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Abstract

In this paper, we report the design and impleméoadf the storage layer of BitVault: a content-aeiskable retention platform
for large volume of reference data — seldom-chagd@nformation that needs to be retained for a Igagiod of time. BitVault
uses “smart brick” as the building block to lowdret hardware cost. However, the challenges are tmtaia low management
cost in a system that needs to scale all the way fone brick to tens of thousands of bricks, taenseliability and to deliver
with a simple enough design. Our design incorpa@®2P technologies for its self-managing and seéling capabilities and
uses massively parallel repair to reduce vulneiigghivindow of data loss. The simplicity of the atetture relies on an eventu-
ally reliable membership service provided by a eetrbne-hop DHT (distributed hash table), and higeot-driven repair model
yields last-copy recall guarantee: independent @ivimany other failures that may occur and theirugeges, as long as the
last copy of a data object still remains in theteys the data can be retrieved and its replicatiegree fully restored. A proto-
type has been implemented. Theoretical analysigjlations and experiments are conducted to valitiealesign of BitVault.

systems that are either client/server architected o
using strong membership protocol, BitVault scales
out in a self-organizing manner with low overhead.

1. Introduction

Companies today face the problem of managing an in-
creasing amount akference data— seldom-changing
information that needs to be retained for its besin °
value or for compliance reasons. The Enterprisea§®o
Group estimates that[1], by 2005, more than hathef
data stored by North American businesses will lierre

We employ the object-driven repair model that
gives objects the central role of the repair preces
This model affords the use of soft-state indiced an
yet delivers the last-copy recall guarantee: ag lon

ence data (examples include check images, electroni
invoices, email messages, etc.). Furthermore, the
amount of reference data is growing one and a half
times as fast as the non-reference one. The farbind
these trends is the digitization of all kinds otadaor
example, X-ray images alone produce over 20PB of
data every year. Digitizing all phone conferencés o
year would have generated 17,000PB worth of data.
Also, in the enterprise world, email archiving i§ o
paramount importance due to legal regulations.

Reference data must be kept for an infinite pendd
time. On the other hand, data must be easily aittess
the SEC-17(a) regulation states that companies must
retrieve the required documents in 48hours when a
court order is delivered, or face strict penalty.adddi-

tion to ease of access, the raw performance ofatge

as an object still has the very last replica, étglir
cation degree is fully restored and the objecfcis a
cessible as soon as possible. Furthermore this guar
antee can withstand arbitrary number of failures
and their sequences. Our basic idea is to leverage
the service of the membership protocol to rebuild
any missing indices if necessary, and the indines i
turn repairs missing replicas. This object-centric
strategy is very different from the conventionalywa
of dealing with failures, one in which the index is
first made to be reliable and consistent, and then
functions as the base to react to failures.

BitVault uses massively parallel repair to signifi-
cantly bring down the repair window (e.g. minutes
instead of hours). Previously, this is achievedyonl
in a centralized-indexed solution like GFS [14].

the data should be reasonable, such that search fu
tionality can be built on top of the platform. Thsgses-
pecially important for email archiving applications

Mrhe simplicity of the BitVault architecture is doe a
number of things. The repair model depends on the
eventual convergence of live brick membership &sij
BitvVault is a backend storage platform for refeenc hence there is no need for a strong consensuscptoto
data. Our top-three design goals are 1) low tatat of ~ at run time. BitVault deals with immutable objeotdy,
ownership (TCO), 2) extremely high reliability and and allows extra copies to temporarily exist. Cense
availability and 3) simplicity. To achieve theseatpp  quently, BitvVault does not employ distributed tracs
our design combines the latest peer-to-peer teogiesl  tions. A prototype of BitVault has been implemented
and a number of novel techniques. In particular, ouand evaluated in our lab, and the experimentalltseesu
main contributions include the followings: validate our design choices.

« We employ a weak and eventual membership proThe remaining sections are organized as follows. In
tocol to organize commodity “smart bricks” into a Section 2 we elaborate our design goals. Sectide-3
very large logical space offering a DHT (distrib- scribes the architecture and the protocols. IniGeet
uted hash table) abstraction. In contrast to othewe describe our implementation. To give an intuitom
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how applications may use BitVault, several appicmat  ally, all that the administrator needs to do isibpack a
were described in Section 5. In Section 6 we pmvid brick, install the BitVault software, plug into tisgstem
experimental results. We discuss the related wark iand then forget about it. When a brick fails, isisiply

Section 7 and conclude the paper with Section 8. unplugged from the system. All these must be done
. . online, with minimum perturbation to ongoing opera-
2. Requirements and design goals tions, with no compromise to reliability and availay.

We begin by summarizing the key requirements of g yery large BitVault installment can consume sahst
data retention platform of reference data mentionegiy power, and this is where the traditional “coide-
earlier: 1) very large and rapidly growing volunieif- g such as tape and CD hold advantages: theyeost
dreds of billions) of s_mall and medium-sized ob}_ect energy. We do not address this issue yet, buteelie
(from a few KB of email messages to a few GB ok@d  there are amply opportunities to strike the balaee

streams); 2) very high reliability and availabilitwith  yeen power consumption and accessibility.
good access performance in general.

) ) ) ) ) Goal#2: extremely high reliability and availability.
Accordingly, the design and implementation of BitMa ne of the most important design goals of BitVasit

have three top-level objectives, as we elabordbe  45iq repair. In a system of 10K bricks, failure will be

Goal#1: low TCO (total cost of ownership). We break- frequent, as is observed by works in the contexargfe
down TCO into three major components: hardware, cosgcale (€.9. GFS [14]). Some of these failures &me-t

0perationa| cost and power Consumption. sient and Only affect aVa|Iab|l|ty temporarily, asdme
others are fatal and impact reliability. In the igasof

In order to keep the total cost low, a system @hsa  Bitvault, we use the tertast-copy fast recalto char-
large scale must ride the economies of large SE#&  acterize a storage system'’s capability to deal Veith
retention has been, and still is, dominated by tépar-  yres: as long as an object still has the veryriggiica,
ies, which are expensive to operate, slow t0 acares s replication degree should be fully restored amel
are ill suited when we start to look into the pbsy of  gpject is accessible as quickly as possible. Theeef
digitizing all kinds of data. In contrast, the @riper GB  rapid repair is essential. Bitvault's strategy asléver-
therefore justified to backup to disks, insteadayfes. s 1o utilize all the aggregated network bandwidiith

For this reason, we userhart brick$ as our building 5 target repair window of minutes instead of hours.
bricks. Smart bricks are essentially trimmed dovéh P

with large disk(s). We believe that the trend iststhat A great subset of the data stored in BitvVault magch
smart bricks will be commodity components, just asto tolerate site disasters. Since the WAN bandwisith
PCs are today. This design decision also allowsous limited, it is desirable that we can accommodageptir
have a good access performance, in case search fuf@tion by mail’[16]. BitVault introduces the comteof
tionality needs to be built on top of the platforfinis is ~ Self-identifying bricksa brick primed with objects ob-
especially important for email archiving applicaiso tained elsewhere can be FedEx-ed to a different sit

) ] ] plugged in and let its content properly replicatad
Given the longevity of data kept in the system el @5 (gadily and accessible.

