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Abstract— We present a client-based characterization of end-
to-end Internet faults. Unlike prior studies of Internet faults that
have focused on probing routers using tools such as traceroute
and/or listening in on routing protocol messages, we consider a
novel approach based on having clients passively observe end-
to-end transactions that they are involved in. Observations from
multiple clients are combined to arrive at a more complete picture
of the extent and the likely cause of faults.

We present the characterization of real faults observed by a
heterogeneous collection of 134 client hosts, as they repeatedly
downloaded content from a diverse set of 80 web sites, over a
period of one month. We find a wide range in the failure rate
of these transactions (e.g., 100% failure rate for certain client-
server pairs). About 30% of transaction failures are due to DNS
problems, with most of the rest being due to the inability of the
client to be able to establish a TCP connection to the server. Also,
by correlating failure observations across clients and servers,
we find that client-side problems account for the overwhelming
majority of DNS lookup failures whereas server-side problems
are the dominant cause of TCP connection failures.

We believe that our findings suggest the promise of a novel
approach to diagnosing end-to-end Internet faults based on
leveraging the collective experience of a diverse set of end-hosts
to overcome the opacity of the network. We briefly discuss the
key challenges in realizing such a system.

I. INTRODUCTION

We present a client-based characterization of end-to-end
Internet faults. Here “client” refers to end-hosts such as user
desktop or home computers, and “end-to-end fault” refers to
the failure of communication between the clients and other
hosts such as servers.

Our goal is to characterize network problems in terms that
are meaningful to end users (e.g., server problem, client site-
specific problem etc.), by only using that information which
is available by passive monitoring of end-to-end traffic at the
client hosts.

Our analysis correlates information gathered at multiple
clients to answer the following key questions:

o What is the frequency of end-to-end failures, and how
does the frequency vary across the various categories of
clients and servers in our study?

« When downloads from a server fail, what typically is the
fraction and distribution of clients that are affected? Do
failures tend to affect most or all clients across the board
(indicating a server-side problem) or a smaller subset of
clients (indicating a client-side problem)?

« Inthe case of client-side problems, do the affected clients
tend to share attributes such as network location?

Sriram Ramabhadran
UC San Diego

Jitendra Padhye
Microsoft Research

The data presented in this paper was gathered over a period
of one month, during which a diverse set of 134 clients
communicated with a target server set of 80 web servers.
We recorded and analyzed failures of end-to-end transactions
between these clients and servers.

Our main findings are as follows:

« The overall failure rate for a given server or a given client
can be noticeable. Failure rates in excess of 2% are not
uncommon. The failure rate varies considerably across
servers and clients. About 30% of the failures can be
traced to DNS problems, and most of the rest are due to
the inability of the client to establish a TCP connection
to the remote web server.

« By correlating failures observed across multiple clients
and websites, we can categorize many of the failures
either as server-side (i.e., affecting a significant fraction
of accesses to the server from many clients) or client-
side (i.e., affecting a significant fraction of accesses from
a client to many sites) or otherwise. We find that client-
side problems account for the overwhelming majority of
DNS lookup failures whereas server-side problems are
the dominant cause of TCP connection failures.

« In the case of multiple clients that are co-located (e.g.,
two planetlab nodes in the same university), there is often
a good correlation in the faults that are flagged as client-
side by our analysis. This gives us confidence in the
validity of our analysis despite the difficulty of doing
direct validation.

We believe that our findings indicate the promise of a novel
paradigm for diagnosing end-to-end Internet faults based on
leveraging the collective experience of a diverse set of end-
hosts to overcome the opacity of the network.

There has been much prior work on characterizing Inter-
net faults and developing tools to identify their their cause.
We now briefly discuss how our approach is different from
previous work. A detailed discussion appears in Section VI.

Our analysis is based on passive observation of end-to-end
transactions at the clients. Thus we are in a position to observe
end-to-end failures that are affected not only by the health of
the IP-level client-server path but also that of intermediaries
such as proxies and DNS servers. This is in contrast to prior
work based on tools such as traceroute that has focused on
actively probing just the IP-level path. Such active probing can
incur considerable overhead when employed on a large scale
and can be infeasible in environments where traceroute traffic
is block by ISPs or intermediate entities such as firewalls.



Another key feature of our approach is that we combine
observations from multiple end hosts to infer the nature of
failures. While there has been previous work on correlating
BGP observations gathered at multiple vantage points [12],
[14], we believe that our work is the first one to correlate
observations on end-to-end failures from multiple end hosts.

The rest of this paper is organized as follows. In the next
section, we describe our analysis framework in detail. We
then describe our experimental setup and methodology in
Section Ill. This sets the stage for the presentation of our
results and analyses in Section IV. In Section V, we briefly
discuss the feasibility of a novel, end-host based Internet fault
diagnosis system. In Section VI we survey previous work
on the characterization and analysis of Internet failures, and
discuss how our work relates to previous research. We present
our conclusions in Section VII.

Il. FAULT ANALYSIS FRAMEWORK

In this section, we present a framework for client-based
characterization and analysis of end-to-end Internet faults. We
consider faults that can be detected via passive observation of
end-to-end communication at clients and the inferences that
can be made by combining observations made at multiple
clients. Although our discussion here as well as our exper-
iments focus on end-to-end communication in the form of
web downloads, we believe that the framework presented here
could be extended to other forms of end-to-end communication
such as media streaming.

In the rest of this paper, we will use words “failure”,
“fault” and “problem” interchangeably. Note that “failure”
does not imply a total inability to communicate, but rather
just noticeably abnormal behavior (e.g., a failure rate of 15%
that is much higher than the normal failure rate of say 1%).

A. Failure of Individual Transactions

We begin by discussing failures and failure modes of
individual web downloads, or transactions, as observed at a
client. We present a categorization of such locally-observable
failures in the form of a failure tree, as shown in Figure 1.

Client abort

Fig. 1. A failure tree depicting the categorization of transport failures as
observed at an individual client host.

A web transaction consists of a client resolving a web server
name to the corresponding IP address, establishing a TCP
connection to the server, and downloading the object of interest
using the HTTP protocol. * A transaction fails when any of
these steps fails. Furthermore, since these steps proceed in
order and the client can tell which step, if any, has failed,
there are three categories of failures observable at the client:

1) DNS: The website name cannot be resolved.

2) Transport: Name resolution is successful, but a failure
is encountered when connecting to the server or down-
loading content. In the context of web downloads, this
would correspond to a failure at the TCP connection
level.

3) Content: The TCP connection is successful. However,
the server does not supply the desired content and
instead returns an error indication. The error could be
for various reasons, including the desired content not
being present at the server, the server being unable to
serve the content because of load, or the client not being
authorized to download the content.

Transport failures (specifically in the context of TCP) can
in turn be categorized as follows:

1) No Connection: The client is unable to connect to the
server. In the context of TCP, this corresponds to a
failure of the SYN handshake. Such a failure can happen
either because of a network connectivity problem or
because the server is down.

2) No response: The client is able to establish a connection
and send its request, but it does not receive any response.
This can happen because of a failure of the server ap-
plication? or because the server is overloaded. A lack of
response could also be because of network connectivity
issues, although the fact that the SYN handshake was
successful makes it less likely that there was a total
failure of connectivity. 3

3) Partial response: The client receives only part of the
server’s response before the connection is terminated
prematurely, either by the server or by the client. The
premature termination could have happened either be-
cause of a failure of the server or client application,
or simply because the connection was progressing so
slowly (say because of route failure or network conges-
tion) that the client timed out and closed the connection.

B. Correlating Failures Across Clients and Servers

Local observations at an individual client of its communi-
cation with a particular server may not always indicate the
nature of the problem that is causing the failure, in particular,

LFor the purposes of our discussion here, we treat the download of the
multiple objects that comprise a web page as separate transactions. We do
not consider HTTP 1.1 pipelining effects in this paper. In our experiments,
we download only a single object (the “index” page) from each server, so
there is little opportunity to reuse connections or pipeline multiple requests.

