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Abstract 
In this paper, we report the design and implementation of the storage layer of BitVault: a content-addressable retention platform 
for large volume of reference data – seldom-changing information that needs to be retained for a long period of time. BitVault 
uses “smart brick” as the building block to lower the hardware cost. However, the challenges are to maintain low management 
cost in a system that needs to scale all the way from one brick to tens of thousands of bricks, to ensure reliability and to deliver 
with a simple enough design. Our design incorporates P2P technologies for its self-managing and self-healing capabilities and 
uses massively parallel repair to reduce vulnerability window of data loss. The simplicity of the architecture relies on an eventu-
ally reliable membership service provided by a perfect one-hop DHT (distributed hash table), and its object-driven repair model 
yields last-copy recall guarantee: independent of how many other failures that may occur and their sequences, as long as the 
last copy of a data object still remains in the system, the data can be retrieved and its replication degree fully restored. A proto-
type has been implemented. Theoretical analysis, simulations and experiments are conducted to validate the design of BitVault. 

1. Introduction 

Companies today face the problem of managing an in-
creasing amount of reference data — seldom-changing 
information that needs to be retained for its business 
value or for compliance reasons. The Enterprise Storage 
Group estimates that[1], by 2005, more than half of the 
data stored by North American businesses will be refer-
ence data (examples include check images, electronic 
invoices, email messages, etc.). Furthermore, the 
amount of reference data is growing one and a half 
times as fast as the non-reference one. The force behind 
these trends is the digitization of all kinds of data. For 
example, X-ray images alone produce over 20PB of 
data every year. Digitizing all phone conferences of a 
year would have generated 17,000PB worth of data. 
Also, in the enterprise world, email archiving is of 
paramount importance due to legal regulations.  

Reference data must be kept for an infinite period of 
time. On the other hand, data must be easily accessible: 
the SEC-17(a) regulation states that companies must 
retrieve the required documents in 48hours when a 
court order is delivered, or face strict penalty. In addi-
tion to ease of access, the raw performance of accessing 
the data should be reasonable, such that search func-
tionality can be built on top of the platform. This is es-
pecially important for email archiving applications. 

BitVault is a backend storage platform for reference 
data. Our top-three design goals are 1) low total cost of 
ownership (TCO), 2) extremely high reliability and 
availability and 3) simplicity. To achieve these goals, 
our design combines the latest peer-to-peer technologies 
and a number of novel techniques. In particular, our 
main contributions include the followings: 

• We employ a weak and eventual membership pro-
tocol to organize commodity “smart bricks” into a 
very large logical space offering a DHT (distrib-
uted hash table) abstraction. In contrast to other 

systems that are either client/server architected or 
using strong membership protocol, BitVault scales 
out in a self-organizing manner with low overhead. 

• We employ the object-driven repair model that 
gives objects the central role of the repair process. 
This model affords the use of soft-state indices and 
yet delivers the last-copy recall guarantee: as long 
as an object still has the very last replica, its repli-
cation degree is fully restored and the object is ac-
cessible as soon as possible. Furthermore this guar-
antee can withstand arbitrary number of failures 
and their sequences. Our basic idea is to leverage 
the service of the membership protocol to rebuild 
any missing indices if necessary, and the indices in 
turn repairs missing replicas. This object-centric 
strategy is very different from the conventional way 
of dealing with failures, one in which the index is 
first made to be reliable and consistent, and then 
functions as the base to react to failures.  

• BitVault uses massively parallel repair to signifi-
cantly bring down the repair window (e.g. minutes 
instead of hours). Previously, this is achieved only 
in a centralized-indexed solution like GFS [14]. 

The simplicity of the BitVault architecture is due to a 
number of things. The repair model depends on the 
eventual convergence of live brick membership list, and 
hence there is no need for a strong consensus protocol 
at run time.  BitVault deals with immutable objects only, 
and allows extra copies to temporarily exist. Conse-
quently, BitVault does not employ distributed transac-
tions. A prototype of BitVault has been implemented 
and evaluated in our lab, and the experimental results 
validate our design choices.  

The remaining sections are organized as follows. In 
Section 2 we elaborate our design goals. Section 3 de-
scribes the architecture and the protocols. In Section 4 
we describe our implementation. To give an intuition on 
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how applications may use BitVault, several applications 
were described in Section 5. In Section 6 we provide 
experimental results. We discuss the related work in 
Section 7 and conclude the paper with Section 8. 

