
An Alternative Approach to Initializing Mutually
Referential Objects

Don Syme
dsyme@microsoft.com

March 10, 2005

Technical Report
MSR-TR-2005-31

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

Abstract

Mutual dependencies between objects arise frequently in programs, and pro-
grammers must typically resort to manually filling “initialization holes” to help
construct the corresponding object graphs, i.e. null values and/or explicitly
mutable locations. This report describes a “base-line” proposal for a general-
ized form of value recursion in an ML-like language called initialization graphs,
where value recursion is given the simplistic semantics of a graph of lazy com-
putations whose nodes are sequentially forced, with uses of recursive values
checked for initialization-soundness at runtime. We then develop examples us-
ing this mechanism to show how problematic the issue of value recursion is for
ML-like languages, and in particular how sophisticated reactive objects cannot
be defined in the language without using initialization holes, and how this forces
ML programmers to break abstraction boundaries. At the same time we show
how OO languages rely extensively on null pointers during initialization. We
propose that a general, semi-safe mechanism allows value recursion to be used
in conjunction with existing sophisicated abstract APIs such GUI libraries, and
allows freshly defined APIs to be both abstract and yet not require clients to
use explicit initialization holes. We propose that the initialization mechanism
permits more programs to be expressed in the mutation-free fragment of ML,
though we do not formally prove this result.

1 Introduction

One of the primary goals of a programming language is to permit the authoring
of programs in a form that corresponds closely to an informal specification.
For example, the following is an informal specification of a GUI “form” (i.e.
window) where each menu item toggles the activation state of the other.

A form f with title “Form” containing a Menu m with title “File” contain-
ing two menu items mi1 and mi2 with titles “Item1” and “Item2” where
selecting mi1 toggles the activation state of mi2 and likewise selecting mi2
toggles the activation state of mi1.

Ideally we would like to express such a program in a “safe” language, e.g. one
that does not support either mutation or null pointers: there is nothing in this
specification that would appear to require such constructs in a language.

In this report we first describe a “dead simple” mechanism for value recursion
in an ML-style language (we use an OCaml-like syntax). This mechanism has
problems, but it will let us write the above program as follows (we assume an
API with functions createForm, createMenu and createMenuItem - see §1.1):
let rec f = createForm("Form", [m])

and m = createMenu("File", [mi1; mi2])

and mi1 = createMenuItem("Item1", λ(). Toggle(mi2)) (A)
and mi2 = createMenuItem("Item2", λ(). Toggle(mi1))

1

The above definition is not permitted in OCaml, nor is its equivalent in other
ML-family languages (we consider Scheme, Java and C# in §1.1). This is be-
cause ML statically enforces a very strong notion of “initialization soundness”,
in particular that recursive bindings won’t fail or have side-effects at all, and
only lambda expressions may appear on the right of a set of recursive bindings.
To get around this the programmer must write something like the following:

let the = function | Some v → v | None → failwith "initialization bug"

let mi2 = ref None

let mi1 = createMenuItem("Item1", λ(). Toggle(the(!mi2)))

let _ = mi2 := Some(createMenuItem("Item2", λ(). Toggle(mi1)))

let m = createMenu("File", [mi1; the !mi2])

let f = createForm("Form", [m])

The programmer has had to code an explicit “initialization hole” using the built-
in type α option = Some α | None and then use mutation to fill that hole. A
version of ML without mutation would not have permitted the above program
to have been written at all. The absence of value recursion has forced the
programmer to rely on mutation and failure to write simple programs, even in
a “safe” functional language.

We call a recursive value binding like (A) above an initialization graph. Ini-
tialization graphs are a form of the unrestricted recursion proposed by Dreyer
in the context of recursive modules for Standard ML [7], and also mentioned in
passing by other authors. Informally, the semantics are to construct a delayed
computation for each binding and then to force these computations both eagerly
and sequentially: if a reference to a delayed computation is encountered then
the computation is executed immediately. Evaluation order is precisely defined,
but not necessarily left-to-right. Initialization failures occur if the result of a
delayed computation is required before the computation is completed. Warn-
ings can always be emitted when the success of the bindings cannot be statically
guaranteed or when evaluation order may deviate from strict left-to-right eval-
uation.

Initialization graphs are a blunt and simple approach to value recursion, and
while the exact mechanism is not used in existing languages, they are similar
in spirit to letrec in Scheme, and the general observation that laziness can be
used to encode value recursion is well known. However, semanticists seem to
have assumed that unrestricted recursion is an unmitigated evil to be avoided
at all costs, except perhaps in languages such as Scheme where “all bets are
off anyway”. In the long-run this is an important goal, and we encourage the
reader to consult [4, 7, 23, 15] for some of the excellent papers that attempt to
tame value recursion by static techniques.

Despite this, we argue that unrestricted value recursion through laziness
is not as bad as has been previously thought, even in the drastic presence of
arbitrary effects such threads: it is still better to be able to write programs
in a natural style, to avoid using mutation and nulls, and to avoid breaking
abstraction boundaries (e.g. see §5). We argue this holds especially in the

2

context of programming against complex external abstract libraries such as GUI
APIs (e.g. the Java Swing libraries, or the .NET Windows Forms libraries),
where there is little or no hope of augmenting these enormous libraries with
sufficient static information to allow static approaches to value recursion to be
used. We point out in passing that more and more of modern programming
consists of programming against such APIs, and that no type system yet exists
that is known to be able to capture the initialization properties required for
expressing client programs of these APIs.

Initialization graphs are an extension to core ML: all existing core ML pro-
grams can be accepted without warnings and run with unchanged behavior.
No initialization failures occur if the mechanism is not used. Initialization
graphs are not semantically more powerful than ML, since the same effect can
be achieved through explicit coding, e.g. using explicit initialization holes as
above. However we propose that they do add expressivity to the non-mutating
subset of ML (though we do not formalize this result in this report). This is
done only by placing some initialization-soundness properties into the category
of runtime-checked rather than statically enforced conditions.

This report proposes that, with appropriate checks and warnings, unre-
stricted recursion in the form of initialization graphs forms a feasible basis for
value recursion in a programming language. We first examine the above initial-
ization puzzle in some other languages (§1.1) and discuss issues related to API
design (§1.2). We give a detailed informal description of initialization graphs
(§2), and a more formal treatment (§3). Turning to applications we discuss
how the mechanism simplifies programs that use typical GUI APIs (§4). Two
examples are presented to demonstrate how ML’s limitations create problems
for API design and usability and to show how initialization graphs help avoid
these problems (§5-§6). Finally we discuss the relationship between initializa-
tion graphs and uses of self in OO languages (§7) and finish with related work
and conclusions (§8-§9).

An implementation of initialization graphs is available as an extension to F#
[26, 27], an ML-style language for the .NET platform. However, the mechanism
could also be applied to other languages, especially to help avoid or control the
presence of null-values in OO languages (null values are often used as initializa-
tion holes, as we will discuss). For example, the mechanism could be applied to
OO languages with non-null types [10, 25]. Indeed, one theme of this report is
that several problematic constructs in OO langauges such as null pointers and
“self references during construction” appear to be less necessary once initial-
ization graphs are available in a language. This is particularly relevant when
“safe” languages must interoperate with APIs defined in OO languages, e.g.
for languages that interoperate with the Java and .NET platforms, since it is
undesirable to add the full range of OO constructs to such languages.

