CSG opera-
tions which result in implicit curves of intersection passing
through singular parameterization points.

If more than two objects are involved in a CSG operation
then it is possible that curves of intersection might them-
selves intersect. Our current implementation does not handle
this case. In the absence of tangencies and singular parame-
terizations this problem is no more difficult to solve than that
of computing the intersection of twoR2 → R3 functions but
adding this extra level of functionality significantly compli-
cates the code. This is more of an engineering than a theoret-
ical limitation which we plan to address in the next version
of our system.

Condition (5) eliminates those boxes which cannot con-
tain the intersection curve: iff 6= 0 everywhere in the box
then clearly the curve cannot be in the box so it is discarded
and not subdivided further. Because the range bounds onf
are not tight it is possible that the box does not contain the
curve even though condition (5) is met. We eliminate these
false boxes by computing the intersection of the curve with
each box face using interval Newton root finding. If there are
no face intersections then the box does not contain the curve
and it is discarded. A few additional steps are performed to
minimize box size but they are not relevant to our discussion.
The details can be found in [Sny92a].

The boxes which have satisfied (5), (6), and the face in-
tersection test are linked together into connected compo-
nents by matching face intersection points. The result is a
linked list of 4D boxes which completely contain the curve.
Sequential boxes of common parameterization are fused to
form a single parameterization region which is defined by an
interval in the parameterizing variableui (Fig. 3).

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

4.1. Proving Convergence of Newton Iteration

While techniques for computing parameterizability have
been known for some time, up to now there has not been
an efficient way to use this information to evaluate points
on the curve rapidly enough to be useful for real time ren-
dering. Our new algorithm uses Newton iteration to solve
the implicit curve equation at run time. Convergence of the
Newton iteration is assured by finding regions of guaranteed
convergence over intervals of the parameterizing variable,
and storing these regions as part of the Shapes runtime ob-
ject.

Assume we have a parameterization regionui and that we
wish to solve for a point on the curve corresponding to the
parametric valuec∈ ui . The parametric functiong(ui) gives
the unique 3 vectorudep that satisfies

f (c) = 0 (8)

where the notation

c = [c,udep]

denotes a 4 vector consisting of the independent scalar para-
meterizing variable, in this case equal toc, and the 3 vector
of dependent variablesudep. For example, if the parameter-
izing variable isu1 andudep= [4,5,6] then

c = [c,udep] = [4,c,5,6]

The parametric functiong(ui) is constructed by partition-
ing ui into intervals of guaranteed convergenceuconk

each
of which has an associated dependent variable starting point
udepk

. To compute a curve point[c,udep] the appropriate
convergence region

{uconk
|c∈ uconk

} (9)

is found. Then[c,udepk
] is used as the starting point for the

Newton iteration

udepj+1 = udepj
−h j (10)

whereh j is

h j =
[
D−ui f ([c,udepj

])
]−1

f ([c,udepj
])

On average three to four iterations are enough to get 7-8
digits of accuracy. This iteration is evaluated at run time to
compute points on the intersection curve.

To compute the regions of guaranteed convergence,uconk
,

one can use an interval extension of Kantorovich’s theorem
(see appendixB), which gives sufficient conditions to guar-
antee convergence of Newton iteration. The interval exten-
sion is essentially equivalent to Hubbard’s balls of conver-
gence [HH02] used in his constructive proof of the implicit
function theorem. The result of the interval extension is a

functionK

u = [ui ,udep]

K(u) = ‖ f (u)‖‖ [D−ui f (u)]−1‖2M (11)

which depends onf , its derivative, and the Lipschitz first
derivative boundM. If K(u) < .5 then for anyuind ∈
ui ,udep0 ∈ udep Newton iteration starting fromudep0 will
converge quadratically to the solution off ([uind,udep]) = 0.

One could attempt to use the interval extension of Kan-
torovich’s theorem directly to find regions of guaranteed
convergence. Unfortunately Kantorovich’s theorem provides
only sufficient conditions for convergence and in general
yields quite pessimistic estimates of the size of convergence
regions. For the surfaces we have modeled in our system
thousands of these convergence regions would be required
to completely cover a single curve of intersection. The con-
vergence regions are required to compute curve points at run
time so minimizing their number reduces the memory foot-
print of the procedural object. Thousands of regions would
take up far too much space to be practical.