2. Requirements and design goals 

We begin by summarizing the key requirements of a 
data retention platform of reference data mentioned 
earlier: 1) very large and rapidly growing volume (hun-
dreds of billions) of small and medium-sized objects 
(from a few KB of email messages to a few GB of video 
streams); 2) very high reliability and availability, with 
good access performance in general. 

Accordingly, the design and implementation of BitVault 
have three top-level objectives, as we elaborate below. 

Goal#1: low TCO (total cost of ownership). We break-
down TCO into three major components: hardware cost, 
operational cost and power consumption.  

In order to keep the total cost low, a system of such a 
large scale must ride the economies of large scale. Data 
retention has been, and still is, dominated by tape librar-
ies, which are expensive to operate, slow to access and 
are ill suited when we start to look into the possibility of 
digitizing all kinds of data. In contrast, the price per GB 
of disk is declining to twice of that of tape and it is 
therefore justified to backup to disks, instead of tapes. 
For this reason, we use “smart bricks” as our building 
bricks. Smart bricks are essentially trimmed down PC 
with large disk(s). We believe that the trend is such that 
smart bricks will be commodity components, just as 
PCs are today. This design decision also allows us to 
have a good access performance, in case search func-
tionality needs to be built on top of the platform. This is 
especially important for email archiving applications.  

Given the longevity of data kept in the system as well as 
the volume of growth, however, smart bricks of differ-
ent capability will be procured at different points of 
time and co-exist in the system. Thus, BitVault must 
leverage the inherent heterogeneity and support online 
migration to new hardware. 

In terms of total cost of ownership (TCO), however, the 
hardware cost is only a small fraction. The management 
overhead of dealing with the complexity of the system 
rises quickly with the system scale. To give a total 5PB 
of raw capacity and with the disk capacity of 500GB, 
BitVault needs to scale out gracefully upwards to 10K 
bricks. Of course, we do not believe that initially there 
will be many instances with such a scale, and thus in-
cremental scale-out capability is important. Therefore, 
BitVault must be as self-managing and self-organizing 
as possible: its administration overhead must be low and 
almost constant, independent of the system scale. Ide-

ally, all that the administrator needs to do is to unpack a 
brick, install the BitVault software, plug into the system 
and then forget about it. When a brick fails, it is simply 
unplugged from the system. All these must be done 
online, with minimum perturbation to ongoing opera-
tions, with no compromise to reliability and availability.  

A very large BitVault installment can consume substan-
tial power, and this is where the traditional “cold” me-
dia such as tape and CD hold advantages: they cost zero 
energy. We do not address this issue yet, but believe 
there are amply opportunities to strike the balance be-
tween power consumption and accessibility. 

Goal#2: extremely high reliability and availability. 
One of the most important design goals of BitVault is 
rapid repair. In a system of 10K bricks, failure will be 
frequent, as is observed by works in the context of large 
scale (e.g. GFS [14]). Some of these failures are tran-
sient and only affect availability temporarily, and some 
others are fatal and impact reliability. In the design of 
BitVault, we use the term last-copy fast recall to char-
acterize a storage system’s capability to deal with fail-
ures: as long as an object still has the very last replica, 
its replication degree should be fully restored and the 
object is accessible as quickly as possible. Therefore, 
rapid repair is essential. BitVault’s strategy is to lever-
age the scale of the system and spread the repair load so 
as to utilize all the aggregated network bandwidth, with 
a target repair window of minutes instead of hours. 

A great subset of the data stored in BitVault may need 
to tolerate site disasters. Since the WAN bandwidth is 
limited, it is desirable that we can accommodate “repli-
cation by mail”[16].  BitVault introduces the concept of 
self-identifying bricks: a brick primed with objects ob-
tained elsewhere can be FedEx-ed to a different site, 
plugged in and let its content properly replicated and 
readily and accessible.  

Goal#3: simplicity. A complex system of such a scale is 
difficult to get right, and the first two objectives are 
already ambitious. Thus, the unspoken rule of BitVault 
is to strike at simplicity as much as possible, so that the 
system behavior is provable and correct. Many of our 
decisions, such as soft-state index (3.3.1), object-driven 
repair model (3.3.2) and the avoidance of global and 
transaction protocols are founded upon this principle.  

System model: BitVault operates in a controlled envi-
ronment and all hardware is assumed to be trusted. 
Bricks are connected with high-throughput and low-
latency LAN, and we assume Gigabit Ethernet as the 
switching fabric, though our prototype uses 100Mb 
switches. Transient failures include instances such as 
brick reboot; cable disconnection, switch failures etc.; 
they can affect multiple bricks and become sources of 
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correlated but transient failures. For the time being, we 
do not consider network partitions. All other failures 
such as disk crashes are permanent and fail-stop. 