3

1.1 A Simple Example

We now continue with the example (A) above. Assume we are using the follow-
ing call-by-value API for constructing graphs of GUI objects:12

type Action = () → ()

type Menu

type MenuItem

type Form

val createForm: string * Menu list -> Form

val createMenu: string * MenuItem list -> Menu

val createMenuItem: string * Action -> MenuItem

val toggle: MenuItem -> ()

Now consider how we would use this API from other languages. In Java or C#
the programmer writes something akin to the following (we assume the language
can access an appropriate translation of the above API, and that we adopt a
standard way of writing callbacks of the form λ(). code .3)

class MyForm {
Form f; Menu m; MenuItem mi1, mi2;

MyForm() {
this.mi1 = createMenuItem("Item1", λ(). { toggle(this.mi2); });
this.mi2 = createMenuItem("Item2", λ(). { toggle(this.mi1); });
this.m = createMenu("File", new List<MenuItem> { this.mi1, this.mi2 });
this.f = createForm("Form", new List<Menu> { this.m });

} }

Here the variables of a class form a kind of recursive scope accessed via references
through this and initialized via the constructor. Note that the programmer
assumes that the closures passed to createMenuItem will not be evaluated until
some later point (otherwise this.mi2 would result in a null pointer exception).
Thus the use of null values as initialization holes permits members of this to
be textually referred to before they are fully initialized.

From Scheme things are easier, and the program would appear as follows:

(letrec ((mi1 (createMenuItem("Item1", λ(). toggle(mi2))))

(mi2 (createMenuItem("Item2", λ(). toggle(mi1))))

(m (createMenu("File", (mi1, mi2))))

(f (createForm("Form", (m)))) ...)

The only significant issue here is that the programmer must manually sort the
declarations in dependency order, and little or no protection is given if this order

1In this report we use the term ‘object’ with its general meaning of a value encapsulating
state, rather than as a value within an explicitly OO language.

2Throughout this report we use Caml-style syntax for APIs and ML programs, with the
exception of using () to represent the unit (i.e. void) type and λ(). to represent lambda
expressions.

3The actual syntax for specifying closures might involve either a delegate/delegee (C#),
an anonymous delegate (C#), the use of an inner class (Java) or the use of a new subclass
with an event handler (C#, Java or many other languages) – the exact details do not make
much difference here.

4

is incorrectly specified. This is because Scheme executes with values initially
set to undef, again a form of initialization hole.

1.2 API, Data or Language?

One approach to mutually referential values is to assume that the problem lies
with the API, rather than the programming language. For example, the API
above relies on an unstated invariant that functions such as createMenuItem do
not apply their closure arguments while the object graph is being constructed
(i.e. event processing does not start until some later point), and an annotation to
this effect would allow a compiler to declare the value bindings “safe”. Progress
has been made recently on type systems where APIs can be annotated with
this information, e.g. Dreyer’s work [7]. Type-theoretic solutions are no doubt
crucial in the long term, but are problematic when APIs must be used that are
not marked with full type information regarding recursive effects, which is the
case for any language which permits the automatic import of COM, Corba, Java
and/or .NET APIs [26, 3]. Dreyer admits the likely need for a mechanism for
unrestricted recursion (see §8).

Another approach is to describe systems using recursive data rather than
programatic calls. Recent versions of OCaml support directly-recursive data
without the use of null values or mutation: both constructed data and delayed
values are permitted on the right of the recursive bindings [16]. This approach
lacks abstraction properties — even simple functions that generate concrete data
cannot be used as part of such a program. It also means wrapping all external
APIs and making them entirely data-driven, which is extremely problematic.

A final approach is to equip APIs with a set of “fixed point” operators for
describing recursion: see [18] for an example. If mutual recursion is involved
then many different operators may be required, and API clients use the correct
operator according to the number of items involved in their recursive cycle.
However the approach appears to require a level of sophistication which may
not be feasible to expect from programmers and it is difficult to see this scaling
to the sophisticated APIs used for specifying GUIs and other reactive machines.

2 Towards Initialization Graphs in the Language

Consider the following systematic transformation of the program (A) from §1:4

let rec f’ = lazy createForm("Form", [force m’])

and m’ = lazy createMenu("File", [force mi1’, force mi2’])

4In OCaml lazy and force generate and consume delayed computations of the type α
lazy. These correspond directly to Scheme’s delay and force. The former is syntactic
sugar for the construction of a lazy value. The type of lazy computations can be defined in
the OCaml language itself using an appropriate discriminated union and a reference cell.

5

and mi1’ = lazy createMenuItem("Item1", λ(). toggle(force mi2’))

and mi2’ = lazy createMenuItem("Item2", λ(). toggle(force mi1’))

let f = force f’

let m = force m’

let mi1 = force mi1’

let mi2 = force mi2’

The bindings have become lazy computations, but only for the purposes of
initialization. Within a recursive scope a value is interpreted as an on-demand
lazy computation (f’ etc.), but outside that scope it is the result of the eager
forcing of that computation (f etc.). We call such a set of eagerly-evaluated
lazy computations an initialization graph.

To be more precise, the execution of a recursive binding constructs a graph
with one node for each binding. Each node is in one of the following states:

1. A closure recording an initializing computation yet to be performed;

2. A marker to indicate that the initializing computation is in progress;

3. A value containing the results of a successful initializing computation.

These correspond to the lazy values in the motivating code above. Execution
proceeds by evaluating the computations at each node, placing the node in state
2 before the computation begins. If a reference to a variable is encountered then
the action depends upon the state of the node for that variable:

• If in state 1 then the corresponding initializing computation is executed
eagerly, i.e. earlier than scheduled;

• If in state 2 then an initialization error is raised;

• If in state 3 then evaluate to the given result value.

Upon completion of an initializing computation a node is placed in state 3.
Laziness is used because we cannot statically be sure when values will be first
required. In the above example evaluating the binding for f requires the evalu-
ation of m which requires the evaluation of mi1 and mi2, and so the evaluation of
the bindings will complete in order mi1, mi2, m, f. Thus we deliberately abandon
a strict adherence to left-to-right evaluation ordering in order to embrace more
general value recursion.

Before proceeding we first note that this approach has some somewhat ob-
vious problems:

• The nodes of the graph are explored on-demand, so evaluation order may
be counter-intuitive. However evaluation order is still precisely defined,
and all nodes are eventually evaluated, provided no errors occur.

• Initialization graphs that result in cyclic intitialization-time dependencies
cause runtime errors. Runtime checks are needed for this condition.

6

An ideal initialization graph will never raise an initialization error, and further-
more will not depend on the declaration order of the elements. However these
are properties the programmer must ensure, and in this report are not statically
enforced.