2For instance, a web server may issue an accept () call, thus establishing
a connection, yet fail to fork off a new process or thread to service the request.

3Note, however, that a TCP SYN cookie device such as a Cisco Guard box
can create such an effect.



Transport Failure

Fig. 2. A failure tree depicting the categorization of failures as inferred from
correlating failure observations across client hosts. A similar classification can
be done for DNS failures.

whether it is server-specific, client-specific, or otherwise. For
example, in the case of a “no connection” failure, it is not
clear whether the cause is a connectivity problem at the client
end, or a server failure, or a problem in the interior of the
network.

By correlating failure observations across clients and
servers, we are better positioned to disambiguate the likely
nature of failures. Rather than considering individual failures,
we identify failure episodes, which correspond to periods
with an abnormally high failure rate. Abnormal periods are
identified by comparing with system-wide “normal” behavior
across clients and servers. We defer a more detailed discussion
of this issue to Section 1V-C.

By combining failure observations across clients and
servers, we are able to categorize failure episodes, as shown
in Figure 2. Note that this categorization may be suggestive
of the cause of failures or its location but does not indicate
the root cause with certainty. Also, we do not claim that this
categorization is unique, just that it is plausibly interesting and
relevant from the viewpoint of end users.

1) Client-side: If a client is experiencing an abnormally
high aggregate failure rate in its communication across
many servers, we term the corresponding period as a
client-side failure episode for the client in question. The
fact that the client’s communication across many servers
is affected suggests a root cause at or close to the client.
Note, however, that a network problem that affects a
group of clients may also appear as a client-side problem
from the viewpoint of an individual client.

If the client’s accesses are routed through a proxy,
failures due to the proxy could also result in a client-side
failure episode. We do not distinguish between proxy-
related and other client-side failures in our analysis here.

2) Server-side: If a server is experiencing an abnormally
high aggregate failure rate in its communication across
many clients, we term the corresponding period as a
server-side failure episode for the server in question. The
fact that server’s communication across many clients is
affected suggests a root cause at or close to the server.
For websites that have multiple replicas, a server-side
failure episode could either affect all replicas (i.e., a
total replica failure episode) or only a subset of the
replicas (i.e., a partial replica failure episode). Note that

“total” and “partial” only refer to the spatial extent of
the failure episode across the replicas, not to total or
partial failure of accesses to the website. So, for instance,
an abnormally high failure rate of 20% that affects all
replicas of a website would still be termed as a total
replica failure episode.

Since problems can arise independently at servers and
clients, a server-side failure episode at a server could
overlap in time with a client-side failure episode at a
client.

3) Client-server-specific If a specific client-server pair is
experiencing an abnormally high failure rate, but neither
the client nor the server is experiencing an abnor-
mally high failure rate in aggregate, then we term the
corresponding period as a client-server-specific failure
episode. The root cause of such a failure episode could
be either at the client end or the server end or in the
network in between.

4) Other: These are other periods when there may be
failures but these are not significant enough in intensity
for the period to be registered as abnormal for either the
client, the server, or the client-server pair. Some of the
failures during such periods could be due to transient
problems that occur on a very short timescale.

I1l. EXPERIMENTAL SETUP AND METHODOLOGY

In this section, we present our experimental setup and
methodology. We describe the set of clients and servers used
in our experiments and also the tools and techniques used to
perform measurements.

A. Overview

Our experiment was conducted during a one-month period:
Jan 1-31, 2005. During this period, each client host repeatedly
accessed a set of the URLs. The sequence of accesses was
randomized to avoid any systematic bias. For each web page,
we only downloaded the top-level “index” file, to limit network
load.

For each download, we record several pieces of information
at the client, including the DNS lookup time (or failure indica-
tion), download time (or failure indication), and a packet-level
tcpdump trace of the entire transaction. All of these pieces of
information can be easily obtained, with no additional network
communication, in a real setting where clients monitor their
own network activity.

Although the downloading activity of the clients in our ex-
periment does constitute active measurement, our goal here is
only to generate a synthetic workload that emulates, within the
constraints of our experiment, clients that perform downloads
in normal course. We only had a small number of clients in
each “location”, where “location” refers to campus, city, ISP
network, etc. In contrast, in a real setting, with hundreds or
thousands of participating clients at each location, clients may
be able to meaningfully share information about their network
experience without resorting to any “active” downloads. Pre-
vious findings in the context of web caching [27] point to the



potential for such sharing.* However, a more detailed analysis
is needed to firmly establish the scope for such sharing, but
we do not consider this issue in the present paper.

An alternative approach to avoid active downloads would
be to gather packet-level traces of existing traffic, say at the
border router of a busy campus (as in [23]). However, it is
logistically challenging to set up such sniffers on the scale of
dozens or hundreds of sites. Moreover, such sniffers may not
yield the true picture of network health from the viewpoint
of end-hosts. For example, there would be no record of DNS
requests or TCP SYN attempts that failed due to a local fault,
even before they reached a packet sniffer located say at the
edge of a campus network.

B. Clients

We used 4 sets of clients in our experiments (summarized
in Table 1):

« PlanetLab (PL): We picked 95 PlanetLab nodes across
64 sites. Having multiple nodes at many of the sites
enabled us to identify failures that were likely to be client-
site-wide. 78 hosts were in the U.S. and Canada, and the
remaining 17 were distributed across Asia and Europe.
All nodes ran version 2.6.8 of Linux.

« Dialup (DU): We had 5 clients, all located in Seattle,
dial into 26 PoPs of a large dialup ISP (anonymized for
the purposes of review), spread across 9 cities in the U.S.
The PoPs in each city were chosen so that the upstream
ISP for each PoP was different. The clients dialed into the
various PoPs in random order and then downloaded the
URLSs from the designated set also in random order. Thus
although we only had 5 dialup clients, we effectively
had 26 “virtual” clients, each of which connected to
the Internet via a different path and hence provided a
different perspective on the wide-area network. All nodes
ran Microsoft Windows XP.

o CorpNet (CN): We had 5 nodes spread across 4 loca-
tions on the internal network of a large multinational
corporation: 2 nodes in Seattle (SEA1 and SEA2) and
1 node each in San Francisco (SF), the U.K. (UK), and
China (CHN). All external web requests from each of
these 5 nodes was routed via a separate HTTP proxy.
The proxy was located at the local site in all cases except
CHN where it was located in Japan. In addition, we
had another node in Seattle (SEAEXT) that was located
outside the corporate firewall/proxy but shared the same
WAN connectivity as SEA1 and SEA2. All the CN nodes
ran various flavors of Microsoft Windows — 2000, XP,
and 2003.

« Broadband (BB): We had 7 residential broadband clients
(5 DSL and 2 cable modem) spread across 4 ISP networks
(Roadrunner, SBC/Yahoo, Speakeasy, and Verizon) in
4 U.S. cities (Pittsburgh, San Diego, San Francisco,

4In fact, the potential for sharing transaction failure information might even
be greater than it is for web caching, since the former does not require sharing
at the content (e.g., file) level.

and Seattle). The access link speed for these hosts was
768/128 Kbps or better down/up.

Our choice of a heterogeneous set of clients is motivated by
the desire to obtain a broader understanding of Internet behav-
ior than can be obtained from just the PlanetLab nodes, which
are predominantly located at academic sites [9]. Although we
had a total of 95+ 5+ 6 + 7 = 113 client machines, the DU
clients dialing in to 26 PoPs effectively gave us a total of 134
clients.

While the use of dialup clients might seem anachronistic,
dialup is still a very significant and sometimes dominant access
technology, both in the developing world and in the developed
world (e.g., [6] indicates that 51% of U.S. home users were on
dialup as of June 2004). Also, for the purposes of our study,
the dialup clients provide visibility into failures observed on
paths through commercial ISPs, and many of these failures are
likely to be independent of the low speed of the dialup link.