While a naive application of Kantorovich’s theorem is not
practical, it does form the basis for our new algorithm which
computes regions of convergence that are orders of magni-
tude larger than those predicted by the interval form of Kan-
torovich’s theorem.

4.2. Finding Large Regions of Convergence

Assume that we want to prove convergence from starting in-
terval

u0 = [ui ,udep0] (12)

but thatK([ui ,udep0]) > .5. Compute a new interval boxu1
which is the image ofu0 under the Newton transformation

h0 =
[
D−ui f ([c,udep0

])
]−1 f ([c,udep0

])

udep1
= udep0 +h0

u1 = [ui ,udep1
] (13)

If K(u1) ≥ .5 continue computing pointsu j until at
some stepk, K(uk) < .5. By the interval extension of Kan-
torovich’s theorem we know that Newton iteration starting
from any point inuk will converge. Since all of the points
in uk−1 map intouk then all points inuk−1 must converge.
By continuing this argument backwards through theui we
arrive at the conclusion that every point inu0 will converge.

If after some maximum number of steps,m, none of the
u j satisfy the condition

K(uk) < .5 k = 0..m (14)

thenui is split in half and new starting points are computed
at the midpoint of each half using standard interval Newton

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

root finding. The test is then performed recursively on each
half:
findConvergenceRegions(interval up, list cR){

us = curveDependentValues(up.mid)
if(convergence(up,us))

append (up(interval),us) to cR
else

lowHalf = (up.low,up.mid)
highHalf = (up.mid,up.high)
//attempt to prove conver-

gence on new intervals
//with new starting points
findConvergenceRegions (lowHalf, cR)
findConvergenceRegions (highHalf, cR)

}

boolean convergence(interval u_p, vec-
tor u_s){

up1 = u_p
while(K(u_p1,u_s)<alpha * K(u_p,u_s)){

hi = inverse(D_up(f(u_p,u_s))f(u_p,u_s)
u_p1 = u_p - hi
if(K(u_p1) < .5 && in-

ParamBox(u_p1)) return true
}
low = (u_p.low,u_p.mid)
high = (u_p.mid,u_p.high)
//attempt to prove conver-

gence on new intervals
//using the same starting point
return convergence(low,u_s)

&& convergence(high,u_s)
}

The Lipschitz first derivative and parameterizability con-
ditions (6) guarantee that eventually we will find conver-
gence regions of non-zero size. Since‖D−1 f‖ and M are
both bounded in the parameterizability boxes which com-
pletely enclose the curve but‖ f ([ui ,udepk

])‖ becomes arbi-
trarily small as we decrease the width ofui then

K([ui ,udepk
])→ 0 as width(ui)→ 0 (15)

Uniqueness of the point of convergence is guaranteed by
the parameterizability condition associated with each para-
metric region. Assume the convergence regionu0 is part of
parametric regionup and thatuk is the image ofu0 after k
Newton steps. For width(ui) small enough there will be such
auk. If

K(uk) < .5 and uk ⊆ p
b

(16)

wherep
b

is a parameterizability box containing some part of
the curve parameterized byup then for everyuc∈ u0 Newton
iteration converges to someudep∈ p

b
. Since the curve is

parameterizable everywhere inp
b

then udep is the unique
point such that

f ([uc,udep]) = 0 (17)

Overestimation of bounds due to interval analysis com-
bined with the widening caused by outward rounding in-

0.9 .95 1 1.05.85

1

1.2

.8

.6

K(u0)=.596

.98

K(u1)=.513

K(u2)=.470

u0

u1

u2

solution set
of x3 + y3 -1.2 = 0

Figure 4: Proving convergence of Newton iteration for every
point in [{.98,1},1.2] to the solution of x3 +y3−1.2 = 0. x
is the parameterizing variable and y is the dependent vari-
able.K(u0) > .5 so Kantorovich’s theorem isn’t satisfied. In
the next stepu0 is transformed by a Newton step intou1.
K(u1) < K(u0) even though the dependent variable interval
of u1 is wider than that ofu0. Finally, K(u2) < .5 so conver-
gence from every point inu2,u1, andu0 is guaranteed.

crease the size of theu j at each iteration which tends to
increaseK(u j) when the boxes become very wide. But the
u j are also typically getting closer to the solution curve at
each iteration which reduces‖ f (u j)‖ and frequentlyK(u j)
as well. It is this effect which makesconvergence() so
effective at proving convergence over large regions.