2.1 Terminology: Immediate and Delayed Dependencies

Initialization graphs support a broad class of recursive bindings as long as no
cycles occur amongst immediate dependencies between values. Let’s assume we
augment an ML-style language to permit arbitrary self references in recursive
value definitions. This includes well-behaved definitions such as (A) from §1,
and also nonsensical recursive definitions such as the following

let rec x1 = x1 + 1

let rec x2 = not x2

Also assume we execute these bindings left-to-right, and that when we encounter
a reference to a recursively bound variable we somehow resolve the reference to
a value, perhaps by additional computation. It is useful to make the following
distinctions:

• When this execution evaluates a reference to a recursively bound variable
we record an immediate dependency, i.e. if we evaluate a reference to v
that syntactically occurs in a binding for u then an immediate dependency
is recorded from u to v.

• After the bindings have been completed, a number of objects or closures
may have escaped that still include references to these variables. The
subsequent evaluation of these references generate delayed dependencies,
i.e. if we evaluate a reference to v that syntactically occurs in a binding
for u then a delayed dependency is recorded from u to v.

Immediate and delayed dependencies are dynamic notions: in general it is not
possible to statically determine if a given syntactic occurence of a recursively
bound variable results in immediate or delayed dependencies, or even both (it
is undecidable which parts of the initialization bindings will execute at all). De-
layed dependencies are irrelevant as far as initialization-soundness is concerned:
they are purely part of the emergent behaviour of the object values being de-
fined. This is not a new observation: every programmer who writes a callback
for an event-oriented system knows it intuitively, and every Haskell programmer
soon learns that all dependencies are delayed.

3 Initialization Graphs: Basic Semantics

This section presents a typed lambda calculus extended with initialization graphs.
The language is defined by the grammar in Figure 1 and is standard apart from

7

v = id Variable
e = v Value/Node Reference

= e e Function Application
= let rec b1 and ... bn in e Recursive Binding
= fun v -> e Lambda Abstraction
= c Constant (e.g. Integers)
= print(string) A simple effectful construct (See discussion in text)

b = v = e Binding

Figure 1: Syntax for λI

allowing arbitrary expressions on the right of recursive bindings. We incorpo-
rate a simple effectful action print(s) to ensure that programs have observable
behaviour. The typing rules for this language are also standard and are not
presented here. Non-standard are the evaluation environments and rules in
Figure 2.5 Evaluation environments are maps to locations in a state of (pos-
sibly delayed) evaluations rather than maps to values. We have omitted rules
propagating errors (see §3.1). The given calculus can be extended to include
conditionals, non-recursive structured data, pattern matching, mutable state
and I/O in completely standard ways – most examples in this report will as-
sume these extensions have been made. If recursive data is included then one
must consider the interaction between immediately recursively-tied data and
value recursion [16], which is beyond the scope of this report.6 We consider the
more problematic issue of exceptions later.

The evaluation of a recursive binding initially assigns a new delayed compu-
tation for each variable, and then evaluates each variable, which ensures that
the thunk for that variable now contains a computed value. Hence the execution
of a recursive binding leaves no unresolved delayed computations, and thus the
delayed computations do not “escape” their lexical scope. The evaluation of
simple variables may result in further computation and/or errors.

We observe the following about this semantics:

• Expressions never evaluate to delayed initialization thunks. The argu-
ments to functions are values, hence the language is call-by-value. Ini-
tialization thunks are present in the evaluation machinery but are not
first-class.

• Locations in the initialization graph are never aliased, since they are not
directly referred to by expressions. They are each referenced by at most a

5We adopt an implicit rule that the overall output over the program is recorded in the
state, though in general output plays no role in the semantics other than support a minimalist
effectful operation.

6The F# implementation supports both but demands that each let rec utilize either
data recursion or be an initialization graph, but not both.

8

Γ = id → l Environment
σ = l → V Initialization Graph State
V = v Evaluated Initialization Thunk

| (Γ, λ0e) Delayed Initialization Thunk
| error Initialization Error

v = c Constant Value
| (Γ, λx.e) Closure Value

f ⊕ (x 7→ y) Function extension

Γ(x) = l σ(l) = v

Γ, σ ` x ; v, σ

Γ(x) = l
σ(l) = (Γ′, λ0e)

Γ′, σ ⊕ (l 7→ error) ` e ; v, σ′

σ′′ = σ′ ⊕ (l 7→ v)

Γ, σ ` x ; v, σ′′

Γ, σ, o ` print(s) ; 0, σ, (o + s) Γ, σ ` c ; c, σ

Γ, σ ` (fun x -> e) ; (Γ, λx.e), σ

Γ, σ0 ` e1 ; (Γ′, λx.e), σ1

Γ, σ1 ` e2 ; v1, σ2

l fresh
Γ′ ⊕ (x 7→ l), σ2 ⊕ (l 7→ v1) ` e ; v2, σ3

Γ, σ0 ` (e1 e2) ; v2, σ3

li fresh
Γ′ = Γ⊕ (xi 7→ li)

σ0 = σ ⊕ (li 7→ (Γ′, λ0ei))
Γ′, σi−1 ` xi ; vi, σi (1 ≤ i ≤ n)

Γ′, σn ` e ; v, σ′

Γ, σ ` (let rec xi = ei in e) ; v, σ′

Figure 2: Semantic objects and Operational Semantics for λI

9

unique binding in the environment (or a corresponding binding in closure
environments).

• Under the above semantics the state collects locations related to prior
recursive bindings. Closure environments continue to refer to them, al-
though they will map to values rather than delayed computations.

• A recursive binding let rec x = e1 in e2 where x is not used in e1 is
equivalent to the traditional call-by-value interpretation of let x = e1 in

e2. (The delayed computation is immediately evaluated to a value.)

• If the expressions on the right of a let rec are all λs then we have the tra-
ditional semantics for let recs limited to recursive functions. (Execution
immediately reduces initialization thunks to closure values).

3.1 Initialization Errors and Exceptions

λI does not permit initialization thunks in the error state to be dereferenced
(computations encountering initialization errors simply can’t be derived). The
simplest semantics is to change error to be a value and propagate it as an
exception in the standard way (say throw InitializationFailure – we omit the
rules here). This may leave unexecuted initialization thunks in the computation
state, and in a richer language these may escape, e.g.:

let myCell = ref (fun x -> x) in

let notDelayed f x = f x in

try let rec a = myCell := (fun x -> b); a + 1

and b = print "b"; 3 + 4

in failwith "we don’t reach here"

with InitializationFailure -> !myCell 5

Here the binding for a stores a closure that includes a delayed dependency on
b. The execution of a + 1 then raises an initialization error. This is caught
and the execution of the closure now forces the evaluation of b, which prints
b and succeeds. The initializing-computation has thus been restarted, though
we retain the property that successful initialization ensures an absence of later
initialization errors related to that particular initialization graph.

An alternative semantics would be that if any of the bindings in an initializa-
tion graph generates either an exception or error then remaining uninitialized
bindings should be recorded to be error. This would be captured by the follow-
ing rule:

10

li fresh
Γ′ = Γ⊕ (xi 7→ li)

σ0 = σ ⊕ (li 7→ (Γ′, λ0ei))
Γ′, σi−1 ` xi ; vi, σi (1 ≤ i < k, vi not error)

Γ′, σk−1 ` xk ; error, σk

σ = σk ⊕ li 7→ error (k ≤ i ≤ n)

Γ, σ ` (let rec xi = ei in e) ; error, σ′

Expressing this exception-catching behaviour in a transformation like that
of §3.4 requires the use of a try-in-unless construct [2] where the “try” protects
a set of declarations rather than an expression.