3. Design 

Interface: BitVault stores immutable objects, with 
checkin and checkout as the two primary APIs. A 160bit 
key is the handle to retrieve an object. Each object has a 
unique key and the key distribution is uniform. If the 
key is derived from hash of the object, as is done in our 
prototype, then BitVault becomes content-addressable.  

Given that BitVault’s main objectives are self-managing, 
strong scale-out capability and very high reliability, our 
design combines the latest peer-to-peer technologies 
and a number of novel techniques. Specifically, we 
adopt the DHT logical space as the primary abstract for 
self-organizing and scale-out capability. While index 
partition is DHT-based, replica placement is policy con-
trolled, allowing massively parallel repair for a failed 
brick. To avoid complexity, we use object-driven repair 
model, which leads to soft-state indices that are far sim-
pler to implement, and yet guarantee last-copy recall.  

We will start with the high-level system architecture and 
discuss other design alternatives that we have consid-
ered. We will then describe per-brick architecture, fol-
lowed by individual protocols. Some of the components 
can have alternative implementations and thus their 
details are left in the next section. 

3.1 High-level system architecture 

When we talk about a scalable architecture, the classic 
client-server architecture often falls out of favor. Yet, 
works such as GFS [14] have demonstrated that this 
structure often works and works well. In this architec-
ture (Figure 1(a)), a set of masters manages the bricks 
storing individual replicas. The masters keep the integ-
rity of the indices, and typically run a replicated state 
machine (or just hot-standby) to ensure that they act as 
one entity and endure failures. 

However, the architecture is ill-suited for a data reten-
tion platform. First of all, unlike GFS in which object 
size is 64MB, reference data is small. As such, the size 
of the index will be huge and difficult to fit in the mem-
ory of the master (as is done in GFS). This raises both 
performance and scalability concerns. Secondly, assum-
ing a total of N bricks in the system, the O(N) periodical 
beaconing from the master(s) to the bricks can consume 
substantial resources. If the beacon interval is 10s, then 
for a 10K brick installment, a master needs to process 
1K beaconing every second. None of the above is a real 
concern if the master does not impose heavily on the 
access path. GFS is a file system, and can leverage cli-

ent-side leasing so that client requests can go directly to 
the bricks most of the time, bypassing the master when 
lease is valid. Unfortunately, for a data retention plat-
form, it is unlikely that access locality exists, if at all. 
Hence, the master is likely to become a performance 
bottleneck, especially when we talk about a 10K scale. 

...

Index Shadow copy(a) Client / Server000…~K1 K1+1~K2Zone K2+1~K3 KN-1+1~~111...
...

B1 B2 B3 BNPrimary data and replica of B1(b) DHT000…~K1 K1+1~K2Zone K2+1~K3 KN-1+1~~111...
...(c) Combination of Client / Server and DHT

Replica pointer / Failure detection Failure detectionReplica pointer Index replication
000…~K1 K1+1~K2Zone K2+1~K3 KN-1+1~~111...

...(d) BitVaultMRL membership notification
 

Figure 1. Different architectures for a scalable brick-
based system: (a) client-server; (b) DHT, (c) DHT + client-

server and (d) DHT-based index partition, policy con-
trolled object placement with a membership service. 

The next choice is to base the architecture over DHT 
(distributed hash table [27][29][31][37]). After all, 
many wide-area archival systems – even file system, 
have been proposed (e.g. Ivy[24], CFS[10], PAST[30] 
and Pastiche [9]). If these systems can handle high 
churn rate and run in untrusted environment with low 
resource consumption (often O(logN)), they would ap-
pear to operate well in a controlled and less dynamic 
context that BitVault targets. In fact, an earlier version 
of BitVault, called RepStore [35] was designed with 
this architecture.  
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In DHT, nodes join a large logical space (e.g. 160 bits) 
with random IDs, and thus partition the space in a self-
organizing way. The portion of the space a node is re-
sponsible for is called its zone. For instance, x’s zone is 
(y.id, x.id] (e.g. Chord [31]), where y is x’s immediate 
predecessor in the logical space. A node whose zone 
covers an object’s key (typically the hash of the object) 
is called the root of the object. Typically, all current 
schemes enforce an invariance such that a number of 
replicas of the object is placed on a set of logically con-
secutive nodes, starting from the root brick (Figure 1 
(b)). As it is, DHT-based system has no need for global 
metadata at all, and presents to the upper-layer applica-
tion with a reliable object store interface. On average, 
starting from any arbitrary node, lookup an object using 
its key to invoke checkin/checkout operations at the 
root node takes O(logN) network hops.  