the volume of growth, however, smart bricks of efiff o )
ent capability will be procured at different points ~ Goal#3: smplicity. A complex system of such a scale is
time and co-exist in the system. Thus, Bitvault mus difficult to get right, and the first two objectiveare

leverage the inherent heterogeneityd support online ~ already ambitious. Thus, the unspoken rule of Bifva
migration to new hardware. is to strike at simplicity as much as possibleftsa the

) system behavior is provable and correct. Many af ou
In terms of total cost of ownership (TCO), howewtte  ecisions, such as soft-state index (3.3.1), olgjggen
hardware cost is only a small fraction. The manag®@m repair model (3.3.2) and the avoidance of global an

overhead of dealing with the complexity of the ewst  ransaction protocols are founded upon this priecip
rises quickly with the system scale. To give alt6RB

of raw capacity and with the disk capacity of 50QGB System model: BitvVault operates in a controlled envi-
BitVault needs to scale out gracefully upwards @K1 ronment and all hardware is assumed to be trusted.
bricks. Of course, we do not believe that initigihere ~ Bricks are connected with high-throughput and low-
will be many instances with such a scale, and thus latency LAN, and we assume Gigabit Ethernet as the
cremental scale-out capabiliig important. Therefore, Switching fabric, though our prototype uses 100Mb
BitVault must be aself-managingandself-organizing switches. Transient failures include instances sagh
as possib|e: its administration overhead must tealod brick reboot; cable disconnection, switch fallums,
almost constant, independent of the system scaée. | they can affect multiple bricks and become sourfes
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correlated but transient failures. For the timenbeiwe
do not consider network partitions. All other fada
such as disk crashes are permanent and fail-stop.

3. Design

Interface: BitVault stores immutable objects, with
checkinandcheckoutas the two primary APIs. A 160bit
keyis the handle to retrieve an object. Each objastd
unique key and the key distribution is uniform.tlie
key is derived from hash of the object, as is danaur
prototype, then BitVault becomesntent-addressable

Given that BitVault's main objectives are self-mgimg,
strong scale-out capability and very high relidpjlour

design combines the latest peer-to-peer technaogie
and a number of novel techniques. Specifically, we

adopt the DHT logical space as the primary absfaact
self-organizing and scale-out capability. While érd
partition is DHT-based, replica placement is potion-
trolled, allowing massively parallel repair for ailéd
brick. To avoid complexity, we usgbject-drivenrepair
model, which leads to soft-state indices that aresim-
pler to implement, and yet guarantee last-copylkeca

We will start with the high-level system architeetand
discuss other design alternatives that we haveiadons
ered. We will then describe per-brick architectuod;
lowed by individual protocols. Some of the compdsen

can have alternative implementations and thus their

details are left in the next section.

3.1 High-level system ar chitecture

When we talk about a scalable architecture, thesida
client-server architecture often falls out of favdftet,

works such as GFS [14] have demonstrated that this

structure often works and works well. In this atebi

ture Figure Xa)), a set of masters manages the bricks

storing individual replicas. The masters keep titeg-
rity of the indices, and typically run a replicatstate
machine (or just hot-standby) to ensure that tretyaa
one entity and endure failures.

However, the architecture is ill-suited for a degten-
tion platform. First of all, unlike GFS in which jelot
size is 64MB, reference data is small. As suchsthe
of the index will be huge and difficult to fit ilné mem-
ory of the master (as is done in GFS). This raismh
performance and scalability concerns. Secondlyrass
ing a total ofN bricks in the system, the N periodical
beaconing from the master(s) to the bricks canwoes
substantial resources. If the beacon interval & fiten
for a 10K brick installment, a master needs to pssc
1K beaconing every second. None of the above éahb r
concern if the master does not impose heavily @n th
access path. GFS is a file system, and can levelage

ent-side leasing so that client requests can geilljrto

the bricks most of the time, bypassing the mastesnwv
lease is valid. Unfortunately, for a data retentjpat-
form, it is unlikely that access locality exist§,at all.
Hence, the master is likely to become a performance
bottleneck, especially when we talk about a 10Kesca

(a) Client / Server

Zone

‘ 000...~K- ‘K‘+1~Kz‘

EE Primary data and replica of B,
(b) DHT

Ko+1~Ks ‘ SS ‘KN,1+1~~111.. ‘

Zone

‘ 000...~K; ‘K1+1~Kg‘

Kty | |

ﬁ Kt t~~t11 |

(c) Combination of Client / Server and DHT

Zone

‘ 000...~K- ‘K‘+1~Kz‘ Ko+1~Ks ‘ SS ‘KN,1+1~~111.. ‘

(d) BitVault

<«—> Replica pointer / Failure detection » Failure detection

—— > Replica pointer —— o Index replication
Figure 1. Different architecturesfor a scalable brick-
based system: (a) client-server; (b) DHT, (c) DHT + client-
server and (d) DHT-based index partition, policy con-
trolled object placement with a member ship service.

The next choice is to base the architecture oveil DH
(distributed hash table [27][29][31][37]). After lal
many wide-area archival systems — even file system,
have been proposed (e.g. Ivy[24], CFS[10], PAST[30]
and Pastiche [9]). If these systems can handle high
churn rate and run in untrusted environment with lo
resource consumption (often O(M)y, they would ap-
pear to operate well in a controlled and less dyoam
context that BitVault targets. In fact, an earlersion

of BitVault, called RepStore [35] was designed with
this architecture.
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In DHT, nodes join a large logical space (e.g. b&6)
with random IDs, and thus partition the space sek-
organizing way. The portion of the space a nodes-is
sponsible for is called itgsone For instancex's zone is
(y.id, x.id] (e.g. Chord [31]), wherg is X's immediate

predecessor in the logical space. A node whose zone

covers an object’s key (typically the hash of thgeot)
is called theroot of the object. Typically, all current

schemes enforce an invariance such that a number of

replicas of the object is placed on a set of Idgyiczon-
secutive nodes, starting from the root brickggre 1
(b)). As it is, DHT-based system has no need fobal
metadata at all, and presents to the upper-laygicap
tion with a reliable object store interface. On rage,
starting from any arbitrary node, lookup an objesing
its key to invoke checkin/checkout operations & th
root node takes O(Id$) network hops.

In the context of BitVault, we found that the maseful
concept of these proposals is the self-organizigical
space. However, there are a few serious problems:

e  First of all, uniform node ID yields an exponential
zone distribution. Since object keys are uniform
(especially when they are hashes of objects), stor-
age utilization across nodes is uneven. This be-
comes a major problem when raw brick capacities
differ, as will be the case in any real BitVault-de
ployment. Giving up the control of object place-
ment is even more problematic when applications
demand that certain objects to co-locate.

» Second, during data repair, each of kheonsecu-

plies that the sources and the sinks to repair the
content of a failed disk are restricted to a fevitsn
logical neighborhood, and thus it cannot achieve a
high degree of parallel repair. In contrast, iflrep
cas can be randomly placed, repair can proceed in
parallel because the contents of the failing brick
have many sibling replicas stored on many bricks,
and repaired to equally many other bricks.

MTTDL (year)
=
o

— random placement, k=4
L| -4~ DHT-based placement, k=4
—&- random placement, k=3
—A- DHT-based placement, k=3

1

10 10> 10° 10*

system scale in user data capacity (TB)

Figure 2. Analytical result on data reliability aeasured
by MTTDL (mean time to data loss) for various system
scales, replication degrees, and placement schehhes.
average object size in random placement is 10MEBhEa
brick has capacity of 100GB, with disk bandwidth B/el
The network aggregated bandwidth for data repe&8GB/s.
Mean time to failure of each brick is 1000 daysclEhrick
fails independently with exponential distribution.