3.2 Reasoning Principles

The following theorem holds for λI .7

Theorem 1 (Successful initialization eliminates initialization thunks)
Let T (σ) = {l | ∃Γ, e. σ(l) = (Γ, λ0e)}. Then Γ, σ ` e ; v, σ′ implies
T (σ′) ⊆ T (σ).

The proof is a simple induction over the derivation, with an appropriate analysis
at let rec bindings to prove that each fresh location is eventually assigned a
completed value. A corollary is that the evaluation of a term from a state with
no initialization thunks produces a state with no initialization thunks. We infor-
mally propose that a corresponding result holds when λI is extended to contain
the full constructs of a typical ML-family language, excluding a construct to
catch exceptions.

Beyond this result, the key semantic considerations are the effects that can
be performed during initialziation. For example, can initialization mutate state,
perform I/O, throw exceptions or start threads? We discuss the latter two
of these in more detail below. But before we do this, we note the standard
Scheme and ML response to this problem: the language defines a precise order
of execution within a single thread. Beyond this effects are fundamentally the
problem of the programmer and library designer.

3.3 Useful Static Warnings and Errors

The calculus from the previous section permits nonsensical definitions such as
let rec x = x + 1 where the evaluation of x on the right-hand-side of the bind-

7Here we assume that we are interested in observing the existence and state of initialization
thunks themselves, in order to understand the actual execution of the underlying mechanism.
Thus the theorem is in terms of the quantity and state of initialization thunks in the thunk
heap: something that cannot normally be observed, except through a debugger. This reflects
the expository role the semantics plays in this paper.

11

ing will cause an immediate exception. It is obviously desirable to statically
approximate the set of immediate dependencies in order to rule out such pro-
grams. It is also sensible to statically detect if the use of value-recursion may
result in bindings being executed on-demand, instead of strictly left-to-right,
and to warn the programmer in this case: this may be exactly what is desired,
but initialization graphs are sufficiently novel that they should be used delib-
erately, rather than accidentally. Furthermore, a programmer may wish to be
warned of all the places where runtime checks may occur when evaluating self
referential variable bindings. Finally, we do not want to give a warning for every
let rec. Bindings made up entirely of recursive function definitions should give
no errors or warnings. However functions can be mixed with values, e.g.:

let rec f x = (x+x, λ(). fst(y)*x)

and y = f 3

evalutes y to (6,λ().6*3). The above is a non-trivial initialization graph, and
as such a warning should be emitted.

A simple analysis of the bindings is sufficient to detect most such conditions.
For example the following analysis is used by F# (here considering only the
constructs found in λI):

• For each binding x = e where e is not a λ:

– For each occurrence in e of a recursively-defined value y not appearing
under a λ add a definite immediate dependency from x to y to a
graph.8

– For occurrences of recursively-defined values y under a λ add a pos-
sible immediate dependency from x to y to the graph.

• Iteratively repeat the above analysis for each unanalyzed binding x = e

where e is a λ and where x appears as the target of a possible or definite
dependency.

If any possible or definite immediate dependencies exist then a warning is emit-
ted that an initialization graph is being used. If a loop exists amongst definite
immediate dependencies then a compile-time error is given. If any forward de-
pendencies exist amongst possible or definite immediate dependencies then a
warning is given that bindings will be executed on-demand rather than in a
strictly left-to-right order (a forward dependency is one from xi to xj for a
binding let rec x1 = e1 ... xn = en where i < j).

The above analyses are imperfect: you can still write programs that cause
cycles amongst immediate dependencies, e.g. in the following x has an immedi-
ate dependency on itself:

let notReallyDelayed f x = f x

let rec v = notReallyDelayed (fun x -> v + x) 3

8This actually over-approximates the set of immediate dependencies since the branches of
conditionals are not necessarily executed – for simplicity the analysis assumes they are.

12

It is clear that far more extensive inference algorithms are possible for initializa-
tion conditions, and the above only serves to hint at the techniques that may be
applied to eliminate spurious warnings. See also [4] for an in-depth treatment of
inference issues related to one particular static type systems for value recursion.

3.4 Implementation Techniques

Fortunately, initialization graphs are very easy to implement in practice: a
simple transformation can convert recursive bindings into a target language
that supports lazy computations, e.g. as provided in OCaml. The transformation
works as follows: every expression of the form

let rec x1 = e1 ... xn = en in e

is transformed to
let x1, ..., xn =

let rec x′
1 = lazy e′

1 ... x′
n = lazy e′

n

in (force x′
1,...,force x′

n)

in e

where each e′i is formed by taking ei and replacing all references to each xj with
force x′

j .

That is, uses of value recursion are replaced by initialization thunks imple-
mented as lazy computations, and references to recursively bound variables are
replaced by force operations. This converts the value recursion to a form where
all expressions on a let rec are now delayed computations and is also extremely
easy to implement in a compiler. Optimizations to this scheme are possible: for
example initialization thunks are not required for bindings x = e where e is a
λ or some other delayed computation. This ensures that the performance of
recursive functions is not impaired.

3.5 Concurrency and Escaping Values

As a final semantic issue, we consider what happens in the presence of the “ex-
treme” effects such as thread-style concurrency (which in principle also induce
the problem of continuations [19]). Two problems arise:

• The techniques from 3.1 can be used to store initialization graph nodes in
shared state, making them accessible to other threads before the compu-
tations have completed.

• The bindings of an initialization graph may start new threads.

In both cases race conditions can arise when reading/writing the changes of
state within the lazy thunks used to implement the delayed computations, po-
tentially resulting in multiple executions of the computations if no mutual ex-
clusion is ensured, a problem that also affects escaping instances of delay/lazy
in Scheme/OCaml. Three approaches are:

13

1. A language can exclude this possiblity by tightly controlling shared state
and when threads can be started, e.g. through a type system to control
effects;

2. The obligation can be placed on the programmer to ensure that initializing
computations do not escape to shared state before the bindings have been
completed and that threads are not started during initialization;9

3. The initialization section can be treated as a single critical-region, and
any threads that attempt to access an unevaluated binding would block
until the initialization of all bindings has been completed.

The prototype F# implementation follows (2). If (3) were used the costs of
entering the critical region could be reduced by first checking if thunks have
been evaluated, along with other techniques from Concurrent Haskell [17].

4 Initialization Graphs and GUI APIs (Contin-
ued)

Initialization graphs are used when value bindings give rise to immediate and/or
delayed dependencies. GUIs provide an excellent source of examples where
immediate dependencies feature prominently: typically the widget containment
hierarchy must be specified at the point of creation of the GUI objects through
the use of immediate dependencies. We have already shown simple examples of
self references amongst simple GUI components. This story repeats itself on a
larger scale in a typical hand-programmed or machine-generated GUI.

For example the GUI components of the ConcurrentLife sample from the
F# distribution involve a form, a menu, 7 menu items, a background worker
thread and a bitmap to record the state of the display. Immediate dependen-
cies arise from the widget containment hierarchy and many delayed-dependency
loops exist between the GUI components. The author’s experience was that use
of initialization graphs made a large difference when developing this program.
Above all no explicit initialization holes were required, and there was no need to
manually sort the declaration order of objects according to the DAG of imme-
diate dependencies. As soon as initialization graphs were used the author was
able to scale-up the sample substantially, concentrating on GUI design issues
rather than fighting against the programming language.