In the context of BitVault, we found that the most useful 
concept of these proposals is the self-organizing logical 
space. However, there are a few serious problems: 

• First of all, uniform node ID yields an exponential 
zone distribution. Since object keys are uniform 
(especially when they are hashes of objects), stor-
age utilization across nodes is uneven. This be-
comes a major problem when raw brick capacities 
differ, as will be the case in any real BitVault de-
ployment. Giving up the control of object place-
ment is even more problematic when applications 
demand that certain objects to co-locate.  

• Second, during data repair, each of the k consecu-
tive bricks after the failed brick needs to share one-
kth of the load of the failed brick, where k is the 
replication degree. That means each node has to 
keep about one-kth of free space for data repair, so 
disk utilization is less than optimal in DHT-based 
scheme.  

• Third, adding empty bricks into the system will 
result in data movement, as dictated by the invari-
ance of the object replication. Ideally, data copying 
should only occur when there is a need to repair. 
This overhead exists to purely satisfy the invariance, 
has nothing to do with reliability, and further con-
tributes to protocol complexity.  

• Fourth, DHT-based scheme does not support self-
identifying disks. When a brick already loaded with 
objects is plugged into the system, all objects have 
to be redistributed according to its key, and this 
will take hours to complete.  

• Finally, probably the most serious issue is that this 
approach constrains the repair speed of any single 
brick. The semantic of DHT-based replication im-

plies that the sources and the sinks to repair the 
content of a failed disk are restricted to a few in its 
logical neighborhood, and thus it cannot achieve a 
high degree of parallel repair. In contrast, if repli-
cas can be randomly placed, repair can proceed in 
parallel because the contents of the failing brick 
have many sibling replicas stored on many bricks, 
and repaired to equally many other bricks. 
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Figure 2. Analytical result on data reliability as measured 
by MTTDL (mean time to data loss) for various system 
scales, replication degrees, and placement schemes. The 
average object size in random placement is 10MB. Each 
brick has capacity of 100GB, with disk bandwidth 5MB/s. 
The network aggregated bandwidth for data repair is 3GB/s. 
Mean time to failure of each brick is 1000 days. Each brick 
fails independently with exponential distribution. 

We diverge from our course of architectural discussion 
a little by presenting some analytical results that support 
our argument. Figure 2 shows the result based on an 
analytical framework we developed to study brick stor-
age reliability [20]. The important point is that random 
placement provides orders of magnitude better reliabil-
ity than DHT-based placement. However, our study [20] 
also reveals that when the object size is small and thus 
the number of objects is large, pure random placement 
at the object level may also suffer degrading reliability. 
This is because when the number of objects is large, 
pure random placement exhausts all permutations of 
placement and thus is very sensitive to multiple concur-
rent disk failures. Our work in [20] proposes modifica-
tions to overcome this problem in order to deliver high 
reliability consistently across a wide range of object 
sizes.  For the discussion here, it suffices to point out 
that more sophisticated placement is necessary. 

The key point is that we need to decouple object place-
ment with the logical space. BitVault’s strategy thus 
employs DHT-based index partition but with policy-
controlled replica placement. On the surface, this can be 
achieved by combining the client-server architecture 
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and DHT, as shown in Figure 1(c). In this approach, the 
index of an object -- instead of the object itself, is kept 
at the object’s root brick, and the index further points to 
the k bricks storing the replicas (k being the replication 
factor and can vary from object to object). This gives an 
architecture that meets the majority of the requirements: 
accesses are fully distributed, repair can be delivered in 
parallel, heterogeneity can be leveraged, and there is no 
need to move data any more when adding new brick. 

This naïve approach, however, has a number of prob-
lems. If replica placement is purely random, then the 
total failure detection traffic will amount to O(N2), with 
each brick handling exactly the same amount as in the 
client-server option.  Complexities increase as well. In 
addition to the DHT protocol that manages the space, 
we still need to run the same replicated state machines 
in every pair of logically neighboring bricks to keep the 
index reliable and consistent.  