We diverge from our course of architectural dismrss

kth of the load of the failed brick, whekeis the

our argument. Figure 2 shows the result based on an

replication degree. That means each node has ¥nalytical framework we developed to study briakrst
keep about onéth of free space for data repair, o age reliability [20]. The important point is thatndom
disk utilization is less than optimal in DHT-based pjacement provides orders of magnitude betterbiblia

scheme.

ity than DHT-based placement. However, our stud} [2

«  Third, adding empty bricks into the system will also reveals that when the object size is smallthod

result in data movement, as dictated by the invari-
ance of the object replication. Ideally, data cagyi
should only occur when there is a need to repair.

T

the number of objects is large, pure random placéme
at the object level may also suffer degrading bélig.
his is because when the number of objects is Jarge

This overhead exists to purely satisfy the invarggn Puré random placement exhausts all permutations of
has nothing to do with reliability, and further eon placement and thus is very sensitive to multiplecto-

tributes to protocol complexity.

rent disk failures. Our work in [20] proposes maxiif

tions to overcome this problem in order to delikigrh
+ Fourth, DHT-based scheme does not support selieliability consistently across a wide range of amij
identifying disks. When a brick already loaded with sizes. For the discussion here, it suffices to point out
objects is plugged into the system, all objectsehav that more sophisticated placement is necessary

to be redistributed according to its key, and this
will take hours to complete.

The key point is that we need to decouple objeates!
ment with the logical space. BitVault's strategygh

» Finally, probably the most serious issue is th& th employs DHT-based index partition but with policy-
approach constrains the repair speed of any singleontrolled replica placement. On the surface, ¢his be
brick. The semantic of DHT-based replication im- achieved by combining the client-server architetur
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and DHT, as shown in Figure 1(c). In this approdid,
index of an object -- instead of the object itsilfkept
at the object’s root brick, and the index furtheinps to
the k bricks storing the replicak peing the replication
factor and can vary from object to object). Thigegi an
architecture that meets the majority of the reaquéets:
accesses are fully distributed, repair can be eediy in
parallel, heterogeneity can be leveraged, and flsare
need to move data any more when adding new brick.

3.2 Per-brick architecture

The components of a BitVault brick are shown in
Figure 3. The MRL module is responsible for two
things. First, it implements the eventual membershi
protocol and keeps a full list of all live bricks notifies
the DM and IM modules upon any change of the list.
Second, MRLs of all bricks collectively form a DHT.
Brick ID is a random number of 160bits, and the or-
dered list defines the zone of any live brick: #ome of

This naive approach, however, has a number of proby prickx is (y.id, x.id], wherey is x's immediate logical

lems. If replica placement is purely random, thee t
total failure detection traffic will amount to &), with
each brick handling exactly the same amount a&eén t
client-server option. Complexities increase ad.wal

predecessor in the space. This is basically camist
hashing as in Chord [31]. MRL provides th@teTo(key,
msg) Service to route a message, typically in one net-
work hop, to the brick whose zone ovias.

addition to the DHT protocol that manages the space

we still need to run the same replicated state inash
in every pair of logically neighboring bricks toeq@the
index reliable and consistent.

The core of the above dilemma lies at the mindsegr-
ited from the client-server architecture, whichgala the
index at the center of the design: it must be kelxble
and consistent, which is a precondition to trigggair
upon failure detection. This need not be the cabe.
last-copy recall property provides both challenged
hints to the solution: in fact, the replicas shoile
given the central role. As long as the replicadsfied
when its index is gone, it can initiate repair ébuild its
index. The index, in turn, can initiate replica aggf it
observes the loss of replica(s). We call this dbgect-
drivenrepair model. In order for this to work, a weakly
consistent membership service with the followinggu
antee suffices: any change to the logical spaeestdu
brick addition and departure is eventually andatgy
known to every live bricks. In BitVault, we callish
service theMembership and Routing Layer MRL in
short; this is so because MRL is also responsiblact
like a one-hop DHT to route message to its rootkori
Since indices are distributed to all bricks andythan
be reliably rebuilt, with the help of MRL we carfaf
to usesoft-stateindices that are kept in memory, achiev-
ing all the remaining goals, as we will discussriare
detail later.

In BitVault, all bricks participate in maintaininthe
MRL. Many weakly consistent membership protocol
exist, with low maintenance overhead typically of
O(logN). BitVault's MRL is implemented using XRing,
a perfectone-hop DHT (Section 4.1), with the insight
that the semantic is equivalent to a weakly coestst

Figure 3. Components of one BitVault brick

Index module (IM) keeps the indices for any objects
that are rooted at this brick. The index is sddtest and
recordsk pointers to the actual locations of the replicas,
wherek is the replication degree of the object. IM lis-
tens to MRL for membership changes and issuesrrepai
for missing replicas if necessary.

DHT layer eee| Zong; oo Zone; eee|  Zoney ‘ ooe
,,,,,,,,,,,,,, _ S DR B
Index Object x Objecty
MOdUIe rep L rep L
set set
1A K Lot A
,,,,,,,,,,,,,,,,,,,,,,,,, BT et L S Sl RIS
Data o '-,Ob‘ 4 \
i Objecty Object x
Module jec x
Object x Object x Object y
e bbbttt el Sl
Brick i Brick j Brick k

Figure 4. Example of the object layout in BitVault. Ob-
ject x hasreplicasin brick i, j and k, whereas object y has
replicasin brick j and k.

Data module (DM) stores replicas to local disk. #go

membership protocol. The layering approach gives it the object we store a few metadata, includisg

clear and clean division of responsibilities, aadctiiti-
cal to the simplicity of the BitVault design.

key and the specified replication degree. A reveabée
is built in the memory, and the table entries rdcibe
physical addresses of the root bricks of the objélthis
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table is used to perform indices repair, also gigg by
the MRL notifications.

Finally, the Access module (AM) is a very light nubel
that serves as the brick’'s gateway to externahtlie-
quests. Figure 4 shows the relationship of thesepoe
nents with some replica placement examples.

3.3 Individual protocols
3.3.1 Checkin/checkout

The checkin request carries the object, the retica

degreek, supplied from upper-layer application and the
object’s key. The checkout request needs the kdlieas

Checkout is simple; the request is routed to that ro
brick, and follows any one of the pointers to etd the
object.

3.3.2 Repair of permanent failure

The last-copy recall property dictates both theeast
bility and the total restoration of replication deg as
long as the very last copy survives, independeranyf
other component failures and their sequences. kor e
ample, right after we restore another copy, both th
source replica and the index disappear simultamgous
In this case, the last-copy transit from one reptic the
other and this sequence can occur infinitely nundfer
times. However, once the system stabilizes, boéh th

only parameter. Both requests can be submittechto 8, 4ax andk replicas should be intact.

arbitrary brick in BitVault.

When performing checkin, the brick will invoke the

placement policy(detailed in Section 3.3.4) to pidk
bricks, and send replicas to these bricks. Wherfitsie

acknowledgement is received, the checkin procetture i, «
completed from client's perspective. If desirede th

checkin can wait for more replicas’ responses.

Figure 5. Object index state machine.