A simplified 2D example illustrates both phenomena de-
scribed above (Fig.4). Functionconvergence() is ap-
plied to the functionx3 + y3− 1.2 = 0 parameterized byx
in the range{.98,1} with dependent variable starting point
y = 1.2. Initially, at u0 = [{.98,1},1.2)], K(u0) is .596, be-
causeu0 is far away from the solution curve. Each succeed-
ing u j comes closer to the curve but the width of the de-
pendent variable interval becomes much larger as well:u1 =
[{.98,1},{.846, .86}],u2 = [{.98,1},{.643, .703}]. The re-
duction in‖ f (u j)‖ dominates for the first few iterations so
that by the second iterationK(u2) = .470< .5 and conver-
gence fromu0 is proven.

5. Triangulation

There are two different types of computation performed at
runtime: evaluating 4D intersection curve points using (10)
and evaluating surface points and normals. Curve points are
evaluated on the CPU because it is difficult to make this
computation run efficiently on the GPU. All surface points
and normals are computed on the GPU.

For the objects we have constructed to date we can evalu-

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

p1

c0

c1

p2
p1

c0

c1

pc

A B

p2

Figure 5: A) Intersections of the min and max values of the
2D tangent over the curve segment gives visibility points p1
and p2. B) Every point on the curve must lie in the shaded
cone bounded by the tangent lines. All points of the curve
segment are visible from p1 and p2.

ate approximately 200,000 4D curve points per second. For
some applications this is fast enough to get real time up-
date rates. With many objects visible on the screen this rate
is not quite fast enough. In this case the curve can be sam-
pled densely and the curve points cached. This is done just
once when an object first changes from a dormant state to
an active state, meaning from an invisible to a visible or po-
tentially visible soon state. For all succeeding frames curve
points are read from the cache rather than computed. Most
objects will require only a few hundred curve points to ren-
der intersection curves accurately so activation time will be
a few milliseconds. When the object goes back to a dormant
state the cache space is reclaimed and used for another ob-
ject.

CSG operations are effected by triangulating only that
part of the domain which corresponds to visible parts of the
CSG surface. The first phase of triangulation is performed
offline. The parts of the domain to be triangulated are sub-
divided into a small number of triangular domain regions of
two types. Curve visibility triangles,vi , are bounded along
one side by an intersection curve and along the other two
edges by line segments. Simple triangles,si are bounded on
all three sides by line segments.

The second phase of triangulation is performed at runtime
just before the object is to be rendered. The static domain
triangles are subdivided into smaller domain sampling trian-
gles if necessary and these triangles are passed to the GPU
for evaluation. The GPU uses the compiled HLSL Shapes
code representing the surface and geometry instancing, a
feature available in cards that support the DirectX Vertex
Shader 3.0 model, to evaluate the surface. After the surface
is rendered the domain sampling triangles are discarded.

5.1. Offline Processing

Curve visibility triangles,vi , are computed for each para-
metric segment of every interesection curve. There are two
visibility triangles for each segment (Fig.5). Each triangle
shares two 2D vertices,c0,c1 on the curve. Two additional

2D pointsp1,p2 not on the curve are the apices of the two
triangles. The part of the curve betweenc0 andc1 is defined
by an interval over a single parameterizing variableup. Each
apexpi has the property that every point of the curve seg-
ment associated with the visibility triangle is visible from
eitherpi .

Visibility regions are easily computed by using implicit
differentiation (see AppendixC) over the intervalup to com-
pute the extreme values of the 2D tangent. The intersection
of the min and max tangent lines gives the two visibility
pointsp1,p2. By the mean value theorem ifuc∈ up the curve
must lie entirely within the shaded region bounded by the
max and min slope lines centered atpc. A line segment from
pi to pc clearly will lie outside this region except exactly at
the endpoints ofup so there will be a single intersection with
the curve for anyuc ∈ up.

Edges are added between the endpoints of each paramet-
ric segment and the domain is triangulated with constrained
Delaunay triangulation. Visibility triangles are then subdi-
vided until they do not intersect any other visibility triangle
edges.