Finally, since we were constrained to locate all the dialup
clients in Seattle, there is the concern that the extra latency in-
curred in dialing into remote PoPs might skew the performance
numbers. However, given our focus on failure rates rather
than absolute performance numbers, this was not a significant
concern.

C. Web Sites

We picked a set of 80 websites as the target for our
download experiments. As indicated in Table Il, we tried to
ensure significant diversity among the web sites in terms of
the geographic location, popularity, etc. (Popularity was deter-
mined based on the Alexa list [1].) Some of these sites were
replicated or served via CDNs. We specifically included cer-
tain websites to enable correlation of failures across co-located
websites (e.g., www.technion.ac.il and www.cs.technion.ac.il).

The number of sites chosen was constrained by the fre-
quency with which each client could perform downloads,
without generating excessive network traffic or triggering
alarms. In our experiment, each client host accessed each
website approximately 4 times an hour, which translates into
80 x 4 = 320 downloads per hour from each client.

D. Tools

We used a set of off-the-shelf tools to do our measurements.
In each measurement iteration, the URLs were sorted in
random order. The procedure followed for each download was
as follows:

1) Flush the local DNS cache.

2) Use dig [2] to measure the DNS lookup time.

3) Use wget [4] to download the URL (“index” file only).

4) Use tcpdump [3] or windump [5] to record a packet-

level trace of the entire transaction.

There are also special steps for the DU and CN clients.

For the DU nodes, we pick a PoP to dial at random, connect
to it, download all the URLs in random order, disconnect, and
then pick another PoP to connect to. For each dialup session,
we record the modem connection speed, as reported by the
Windows OS.



Category PlanetLab (PL)

Dialup (DU)

CorpNet (CN) Broadband (BB)

# Clients 95

5 (26 PoPs)

5(+1) 7

US-EDU (50), US/Canada ORG (19),
US-COM (4), US-NET (5),
Europe (13), Asia (4)

Details

Boston(ILQ), Chicago(ILQ), Houston(ILQ),
New York(IQU), Pittsburgh(ILQ), San Diego(ILQ),
San Francisco(ILQ), Seattle(ILQ), Washington DC(IL)

San Francsico (1), Pittsburgh (1), San
Seattle (2+1), Diego (2), Seattle (3),
UK (1), China (1) San Francisco (1)

US-EDU

1) berkeley.edu
2) washington.edu
3) cmu.edu

4) umn.edu

5) caltech.edu

6) nmt.edu

7) ufl.edu

8) mit.edu

US-POPULAR
9) amazon.com
10) microsoft.com
11) ebay.com

12) mapquest.com
13) cnn.com

14) cnnsi.com

15) webmd.com
16) espn.go.com
17) sportsline.com
18) expedia.com
19) orbitz.com
20) imdb.com

21) google.com
22) yahoo.com
23) games.yahoo.com
24) weather.yahoo.com
25) msn.com

26) passport.net
27) aol.com

28) nytimes.com

29) lycos.com
30) cnet.com

US-MISC

31) latimes.com
32) nfl.com

33) pbs.org

34) cisco.com
35) juniper.net
36) ibm.com

37) fastclick.com
38) advertising.com
39) slashdot.org
40) un.org

41) craigslist.org
42) state.gov

43) nih.gov

44) nasa.gov

45) mp3.com

INTL-EDU

46) iitb.ac.in

47) iitm.ac.in
48) technion.ac.il
49) cs.technion.ac.il
50) ucl.ac.uk
51) cs.ucl.ac.uk
52) cam.ac.uk
53) inria.fr

54) hku.hk

55) nus.edu.sg

TABLE Il

TABLE |

DETAILS OF THE CLIENTS USED IN OUR EXPERIMENT. NOTE THAT THE DU CLIENTS WERE ALL LOCATED IN SEATTLE BUT DIALED INTO REMOTE POPS
ACROSS 9 CITIES. EACH POP IN A CITY TYPICALLY HAD A DIFFERENT UPSTREAM ISP DRAWN FROM ICG(l), LEVEL3(L), QWEST(Q), AND UUNET(U).
ALSO, ONE OF THE CN NODES IN SEATTLE IS OUTSIDE THE CORPORATE FIREWALL/PROXY BUT SHARES THE SAME WAN CONNECTIVITY AS THE OTHER
TWO CN NODES IN SEATTLE.

INTL-POPULAR
56) amazon.co.uk
57) amazon.co.jp
58) bbc.co.uk

59) muenchen.de
60) terra.com

61) alibaba.com
62) wanadoo.fr
63) sohu.com

64) sina.com.hk
65) cosmos.com.mx
66) msn.com.tw
67) msn.co.in

68) google.co.uk
69) google.co.jp
70) sina.com.cn

INTL-MISC

71) lufthansa.com
72) english.pravda.ru
73) rediff.com

74) samachar.com
75) chinabroadcast.cn
76) nttdocomo.co.jp
77) sony.co.jp

78) brazzil.com

79) royal.gov.uk

80) direct.gov.uk

THE LIST OF 80 WEB SITES THAT WERE TARGETS OF OUR DOWNLOAD

EXPERIMENT. FOR THE SAKE OF BREVITY, WE HAVE LEFT OUT THE
“WWW?” PREFIX FOR MOST OF THESE HOSTNAMES. WE ONLY
DOWNLOADED THE TOP-LEVEL “INDEX” FILE AT EACH SITE. THE

“POPULAR” CATEGORY REFERS TO SITES DRAWN FROM THE ALEXA ToP

500 LIST [1].

For the CN clients, we configure wget to issue requests
with the “no-cache” cache-control header [15] set, which
ensures that the response is received from the origin server. We
do so to avoid having the proxy cache mask failures beyond
the proxy. However, since the proxy rather than the CN client
does name resolution, and there is no way for the client to
force the local DNS cache at the proxy to be flushed, some
DNS failures may be masked from the client.

We did not gather packet-level traces on the BB machines.
Since these were peoples’ home computers, there were con-
cerns with both privacy issues and storage requirements. Also,
while we did gather packet-level traces for the CN machines,
these were not very interesting since they only revealed the

dynamics of TCP connections to the local proxy.

E. Analysis

From the raw data recorded for each download, we obtain
an indication of the success/failure of both the DNS lookup
and the download, the DNS lookup time, the download time,
and the failure code, if any, reported by wget. We store this
information in a performance record, together with the client
name, URL, server IP address, and time.

We also post-processed the tcpdump/windump packet
traces using a simple tool called TcpScope that we have
developed to estimate various TCP metrics. This tool is
inspired by T-RAT [29], but is simpler and potentially more
accurate, since we are capturing packets at the client (which is
typically at the receiving end of the connection) rather than in
the middle of the network. The specific TCP-level information
we consider in this paper are:

1) Cause of connection failure: the connection-level fail-
ures were categorized as no connection, no response, or
partial response, as discussed in Section II-A.

2) Packet retransmission count: the count of the total
number of packets sent by the server and the number
of retransmitted packets. We distinguish between packet
retransmission and reordering by comparing the length
of time by which a packet is out of order with the
connection’s RTT (which is also estimated based on the
client-side packet trace). Since most web connections
are short, we do not compute packet loss rate on a
per connection basis. Rather we aggregate packet counts
across multiple connections to compute the loss rate, as
discussed in Section 1V.

IV. EXPERIMENTAL RESULTS

In this section, we present our experimental findings. We
present both “raw” statistics on failures and also inferences
obtained by correlating failure information across clients and
web sites. In our analysis here, we only consider hard failures,
where a client was unable to access a web page regardless of
the reason. The main advantage of this policy is that there
is no ambiguity in what constitutes a hard failure. In future
work, we plan to also consider soft failures, where the page
download is successful but is much slower than normal.