The core of the above dilemma lies at the mindset inher-
ited from the client-server architecture, which places the 
index at the center of the design: it must be kept reliable 
and consistent, which is a precondition to trigger repair 
upon failure detection. This need not be the case. The 
last-copy recall property provides both challenges and 
hints to the solution: in fact, the replicas should be 
given the central role.  As long as the replica is notified 
when its index is gone, it can initiate repair to rebuild its 
index. The index, in turn, can initiate replica repair if it 
observes the loss of replica(s). We call this the object-
driven repair model. In order for this to work, a weakly 
consistent membership service with the following guar-
antee suffices:  any change to the logical space due to 
brick addition and departure is eventually and reliably 
known to every live bricks. In BitVault, we call this 
service the Membership and Routing Layer or MRL in 
short; this is so because MRL is also responsible to act 
like a one-hop DHT to route message to its root brick. 
Since indices are distributed to all bricks and they can 
be reliably rebuilt, with the help of MRL we can afford 
to use soft-state indices that are kept in memory, achiev-
ing all the remaining goals, as we will discuss in more 
detail later. 

In BitVault, all bricks participate in maintaining the 
MRL. Many weakly consistent membership protocol 
exist, with low maintenance overhead typically of 
O(logN). BitVault’s MRL is implemented using XRing, 
a perfect one-hop DHT (Section 4.1), with the insight 
that the semantic is equivalent to a weakly consistent 
membership protocol. The layering approach gives a 
clear and clean division of responsibilities, and is criti-
cal to the simplicity of the BitVault design. 

3.2 Per-brick architecture 

The components of a BitVault brick are shown in 
Figure 3. The MRL module is responsible for two 
things. First, it implements the eventual membership 
protocol and keeps a full list of all live bricks. It notifies 
the DM and IM modules upon any change of the list. 
Second, MRLs of all bricks collectively form a DHT. 
Brick ID is a random number of 160bits, and the or-
dered list defines the zone of any live brick: the zone of 
a brick x is (y.id, x.id], where y is x’s immediate logical 
predecessor in the space. This is basically consistent 
hashing as in Chord [31]. MRL provides the routeTo(key, msg) service to route a message, typically in one net-
work hop, to the brick whose zone owns key. 

 

Figure 3. Components of one BitVault brick 

Index module (IM) keeps the indices for any objects 
that are rooted at this brick. The index is soft-state, and 
records k pointers to the actual locations of the replicas, 
where k is the replication degree of the object. IM lis-
tens to MRL for membership changes and issues repair 
for missing replicas if necessary. 

 

Figure 4. Example of the object layout in BitVault. Ob-
ject x has replicas in brick i, j and k, whereas object y has 
replicas in brick j and k. 

Data module (DM) stores replicas to local disk. Along 
with the object we store a few metadata, including its 
key and the specified replication degree. A reverse table 
is built in the memory, and the table entries record the 
physical addresses of the root bricks of the objects. This 
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table is used to perform indices repair, also triggered by 
the MRL notifications. 

Finally, the Access module (AM) is a very light module 
that serves as the brick’s gateway to external client re-
quests. Figure 4 shows the relationship of these compo-
nents with some replica placement examples.  

3.3 Individual protocols 

3.3.1 Checkin/checkout 

The checkin request carries the object, the replication 
degree k, supplied from upper-layer application and the 
object’s key. The checkout request needs the key as the 
only parameter. Both requests can be submitted to an 
arbitrary brick in BitVault.   

When performing checkin, the brick will invoke the 
placement policy (detailed in Section 3.3.4) to pick k 
bricks, and send replicas to these bricks. When the first 
acknowledgement is received, the checkin procedure is 
completed from client’s perspective. If desired, the 
checkin can wait for more replicas’ responses. 

 

Figure 5. Object index state machine. 

A brick persistently stores a received object to its DM 
and at the same time publishes the object with an ipub-lish message. Out of all messages in BitVaut, this is the 
only one that needs to be reliable, and we ensure this 
with ack/resend mechanism. This message uses the ob-
ject’s key and is routed through MRL to reach the root 
brick; the message also includes the specified replica-
tion degree. The ipublish message is one of the events 
that trigger the index state machine (Figure 5) at the 
root brick. An index has two possible states: partial and 
complete. A pointer in the index is valid if and only if 
the brick pointed to is alive and contains a copy of the 
object. A complete index has the number of valid point-
ers equal to the specified replication degree; whereas a 
partial index is the one with fewer valid pointers. There-
fore, when receiving the first such message, a root brick 
will start a partial index with one valid pointer. At the 
same time, it will start a timer. If k such pointers are 
collected, the index becomes complete and the timer is 
stopped. However, if the timer expires before enough 
pointers are collected, repair will be triggered.  

Checkout is simple; the request is routed to the root 
brick, and follows any one of the pointers to retrieve the 
object. 