Event Loops and Self references. GUIs are interesting for a further reason:
event loops give rise to an additional source of delayed dependency loops. For

9We note that this obligation effectively already exists for every alternative technique to
the problems described in this paper, i.e. initialization holes and/or null pointers, since all
involve potentially shared state. In other words, with regard to threads things are at least no
worse.

14

example, consider an application that runs a background computation on a
worker thread where the results of this computation must be fed back to the
GUI components. All major GUI APIs are single threaded : worker threads
may not directly manipulate GUI components, but must serialize their GUI
update actions through the event loop of the GUI thread. (In the context of
the .NET WindowsForms library this is done by using the Form.BeginInvoke

method provided on each Form object that acts as a container of a related group
of GUI components.) This leads to “long-distance” dependency loops: a form
refers to a menu item whose action causes a thread to serialize computed results
back via the form. Initialization graphs permit programs containing such loops
to be programmed in a natural way.

“Create and Configure” APIs. Most GUI programming APIs support
a combination of direct-specification and an additional style of intitialization
called create-and-configure. For example, the API from §1.1 could in practice
be structured as follows:

val createForm: string -> Form

val createMenu: string -> Menu

val createMenuItem: string -> MenuItem

val toggle: MenuItem -> unit

val setMenus: Form * Menu list -> unit

val setMenuItems: Menu * MenuItem list -> unit

val setAction: MenuItem * action -> unit

Here the API uses explicit mutation to affect the post-hoc configuration of a
component. Uses of create-and-configure APIs suffer from a lack of locality: the
configuration information that “specifies” an object is spread across the creation
and configuration sections of code. The possible call-graphs also become harder
to understand.10

Create-and-configure APIs can be used in conjunction with initialization
graphs by adding the configuration actions to the graph as bindings whose
results are immediately discarded. These bindings can be placed alongside the
creation actions for the objects or in a separate section of the recursive scope.
For example, example (A) could be written:

let rec f = createForm("Form") (a)
and _ = setMenus(f, [m]) (b)
and m = createMenu("File") (c)
and _ = setMenuItems(m, [mi1; mi2]) (d)
and mi1 = createMenuItem("Item1") (e)
and _ = setAction(mi1, λ(). toggle(mi2)) (f)
and mi2 = createMenuItem("Item2") (g)
and _ = setAction(mi2, λ(). toggle(mi1)) (h)

10OO APIs also allow configuration of components via method overriding. For the purposes
of this paper overriding can be thought of as a convenient way to directly specify functional
parameter values during initialization.

15

In this case the bindings will be completed in order a,c,b,e,g,d,f,h. Clearly it
is crucial that the programmer only use initialization graphs for initialization
actions that are essentially commutative, i.e. the programmer should ensure
that the same result would be achieved if configuration actions are executed
after all bindings have been established.

5 Abstract APIs for Automata

We now show how initialization graphs can be used to describe the mutually
referential states of automata without resorting to the use of explicit initializa-
tion holes. We are particularly interested in cases where the implementation of
automata states is hidden.

Assume we wish to run a controlled computation of a game on a worker
thread via an automaton that transitions between control states paused, running
and finished in response to signals stopSignal, stepSignal, runSignal, resetSignal
and exitSignal. We assume a type Game, supporting functions resetGame,

oneStep: Game → Game and the value initialGame: Game.

The use of such an automaton on a worker thread is standard, however states
and transitions are usually encoded as explicit calls to platform primitives (e.g.
.NET’s WaitHandle.WaitAny or Unix’s select). However there are advantages to
using combinators and abstract values (objects) to represent the control-states:
e.g. the implementation of states can be uniformly augmented with additional
tracing, caching and/or profiling functionality. So instead of coding the states
directly we will assume we have to use the following abstract API:

type α State

type α Transition = Signal * α NextState

type α NextState = () → α State

val waitAll: Signal list * α NextState → α State

val waitOne: α Transition list → α State

val peekOne: α Transition list * α NextState → α State

val doThen: (α → α) * α NextState → α State

val finish: α State

val run : α State → (α → α)

An automaton in a waitAll state waits until all given signals have been set; in a
waitOne state it performs a select amongst the given signals and commits to the
selected transition; in a peekOne state it performs a waitOne with a zero-timeout,
else transitions to a default state; and in state finish it does nothing further.
The execution of an automata passes a value of type α from state to state: an
automaton in a DoThen state performs the given computation on this value and
then proceeds to the next state (it does not respond to signals while performing
the computation).

The API uses computations to represent NextState values. This allows the
API to support the dynamic generation of the objects that represent new states

16

and makes the API well-suited for use with initialization graphs.

The transitions of the worker automaton can now be specified using the
following initialization graph:

let rec initial = resetThenRun

and running = peekOne([stopSignal, (λ(). paused);

stepSignal, (λ(). running);

runSignal, (λ(). running);

resetSignal, (λ(). resetThenRun);

exitSignal, (λ(). finished)],

(λ(). stepThenRun))

and resetThenRun = doThen(resetGame, (λ(). running)

and stepThenRun = doThen(oneStep, (λ(). running)

and paused = waitOne [stopSignal, (λ(). paused);

stepSignal, (λ(). stepThenPause);

runSignal, (λ(). running);

resetSignal, (λ(). resetThenPause);

exitSignal, (λ(). finished)]

and stepThenPause = doThen(oneStep, (λ(). paused))

and resetThenPause = doThen(resetGame, (λ(). paused))

and finished = finish

let thread = newThread (run initial initialGame)

The above is compact declaration of a set of mutually dependent objects along
with the specifications of how they each react to the different signals.11

For declarations of this kind the partial static checking described in §3.3 will
be very effective at detecting loops amongst immediate dependencies. This is
because all λ constructs in the above code represent truly delayed computations.

5.1 Automata in ML without initialization graphs

In traditional ML one approach is to program a state machine is to use a set of
recursive functions, e.g. using the following modifications to the above API:

type α State = α -> α
type α NextState = α State

Again α is instantiated to Game, and the first part of the automata becomes:

let rec initial s = resetThenRun s

and running s = peekOne([stopSignal, paused;

stepSignal, running;

runSignal, running;

resetSignal, resetThenRun;

exitSignal, finish],

stepThenRun) s

and resetThenRun s = doThen (resetGame, running) s

11One exception is that the closure syntax for next-state functions is a little obscure. A
keyword such as perform for closures of this kind would help significantly.

17

This avoids ML’s value-recursion restrictions by defining functions rather than
arbitrary values. This has the significant drawback that states are not abstract:
they are known to be functions α → α, and that only functions can be declared
in the given initialization block. For example, it is desirable if peekOne states
cache some intermediary data which is regularly handed to the operating system
(peekOne calls happen frequently and it is sensible to avoid any allocation here).
In principle function values can hide caches, but the value-recursion restriction
means we cannot create these at the same time as specifying the functions. In
ML the caller must allocate caches prior to the recursive binding and use these
within the bodies of recursive functions, but this breaks abstaction boundaries:
the caches should ideally be fully private within the implementation of automata
states. Similarly, the automaton API could be augmented with a method that
reports the number of times a state is entered. The mutable cells required to
store this data cannot be allocated within a ML-style recursive binding without
breaking abstraction boundaries. We return to this issue in §6.