5.2. Runtime Processing

(0,1,0)

(0,0,1)

(.66,.66,0)
(0,.5,.5)

(.33,.33,0)

(0,1,0)

(0,0,1)
(.5,0,.5)

(0,.5,.5)(.5,.5,0)

(1,0,0) (1,0,0)

(.5,.5,0)

(0,0,1)(1,0,0)

(0,1,0)

(0,.5,.5)

(.75,0,.25)
(.5,0,.5)

(.25,0,.75)

Figure 6: Barycentric coordinates stored in the instance
mesh

Runtime triangulation uses vertex shaders and geometry
instancing to move most of the work of surface evaluation
onto the GPU. Geometry instancing is a kind of primitive
looping construct that has as input two vertex streams. The
instance vertex stream contains vertices of a triangle mesh
called the instance mesh. The per-instance vertex stream has
one vertex per instance to be displayed. Conceptually the
looping works like this:

foreach(vertex v in the per-instance ver-
tex stream)

foreach(vertex iv in the instance ver-
tex stream)

run the vertex shader with in-
puts v,iv

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

Instance mesh vertices contain the barycentric coordinates
of sample points defined on a canonical base triangle. There
are three different types of instance meshes (low sampling
level versions of these are shown in Fig.6). TheNNN type
is used for all non curve triangles, hasN vertices along each
edge and roughly.5N2 interior vertices. TheNN1 type is
used for curve visibility triangles bounded along one side
by an intersection curve. It hasN vertices along two edges
and 2 vertices along the curve edge. TheNN2N type is for
triangles generated during the subdivision of curve visibility
triangles. This type lies inside the curve visibility triangle
but are not bounded on any side by an intersection curve.
It has roughlyN vertices along the two short edges and 2N
vertices along the long edge.

At each frame time we perform the following steps on the
CPU. 4D points along the CSG intersection curve are com-
puted using (10), or cached points are read from the cache.
These points are used to subdivide the curve visibility tri-
angles. Because the intersection curve points are shared be-
tween the intersecting surfaces the triangles along the curve
boundary will be completely consistent. (Fig.7). The subdi-
vided curve triangles and all non-curve static domain trian-
gles are dynamically subdivided into domain sampling tri-
angles. (Fig.8) Edge length is computed in the parametric
space of the domain and subdivision continues until it is be-
low some user defined minimum value. The three 2D ver-
tices of each resulting sampling triangle make up one ver-
tex in the per-instance stream. The sampling triangle vertices
are copied into the per-instance vertex stream and this, along
with the instance meshes, is sent to the GPU for evaluation of
surface points. After each object is rendered the per-instance
vertex buffer used to store the domain sampling triangle data
is discarded.

This snippet of HLSL code shows how a point in the do-
main of the surface function is computed on the GPU from
the per-instance vertex data (variables p0,p1,p2) and the in-
stance mesh barycentric coordinates (variable bary):

struct VS_IN{
float3 bary,
float2 p0,
float2 p1,
float2 p2};

main(VS_IN In){
float2 pos = In.bary.x * In.p0

+ In.bary.y * In.p1
+ In.bary.z * In.p2;

}

This 2D domain point is then used by the HLSL surface
function to evaluate the surface position and normal.

For any one object all 3 instance meshes of typesNNN,
NN1, NN2N which are used to render the object have the
same value ofN, the number of sample points along an edge.
We do this for efficiency and simplicity. IfN could vary on
a per sampling triangle basis then, in order to ensure consis-
tent sampling along shared edges, we would have to create

Figure 7: Runtime subdivision of static domain curve and
simple triangles. Red edges are not subdivided further on
the CPU. Edges are subdivided based on parametric length.
The subdivision length for curve edges is 1/N the length for
all other edges because 2D domain coordinates of all curve
samples are computed on the CPU. Curve edges are propor-
tionally much shorter than they appear here. The scale has
been changed to make the curve triangle subdivision process
easier to see.

instance meshes with all possible combinations of edge sam-
pling numbers. Even worse we would have to set up the ver-
tex streams and issue a DirectX drawPrimitive call for each
different resolution instance mesh used to render the object.
Both of these operations have high overhead and their use
should be minimized in order to achieve high frame rates.