3.3.2 Repair of permanent failure 

The last-copy recall property dictates both the accessi-
bility and the total restoration of replication degree as 
long as the very last copy survives, independent of any 
other component failures and their sequences. For ex-
ample, right after we restore another copy, both the 
source replica and the index disappear simultaneously. 
In this case, the last-copy transit from one replica to the 
other and this sequence can occur infinitely number of 
times. However, once the system stabilizes, both the 
index and k replicas should be intact. 

Translating the last-copy property to the BitVault data 
structure, we have the following properties: a) eventu-
ally an object’s index is always found at the root brick 
of the object, and b) eventually all indices should be in 
the “complete” state. BitVault relies on the membership 
service provided by MRL and the reliable ipublish mes-
sage to deliver both, and with a very simple set of 
mechanisms. 

• Indices repair: the DM filters membership change 
events sent from MRL. For any object whose root 
shall now change to a different brick (either due to 
brick failures or additions), DM issues the same ipublish as it receives the object the first time to-
wards the new root via MRL. The first ipublish 
message establishes a partial index at the root; the 
rest k-1 messages turn the index state to complete 
and hence repair the index. Since indices are parti-
tioned across all members, index repair occurs 
when there is any membership change. An optimi-
zation to improve index availability is to lazily 
backup x’s indices to x+1, so that x+1 can serve 
with the cached indices when x crashes and x+1 
takes over. 

• Data repair: the IM filters membership change 
events sent from MRL. For any index that has rep-
licas in a failed brick, the IM changes its state from 
complete to partial and instructs one of the replica 
keepers who, after consulting the object placement 
policy, inserts another copy to the selected brick.  
Data repair occurs only when brick crashes. 

These are the only necessary steps. Notice that when a 
new replica is made, the receiving brick will generate an  ipublish message towards the root, and the message 
changes the corresponding index’s state to complete 
again and thus closes the repair cycle. Should anything 
interrupt this distributed procedure, the fact that the 
index will stay in the partial state means that repair will 
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continue to happen. This is true even when multiple 
failures occur (e.g. the index and several replicas are 
gone simultaneously). While an elaborate proof is out of 
the scope of this paper, we offer an informal argument 
that these set of protocols deliver the last-copy recall 
guarantee. 

We assume that failures have wiped out all but the very 
last copy. The membership service of MRL has the fol-
lowing properties: eventually and with high probability 
in O(logN) time bound (where N is the number of bricks 
in the system), every live bricks is known to every brick, 
whereas every failed brick is excluded. Since the mem-
bership list defines a DHT space, this means that the 
last copy can watch the change of its root, and hence 
publishes towards the root the ipublish which includes 
the specified replication degree. Notice that this can go 
on even if the root changes infinitely often (due to brick 
crash or addition), and if the last-copy transit from one 
replica to the other. This message will start a partial 
index and the repair timer which, when expired, will 
instruct the last copy to insert new replicas into the sys-
tem. The cycle is forced to its closure if and only if 
enough replicas are generated and the index state is 
changed to complete. 

We note two key properties here. First, the repair strat-
egy is object-driven. Indeed one can say that repairing 
missing replicas is triggered by the index being at the 
state of partial, but the index itself is generated from 
any surviving object replicas. This is different from 
many existing approaches that rely on the robustness of 
index coupled with direct monitoring to data so as to 
ensure availability. Second, the contents of a DM are 
pointed to from IMs of many different bricks, and their 
sibling replicas are spread across the whole system. 
Thus, both repair triggering and repair source are dis-
tributed, and this is the basis of rapid and parallel repair. 
Figure 4 illustrates both points: if brick j fails, index 
repair for object x can be triggered by either brick i and 
k, and data repair for object x and y can be processed by 
i and k in parallel. 

A simple calculation can show the gain of parallel re-
pair. When using parallel repair, we need to consider 
the network bandwidth, especially the bandwidth of the 
root switch since it may become the bottleneck. Let 
BBRICK  be the disk I/O bandwidth, BNET  be the available 
bandwidth of the root switch for data repair. Then the 
parallel repair degree Nr, the number of repair source-
destination pairs that can participate in repair in parallel, 
is given by Nr = BNET/BBRICK.  Nr is the repair speedup, if 
the object replicas are spread evenly among roughly Nr 
bricks. For example, if the disk bandwidth BBRICK = 

5MB/s, and the available root switch bandwidth BNET = 
1GB/s (67% of a 1Gigabit 24 port switch bisection 

bandwidth), then Nr = 200, which means instead of tak-
ing more than one day to repair one failed disk with 
500GB data, the parallel repair can be done in 8 min-
utes. This immensely reduces the repair time and thus 
the vulnerability window. Therefore, spreading replicas 
among a large number of bricks can achieve much faster 
data repair speed. 