5.2 Automata and Immediate Dependencies

Removing the binding initial = resetThenRun from the above example elimi-
nates all immediate dependencies from the definition, and thus makes it amenable
to definition via Scheme’s letrec construct. However immediate dependencies
have their uses even in this setting: it is useful if the specification continue to
function even under pseudo-abstractions such as replacing

and resetThenRun = doThen(resetGame, (λ(). running))

and resetThenPause = doThen(resetGame, (λ(). paused))

by the innocuous looking

and resetThen state = doThen(resetGame, (λ(). state))

and resetThenRun = resetThen running

and resetThenPaused = resetThen paused

This has introduced two immediate dependencies (e.g. state resetThenRun now
has an immediate dependency on running), but sufficient delays still exist to
ensure all cycles are broken (e.g. all references to resetThenRun are delayed).
It would seem advantageous if the introduction of harmless immediate depen-
dencies did not immediately invalidate a definition. However, a better way to
introduce the above combinator would be to maintain the NextState discipline
as follows, to ensure that no additional immediate dependencies are introduced.

and resetThen nextState = doThen(resetGame, nextState)

and resetThenRun = resetThen (λ(). running)

and resetThenPaused = resetThen (λ(). paused)

18

6 Abstract Compositional Marshalling Objects
(Picklers)

The example from §5 showed how restrictions on value recursion in Standard
ML can force programmers to break abstraction boundaries in order to support
compact recursive specifications. We now turn to a slightly more sophisticated
instance of this problem. We draw the example from [18], where Kennedy
introduces a functional-language combinator library for specifying picklers, a
compositional way of specifying objects that manage both the marshalling and
unmarshalling of data structures, an approach that can also be applied in an OO
setting. The library lets the programmer build up marshallers for data struc-
tures while still controlling what is marshalled, the marshalling order, sharing in
the marshalled graph and the shape of the underlying data format. Correspond-
ing unmarshallers are built automatically, ensuring consistency. Marshallers can
be thought of as objects with a pair of marshal/unmarshal methods, though an
implementation may augment them with additional functionality. The aim is to
build marshallers via combinators such as those in the following channel-oriented
version of the API:

type Channel (* e.g. a file stream *)

type α Mrshl

val marshal: α Mrshl → α * Channel → ()

val unmarshal: α Mrshl → Channel → α
val pairMrshl: α Mrshl * β Mrshl → (α * β) Mrshl

val listMrshl: α Mrshl → (α list) Mrshl

val innerMrshl: (α → β) * (β → α) → α Mrshl → β Mrshl

val intMrshl: int Mrshl

val stringMrshl: string Mrshl

Marshallers are instances of α Mrshl. Combinators shown here are those for
pairs (pairMrshl), lists (listMrshl) and internal data (innerMrshl). The type
of marshalling objects is abstract, but could be implemented by an object or
record type such as the following:

type α Mrshl = { marshal: α * Channel → ();

unmarshal: Channel → α }

For example if files are represented by some structured data then marshallers
can be constructed quite easily:

type file = int * string

let fileMrshl = pairMrshl(intMrshl,stringMrshl)

let filesMrshl = listMrshl(fileMrshl)

Kennedy observes how specifying marshallers for recursive data structures runs
into trouble with value-recursion restrictions in strict functional langauges such
as Standard ML. For example, consider the following recursive data type (We
add some helper functions to make the following code more concise):

type folder = { files: file list; subfldrs: folders }

19

and folders = folder list

let mkFldr (x,y) = { files=x; subfldrs=y}
let destFldr f = (f.files,f.subfldrs)

let fldrInnerMrshl(f,g) = innerMrshl (mkFldr,destFldr) (pairMrshl(f,g))

We now wish to create marshallers for both a single folder and a list of folders.
One attempt is as follows:

let rec fldrMrshl = fldrInnerMrshl(filesMrshl,fldrsMrshl)

and fldrsMrshl = listMrshl(fldrMrshl)

However, this declaration is rejected because of ML’s restrictions on value recur-
sion. It would also be an invalid initialization graph since it has an immediate
cycle.12 Even if you reveal the implementation of marshallers (as we did for the
abstract type of states in §5), you still can’t use Standard ML’s value recursion,
which can only define functions, and not records containing functions. The prob-
lem comes up often in the combinatorial approach to programming, especially
when the objects generated by the combinators have non-trivial behaviour. To
quote Kennedy

This problem is overcome in ML implementations of parser combi-
nators [22] by exposing the concrete function type of parsers, and
then abstracting on arguments... We can’t apply this trick because
marshallers are pairs of functions.

In the context of initialization graphs a simple solution is possible. Firstly, we
add the following function to the API:

val delayMrshl: (() → α Mrshl) → α Mrshl

let delayMrshl p =

{ marshal = (fun x → (p ()).marshal x);

unmarshal = (fun y → (p ()).unmarshal y) }

This function takes a delayed computation that is only evaluated when an mar-
shal/unmarshal operation is invoked – it can only be defined because marshallers
only exhibit delayed (i.e. reactive) behaviour. This is exactly what lets us build
a recursive graph of marshaller objects using an initialization graph. This can
be used to break cycles amongst immediate dependencies:

let rec fldrMrshl = fldrInnerMrshl(pairMrshl(filesMrshl,fldrsMrshl))

and fldrsMrshl = listMrshl(delayMrshl(λ(). fldrMrshl))

Note how we have been able to define a mutually-recursive graph of interacting
marshalling objects in a concise style. This declaration would normally be
rejected in ML.

12This is obvious since there is a dependency cycle and yet there are no delayed computations
on the right-hand-side, so all dependencies are immediate.

20

7 Initialization Graphs and self in Object Ori-
ented Languages

OO languages use the value self for self referential access. One of the recurring
problems in these languages is the potential for unsoundnesses that arise from
the use of the object during initialization. For example, calling a virtual method
in the middle of a constructor can lead to many problems. Good design dictates
that no use of self be made until all fields are known to have been initialized
to an appropriate value. The complexities of specifying initialization-soundness
conditions for constructors in OO and OO-bytecode languages have even caused
a number of security bugs in the virtual machine verifiers [13, 5].

An object’s constructor forms a recursive initialization scope somewhat sim-
ilar to an initialization graph with one node. Indeed, initialization graphs let
you encode self references in methods without the need for a self keyword in
the language at all. For example, consider the following encoding of an object
as an ML record.13

type object = { getName: () -> string;

lengthOfName: () -> int }
let mkObject name =

let rec obj = { getName = λ(). name;

lengthOfName = λ(). length(obj.getName()); }
in obj

Here one method (lengthOfName) is defined in terms of another (getName). The
inner recursive binding is an initialization graph and the self reference obj.getName
will never result in a runtime error because the dependency is delayed, i.e. will
only be exhibited once lengthOfName is called at a later point.

self is a form of recursion that runs into limitations when defining mutu-
ally referential objects. In this paper we have seen several examples of such
objects built through initialization graphs and combinator patterns. At a more
contrived level, consider the following pair of objects:

type object = { getName: () -> string; }
let mkLinkedObjects (name1,name2) =

let toggle = ref false in

let rec obj1 = { getName=λ(). toggle := not !toggle;

if !toggle then name1 else obj2.getName() }
and obj2 = { getName=λ(). toggle := not !toggle;

if !toggle then name2 else obj1.getName() }
in obj1,obj2

let myObject1,myObject2 = mkLinkedObjects("abc","def")

Here the behaviours of obj1 and obj2 are intertwined: each call to getName on
one will effect the behaviour of the other. The textually corresponding C#

13Encodings of object systems into ML hit limitations – for example the encoding used here
does not support subtyping [1]. However that is an orthogonal issue to that discussed in this
paper.