We start in Section IV-A by presenting the statistics of
transaction-level failures for the 4 categories of clients (PL,
DU, CN, BB). We report the breakdown of these failures




by type: DNS, transport (i.e., connection-level), and content.
In Section IV-B we present a more detailed analysis of
connection-level failures from the viewpoint of the individual
clients. We then turn to correlating failure observations across
clients and servers with a view to classifying failure episodes
as client-side, server-side, client-server-specific, or other. We
present the correlation analysis separately for connection-
level failures (Sections IV-C and I1V-D) and DNS failures
(Section IV-E). Finally, we present an analysis of client-server-
specific failures in Section IV-F.

A. Transaction Failure Analysis

In this section, we present overall failure statistics for web
transactions over the month-long data set. A transaction is an
invocation of wget to download a URL.

1) Overall Transaction Failure Rate: We first compute the
overall failure rate for each client over all its transactions with
all servers. Figure 3 plots the CDF of the per-client failure
rate thus computed. The median failure rate is 1.5% while the
95%-tile is 10%, which indicates that certain clients experience
a significant rate of transaction failures over the one-month
period. We defer discussion of the packet loss rate curve in
Figure 6 until later in this section.
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Fig. 3. CDF of transaction failure rate and packet loss rate for successful

connections, across clients.

Figure 4 plots the mean transaction failure rate for each
category of clients. It is interesting to note that the mean failure
rate is lowest (0.69%) for the DU clients and significantly
higher (2.76%) for the PL clients, despite the latter being
connected to much higher-speed academic and research net-
works. This difference may be because the DU clients connect
via a commercial dialup service (which presumably strives
to provide a good quality of service) whereas the PL clients
are part of the experimental PlanetLab network. Regardless,
the main message here is that speed and reliability are not
necessarily correlated.

2) Breakdown of Transaction Failures: Figure 5 plots the
breakdown of transaction failures by type, for each category
of clients (we exclude the CN clients, since these connect
via a proxy that masks the true nature of the failure). The
failure types are the ones depicted in the failure tree shown in
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Fig. 4. Percentage of failed transactions for each category of clients.

Figure 1: DNS, transport (i.e., connection-level), and content.
We find that for all categories of clients, connection-level
failures dominate, accounting for 59-72% of all transaction
failures. DNS failures account for most of the rest (26-40%).
Content failures (i.e., HTTP-level failures) account for under
2% of the transaction failures in all cases.
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Fig. 5. Breakdown of transaction failures by type for each category of clients.

3) Packet Lossand Transaction Failures: Several previous
measurement studies of Internet reliability have focused on the
packet loss rate metric (e.g., [21], [30], [7]). To the extent that
they use TCP to measure packet loss rate (e.g., [21], [7]), these
studies have considered relatively long data transfers (e.g., at
least 100 KB in [21]) to quantify packet loss rate. The question
is how well packet loss rate of such “successful” connections
correlates with the failure rate of end-to-end transactions.

Figure 3 plots the CDFs for both the transaction failure
rate and the packet loss rate of successful connections. We
also found the coefficient of correlation between transaction
failure rate and packet loss rate across clients to be low:
0.19 (not shown in the figure). The main reasons for this
lack of correlation are: (a) transactions can fail for reasons
that have little to do with the end-to-end server-client path
(e.g., DNS failures, as shown in Figure 5), (b) a transaction
can succeed despite (possibly severe) packet loss, and (c)



estimating packet loss rate using TCP traffic is prone to bias,
since failed connections that transfer no data (which are in fact
quite significant, as discussed in Section IV-B.2) are ignored.
Non-TCP-based techniques such as the zing tool [30] avoid
this bias to an extent (though not entirely, since DNS failures
are not accounted for), but using such tools requires control
over both end-points and involves active measurements.

Thus we believe that it is important to study the failures of
end-to-end transactions rather than only packet loss rate. In
the following sections, we analyze the two dominant causes
of transaction failures — connection failures and DNS failures
— separately. The reason for analyzing these separately is that
DNS resolution and TCP/HTTP connections typically involve
distinct Internet components and possibly distinct network
paths.

B. Connection Failure Analysis

In this section, we present a more detailed analysis of
connection-level failures, which comprise a significant chunk
of transaction failures (Figure 5).

1) Connection Failures vs. Transaction Failures: We
first consider the relationship between transactions and TCP
connections. As noted earlier, a transaction is an invocation of
wget to download a URL. Like other web clients, wget could
invoke multiple TCP connections in the context of a single
transaction, in an attempt to mask failures. When DNS returns
multiple IP addresses for a server and the TCP connection
to one of them fails, wget tries to connect to the alternate
addresses. Multiple connections also arise when the server
returns an HTTP redirect response to the client.

Figure 6 compares the distributions of the transaction failure
rate and the connection failure rate. The latter is computed
over the individual TCP connections. A transaction could be
successful despite the failure of one or more of its constituent
TCP connections. On the other hand, a transaction could fail
due to DNS or HTTP failures, which would not register as
a TCP-level connection failure. Thus the transaction failure
rate could be larger or smaller than the connection failure rate
depending on which of these effects dominates. As Figure 6
shows, the transaction failure rate is generally larger than the
connection failure rate, except in the tail of the distribution
(90%-tile and above). However, when DNS and HTTP related
failures are excluded, the residual transaction failure rate is no
greater than the connection failure rate.

2) Breakdown of Connection Failures: We now analyze
the TCP connection failures, which correspond to “transport”
failures in the failure tree shown in Figure 1. The types of
failure are “no connection” (TCP SYN exchange failed), “no
response” (server did not return any bytes of response), and
“partial response” (the server returned a partial response, but
the connection was terminated prematurely). The breakdown
is shown in Figure 7. We see that “no connection” failures
dominate in the case of PL (79%) and DU (65%), and are
significant in the case of BB (41%). The prevalence of “no
connection” failures reinforces the point made in Section IV-
A.3 of the unsuitability of TCP packet loss rate as an indicator
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Fig. 6. CDF of the transaction failure rate (both the overall failure rate and
the failure rate excluding transactions that failed due to DNS or HTTP causes)
and the connection-level failure rate.

of transaction failures. It is hard to incorporate information
from a failed SYN exchange into an overall packet loss rate
metric.
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Fig. 7. Breakdown of TCP connection failures for each category of clients.
The CN clients are excluded since they connect via a proxy, which masks the
failures of its TCP connections to servers. The category marked “no/partial
response” corresponds to cases where we lacked the tcpdump traces needed
to disambiguate the precise cause of failure. Nevertheless, from the wget logs
we are able to rule out “no connection” failures, leaving only “no response”
and “partial response” as the possibilities.

Such extreme failures where no communication is possible
between the client and the server suggest that either the server
is down or that there is lack of connectivity between the client
and server. In the latter case, it is unclear whether the root
cause is at the client end or at the server end, or whether it
is specific to the client-server pair in question. To shed more
light on these and related questions, we now turn to correlating
failure observations across clients and servers.

C. Correlation Analysis of Connection Failures

As discussed in Section 11-B, we can obtain greater insight
into the nature of failures by correlating failure observations
across clients and servers. Specifically, we can determine
whether failures are due to a client-side failure episode or



a server-side failure episode or otherwise. (Recall from Sec-
tion I1-B that we classify failure episodes rather than individual
failures.) Our goal in this section is to apply such correlation
analysis to connection-level failures.

1) Identifying Failure Episodes: The first step step in our
analysis is identifying failure episodes, which as noted in Sec-
tion I1-B are periods of abnormally high failure rate at a client
or a server. We identify abnormal periods by comparing with
system-wide normal behavior. Abnormal periods for clients are
identified by comparing with all clients and abnormal periods
for servers are identified by comparing with all servers. The
underlying assumption is that the system as a whole is mostly
in the normal state (low failure rate or no failures at all), with
abnormal behavior (high failure rate) being the exception.