6. Results

All of the timings in the results section were measured on
a Pentium Xeon 2.6 GHz processor with an NVidia 6800
Ultra graphics card. The two most important metrics of the
new procedural object representation are size and render-
ing speed. Objects exist in two states: dormant and active.
A dormant object contains only static object data and is the
smallest possible representation of the object. An active ob-
ject has both the static data plus cached intersection curve
points, if any. As mentioned in section5 our current im-
plementation computes approximately 200,000 intersection
curve points per second. This rate is high enough for interac-
tive rendering of a few objects but when the number of ob-
jects increases it is better to cache the 4D intersection curve
points at the instant the object first becomes active, i.e., vis-
ibile or potentially visible soon and then to use the cached
points when rendering. When the object becomes dormant

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

Figure 8: Instance meshes which will be evaluated on the
GPU for each type of sampling triangle. Simple domain sam-
pling triangles use an NNN instance mesh. Domain sam-
pling triangles bounded by a curve edge use an NN1 in-
stance mesh. Thin triangles not bounded by a curve edge
are sometimes generated in the curve triangle subdivision, in
order to ensure consistency of sampling along shared edges.
They use an NN2N instance mesh.

again the space for the point cache is reclaimed. This is the
method we have used to measure all our rendering speeds.

All of the objects shown in the illustrations render at ap-
proximately 20 million triangles/second. Each triangle is
texture mapped and environment mapped with a DirectX 9.0
pixel shader that is approximately 40 lines of HLSL code.

While it is conceivable for a system to have tens of thou-
sands of objects in a dormant state only a few hundred, per-
haps as many as a thousand, will be active at any time. The
memory required to cache the intersection curve points of
even a thousand active objects is less than 10 MBytes. This
is a small fraction of the memory on modern PC’s or next
generation game consoles so it will not be the limiting factor
in memory usage. In contrast, the dormant objects could take
up a considerable amount of memory so we will concentrate
on computing their size.

Each object is made up of a number of surfaces and as-
sociated CSG operations. The dormant size of an object is
determined by the number of lines of code required to repre-
sent each surface function and its derivatives, and the num-
ber of convergence regions and static domain triangles per
surface.

There are two types of code: the HLSL surface and normal
function, and the C# derivative function. Both of these pieces
of code share whatever 2D spline control points were used
to make the extrusions or surfaces of revolution so we count
this only once. The derivative code is shared between the two
surfaces involved in a CSG operation so we will also count

name HLSL C# data total tpr tconv

speaker 720 2K 6.2K 8.9K 3s 76s

wheel 0 432 960 6.9K 8.2K 57s 104s

wheel 1 432 960 10K 11.4K 63s 148s

wheel 2 432 960 5.6K 7K 121s 270s

tire 288 960 10.7K 11.9K 8s 683s

Table 1: Computed memory size, in bytes, of procedural ob-
jects and offline processing time, in seconds, to compute
parameterization regions, tpr, and to prove convergence,
tconv. The data column includes space required for the con-
vergence regions, the static domain triangles, and the 2D
splines used in surfaces of revolution or extrusion.

it only once. The code for all the surfaces is nearly the same
size: roughly 36 lines of HLSL code and 80 lines of C# code.

Both the HLSL and C# code consist almost entirely of
statements of the forma= b opc so there should be a nearly
one to one mapping from lines of code to number of assem-
bly instructions. Since HLSL compiles to proprietary object
code in the graphics card driver and C# compiles to an in-
termediate language which is jit’ed at load time, we can’t
measure the true size of the object code. We will assume
each assembly instruction is 6 bytes long on average and that
each source line translates to a single assembly instruction.

Table1 shows the computed storage requirements and of-
fline processing time for each of the objects in the illustra-
tions. To put these numbers in some perspective let’s com-
pare them to the memory required to store a polygon mesh.
If we assume each vertex in a polygon mesh has compo-
nentsx,y,z,nx,ny,nz,u,v then each vertex requires 32 bytes.
Assuming there are roughly twice as many triangles as ver-
tices and that the triangle connectivity information takes 6
bytes (three 2 byte indices) each triangle in the mesh re-
quires roughly 22 bytes. The memory required for wheel 2 in
Fig.13, 7KBytes, is equivalent to that required for 320 trian-
gles. Clearly this wheel could not be adequately represented
by 320 triangles.

The system does a surprisingly good job of minimizing
the number of parametrization regions required for each
closed intersection curve. Fig. (9) shows a typical domain
triangulation and parameterization. Both intersection curves
have 4 parameterization regions, which is the minimum the-
oretically possible in this case.