21

or Java program would declare two subclasses of a base class object, and the
mutual references could not be encoded by using self alone: extra fields would
be need to hold the cross references between obj1 and obj2, and these would be
initialized via a create-and-configure pattern.

There are other interesting parallels between constructors for OO languages
initialization graphs. For example, consider the following erroneous program:

let rec mkObject name =

let rec obj =

let len = length(obj.getName()) in

{ getName = λ(). name;

lengthOfName = λ(). len; } in

obj

In OO parlance the method getName is being invoked during the construction
logic for obj. The above error will be caught by the static checking described
in §3.3, so initialization graphs give more protection against this kind of error
than do typical OO languages.

Although initialization graphs and constructors/self bear striking similari-
ties, initialization graphs are the exception rather than the norm – indeed it is
envisaged that only a handful of such graphs will occur in a typical program.
This means that the vast majority of a program will be free of the possibility
of initialization failures. This is in stark contrast to most OO languages, where
the pervasive use of recursive initialization references through self complicates
many aspects of design, reasoning and analysis. We also note that Moby [11] and
some other OO languages disallow access to self during object construction, at
least until all fields have been known to be initialized into a good state.

8 Related Work

Recursion is a topic that pervades theoretical and practical computer science,
and the concept of initialization graphs has strong affinity with ideas presented
in other settings. We trust that the mechanisms and examples studied in this
paper will be of use to those pursuing more theoretical aspects of disciplined
approaches to dynamic linking, recursion, fix points and effects and will provide
added motivation for the development of type systems in this area.

It seems likely that initialization graphs would have been considered as the
semantic machinery to underpin Scheme’s letrec at some point. As currently
defined Scheme’s letrec can’t represent initializations that involve immediate
dependencies. We have shown how immediate dependencies arise quite natu-
rally, especially when there is a containment relation between the objects being
defined, as in the case of GUIs. They also arise in combinator-generated ob-
jects, e.g. as the marshallers defined in §6, where delayed dependencies are
the exception rather than the rule. Scheme’s letrec could be added directly to
an ML-style language with a guaranteed left-to-right evaluation. Additionally,

22

programmers would have to manually sort their declarations according to the
DAG of immediate dependencies.

Recursive Modules and Type Systems Considerable work exists regard-
ing type systems for controlling effects within recursion, e.g. by annotating
function types with levels that indicate whether functions arguments are evalu-
ated or not, e.g. [16]. Dreyer’s work gives an excellent overview [7], also [15, 4].

Recursive initialization considerations arise in the context of proposals for
recursive modules in ML-style languages. In [7] Dreyer defines a distinction that
captures the essence of immediate v. delayed dependencies. To quote a follow
up description by Dreyer[6]:

I design the type system so that it ensures that when evaluating a
recursive definition (like let rec x = e), x will not be dereferenced
when evaluating e, although it may be referenced.

Referencing and dereferencing correspond to the delayed and immediate de-
pendencies from §2.1. Dreyer’s primary aim is a type system for a form of
restricted recursion, i.e. to statically exclude the possibility of failures. This
would of course be extremely useful for reducing the number of warnings given
in relation to initialization graphs, as discussed in §1.2.

A form of unrestricted recursion is defined by both Russo and Dreyer [23, 7]
and they both give semantics for their respective constructs (Dreyer’s is based
on laziness). Our aim in this paper has been to explore the ramifcations of
unrestricted recursion within ML’s core language. Both Russo and Dreyer’s
unrestricted recursion constructs result in runtime errors if immediate depen-
dencies are present. This is akin to an initialization graph with only one node,
i.e. all self references must be delayed. The evaluation semantics for both these
systems are similar to those presented in §3 in that the evaluation of mere values
can result in errors.

Laziness in strict languages Wadler et al. describe different methods to
add on-demand computations to strict languages [28], and explain how doing
it in the “wrong” way can easily result in problems. For example here is the
“right” way to define an infinite stream via laziness:

type ’a streamres = Nil | Cons of ’a * ’a stream

and ’a stream = ’a streamres lazy

(* map : (’a -> ’b) -> ’a stream -> ’b streamres *)

let rec map f l =

force (match force l with

| Nil -> lazy Nil

| Cons(h,t) -> lazy (Cons(f h,map f t)))

However their approach does not help with value recursion. For example, a
single value that represents an infinite stream of the value “3” cannot be de-

23

fined using let rec threes = lazy(Cons(3, threes)) due to value-recursion re-
strictions.14 If we follow the approach of §6 then a delay stream constructor
is needed, along with either an explicit initialization hole or an initialization
graph:

(* delay : (() -> ’a stream) -> ’a stream *)

let delay s = lazy (force (s()))

let rec threes = lazy (Cons(3, delay (fun () -> threes)))

Top-level intialization in the presence of dynamic loading Somewhat
related is the recurring problem of top-level static initialization of dynamically
loaded components. C# and Java support top-level initialization through class-
initializers. A C# execution engine (e.g. the CLR [20]) generally executes
class-initializers upon first access to a static field of a class. All static fields
are initially set to null values. If mutual references exist between the statics of
two classes then one class-initializer will complete first and null values can be
observed, even if all static fields appear to be initialized by each static initializer.
In a concurrent setting mutual-exclusion is only applied at the granularity of
individual class-initializers, and so threads executing mutually referential class-
initializers can deadlock. The CLR breaks these deadlocks arbitrarily, and null-
values can be observed that are not observable in a single-threaded situation.15

This indicates that top-level initialization for dynamic loading is a fundamen-
tally more complex problem than the localized mutual references dealt with by
initialization graphs. A theory for the dynamic linking of mutually-dependent
compilation units has been developed by Flatt and Felleisen [12], where unini-
tialized references at letrec are used to help permit on-demand dynamic linking.

Monadic Approaches to Recursion This paper is about strict (call-by-
value) languages: value recursion is much less of a problem for languages such
as Haskell. However this only applies if initialization does not have side-effects.
Haskell’s way to control effects is through the use of monads. The question is
then whether values produced by executing monadic operations can be mutually-
dependent: in a Haskell interpretation of the kind of value recursion considered
in this paper each initializing computation may have effects within a particular
monad. Launchbury and Erkök have described an axiomatization of value re-
cursion in certain monads, and this is implemented as an extension to Haskell
[9]. Friedman and Sabry [14] have proposed an alternative operational view of
value recursion which is applicable to a wider range of monads (e.g. the continu-
ation monad) – this requires that initialization is an operation in a state monad.