We need to define the period over which failure rates are
computed. There are two conflicting considerations here. We
would like the period to be short enough to help identify
failures that last say just a few minutes. For example, a 10-
minute server outage might stand out on a 1-hour timescale
but might be buried in the noise on a 1-day timescale. On
the other hand, the period should be long enough for us to
have a sufficient number of samples to be able to compute
a meaningful failure rate (given the number of clients and
servers, and the frequency of accesses in our experiment or in
any practical system based on passively monitoring existing
traffic). To balance both these considerations, we pick 1 hour
as the episode duration. We are thus assured a few hundred
accesses per client and per server in each episode. Also, the
1-hour duration allows us to identify relatively short-lived
failures. The 1-hour episode duration also places minimal
requirements on the degree of synchronization needed across
the observations made at different clients.
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servers.

To identify system-wide normal behavior, we consider the
distribution of failure rate over the 31*24 = 744 episodes in
our month-long trace. We do this separately for clients and for
servers, as shown in Figure 8. For each 1-hour episode and
each client, we compute the failure rate for all of the client’s
connections across all servers. This failure rate data yields the
“client” CDF shown in Figure 8. Likewise for servers.

The CDFs in Figure 8 show a distinct knee separating
portions of the CDF with very different slopes. To the left
of the knee (i.e., the steep portion of the CDF) are the vast
majority of episodes, all concentrated in a narrow range of low
failure rates. We term this the “normal” range. To right of the
knee (i.e., the flat portion of the CDF) are the episodes that
experience a wide range of significantly higher failure rates.
We term this the “abnormal” range. The episode failure rate,
£, corresponding to the knee is used to separate the abnormal
episodes (also termed as failure episodes) from the normal
episodes.

In the analysis that follows, we experiment with two settings
of the threshold f/ — 5% and 10% — the latter being more
conservative.

Before proceeding with our analysis, we make one more
point regarding our choice of the failure threshold, f. A
threshold of 10% might appear to be too low, but in fact a
failure rate of say 10% over a 1-hour episode is still very
significant for a client or a server. Moreover, the failure might
have actually been total (i.e., 100%) while it lasted, but the
failure rate is lower when averaged over a full hour.

2) Classifying Failure Episodes: Using the threshold f,
we can classify all 1-hour episodes for each client and for
each server as either a failure (i.e., abnormal) episode or
otherwise. Consider a particular pair of client C and server S.
If connections between C' and S experienced failures during
that episode, the question is whether we can attribute them to
a client-side problem or a server-side problem. Not that we
are not trying to establish the cause of individual connection
failures, but rather are only interested in establishing the likely
cause of failures between C and S during that 1-hour episode.

If the episode in question was marked as a failure episode
for C' (based on the failure rate of C’s connections to all
servers) but not as a failure episode for S (based on the failure
rate of S°s connections to all clients), then we attribute the C—
S connection failures in this episode to a client-side problem
at C. (Recall from Section I1-B that “client-side” does not
necessarily mean that the root cause of the problem is close
to the client, just that the problem is affecting a broad range
of communication at the client.) Likewise, if it is a failure
episode for S but not for C, we attribute the failures to a
server-side problem at S,

However, if the episode is marked as a failure episode for
both C' and S, the question is which end we attribute the
C-S failures to. This case is important to consider for the
following reason. Assume that the server S and a handful of
other servers happen to be experiencing problems that cause
the accesses from a large number of clients to these servers
to fail during the corresponding episode. Given the modest
number of servers (80) in our experiment, it is possible that
the failure of these handful of servers would cause a noticeable
fraction of accesses from a large number of clients to fail
during that episode. This failure rate could exceed our f = 5%
threshold (or even the more conservative f = 10% threshold)
at these clients. As a result these episodes would (incorrectly)
be marked as a failure episode at the clients. Of course, it



would also be (correctly) marked as a failure episode at .S
and the other affected servers.

To correctly attribute the C-S failures during this episode
to the server-side problem at .S, we compare the overall failure
rates for C' and S for that episode, to see if one dominates
the other. In the above example, the failure rate may be close
to 100% for S but barely above the threshold f for C. So
we can conclude that the C-S failures were likely due to a
server-side problem.

In general, if both the C' and S failure rates during an
episode exceed the threshold f, but one of the failure rates is
at least twice the other, we attribute the C-S failures during
that episode to the dominating end (i.e., “likely client-side”
or “likely server-side”). If neither dominates, we attribute the
failures to both ends (“both” category).

Finally, if there are C'-S failures during an episode that did
not qualify as a failure episode at C or at S, we attribute
the C-S failures to the “other” category. These correspond to
failures that were not severe or widespread enough to register
as a failure episode at either the client or the server end.
Some of these are due to client-server-specific problems, i.e.,
failures that affect only a specific client-server pair (or more
generally, a specific pair of client site and server), perhaps
because of wide-area routing problems. Since we only have
about 4 accesses per hour for any client-server pair in our
experiment, we are not in a position to analyze such client-
server-specific failures at the granularity of 1-hour episodes.
We present a more coarse-grained analysis of such failures in
Section IV-F.
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Fig. 9. Classification of failure triplets into the various categories. We use a
threshold of f = 5% to identify client and server failure episodes. Only 61.7%
of the failure triplets were classified as some flavor of client- or server-side
failure episode.

We report our results by first counting the total number
of <client,server,episode> combinations (“failure triplet” for
short) such that the corresponding client-server pair experi-
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Fig. 10. Classification of failure triplets into the various categories. We
use a threshold of f = 10% to identify client and server failure episodes.
Only 45.2% of the failure triplets were classified as some flavor of client- or
server-side failure episode.

enced failure during the episode in question.® We then count
the number of such failure triplets that could be classified as
one of client-side, server-side, likely client-side, likely server-
side, or both. The remainder go into the “other” category.

Using the two settings of the threshold f — 5% and 10%
— we were able to classify 61.7% and 45.2%, respectively, of
the failure triplets. It is as expected that more failure triplets
fall in the “other” category when we use the more conservative
threshold of f = 10% to flag failure episodes.

Figures 9 and 10 show the breakdown of the classifiable
failure triplets. We observe that there is a very good match
in the breakdown across both figures, despite the different
settings of the threshold, f. Also, the “client-side” and the
“server-side” categories dominate the less certain ones.

Finally, the “server-side” category dominates the “client-
side” one. In other words, at the level of connections, failures
are much more likely due to server-side problems than client-
side problems. There are a couple of reasons for this. First, a
server machine going offline would cause a large number of
clients to experience failures to that server. The corresponding
event at the client end — the client machine being turned off
— would not be naticed since the client would not be making
any accesses during the corresponding period. This “bias” is
just as well since in practice users would only care about
failures that happen when they try to access servers and not
about those that may happen when their machine is turned off.

A second issue is that since we are considering connection-
level failures, that by definition excludes problems with DNS
resolution, which would precede connection initiation. Client-
side failures close to the last-mile might in fact cause a DNS

5Note that a failure triplet does not represent a client-server-specific failure.
Rather, it represents a general client-side or server-side failure to which we
ascribe the failures experienced between the corresponding client-server pair
during the episode in question.



resolution failure, and hence not be registered as a connection-
level failure. So it is important to note that our finding that
server-side causes dominate connection-level failures might
not reflect the situation for transaction-level failures. The cor-
relation analysis of DNS failures that we present in Section V-
E sheds light on this other major cause of transaction failures.

3) Indirect Validation: It is difficult to directly validate our
inferences of server-side and client-side failures, since we have
little visibility into the network. Instead, we provide indirect
evidence to support our interferences. We do this in two ways.