A brick persistently stores a received object soDiM
and at the same tinpublishesthe object with arpub-

Translating the last-copy property to the BitVaddtta
structure, we have the following properties: a)ndue
ally an object’s index is always found at the rbatk

of the object, and b) eventually all indices shdokdin
complete” state. BitVault relies on the mendingp
service provided by MRL and the relialieblish mes-
sage to deliver both, and with a very simple set of
mechanisms.

* Indices repair: the DM filters membership change
events sent from MRL. For any object whose root
shall now change to a different brick (either doe t
brick failures or additions), DM issues the same
ipublish as it receives the object the first time to-
wards the new root via MRL. The firspublish
message establishes a partial index at the roet; th
restk-1 messages turn the index state to complete
and hence repair the index. Since indices are-parti
tioned across all members, index repair occurs
when there is any membership change. An optimi-
zation to improve index availability is to lazily

lish message. Out of all messages in BitVaut, thibes t
only one that needs to be reliable, and we enguse t
with ack/resend mechanism. This message uses the ob
ject’s key and is routed through MRL to reach thetr
brick; the message also includes the specifiedoapl °
tion degree. Thepublish message is one of the events
that trigger the index state machine (Figure 5}hat
root brick. An index has two possible stateartial and
complete A pointer in the index is valid if and only if
the brick pointed to is alive and contains a copthe
object. A complete index has the number of valithpo

backupx's indices tox+1, so thatx+1 can serve
with the cached indices when crashes and+1
takes over.

Data repair: the IM filters membership change
events sent from MRL. For any index that has rep-
licas in a failed brick, the IM changes its statenf
complete to partial and instructs one of the replic
keepers who, after consulting the object placement
policy, inserts another copy to the selected brick.
Data repair occurs only when brick crashes.

ers equal to the specified replication degree; wdea
partial index is the one with fewer valid pointeFfere-

These are the only necessary steps. Notice that whe
new replica is made, the receiving brick will geateran

fore, when receiving the first such message, alaok
will start a partial index with one valid pointekt the
same time, it will start a timer. K such pointers are
collected, the index becomes complete and the tisner
stopped. However, if the timer expires before ehoug
pointers are collected, repair will be triggered.

ipublish message towards the root, and the message
changes the corresponding index’s state to complete
again and thus closes the repair cycle. Shouldhamgt
interrupt this distributed procedure, the fact titiae
index will stay in the partial state means thatarepill
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continue to happen. This is true even when multiplebandwidth), themN, = 200, which means instead of tak-
failures occur (e.g. the index and several replmses ing more than one day to repair one failed diskhwit
gone simultaneously). While an elaborate proolisad  500GB data, the parallel repair can be done in 8 mi
the scope of this paper, we offer an informal argoim utes. This immensely reduces the repair time and th
that these set of protocols deliver the last-copgall  the vulnerability window. Therefore, spreading regs

guarantee. among a large number of bricks can achieve mudkrfas

We assume that failures have wiped out all butvdry data repair speed.

last copy. The membership service of MRL has the fo 3.3.3 Brick additions
lowing properties: eventually and with high probipi

in O(log) time bound (wher®! is the number of bricks A new brick is ready to join the service afterristalls
in the system), every live bricks is known to evbrigk, the BitVault code. It takes a random ID and corgtact

whereas every failed brick is excluded. Since tlgnm any of the existing bricks. As part of the MRL pool,
bership list defines a DHT space, this means that t all live brl_cks_ W|II_ mcl_ude this new b_rlck mto_dlr
last copy can watch the change of its root, andséien membership list; likewise, the new brick acquiree t
publishes towards the root theublish which includes ~Same list as well. This typically converges in Qi
the specified replication degree. Notice that tia go time. Since BitVault uses consistent hashing taitar
on even if the root changésfinitely often(due to brick the space, for any objects whose root changeseto th
crash or addition), and if the last-copy transimirone ~ N€W Drick, their hosting DMs will issue index rept
replica to the other. This message will start atigiar Puild indices onto the IM of the new brick. Similer
index and the repair timer which, when expired, wil e optimization that improves index availabilithen
instruct the last copy to insert new replicas itite sys-  dealing with brick failure, whem joins, brickx+1 can
tem. The cycle is forced to its closure if and oiily SPIit its indices that belongs toand sends it ta, sox
enough replicas are generated and the index state & have a cached copy of indices to begin serving.

changed to complete. If the new brick is empty, typically the background
load-balance process will kick in to move some il

We note two key properties here. First, the reptuit- : ; :
to the brick. If, however, the brick comes with som

egy isobject-driven Indeed one can say that repairing

missing replicas is triggered by the index beinghat objects already, it will initiate index repair fahese
state of partial, but the index itself is generatesin objects via thepublish messages towards their roots,

any surviving object replicas. This is differenpfr ~ @nd then data repair will be triggered to replictite
many existing approaches that rely on the robustogs ©Objects to other bricks. This is how the objectelni
index coupled with direct monitoring to data sotas Model implements self-identifying brick.

ensure availability. Second, the contents of a D®l a _

pointed to from IMs of many different bricks, arikir 3.3.4 L oad-balance

sibling replicas are spread across the whole systemiWhen the system evolves with brick failures, biécidi-
Thus, both repair triggering and repair sourcedise  tions and data repair movements, the storage load o
tributed, and this is the basis of rapid and pakadéipair.  bricks is likely to be unbalanced. Unbalanced load
Figure 4 illustrates both points: if brigkfails, index duces object access performance since overloaded
repair for objeck can be triggered by either brickand  bricks become bottleneck while underutilized brieke

k, and data repair for objextandy can be processed by mostly idle.

 andkin parallel. To address the load balance issue, BitVault pedorm

A simple calculation can show the gain of paratkel background load balancing operations. Periodically,
pair. When using parallel repair, we need to casmsid each brick queries an in-system monitoring utility
the network bandwidth, especially the bandwidtliihef SOMO [36] (further discussed in the implementation
root switch since it may become the bottleneck. Letsection) to gather the information about the awerag

Bgrck be the disk 1/0 bandwidtiBy., be the available
bandwidth of the root switch for data repair. Ttiba
parallel repair degree N the number of repair source-
destination pairs that can participate in repaipanallel,
is given byN; = Bye/Beriee N; IS the repair speedup, if
the object replicas are spread evenly among roughly
bricks. For example, if the disk bandwidBgg =
5MB/s, and the available root switch bandwi:r=

load and low-load bricks in the system. If the laddhe
current brick is over a certain threshold thanaherage
load (in our prototype it is set as 5%), then thiekb
will randomly pick some replicas on it and moverthe
to the low-load bricks. As before, the bricks reteg
the replicas will send ordinarypublish messages to
build indices. When the source brick receives cordi
tion from the sink brick that a replica has beesated

1GB/s (67% of a 1Gigabit 24 port switch bisectionthere, it issues a delete message to the rootailifect.
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The delete protocol is coordinated at IM. It firgt-
moves the pointer to the replica to be deleted,thad
insert this pointer to a delete pool. The IM thérkp an
entry from the delete pool and issues a deleteastdo
the target brick. It will keep on retrying until &tk is
received. The entry is removed from the delete [fabl
the ack is received or 2) the target brick crasfass
notified by MRL). The protocol works correctly and
ensures that there is never a situation where we ha
dangling pointer. The worst can happen is thatetien
replica that the index is not aware of, and thisuos if
the delete pool, as a soft-state in memory, somahow
corrupted. In this case and all others where tloallo
state (including the index) may be bad, we simpbet
the brick itself and let transient failure handlita fix
the problems.