3.3.3 Brick additions 

A new brick is ready to join the service after it installs 
the BitVault code. It takes a random ID and contacts 
any of the existing bricks. As part of the MRL protocol, 
all live bricks will include this new brick into their 
membership list; likewise, the new brick acquires the 
same list as well. This typically converges in O(logN) 
time. Since BitVault uses consistent hashing to partition 
the space, for any objects whose root changes to the 
new brick, their hosting DMs will issue index repair to 
build indices onto the IM of the new brick. Similar to 
the optimization that improves index availability when 
dealing with brick failure, when x joins, brick x+1 can 
split its indices that belongs to x and sends it to x, so x 
can have a cached copy of indices to begin serving. 

If the new brick is empty, typically the background 
load-balance process will kick in to move some replicas 
to the brick. If, however, the brick comes with some 
objects already, it will initiate index repair for these 
objects via the ipublish messages towards their roots, 
and then data repair will be triggered to replicate the 
objects to other bricks. This is how the object-driven 
model implements self-identifying brick. 

3.3.4 Load-balance  

When the system evolves with brick failures, brick addi-
tions and data repair movements, the storage load on 
bricks is likely to be unbalanced. Unbalanced load re-
duces object access performance since overloaded 
bricks become bottleneck while underutilized bricks are 
mostly idle.  

To address the load balance issue, BitVault performs 
background load balancing operations. Periodically, 
each brick queries an in-system monitoring utility 
SOMO [36] (further discussed in the implementation 
section) to gather the information about the average 
load and low-load bricks in the system. If the load of the 
current brick is over a certain threshold than the average 
load (in our prototype it is set as 5%), then the brick 
will randomly pick some replicas on it and move them 
to the low-load bricks. As before, the bricks receiving 
the replicas will send ordinary ipublish messages to 
build indices. When the source brick receives confirma-
tion from the sink brick that a replica has been created 
there, it issues a delete message to the root of the object. 
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The delete protocol is coordinated at IM. It first re-
moves the pointer to the replica to be deleted, and then 
insert this pointer to a delete pool. The IM then picks an 
entry from the delete pool and issues a delete request to 
the target brick. It will keep on retrying until an ack is 
received. The entry is removed from the delete pool if 1) 
the ack is received or 2) the target brick crashes (as 
notified by MRL). The protocol works correctly and 
ensures that there is never a situation where we have a 
dangling pointer. The worst can happen is that there is a 
replica that the index is not aware of, and this occurs if 
the delete pool, as a soft-state in memory, somehow is 
corrupted. In this case and all others where the local 
state (including the index) may be bad, we simply reset 
the brick itself and let transient failure handling to fix 
the problems. 

The delete protocol is not exposed as an API, but it can 
be invoked not only by the load-balancing process, but 
also for other garbage collection purposes as we will 
discuss shortly. 

3.3.5 Dealing with transient failures 

In the context of BitVault, many transient failures can 
occur: reboot as a result of software upgrade, cable drop, 
switch failures, power failures etc. In these cases, some 
data may become inaccessible for a short period of time, 
and as long as some bricks are alive, the system can still 
operate, albeit with reduced performance.  

The primary difficulty in dealing with transient failures 
is that it is hard to tell whether a failure is transient. It is 
true that in some instances such as software reboot, 
there may be a way of informing the nature of the dis-
ruption. However, in general, that only adds administra-
tion overhead, which is what we want to avoid at the 
first place. One can delay the triggering of repair, hop-
ing that the affected components can return online soon. 
However, this only enlarges vulnerability window if the 
failure is in fact permanent. 

Our strategy is to initiate repair regardless. The worst 
that can happen is that, when the bricks come back 
online, extra replicas exist. We set a high watermark 
(e.g. k+1) and when the total number of copies exceeds 
that threshold, we will start deleting until total copies 
equal to k. Notice that if future failures reduce replicas 
to k or above, no repair is triggered. Also, if the water-
mark is equal to k, then eventually the replication de-
gree is strictly enforced. This strategy is the same as 
what is proposed in TotalRecall [5]. 