First, we consider how widespread the impact of server-side
and client-side failures episodes is, i.e., what fraction of clients
or servers is affected in such an episode. We would expect a
server-side failure to impact a large fraction of the clients, and
likewise expect a client-side failure to affect transactions to a
large fraction of the servers. The results we present below (see
#1) confirm this.

Second, we consider co-located clients (e.g., those on the
same university campus) and determine the degree to which
their client-side failure episodes are correlated. We would
expect a significant degree of correlation, since many failures
(though not all) might affect connectivity at the level of the
subnet or even the entire campus. The results we present below
(see #2) confirm this. We also perform a similar analysis for
co-located servers, although we have far fewer instances of
co-located servers in our data set.

#1: Spread of Server-side and Client-side Failures

We consider how widespread the impact of server-side and
client-side failure episodes is. Ideally, we would like to answer
this question by looking at how widespread the impact is
within each failure episode. However, this is difficult to do
because of sampling limitations, not just in our experiment
but also in any practical system that is based on passive
observation of existing traffic.

There are two sampling problems. A server-side problem
could cause 100% failure for all client accesses during a short
interval, say 10 minutes long. However, there would be no
record of failure for clients that happened not to access the
server in question during this short period. On the other hand,
a server-side problem could last the entire hour but affect say
only 20% of the transactions at random. While the underlying
problem might be one that does not discriminate between
clients accessing the server, there is a chance that some clients
get lucky in the sense that none of their accesses to the server
fail during the hour. So, in general, we are not in a position to
definitively establish which clients could have been affected
by the server-side problem.

In view of this difficulty, we only look at how widespread
the impact of server-side and client-side failure episodes is
over the entire month-long period.® That is, for each server,
S, we consider all the failure triplets that it is part of and
that were attributed to a server-side problem at S. (Recall

60f course, this is not a perfect measure either since multiple distinct server-

side problems during different episodes through the month could have affected
different subsets of clients. The overall “spread” across clients might be large,
but the spread during individual failure episodes could still be small.
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Server Spread (75%-tile) | Spread (95%-tile)
sina.com.cn 38 59
craigslist.org 14 47

sohu.com 20 48
iith.ac.in 38 66
technion.ac.il 37 68
cs.technion.ac.il 40 70
brazzil.com 44 67
ucl.ac.uk 51 80
muenchen.de 43 68
iitm.ac.in 44 69

TABLE Il

THE LIST OF MOST FAILURE-PRONE SERVERS AND THE “SPREAD”
QUANTIFYING HOW WIDESPREAD THE IMPACT OF THE CORRESPONDING
SERVER-SIDE FAILURES IS.

from Section I1VV-C.2 that a failure triplet is the combination
<client,server,episode>.) We are interested in how large the
set of clients affected by these server-side episodes over
the month-long experiment is. We quantify this “spread” by
counting the fraction of all clients needed to account for 75%
or 95% of the failure triplets involving the server, S. A similar
“spread” metric can be computed for clients by considering
how widespread the impact of client-side problem is across
Servers.

Table 111 lists the spread for the most failure-prone servers.
We find that the 75%-tile spread is typically over 35% and
the 95%-tile spread is typically over 60%. This indicates that
the failures that we flag as server-side typically impact a large
fraction of the clients, as we would expect. This serves to
indirectly validate the inferences made in Section I1V-C.2.

We make one other observation regarding Table Ill. The
most failure-prone servers are all located outside the U.S., with
the exception of craigslist.org. Given that our client set
is dominated by U.S.-based clients, it is hard to distinguish a
network connectivity problem between the U.S. and the rest
of the world from an actual server-side failure at a non-U.S.-
based server that affects a large fraction of the clients.” In
general, we do not have enough (or any) clients located close
to many of the non-U.S.-based servers to be able to tell if such
“local” clients were also affected by the apparent server-side
failure. However, in some cases we were able to verify that the
(small number of) clients located relatively close to the server
were also affected at the same time that the U.S.-based clients
were (e.g., clients in Korea experienced problems accessing
sina.com.cn and clients in the U.K. experienced problems
accessing ucl.ac.uk).

#2: Correlation Between Co-Located Clients and Servers

We first consider the extent to which client-side failure
episodes are correlated across co-located clients. For each pair
of co-located clients, we first determined the subset of episodes
that were (separately) marked as a client-side episode for each
client in the pair. We compute the “similarity” measure for the
pair of clients as the ratio of the size of the intersection set
(i.e., the client-side failure episodes in common) to the size
of the union (i.e., episodes that are marked as a client-side

7One could argue that this distinction does not matter from the viewpoint
of the U.S.-based clients.



Number of co-located client pairs 35

Pairs with at least one client-side failure 25
episode marked for at least one of the clients

Pairs with similarity > 90% 6

Pairs with similarity in 50-90% 5

Pairs with similarity in 25-50% 1

Pairs with similarity < 25% 13

TABLE IV
THE MEASURE OF THE SIMILARITY IN THE CLIENT-SIDE FAILURE
EPISODES EXPERIENCED BY PAIRS OF CO-LOCATED CLIENTS.

Client pair # client-side failure Similarity
episodes in the union
planetl.pittsburgh.intel-research.net 377 94%
planet2.pittsburgh.intel-research.net
csplanetlabl.kaist.ac.kr 2 100%
csplanetlab3.kaist.ac.kr
csplanetlab3.kaist.ac.kr 2 100%
csplanetlab4 kaist.ac.kr
csplanetlab4 kaist.ac.kr 2 100%
csplanetlabl.kaist.ac.kr
planetlabl.comet.columbia.edu 31 0%
planetlab2.comet.columbia.edu
planetlab2.comet.columbia.edu 37 81%
planetlab3.comet.columbia.edu
planetlab3.comet.columbia.edu 31 0%
planetlabl.comet.columbia.edu

TABLE V
EXAMPLES OF CO-LOCATED CLIENTS AND THE DEGREE OF SIMILARITY IN
THE CLIENT-SIDE FAILURE EPISODES THAT THEY EXPERIENCE.

failure episode for either or both clients).

We identify 35 pairs of co-located clients in our data set.
These were mostly PL clients that were located on the same
university campus network. But we also had two pairs of co-
located BB nodes: a pair of nodes on the Roadrunner cable
network in San Diego and a pair of nodes on the Verizon DSL
network in Seattle.

Table 1V shows the similarity measures across the client
35 pairs of co-located clients. Of these, 10 pairs did not
experience any client-side failure episodes (and hence were
in a sense 100% similar, although this is not very interesting).
Of the remaining 25 pairs, about a quarter had very high
similarity (over 90%) and another fifth had moderately high
similarity (50-90%). However, a little more than half of
the pairs had a low degree of similarity (under 25%). On
closer examination, the overwhelming majority of these pairs
experienced a very small number of client-side failure episodes
through the month-long experiment (just 1-2 episodes, in some
cases). Any mismatch (i.e., lack of sharing) in these rare failure
episodes would result in a low similarity measure.

In general, a low degree of similarity in the client-side
failure episodes for co-located clients could also arise because
the failure was truly client-specific. One of the examples we
consider next illustrates this point.

Table V lists a few examples of co-located clients that we
studied: 3 nodes at Columbia University, 2 at Intel Research
Pittsburgh, and 3 at KAIST. These three sets exhibit very
different behavior.

The two nodes at Intel see a very large number of client-
side failure episodes between them — 377 failure episodes
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out of a maximum possible count of 31 x 24 = 744 over
the month-long period. Moreover, there is a very high degree
of similarity (94%) across the failure episodes experienced by
these two co-located clients. On the other hand, the 3 nodes at
KAIST experience a total of only 2 client-side failure episodes.
However, both these episodes are shared by all 3 nodes.