The delete protocol is not exposed as an API, thedn
be invoked not only by the load-balancing procéss,

also for other garbage collection purposes as we wi®

discuss shortly.

3.3.5 Dealing with transient failures

In the context of BitVault, many transient failurean
occur: reboot as a result of software upgrade ecdinp,
switch failures, power failures etc. In these caseme
data may become inaccessible for a short peridinef,
and as long as sonheicks are alive, the system can still
operate, albeit with reduced performance.

The primary difficulty in dealing with transientiliares
is that it is hard to tell whether a failure isrtséent. It is

jammed, false failures may be declared, resultimg i
cascading false repairs which will eventually catise
system to collapse. Ideally, other protocol message
should be prioritized accordingly as well, but wevé
not implemented them yet. Secondly, for a verydarg
installment, even though BitVault can quickly prsse
repair, there is no guarantee that there shalldoeom-
current repairs of multiple bricks in the systemstlas

in GFS[14], repair of objects that have lost maplir
cas should take higher priority. This is governgdab
set of rules that run at the repair source (i.e. DM
module of a brick who is instructed to make another
copy in the system):

A repair quota (in terms of bytes/second) is en-
forced. This is the upper bound that a brick can
copy out replicas and hence occupy network re-
source for the purpose of repair.

The repair request, generated from the IM that
keeps the index, carries number of remaining repli-
cas. With this, the repair source can calculate lo-
cally the repair ranks of all pending repair regsies
Higher ranked repairs are those that have lost more
replicas, and take higher priorities. Requestdef t
same rank are ordered according to the failure time
of the departed brick.

These rules are simple and practical, but theynate
complete. For instance, it is possible for a btilcon-
tend network resources with repair requests thae ha
lost only one replica, while there are ongoing repaf
higher ranks initiated from other bricks. Also, riés a

true that in some instances such as software reboqjiatural tension between enforcing QoS quota and

there may be a way of informing the nature of tie d
ruption. However, in general, that only adds adstiat
tion overhead, which is what we want to avoid & th
first place. One can delay the triggering of rephop-
ing that the affected components can return ordoun.
However, this only enlarges vulnerability windowttiie
failure is in fact permanent.

Our strategy is to initiate repair regardless. Tiwst

that can happen is that, when the bricks come bac?

online, extra replicas exist. We set a high watekma

(e.g.k+1) and when the total number of copies exceed

that threshold, we will start deleting until tobpies

maximizing repair speed. This remains as one of our
ongoing research work.

3.4 Discussion

The design we have described achieves all desigls go
iterated at the beginning of this section. Adoptniqy-
ering design and leveraging a weak and eventual-mem
ership protocol allows us to scale out with ayfuis-
ributed architecture, deliver last-copy recall aagid
repair, all without the need of any global consensu

S o X
protocol or distributed transaction protocols.

equal tok. Notice that if future failures reduce replicas There are several fundamental reasons. First ahaite

to k or above, no repair is triggered. Also, if the evat
mark is equal tdk, then eventually the replication de-
gree is strictly enforced. This strategy is the saas
what is proposed in TotalRecall [5].

3.3.6 QoS control

BitVault needs some QoS provisions in order to goar
tee stableness. First of all, MRL messages areeateli
and processed with the highest priorities. If tlzeg

is already a global agreement before a brick starts its
life in BitVault, namely it is joining a logical sge
composed by all live bricks. To deliver the laspgo
recall, only the eventual consistency of the mestupr

is necessary, hence there is no need for a strmmgpo-
sus at run time. Dealing with reference data mehaats
we can work with immutable objects. Had we wanted t
support in-place updating, then without any dowhs
must employ transactions. The decision to allowaext
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copies to temporarily exist is also important. Wavdn ity by dividing the protocol into two correlated rpa
described earlier that extra copies will be gemsrat failure detection and failure dissemination. SiltBL
when handling transient failures and doing loacabed  needs to function as a DHT also, we choose to dxten
ing. Moreover, even when replicas are fully ingtdll best-effort one-hop DHT called XRing[34] to avowtr
but the associategublish messages are delayed, theimplementing a full membership service. The key in
repair timer at the index will trigger new roundrepair, sight is that an eventuallyerfectone-hop DHT imple-
also resulting in extra copies. These copies willreu-  ments just that. Such a DHT is the one that looilsup
ally be garbage collected. Since storage capasibei resolved always in one-hop when the system staBiliz
coming far less an issue and that in no time weehav
compromised the correctness of the system, weueelie
that this is a right tradeoff to make.

XRing divides a 160bit logical space with partidipg
nodes using consistent hashing as in Chord[31]hEac
node in XRing has a three-layer data structure main
The current design is fully distributed and eacickds  tained by three protocols (Figure 6). The first tawers
functionality is completely symmetric. However,ré-  are rather conventional. The lowest one is ldadsef
quired, with very litle change we can accommodatevhich is a set of 2L+1 nodes including L closestie®
design points between fully distributed/symmetricla on each side of the DHT logical space plus the home
centralized. We can divide the logical space into t node itself. The heartbeat messages carrying the fu
equal halves, let indices be on the one half ahckpli-  leafset of a node are sent between every pairaiéde
cas be on the other (controlled by the object plere  nodes to maintain the leafset data structure. kgafs
policy). Thus, bricks in half of the space are segvn members use a voting mechanism for detecting and
indices, and the rest are storing replicas. Inetiteeme  broadcasting brick leave and join events to reduroe-
case, there can be ordyebrick on the index half, and neous detections. The middle layer consists fafiger
hence this becomes essentially a GFS-like systdma. T table, which contains O(ldy) entries to implement a
density of the bricks in either half of the spaem de  straightforward O(loly) prefix-based routing algorithm.
dynamically adjusted. This is the flexibility brcutgoy A node’si-th finger points to the node that owns the key

working with a DHT-like logical space. that is identical to the node’s ID except with thé bit

. flipped. Regular probing messages are sent to ifinge
4. Implementation table entries to detect failures and repair thgdirtable.

. ) Finally, the third layer SSRTs¢ft-state routing tab)e
4.1 Membership and routing layer enables one-hop lookup performance with high prob-

ability. SSRT is maintained by broadcasting noda jo
Softtate routing table (SSRT) ﬁz@ or leave events detected by the leafset hearthetd-p
raesteflerianehop rouing col using a scalable broadcast through finger aatsét
members. The SSRT structure of XRing already con-

Finger table . X R A )
“haseine Qlogtl rouing tains most brick membership information, but does n
Leafeet ‘ ST satisfy the eventual reliability because the braatic
rouing wrmmaton though has Q(+logN) redundancy, is best-effort.