Figures11and10show histograms of the number of para-
meterization regions per intersection curve and the number
of convergence regions per parameterization region, respec-
tively. These histograms represent the combined statistics of

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

Figure 9: Domain parameterization regions and triangula-
tion for a typical procedural model.

all the objects shown in the illustrations. Most intersection
curves have 5 parameterization regions or less. Most para-
meterization regions have only a single convergence region,
which is the best possible result, with a relatively small num-
ber having more.

Histogram of convergence regions179

16 12 11 8 5 1 3 2 0 3 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13
convergence regions per parameterization region

Figure 10: Histogram of the number of convergence re-
gions per parameterization region. Ideally all parameteri-
zation regions would have just one convergence region. For
our dataset this is true in the vast majority of cases.

Histogram of parameterization regions

4 0 2 0

12

4 5 6 7 More

parameterization regions per intersection curve

Figure 11: Histogram of the number of parameterization re-
gions per intersection curve. For closed curves that do not
cross domain boundaries at least 4 regions will be required.
Most intersection curves in our dataset have just slightly
more than 4 parameterization regions.

7. Conclusion

Our new representation for generative CSG models is very
compact, resolution independent, and renders quickly on
modern GPU’s. The objects in the illustrations have a mem-
ory footprint of only 7-11 KBytes and render at approxi-
mately 20 million triangles/second. These highly compact
objects are ideally suited for memory constrained architec-
tures, such as game consoles, or bandwidth constrained ap-
plications, such as online games.

Future graphics architectures should be even better suited
to render Shapes programs. With relatively minor changes
to the architecture of current GPU’s it should be possi-
ble to run the intersection curve evaluation on the GPU

which would make it much faster. DirectX10 style geome-
try shaders should make run time triangulation more flexi-
ble resulting in triangulations which take fewer triangles and
which render faster.

We have only used the exact piecewise parametric repre-
sentation for implicit curves of intersection between para-
metric surfaces but the method is, in principle, quite general.
For example, it should be possible to find piecewise paramet-
ric forms of implicit surfaces that satisfy the conditions laid
out in section4. It should also be possible to find a piecewise
parametric form of the implicit curve of intersection between
two implicit surfaces. However, since the parameterizability
and convergence proof computations grow rapidly as the di-
mensionality of the problem increases more research will be
needed to see how well this algorithm will scale.

The proof of large regions of convergence for Newton it-
eration, which applies to a very broad class of functions, is
also completely general and should have applications out-
side of real time graphics rendering.

References

[AD03] ADAMS B., DUTRE P.: Interactive boolean operations
on surfel-bounded solids.SIGGRAPH ’03: Proceedings of the
28th annual conference on Computer graphics and interactive
techniques(2003), 651–656.2

[BKZ01] BIERMANN H., KRISTJANSSOND., ZORIN D.: Ap-
proximate boolean operations on free-form solids.SIGGRAPH
’01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques(2001), 185–194.2

[CC78] CATMULL E., CLARK J.: Recursively generated B-spline
surfaces on arbitrary topological meshes. 350–355.2

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision sur-
faces in character animation.Proceedings of SIGGRAPH 98
(1998), 85–94.2

[DS78] DOO D., SABIN M.: Behaviour of recursive division sur-
faces near extraordinary points. 356–360.2

[Duf92] DUFF T.: Interval arithmetic and recursive subdivision
for implicit functions and constructive solid geometry.ACM
Computer Graphics 26, 2 (1992), 131–139.4

[HH02] HUBBARD J. H., HUBBARD B. B.: Vector Calculus, Lin-
ear Algebra, and Differential Forms A Unified Approach. Pren-
tice Hall, 2002.5, 11

[HW04] HANSEN E., WALSTER G. W.:Global Optimization Us-
ing Interval Analysis. Marcel Dekker, 2004.4

[Owe05] OWENS J.: Streaming architectures and technology
trends. InGPU Gems 2, Pharr M., (Ed.). Addison Wesley, 2005,
ch. 29.1

[PKKG03] PAULY M., KAISER R., KOBBELT L., GROSS M.:
Shape modeling with point sampled geometry.SIGGRAPH ’03:
Proceedings of the 28th annual conference on Computer graph-
ics and interactive techniques(2003), 641–650.2

[SLJ03] STEWART N., LEACH G., JOHN S.: Improved csg ren-
dering using overlap graph subtraction sequences.International