The case of the Columbia clients is remarkably different.
Two of the nodes — #2 and #3 — experience 31 and 36
failure episodes, respectively. The size of the union set is 37
and that of the intersection set is 30, yielding a high degree of
similarity (81%). However, the behavior of the third Columbia
node (#1) is very different. It only experiences 1 client-side
failure episode and even this is not shared with either of the
other two nodes. We do not have a satisfactory explanation for
this significantly different behavior despite the 3 nodes being
located on the same subnet at Columbia. We plan to approach
the network administrators at Columbia to see if they could
shed light on this issue.

In summary, we find that a little less than half the pairs
of co-located clients shared 50% or more of their client-side
failure episodes. Most of the rest were pairs that saw very few
client-side failure episodes, making any similarity computation
noisy.

We also repeated the similarity analysis for server-side
failure episodes across co-located servers. Of the 4 such
pairs in our data set, only 2 pairs experienced any server-
side failure episodes. One of these pairs, technion.ac.il
and cs.technion.ac.il, shares 67 out of a total of
78 server-side failure episodes, yielding a high similarity of
86%. The other pair, ucl.ac.uk and cs.ucl.ac.uk, has
a similarity of only 6% — the former (ucl) experiences
49 server-side failure episodes, whereas the latter (cs.ucl)
experiences only 3, all of which are shared with the former
(ucl). We believe that more such pairs of co-located servers
need to be studied before we can draw general conclusions.

D. Replicated Websites

As noted in Section I1-B, websites could be replicated, in
which case server-side problems could represent either total
or partial replica failures. Total failures affect all replicas of
a website, while partial failures affect only a subset of the
replicas.

We repeat the correlation analysis at the granularity of
server replicas with the view of further classifying the failure
episodes in which the website experienced abnormal failure
rate. Our goal is to classify the episodes that were earlier
marked as server-side, as either total or partial, as shown in
the failure tree in Figure 1.

We identify the set of replicas for a server S by considering
all distinct IP addresses to which connections were attempted
by any client while downloading content from S. To make our
analysis meaningful, only IP addresses that account for at least
10% of the total number of connections to .S are considered
to be replicas. As a result, out of the 80 websites used in our
experiments, 6 had zero replicas, 42 had exactly one replica
and 32 had multiple replicas. The 6 websites with zero replicas



are basically those served by CDNs like Akamai, where the
number of distinct IP addresses is very large, so that none of
the IP addresses qualify to be counted as a replica per our
definition above.

We found that 62% of the failure episodes marked as server-
side belonged to the 32 servers that had multiple replicas. Of
these episodes, an overwhelming majority of 85% were total
replica failures, which means that all replicas of the website
were experiencing more than f = 10% failures during that
episode. This is a somewhat surprising finding. However, more
detailed analysis shows that almost all of the total replica
failures are due to websites whose replicas are on the same
subnet, and hence are prone to correlated failures.

E. Correlation Analysis of DNS Failures

In a manner similar to Section I\V-C, we identify and classify
failure episodes due to DNS problems as client-side, server-
side, or otherwise. (In this context, the “server” referred to by
“server-side” is the website whose name clients are unable to
resolve. The root cause, however, lies in the DNS system, not
the website’s server(s) per se.) As before, we use a threshold of
f = 10% over a 1-hour time scale to identify failure episodes.
The results are presented in Figure 11. Over 87% of the failure
triplets were classified as some flavor of client- or server-side
failure episode. In contrast to connection failures, the vast
majority of classifiable DNS failure triplets are due to client-
side problems. This is reasonable since, for instance, if the
local DNS server were down, a client would experience close
to 100% failure, no matter what the “server” (i.e., the name it is
trying to resolve) is. In addition, loss of connectivity at a client
site would often manifest itself as DNS lookup failures rather
than connection problems. On the other hand, problems at the
server end, such as an authoritative name server for a website
going down, can be masked to some extent by redundancy and
caching in the DNS hierarchy.

We also performed indirect validation of our results, in a
manner similar to Section IV-C. We found that for there was
100% similarity in the failure episodes marked as server-side
for co-located servers. Results for co-located clients are similar
to those shown in Section IV-C. We omit further discussion
due to lack of space.

F. Client-Server-Specific Failures

As discussed in Section 1V-C.2, the low rate of accesses
between any client-server pair makes it difficult for us to
analyze failures that are specific to a client-server pair, at the
granularity of one hour. Here we present an aggerated view of
such failures over the entire one-month period, and point out
some interesting cases.

We compute the connection-level failure rate for each client-
server pair over the entire month. The median connection
failure rate across all client-server pairs was 0.3%, and the
95%-tile was 5%.

Despite these seemingly low overall failure rates, we noticed
that 36 client-server pairs (out of a total of 134 * 80 = 10720)
were unable to communicate at all during the entire month.
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Fig. 11. Classification of failure triplets for DNS failures into the various
categories. We use a threshold of f = 10% to identify client and server failure
episodes. Over 87% of the failure triplets were classified as some flavor of
client- or server-side failure episode.

Client
planetlab2.isi.jhu.edu
planetlab2.cnds.jhu.edu

Server
criagslist.org
craigslist.org

planetlabl.uc.edu msn.com.tw
planetlab2.uc.edu msn.com.tw
planetlab-1.cmcl.cs.cmu.edu msn.com.tw
planetlab-2.cmcl.cs.cmu.edu msn.com.tw

sohu.com, sina.com.hk

sohu.com, sina.com.hk, craigslist.org
sohu.com sina.com.hk

sohu.com, sina.com.hk

cs.technion.il

cs.technion.il, sohu.com, sina.com.hk
criagslist.org, nus.edu.sg

planetl.scs.cs.nyu.edu
planet2.scs.cs.nyu.edu
grouse.hpl.hp.com
plil-pa-4.hpl.hp.com
planetlabl.di.unito.it
planetlab2.di.unito.it
planetlab2.cs.duke.edu

planetlabl.cs.northwestern.edu | mp3.com
planetlab3.xeno.cl.cam.ac.uk cam.ac.uk
TABLE VI

SOME CLIENT-SERVER PAIRS WITH 100% CONNECTION FAILURE RATE.

Table VI lists a sample of such client-server pairs. A majority
of these involve the servers sohu.com and msn.com. tw.
However, note also that several US-based clients are not able to
access the popular craigslist . org website. Furthermore,
there is generally a good correlation between such total failures
experienced by co-located clients.

We also point out some of the other interesting cases.
The PlanetLab client at Northwestern University could not
access mp3.com. Since the client has a very low failure
rate otherwise and suffers no client-side failure episodes, the
failure in accessing mp3.com could be due to university
policy blocking accesses to this site. A similar pattern of
failures happens with the two clients at CMU, which were
unable to access msn.com.tw, despite having a very low
failure rate otherwise and not suffering any client-side failure
episodes. Another such example is the PlanetLab node at
Cambridge University (UK), which was never able to access
the university’s own website.

We note that such seemingly “permanent” failures do tend



to get fixed over a period of time. For instance, in a separate
data set gathered earlier in the project (October 2004), we had
noticed that the CorpNet client located in China was never
able to access nmt . edu over a period of several weeks. In the
current data set, however, this client has no problems accessing
the website.

We conduct a similar analysis of client-server-specific fail-
ures for DNS lookups. The median DNS failure rate across
all client-server pairs is 0%, while the 95%-tile is 5%. While
these are comparable to the connection failure rates, we did not
find any client-server pairs with a 100% DNS lookup failure
rate. However, the two broadband clients in Seattle as well as
two dialup clients dialing into Seattle area POPs belonging to
ICG and Level 3 failed to resolve c¢s . technion. il in over
70% of their attempts.

These examples point out the importance of analyzing
client-server-specific failures more closely. We plan to do so
in future work, by conducting a modified experiment where
more frequent accesses are made between such problematic
client-server pairs.

V. DISCUSSION

Our results indicate the promise of a new paradigm for
diagnosing Internet faults using failure observations gathered
passively at multiple clients, an approach we outlined in a
recent position paper describing the NetProfiler system [20].
We believe that such a cooperative, end-host-based approach to
network diagnosis will become more important, as the Internet
evolves towards becoming increasingly more opaque, with the
growing deployment of firewalls, proxies and other “middle
boxes”.