Figure 6: the 3 layers of routing tables in XRing and ~ To enhance the SSRT structure of XRing to provide a
their corresponding functionality. eventually reliable membership service, we addck-ba
ground anti-entropy protocol so that bricks cariqui¥
cally reconcile missing membership information with
other random nodes in the system. More specifically
some regular interval, each briglcomputes a signature
gased on its local SSRT, and sends it out to & lyric
randomly selected from SSRT. Whenreceives the
anti-entropy message, it compares with the sigeatur
computed from its local SSRT, and if it's differdram
the received signature, it sends its SSRT back. to
Brick x merges its local SSRT with the SSRT received
An eventual membership service does not require thfomy. If x detects that its local SSRT is actually more
agreement among bricks on the intermittent memigersh up-to-date, it sends its SSRT backytoTo guarantee
views of the system. Therefore, more expensive viewthat the latest leave or join event about a nodenes
based group membership protocols (e.g. [6], [8)rat  correct one reflecting the node status, timestasmps
necessary. Many eventual membership protocols,existised on events. Therefore, in order to achieve fast
such as SWIM [11]. These protocols gain their dgkla SSRT reconciliation, in an anti-entropy round akiis

We have defined the two responsibilities of the MRL
earlier. First, it provides an eventual membersiep-
vice: once the system is stabilized, every livelbwmwill
eventually include in its membership list all okthc-
tive bricksonly. The convergence should be as rapid a
possible. Second, it should give an abstractiobDleT .
Many of the other design decisions, such as saféest
index, object-driven repair model as well as ragmidl
parallel repair, depend on MRL.
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both trying to pull an SSRT from and push its ownalong the upward path as well, allowing each btk
SSRT to a randomly selected brick. We optimize thecalculate the average load individually. These o
protocol such that when the delta is only one mgsi are then propagated downwards through the SOMO
event, only that event is reconciled instead ofdsen hierarchy to reach every brick. In our implemertatn

the whole SSRT. is 500 and the SOMO fan-out is 8. We note thatrothe
alternatives such as RanSub[18] can accomplish the

With the periodic anti-entropy protocol, bricks can same functionality as SOMO does.

quickly resolve the differences in their SSRTs e @r
a few anti-entropy rounds, ensuring that eventually
every brick will have all the latest membership raj 4.3 Prototype strategy

events. We have verified this through extensiveuam  Bitvault is prototyped entirely using a tool we kav

tions as well as theoretical analysis. developed called WiDS (WiDS implements Distributed
System). WiDS combines three aspects of a typieal d
joins for the first time or rejoins after leavirgetsystem velopm_ent Process. prototyping a”‘?' debugg'”g- large
for a while. In this case, the new brick either Imas scale S|mu_lat|0n and deployment. WiDS def|ne§ a-mes
SSRT at all or a possibly outdated SSRT, and thie an sage-passing API and also includes fundamentéiasil

entropy protocol will quickly bring its SSRT up-tiate. such as one-t!me and periodical timers. Protocgick
are written using these APIs and timers. Messagds a

It is interesting to see how XRing implements th® t events can be queued into an event-wheel, enabling
stages of a weak membership protocol: the leafset d many instances of the protocol logics to be debdgge
tection corresponds to membership change detetttion within one process while causality among eventsnis

a local range, fingers maintain a structured griph  forced. We can emulate wide-area conditions byispec
fast event dissemination, and that randomized antifying simulated latency and packet loss over ambjtr
entropy gives the eventual convergence guarantse. Upair of communication ends. This allows us to under
ing a DHT to implement the membership service &s i stand how the system behaves in different netwetk s
advantages. For instance, the loads of failurectiete tings and also stress different code path. To spged
are evenly distributed, and that node join is heddly  simulation, WiDS also has a parallel and distribute

The anti-entropy protocol is also used when a negkb

default. simulation version. We have successfully simulated
o o complex protocols for 1 million nodes scale, usa®+
4.2 In-system monitoring utility machines. Finally, when the protocol code is reddyi

: o . mature, we re-link it to a different WiDS packageieh
The task of an in-system monitoring utility is tatiger
; o ) ; uses sockets to send messages, thus producesan exe
various statistics, filter and aggregate them, disd :
. . L table that can be deployed and run with real ndtwior
seminate the results back to each brick. Thesistatat : o : :
: : .this mode, preliminary logging supports are progide
are necessary to guide replica placement at check-i
. . In the future, we plan to log enough events so et
repair as well as load balance time. s .
can replay them in the debug mode. One important
This functionality is delivered by an improved viers  point of WIiDS is that there iso code divergence: the
of SOMOQI[36], a self-scaling and self-organizing aset core logic remains the same in every aforementioned
data overlay layered over any DHT. The basic idea ostage. All components of BitVault and WiDS are im-
SOMO is to draw a logical tree with a fixed fan-¢eity. plemented using C++. Currently, BitVault, XRing,
8) first. The positions of the tree nodes can Hevea SOMO and WiDS have about 6K, 4K, 2.5K and 7K
lated by each brick independently. Given its resfia  lines of code, respectively.

zone in the DHT’ each npde selects th_e h|_ghesd:abg| The prototype includes most of BitVault's key faais)
tree node that it hosts as its representationdars@MO :
except some advanced QoS control of repair and the

hierarchy, and then calculates the position ofptlieent optimizations to improve index availability
logical node, routes to that parent tree node tmfa ’
child-parent link. A hierarchy is thus built in &l 5. Building applications over BitVault
organized fashion. The SOMO hierarchy is completely

self-governing and self-healing, and can gatherdisd Any complete applications that use BitVault as the
seminate metadata in O(lggo.N) time. backend storage must incorporate some mechanism to

manage the object IDs. One solution is to set agide
Periodically (e.g. 5s), the tap-and bottonm list of  SQL database for this functionality. However, ttead
disk-usage information are obtained by performinghase server is single point of failure and, undeaviy
merge-sort when they are gathered towards theabot |oads, a scalability bottleneck and single pointadifire.
the SOMO tree. Total storage utilization is aggteda \we explore another alternative by using the Catalog

10
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utility which builds application-level and soft-&tain-
dexinsideBitVault.

When an object is stored into BitVault, it can opally
take a “tag” which is persisted to disk along wikte
replicas. The tag must contain a keyword and arigesc
tor, both supplied by the applications. Later, #ppli-
cation can use the hash of the keyword to retréelist
of objects that share the same keyword. This fst i
called acatalog each entry of which is an <OID, De-
scriptor> pair. Catalog is entirely soft-state amdbuilt

in the same way that the object index is built: tiogle
that receives a replica, when seeing its tag, poé#
towards the node that contains the hash of the dwew
The node receives the tag then appends the enthgto
catalog with the specified keyword. If membership-p
tocol indicates that the node covering the keywaird
catalog changes, we rebuild the catalog by rephihtis
the tags. This is a simple and robust mechanisadtb
metadata management support inside BitVault.

We now discuss two BitVault applications, both of
which respond to day-to-day requirements from users
our lab and are ready to be deployed.

BitVault Client Utility (BCU). BCU allows users to
backup and retrieve their files (documents andgutoj
files) from any desktop as long as they can conteeat
BitVault store. Interestingly enough, in many cases
ers do this via the mail server. In BCU, a clieigcp is
fully integrated with Explorer, upon right clicketuser
can choose to checkin the file or directory, oriese
its version history and select one to checkoutad is
always generated and checked into BitVault alonity wi

the object. The keyword of the tag is the hash of ¢

user’s account name, and the descriptor is the leep
path of the file name and optional text annotatifimus,
inside BitVault there is a complete catalog coroesfs
to a user. BCU can retrieve this catalog keyed dshh
of the user account, parse and load into an Actatss

base file so the user can perform simple queries an

checkout different versions of files.