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

Conference on Computer Graphics and Interactive Techniques in
Australasia and South East Asia - GRAPHITE 2003(Feb 2003),
47–53.2

[Sny92a] SNYDER J.:Generative Modeling for Computer Graph-
ics and CAD. Academic Press, 1992.1, 3, 4

[Sny92b] SNYDER J. M.: Interval analysis for computer graphics.
ACM Computer Graphics 26, 2 (1992), 121–130.4

[Sta98] STAM J.: Exact evaluation of catmull-clark subdivision
surfaces at arbitrary parameter values.Proceedings of SIG-
GRAPH 98(1998), 395–404.2

Appendix A: Notation

D f derivative of f with respect to all variables in the vectoru
Dui f derivative of f with respect to the single variableui

D−ui f D f with the columnDui f removed
u interval inu with upper boundu and lower boundu

Appendix B: Interval Extension of Kantorovich’s Theorem

For the point version of Kantorovich’s theorem see [HH02]. The in-
terval extension is a relatively straighforward matter of substituting
intervals for points and suitably extending the intervals over which
the Lipschitz constantM must exist and the functionf must have
non-zero determinant.

Given a functionf ([up,udep0]) assumed to be continously dif-
ferentiable over a region as large as is necessary, a parameterizing
variableup which is theith argument off , and dependent variable

starting pointudep0 compute the Newton displacement,h0,

h0 =
[
D−ui f ([up,udep0])

]−1
f ([up,udep0]) (18)

and the image,udep1 , of udep0 after a single Newton step

udep1 = udep0 +h0 (19)

Form the interval box

P0 =
[
up,

[
udep1 +[r, r, r]

]]
(20)

wherer is

r = {−|h0|, |h0|} (21)

If 0 /∈ D−ui (f (P0)) and if the Lipschitz constantM

‖D−ui (x)−D−ui (y)‖ ≤M‖x−y‖ (22)

exists for anyx,y ∈ P0 then if

K([up,udep0]) = ‖ f ([up,udep0])‖‖
[
D−ui f ([up,udep0])

]−1
‖2M < .5

(23)
then for anyup ∈ up,udep0 ∈ udep0 Newton iteration starting from
udep0 will converge quadratically to the solution off ([up,udep]) =
0.

Appendix C: Implicit Differentiation

See [HH02] for a derivation which applies to functions of any codi-
mension. This derivation is only valid for functions with codimen-
sion 1, since this is the class of functions the CSG intersection
curves belong to.

A point u on the curve can be written as[ui ,g(ui)] where

g(ui) = [gu j (ui),guk(ui),gul (ui)]T j 6= k 6= l 6= i (24)

is the parameterizing function for this part of the curve. For anyu
on the curvef (u) = 0 and consequentlyDui f (u) = 0 as well. By
the chain rule

Dui f ([ui ,g(ui)]) = D f (u)Dui [ui ,g(ui)] = 0 (25)

where

Dui [ui ,g(ui)] =
[

∂u0

∂ui
,

∂u1

∂ui
,

∂u2

∂ui
,

∂u3

∂ui

]T

(26)

The ith element inDui [ui ,g(ui)] will be 1. Reorder the variables so
thatui is the last element inu. Then

Dui [ui ,g(ui)] = [Dui g(ui),1]T (27)

and the columns ofD f (u) will also be reordered so thatDui f (u) is
the last column

D f (u) =
[
Du j f (u) | Duk f (u) | Dul f (u) | Dui f (u)

]
(28)

The first three columns of (28) are justD−ui f (u) so (25) becomes

[D−ui f (u) | Dui f (u)] [Dui [g(ui)],1]T = 0 (29)

D−ui f (u)Dui [g(ui)]+Dui f (u) = 0 (30)

Dui [g(ui)] =−D−1
−ui

f Dui f (u) (31)

Figure 12: Wheel 0: 8.2KBytes.

B. Guenter & M. Gavriliu / Generative CSG Models for Real Time Graphics

Figure 13: Wheel 2: 7KBytes.

Figure 14: Close up of bolt cutouts in Fig.13.

Figure 15: Rear view of the wheel in Fig.13

Figure 16: The tire treads are geometric detail resulting
from CSG operations, not a bump or normal map. Tire by
itself: 11.9KBytes.

Figure 17: Wheel 1: 11.4KBytes.

Figure 18: Closeup of Fig. (17)