Nevertheless, the feasibility of a client-based, cooperative
fault diagnosis system hinges on several issues. First, there
needs to be sufficient overlap between the access patterns
of clients, to permit meaningful sharing of information and
correlation analysis. As noted in Section Il1-A, previous find-
ings in the context of web caching [27] point to the potential
for such sharing. Furthermore, the potential for sharing fault
information is increased because (a) sharing is not predicated
on overlapping accesses to the same content (e.g., same files),
and (b) even clients in different locations could usefully share
fault information pertaining to a common set of servers they
may have accessed. However, a more detailed analysis is
needed to firmly establish the feasibility of such sharing.

Second, to be able to share failure observations with other
end hosts, a client must have network connectivity. This
requirement might sound paradoxial for a system designed to
diagnose network faults. However, note that in many cases, an
end host might see abnormally high failure rates only to certain
servers or certain parts of the Internet. In such situations, it
would be still be possible to compare observations with some
or all other end hosts, say over a peer-to-peer network. In
addition, even if a client is unable to communicate with any
other end host, it could record its failure observations, and
later share it with its peers. Such “post-mortem” analysis could
help users benchmark the quality of their network experience
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against that of others over the long term, helping drive such
decisions as upgrading service or switching ISPs.

Third, there are key security issues that confront any coop-
erative network diagnosis system. In particular, there are two
interrelated issues: protecting the privacy of users and ensuring
the integrity of the information that is shared. There is an
inherent tradeoff between these goals, which makes it hard to
achieve both to the fullest extent. In our position paper [20], we
have outlined strategies for partially achieving these security
goals. We defer the design of a complete solution to future
work.

VI. RELATED WORK

Several measurement studies of Internet performance and
failures have appeared in the literature. The studies that
are most closely related to our work are [11], [28], [16].
Several researchers have focused on individual facets of the
performance of the wide-area Internet, such as DNS [18] or
routing [14]. In this section, we will briefly discuss some
of this work and contrast it with our approach. One overall
observation is that previous studies have focused on hosts
in academic and research networks. Such hosts have been
at one or both ends of the experiments reported in these
previous studies. In our study, we also consider hosts on
commercial dialup and broadband ISP networks, and on a
corporate network.

In [11] the authors analyze failures observed in wide-
area networks. Their goal is to evaluate techniques such as
caching and pre-fetching that could mitigate the impact of
wide-area failures. They determine the location, duration, and
rate of failures using traceroute measurements from previous
studies. However, they do not consider failures beyond the IP-
level path (e.g., DNS lookup failures). In contrast, our study
relies on client-based passive observation of entire end-to-end
transactions and correlation analysis to determine the location
of failures.

In [28], a system called PlanetSeer is proposed to monitor
and characterize path failures in the wide-area Internet. Plan-
etSeer monitors incoming and outgoing connections from of a
set of PlanetLab nodes that serve as a distributed web proxy
cache. Traffic anomalies are detected by passive monitoring.
Once an anomaly is detected, PlanetSeer uses active probing
(traceroute) from multiple nodes to further analyze and obtain
a fine-grained view of the anomaly. However, as noted in
Section 1, the use of traceroute is problematic, although
PlanetSeer avoids some of these problems because it is a
server-based system rather than a client-based one. In contrast,
we rely entirely on passive observation of traffic at clients.
Furthermore, we consider all components, including DNS and
web proxies (if any), that might be responsible for the failure
of end-to-end transactions, rather than just the wide-area IP-
level path.

In [16] the authors study path failures in the wide-area
Internet. Their measurements show that most failures occur
close to clients, and they develop a technique called one-hop
source routing to route around failures that occur further away



from the client. One-hop source routing is much simpler than
the re-routing techniques proposed previously [8], [24]. This
work shares many of the characteristics of PlanetSeer that
are in contrast to our work: the use of traceroutes for active
probing and a focus on failures in just the IP-level path.

During the 1990s, Paxson conducted pioneering studies
of Internet routing [21] and end-to-end TCP dynamics [22].
These studies, which pre-dated the PlanetLab infrastructure,
were conducted using about 35 nodes, most of them on
academic or research networks, that exchanged data using
TCP and did traceroutes to each other repeatedly. Many of the
findings (e.g., those pertaining to routing anomalies) that have
inspired later work. However, the methodology used by Paxson
is not suitable for our purposes, since it assumes control over
both end-points, depends on traceroutes, and focuses on just
the IP-level path.

SPAND [25] is a system for sharing performance infor-
mation among end hosts belonging to a single subnet or
site. The performance reports that are stored in a central
database are used by end-hosts for performance prediction
and mirror selection. While our work also focuses on sharing
information across end-hosts, we differ from SPAND in a
couple of key ways: (a) our goal is characterizing wide-area
Internet failures rather than performance prediction, and (b)
we combine observations made by a widely distributed set of
end-hosts rather than just hosts in the same subnet or site.

NETI@home [26] is a system to gather detailed network
performance information from end hosts. The goal is to
compile this information and make it publically available. It
is not clear, however, how this information is analyzed and
whether it is being used to diagnose network problems.

Several researchers have studied individual facets of perfor-
mance of the wide-area Internet. [18] reports on the perfor-
mance of DNS queries originating from two sites: KAIST and
MIT. A key finding is that about 36% of DNS lookups returned
either no answer or an error. However, with data from just
two sites, it is difficult to quantify the correlation of failures
across sites. Studies such as [12], [14] have correlated BGP
information from routers in a diverse set of locations to locate
the source of Internet routing instabilities. Other studies [17]
have considered the failure of intra-domain routing protocols
such as 1S-1S. In [29] the authors studied the performance
of wide-area TCP connections by observing TCP flows in
the middle of the network. However, none of these studies
consider the impact of these problems on the performance of
the end-to-end transaction. Furthermore, all of these studies
are based on data gathered from the interior of the network,
whereas our study is based on the end-host view.

Finally, our work bears some similarity to the work on
network tomography [10], in terms of combining observations
made on multiple network paths to deduce the internal state of
the network. The key difference, however, is that tomography
techniques are based on the analysis of fine-grained packet-
level correlations, and therefore have typically involved active
probing using multicast [10] or unicast [13] packets. Even
the work on more coarse-grained, passive tomography [19]
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depends on active probing to discover the network topology.

In summary, our work is distinguished from previous work
in terms of our focus on characterizing a broad range of
Internet faults based on passive, client-based observations of
end-to-end transactions, using correlation (or lack thereof)
between data gathered at multiple sites.

VII. CONCLUSION

We have presented a client-based characterization of end-to-
end Internet faults. Unlike many prior studies of Internet faults,
our approach is based on correlating passive observations of
end-to-end faults across a distributed set of clients.

We gathered failure data over a period of one month using
a heterogeneous collection of 134 client hosts downloading
content from a diverse set of 80 websites. We found a wide
range in the failure rate of these transactions.

We have presented a correlation methodology to analyze
failure data gathered at different clients. Using this method-
ology, we were able to classify many of the failures as being
likely due to server-side or client-side problems. Over 30% of
the failures seen in our data were caused by DNS problems,
with most of the rest being due to the inability of the client to
establish a TCP connection to the remote web server. The vast
majority of DNS failures were inferred as being due to client-
side problems while a majority of connection problems were
inferred as being due to server-side problems. While direct
validation of these inferences is difficult to do, we were able
to do some indirect validation.

Our findings indicate the promise of a cooperative, client-
based approach to monitoring and diagnosing Internet faults.
Clients make observations on the failure of end-to-end transac-
tions that they are involved in, and information from multiple
clients is combined to arrive at a more complete picture of the
extent and the likely cause of faults. We are currently building
such a system.
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