Machine Bank. Like many research institutes, MSRA
has a large shared-lab for hundreds of intern stsde
The shared-lab scenario is such that there is sioten
between flexible resource utilization and produttiv
A student may get a different PC across differeoitkw
ing sessions. It is therefore important to presehesr
entire working environment across sessions, orrethe
wise the students will frequently use the servetheir

_ query/namespace Ci/Co cilco  query/namespace
SQL BVHead BVHead SQL
Index cache f f Index cache
auditing trail req/resp req/resp auditing trail

different users and time are the same, thus mo#ieof
blocks are the same. This avoids the problem oingav
each VM takes its entire space, Each PC also imple-
ments local persistent cache to improve the pedoos,
and at the end of a session only modified blocks ar
checked into BitVault. The mapping between the kdoc
and their hash is captured in a file called Virtivd-
chine Instance (VMI). When all modified blocks are
checked into BitVault, VMI is checked in as welltivia
tag which uses the hash of the user account narttee as
keyword. Thus, a catalog of the user's VM images ar
built and stored inside BitVault. At the beginniofjthe
login, the user can select any VM instances inpast

to reinstantiate at the current PC, thus acconiplish
the task of seamless work environment migratiorh bot
across time and space. More details can be foufid in

-- old stuff below --

Figure 7 illustrates a prototype application we éav
built on top of BitVault. The Web application presea
Microsoft Sharepoint-like interface, displaying ebis
for which there is a local copy. A SQL server stoffer
each object, the hash key, metadata such as rimtica
policy, user supplied descriptions and finally adsdit
trail (the access history). Simple queries candsedd
against the SQL.

Cross site bus

Web application Web application

BitVault

e

BitVault

T

'I

Figure 7. BitVault cross-site architecture.

In this application, multiple geographically distiied
BitVault sites can link up for disaster-tolerandes a
user-specified parameter at the time of check+ingla:

ject can be replicated within a site only, or asrogulti-

ple sites. If an object can not be retrieved frbmIbcal
site, the checkout request is sent to other dii@shave
the replica, which is then re-inserted into thealasite.

associated research group, and consequently realuceThe set of sites where an object is replicatedsis part
capable PC to a dummy terminal. In Machine Bankof the check-in parameter and kept in SQL.

analogous to the safebox of a banking institutes PC
the shared-lab run Microsoft’s Virtual PC. A VM Vi

We have set up BitVault with 5 sites: two in ourijBwg

tual Machine) is broken into 64KB blocks and stored!@P; two in Redmond each at different building, and

into BitVault. Since majority of the VM images asg

11

finally one in Silicon Valley. The setup surviveeveral
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unplanned downtime (moving an entire site to aediff 17 20
ent location, or unplugging cables). %16; 7.
= £
While the first application uses database to do thes 1s )
bookkeeping, we are also evaluating the optiorewf | 514 %10
eraging per-client’s local file system for intefgetand G 1
online backup using BitVault. One design lets user 1000 2000 3000 4000 ®" 1000 2000 3000 4000
lect what files and/or directories they want to gz System scale System scale
Each file can thus have three states: no backual lo (a) Failure detection time  (b) Membership convergence time
copy + backup, and backup only. This gives the tiser
flexibility of moving and reclaiming capacity betemr Figure 8. Failure detection time (a) and convergence

his local machine and his allotment in BitVaultsiall  timeof MRL (b)

database file that records the files being backedsu rigyre 8 shows the failure detection and convergenc
als_o backed up into BitVault, and is acc_essed with speed, for different system scale and we use tw@ dr
unique key known only to each user. This allows th&ate 09 and 40%. The failure detection time isiac
user to reborn his backed up files on another machi 1 g seconds, irrespective of system size. This ésee
Finally, we note that BitVault's smart brick is werdti-  that the detection is done through the leafset si0tleis
lized in terms of their CPU power. We are evaluptin Value is consistent with what we observed in pygtet
the option of introducing some preliminary searghin We set the network latency to be 2ms, and thusesenv

and index building functionality into the BitvVaudtyer. ~ gence speed is very fast and rises with O\joip gen-
eral. Higher drop rate yields longer convergingetim

6. Evaluation but the difference is negligible in practice.

This section provides detailed evaluations of adljan .
aspects of BitVault. We build a prototype of 30cks, 6.2 Check-in and check-out
each of which is a commodity PC. These PCs run Win-

dows XP, and their hardware configurations are 3GHZ Table1. Latency of Checkin/out request
Pentium4 CPU, 512MB memory and 120GB STA Client Request Latency(ms)

Seagate disk. These PCs are connected with two AT<Size | Remote NTFS 1-brick 30-brick
8324SX 100Mb switches stacked together. Unless ofh- Cl Cco Cl CcoO Cl [ele)
erwise specifiedk=3 in all experiments. 10K 5 4 11 4 17 7

Except the one on MRL performance, all results a %&OK 57 ﬁg 11%5 1929 3;420 11805

obtained through the direct measurement of therR-b ToM | 1237 | 1155 | 1003| 995 5126 100b

prototype. Ouir first study compares the raw checkin and cheicko
performance in the 30-brick prototype with diffetren
6.1 Performance of MRL object sizes. The requests are issued synchronausly
We use simulation to study the performance of MRL. the results are the averages of 10 runs. We alspae®
this experiment, we select a node to crash fromalsi-s against a 1-brick and the native read/write peréoroe
lized system. As we mentioned earlier, the memligersh of a remote mounted NTFS directokr( for these two
protocol works in two phases. In the failure detect configurations). The result is summarized Tiable 1
phase, the leafset nodes vote out a dead neiginbite ~ The 1-brick data is comparable with the remote NTFS
failure dissemination phase, the takeover nodesstar The 30-brick case adds more network trips, bufptre
broadcast through its fingers and leafset nodeg Thformance is still competitive.

broadcast is best-effort and the anti-entropy mmito Next we study scalability. In this test, there arecli-
ensures eventual convergence. ents. Each client executes a loop to fire synchusno
XRing's leafset heartbeat, finger probing and anti-requests to a prototype system with varying numbeérs
entropy use interval of 5s, 5s and 10s respectividlg ~ bricks (from 2 to 16). Objects requested do notrlaye
leafset size is 8 (i.e. 4 logical neighbors on esid). A~ across clients, and object IDs are random. Cheghth
brick marks a neighbor as dead after failing torheacheckout are measured separately. Figure 9 shaawvs th
from it in 3 heartbeat cycles. The vote among ¢adset  total throughputs in MBytes-per-second against remb
members will declare a brick’s departure in 10~86-s of bricks. The results are average values overuz@ r
onds. To understand the MRL's robustness, we dvop and the object placement policy is random.

of packets. The dropping applies uniformly to sipes

of MRL messages.

12
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100 ‘ ‘Performanc‘e Scalabi\ity‘ ‘ 24 5 . 3 86 _4' 5 . 2

I 29 5.3 87.8, 5.3

( The total duration to repair 30GB data with 20 &@d
| bricks takes 600 and 300 seconds each, giving a@rrep

“+ IM Checkin || rate of 50MB/s and 100MB/s, respectively. The super

T %AMEEEE: ] linear improvement is probably due to better uailiian

sof ] of memory and other per-brick resources. The rA0o
sl bricks is about 1/8 of what a 227-node GFS cluster

' : achieves [14]. BitVault's repair performance shait
o ] prove nicely with number of bricks (up to a ceilimy
27 ] posed by the network bandwidth), and we are confide

10 : . - - " . that it is comparable with the GFS performance.