14A recursive function can be used instead, e.g. let rec repeat n = lazy (Cons(n,

repeat n)). This will generate a new stream object each time “3” is consumed. An in-
teresting possibility would be to explore the automatic introduction of initialization holes for
the purposes of optimization, though this will not be possible for variations on streams that
store caches or other additional state, c.f. automata states in §5.

15In reality mutual references between class initializers are avoided by programmers.

24

Moggi and Sabry have given a semantics for a monadic meta-language incor-
porating this construct [21]. Both approaches incorporate a notion of runtime
initialization failure, and also limit the role of forward immediate references.
However, initialization graphs permit effects to be executed on-demand, and
this appears distinct from the treatment of effects in these versions of monadic
recursion. An axiomatization of the monads for which initialization graphs are
appropriate would be of great interest.

Declarative GUI Programming As an aside we note that the notion of
“declarative” GUIs can be taken in a rather different direction where abstract
behaviours in terms of event streams are used to give declarative combinatorial
descriptions of reactive systems, e.g. see Fran and FranTk [24, 8].

9 Discussion and Future Work

It has been observed elsewhere that value recursion yields a tension between ex-
pressiveness, efficiency, simplicity and soundness [16]. In particular, a language
that admits many self referential programs may also admit unsound programs
whose execution may result in a runtime exception. Likewise, languages may
reject many sound programs and require artificial coding techniques in order to
express programs.

This paper has presented an alternative approach to value recursion called
initialization graphs. Most significantly the mechanism helps eliminate the use
of explicit initialization holes, null values, mutation-based APIs and/or self

references for crucial programming tasks. We have argued that “solving” inital-
ization puzzles by these techniques is simply relying on fundamentally unsafe
language constructs in an unregulated fashion, with consequences for the us-
ability of the language. Instead we have proposed that a weaker notion of
initialization soundness may be appropriate, even in the context of “safe” strict
languages, and may produce better results overall. However care must be taken
to ensure that programmers are warned of the possible dangers and limitations
of the mechanism.

We have drawn examples from the setting of GUI and reactive programming
and presented initialization graphs in the context of core ML. The examples
from §5 and §6 examine two abstract combinatorial APIs for building graphs
of related objects. They indicate how the value-recursion restrictions in ML-
style languages lead to substantial problems for API design: either APIs must
be non-abstract (revealing objects to be functions) or else client programs are
forced to use explicit mutable intialization holes.

Section §7 has shown the connection between initialization graphs and self

and indicates that the mechanism may also allow us to introduce a notion of ini-
tialization soundness in OO languages – a notion that currently barely features
in major OO languages. This may be important because it is clearly difficult

25

for an OO language to accept the full restrictions of an ML-like mechanism.

Initialization graphs as described in this paper are not immediately compos-
able: if two graphs with dangling references are to be separately constructed
(e.g. via a function that returns a tuple) and then combined then they must
communicate their mutual-references to each other via delayed computations,
rather than by simple value names, which would force execution during compo-
sition. Future work will examine appropriate mechanisms to support functions
that generate partial initialization graphs more conveniently.

Acknowledgements We would like to thank Andrew Kennedy, Nick Ben-
ton, Simon Peyton-Jones, Byron Cook, Georges Gonthier, Gavin Bierman and
Claudio Russo for helpful discussions related to this work. We also think the
reviewers for their helpful remarks and lively discussion.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag New York,
Inc., 1996.

[2] N. Benton and A. Kennedy. Exceptional syntax. J. Funct. Program.,
11(4):395–410, 2001.

[3] P. N. Benton, A. J. Kennedy, and G. Russell. Compiling Standard ML
to Java bytecodes. In 3rd ACM SIGPLAN International Conference on
Functional Programming, September 1998.

[4] G. Boudol. Safe recursive boxes. Technical Report 5115, INRIA, February
2004.

[5] D. Dean, E. W. Felten, D. S. Wallach, and D. Balfanz. Java security: Web
browsers and beyond. pages 241–269, 1998.

[6] D. Dreyer. Message to the Types email list, September 2004. Quoted at
http://lists.seas.upenn.edu/pipermail/types-list/2004/000352.html.

[7] D. Dreyer. A type system for well-founded recursion. In Proceedings of the
31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 293–305. ACM Press, 2004.

[8] C. Elliott. Declarative event-oriented programming. In Principles and
Practice of Declarative Programming, pages 56–67, 2000.

[9] L. Erkök and J. Launchbury. A recursive do for Haskell. In Proceedings of
the ACM SIGPLAN workshop on Haskell, pages 29–37. ACM Press, 2002.

26

[10] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types
in an object-oriented language. In Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing, systems, languages,
and applications, pages 302–312. ACM Press, 2003.

[11] K. Fisher and J. Reppy. The design of a class mechanism for Moby. In Pro-
ceedings of the ACM SIGPLAN 1999 conference on Programming language
design and implementation, pages 37–49. ACM Press, 1999.

[12] M. Flatt and M. Felleisen. Units: cool modules for hot languages. In Pro-
ceedings of the ACM SIGPLAN 1998 conference on Programming language
design and implementation, pages 236–248. ACM Press, 1998.

[13] S. N. Freund and J. C. Mitchell. The type system for object initializa-
tion in the Java bytecode language. ACM Transactions on Programming
Languages and Systems, 21(6):1196–1250, 1999.

[14] D. P. Friedman and A. Sabry. Recursion is a computational effect. Technical
Report 459, Indiana University, December 2000.

[15] T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In
European Symposium on Programming, pages 6–20, 2002.

[16] T. Hirschowitz, X. Leroy, and J. B. Wells. Compilation of extended re-
cursion in call-by-value functional languages. In Principles and Practice of
Declarative Programming, pages 160–171. ACM Press, 2003.

[17] S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 295–308. ACM Press, 1996.

[18] A. J. Kennedy. Functional Pearl: Pickler combinators. Journal of Func-
tional Programming, 14(6):727–739, 2004.

[19] S. Kumar, C. Bruggeman, and R. K. Dybvig. Threads yield continuations.
Lisp Symb. Comput., 10(3):223–236, 1998.

[20] Microsoft Corporation. The .NET Common Language Runtime.
http://msdn.microsoft.com/net/.

[21] E. Moggi and A. Sabry. An abstract monadic semantics for value recursion.
In 2003 Workshop on Fixed Points in Computer Science, April 2003.

[22] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, July 1996.

[23] C. V. Russo. Recursive structures for Standard ML. In International
Conference on Functional Programming, pages 50–61, 2001.

27

[24] M. Sage. FranTk - a declarative GUI language for Haskell. In Proceed-
ings of the fifth ACM SIGPLAN international conference on Functional
programming, pages 106–117. ACM Press, 2000.

[25] C. Smith. Java pointifications: Nullability constraints, June 2001. At
http://cdsmith.twu.net/professional/java/pontifications/nonnull.html.

[26] D. Syme. The F# programming language.
http://research.microsoft.com/projects/fsharp.

[27] D. Syme. ILX: Extending the .NET Common IL for functional language
interoperability. Electronic Notes in Theoretical Computer Science, 59(1),
2001.

[28] P. Wadler, W. Taha, and D. MacQueen. How to add laziness to a strict
language without even being odd, September 1998.

28