Number of Server Nodes

90

80

70F

60

Aggregate Clients Bandwidth (MBPS)
¢

Figure 9: checkin and checkout throughput for iIMB 6.4 Performance under failure

and 10M B objects. . . .
) BitVault should self-heal and continue to functieven

The checkout performance is 3~4 times better thain the face of failure. To verify this, we condutte
checkin, simply because for each checkin there3are checkin from 16 clients into a 16-brick BitVaultnda
times more requests going to the disks. Checkout ahen failed one brick. Each client continuously aitse
10MB objects is better than 1MB due to sequential a in 1MB size objects. We gather statistics in uoits-
cess to disks. After brick number increases tothid, second granularity. For the client-side throughpus,
curves become flat because the client requestsnioan |og the aggregate throughput in terms of total essful
longer overload the bricks. Because the clients fd-  checkins. Similarly, we log the total number of exip
quests synchronously and that the requests aremdnd that the bricks receive, again aggregated overilks.
scheduled to bricks, brick loads are not completelsn At the 13" minute, we failed one brick. The client-side
and thus the scalability curve is sub-linear. We oat  throughput corresponds to what users perceive,ewhil
fully get rid of the caching effect of the hostifig sys-  the server-side throughput reflects both the cmetrkif-
tem, and this is the reason that checkin performaric fics as well as the repair traffics. The expectehavior
1MB is close to that of 10MB. The maximum through-is that the performance will drop while repair isirgy
puts of checkin and checkout of 10MB object ison, and then return to the normal level afterwards.
97MB/s and 35MBY/s, respectively. These numbers are

comparable with the GFS[14] data on a similarbiest Figure 10 shows the variation of the throughpubath
configuration. clients and servers, and the server-side throughyput

normalized by 3 (the replication degree). Before th
crash and after the repair, the client-side thrpugh
matches with the server-side throughput. Howeiegr a
Table 2takes a closer look at what happens inside théhe crash and during the repair window, the clsde
system under repair. We let each brick log the remb throughput decreases because resources are dddizate
of objects and indices it hosts periodically, anérge  repair the failed disk. The repair traffic, repnatsel by
them at the end after aligning the clocks. In thiperi- the exceeding dark area, corresponds to about 3GB
ment, every brick has 30K 1MB objects (30GB/brick), worth of data on the failed disk. The repair windisw
and we fail several bricks in sequence. We varytdked ~ about 70 seconds. If there were more data on iteslfa

6.3 Repair performance

number of initial bricks at a step of 5 bricks. disk, the repair window would increase. During ligpa
whether repair traffic takes higher priority thaseu
Table 2. Repair speed experiment. The experiment is requests is a policy issue. In this prototype, theyn-
done by initially setting 5i healthy bricks with each one pete against each other with the same priorityy(onl

filled by 30G replicated data. Then manually fail one brick MRL messages have higher priority).
and measurethetimeto repair 90% of thelost 30G data.

Brick Number | Time to repair| Repair Bandwidth
(after crashed) 90% (min)

MB/s GB/m
4 56.4 8.2, 0.5
9 20.3 22.8, 1.4
14 9.9 46.5, 2.8
19 9.3 49 4, 3.0
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; ; course of designing BitVault, we have found that; u

= iﬁé‘;‘:;&?{;ﬁ:ﬂ%ﬁft fortl_Jnater, the_se designs do_ n_ot fit the more dpeni
environment either. The restriction of placing req

sequentially impacts the ability of handling hetgoe-

ity for better storage utilization, causing datavemment

not for the sake of repair but to satisfy the phaest

invariants. Coupling object placement with the &adi

space does not support self-identifying disks, dods

not leverage abundant network bandwidth to achieve

rapid and parallel repair. These are the issusscdn

only be solved by using indices to control the pfaent.

w
al

w
o

N
]

-
)]
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aggregated throughput (MB/s)
N
o

a1

The problem of using indirection is that it intradds the
0 indices as yet another vulnerability point. The am
400 500 600 700 800 900 1000 tional methodology, adopted by many including

time (seconds) GFS[14] and TotalRecall[5], has been to first eaghe

Figure 10: performance under failure experiment. integrity of index, which then reacts to failuraa vail-
Server throughput is normalized by 3. A failure is intro- ure detection. BitVault demonstrated that, if cedpl
duced around the 10" minute. with an eventual membership service, the objectetri
repair strategy, one in which the survival of thstIrep-

7. Related work P oy P

lica can quickly restore both the index and the ods
As stated in [25], the primary challenges for syste replicas, is both simple and effective. This amttiire
like BitVault will not be performance but, insteadan- ~ also affords very rapid repair by spreading rejuds,
agement and availability. The primary contributiarfs ~which has so far only been done in a centralized-
BitVault are: 1) use eventual membership protodthw indexed system such as GFS [14].

a DHT abstraction to offer great scale-out capgbili EMC Centera [12] is a brick-based retention platfor

\é\'ith IOVIV overhegd land in”alself-managir;? fasu;‘_“‘j 2 that aims at self-healing and manageability. Howeve
) emp Oy massively paralle’ repair to ac neve g,h no architectural details are available, and itdadxkty
data reliability and availability, and 3) deliveoth with target is not clear

a simple architecture. Below we will contrast itre
contributions with previous systems. BitVault as a scalable store for immutable objeatrly
a starting point. For example, it is conceivaldeuse
Farsite[2]'s directory service for the namespacélevh
storing objects inside BitVault. Similarly, if weom-
ine an in-system P2P locking protocol [22], iptsssi-
le to build a file system, perhaps in the samée sig
Frangipani [33].

Single-box solutions such as Venti[26] cannot nibet
challenge of coping with the volume and growth rafte
reference data; client/server architecture such
GFS[14], NASD[14] and WiNDI[4] works to certain b
extent but will hit bottleneck as well. The facatiob-
jects are often small and there is no or littleessclo-
cality exacerbates the scaling problem furtherstixy 8. Conclusion and futurework

fully distributed proposals such as Boxwood[23], ) L .

FAB[11], Petal[20] and xFS[3] all require strongneo The main obj_ectlves_ of a Iar_g_e-scale dIStr!but_@ﬂaEgje
sensus protocol which, even when is not placechen t system are its maintainability and availability. P2

critical path, presents a scalability challenge. technologies — currently widely explored for widea
context, are immensely interesting design altevaatin

The DHT-based systems such as Oceanstore _[19], Pomdeping the management cost down. When large
[28], CFS [10], Ivy [24], PAST [30] and Pastiche] [9 amount of components are brought together, thay als
have gone to the other extreme. They operate over ging the possibility of doing massively parallepair

logical space with a hash table abstraction, marda for high data availability. BitVault has demonstmt
small list of other members (O(Iby and traverse the both of the above points.

space in O(lol) steps, often require replicas to be _ . :

placed on a fixed set of nodes starting from the thiat Ogr fgture_ work will focus on developing BitVaulpa
hosts the hash of the object. They primarily tamge plications in order to understand whether new fiamet

wide-area P2P sharing scenario, and are thus seffliies are necessary inside BitVault. This inclidiee

organizing and can scale out. However, their tacget client utility that backs up user selected files#dtories

text is dynamic and has led to legitimate concems in _their private namespace, and also an initiative
what guarantee these systems can provide [7]. én tnpuild search and query layer on top of Bitvault.
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