3.3.6 QoS control 

BitVault needs some QoS provisions in order to guaran-
tee stableness. First of all, MRL messages are delivered 
and processed with the highest priorities. If they are 

jammed, false failures may be declared, resulting in 
cascading false repairs which will eventually cause the 
system to collapse. Ideally, other protocol messages 
should be prioritized accordingly as well, but we have 
not implemented them yet. Secondly, for a very large 
installment, even though BitVault can quickly process 
repair, there is no guarantee that there shall be no con-
current repairs of multiple bricks in the system. Just as 
in GFS[14], repair of objects that have lost more repli-
cas should take higher priority. This is governed by a 
set of rules that run at the repair source (i.e. the DM 
module of a brick who is instructed to make another 
copy in the system): 

• A repair quota (in terms of bytes/second) is en-
forced. This is the upper bound that a brick can 
copy out replicas and hence occupy network re-
source for the purpose of repair. 

• The repair request, generated from the IM that 
keeps the index, carries number of remaining repli-
cas. With this, the repair source can calculate lo-
cally the repair ranks of all pending repair requests. 
Higher ranked repairs are those that have lost more 
replicas, and take higher priorities. Requests of the 
same rank are ordered according to the failure time 
of the departed brick. 

These rules are simple and practical, but they are not 
complete. For instance, it is possible for a brick to con-
tend network resources with repair requests that have 
lost only one replica, while there are ongoing repairs of 
higher ranks initiated from other bricks. Also, there is a 
natural tension between enforcing QoS quota and 
maximizing repair speed. This remains as one of our 
ongoing research work. 

3.4 Discussion 

The design we have described achieves all design goals 
iterated at the beginning of this section. Adopting a lay-
ering design and leveraging a weak and eventual mem-
bership protocol allows us to scale out with a fully dis-
tributed architecture, deliver last-copy recall and rapid 
repair, all without the need of any global consensus 
protocol or distributed transaction protocols.  

There are several fundamental reasons. First of all, there 
is already a global agreement before a brick starts its 
life in BitVault, namely it is joining a logical space 
composed by all live bricks. To deliver the last-copy 
recall, only the eventual consistency of the membership 
is necessary, hence there is no need for a strong consen-
sus at run time. Dealing with reference data means that 
we can work with immutable objects. Had we wanted to 
support in-place updating, then without any doubts we 
must employ transactions. The decision to allow extra 
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copies to temporarily exist is also important. We have 
described earlier that extra copies will be generated 
when handling transient failures and doing load balanc-
ing. Moreover, even when replicas are fully installed 
but the associated ipublish messages are delayed, the 
repair timer at the index will trigger new round of repair, 
also resulting in extra copies. These copies will eventu-
ally be garbage collected. Since storage capacity is be-
coming far less an issue and that in no time we have 
compromised the correctness of the system, we believe 
that this is a right tradeoff to make. 

The current design is fully distributed and each brick’s 
functionality is completely symmetric. However, if re-
quired, with very little change we can accommodate 
design points between fully distributed/symmetric and 
centralized. We can divide the logical space into two 
equal halves, let indices be on the one half and all repli-
cas be on the other (controlled by the object placement 
policy). Thus, bricks in half of the space are serving 
indices, and the rest are storing replicas. In the extreme 
case, there can be only one brick on the index half, and 
hence this becomes essentially a GFS-like system. The 
density of the bricks in either half of the space can be 
dynamically adjusted. This is the flexibility brought by 
working with a DHT-like logical space. 

4. Implementation 

4.1 Membership and routing layer 

•logical space integrity
•routing termination

•baseline O(logN) routing

•Best effort one hop routing

Leafset

Finger table

Soft-state routing table (SSRT)

 
Figure 6: the 3 layers of routing tables in XRing and 

their corresponding functionality. 

We have defined the two responsibilities of the MRL 
earlier. First, it provides an eventual membership ser-
vice: once the system is stabilized, every live brick will 
eventually include in its membership list all of the ac-
tive bricks only. The convergence should be as rapid as 
possible. Second, it should give an abstraction of DHT. 
Many of the other design decisions, such as soft-state 
index, object-driven repair model as well as rapid and 
parallel repair, depend on MRL. 

An eventual membership service does not require the 
agreement among bricks on the intermittent membership 
views of the system. Therefore, more expensive view-
based group membership protocols (e.g. [6], [8]) are not 
necessary. Many eventual membership protocols exist, 
such as SWIM [11]. These protocols gain their scalabil-

ity by dividing the protocol into two correlated parts: 
failure detection and failure dissemination. Since MRL 
needs to function as a DHT also, we choose to extend a 
best-effort one-hop DHT called XRing[34] to avoid re-
implementing a full membership service.  The key in-
sight is that an eventually perfect one-hop DHT imple-
ments just that. Such a DHT is the one that lookup is 
resolved always in one-hop when the system stabilizes. 

XRing divides a 160bit logical space with participating 
nodes using consistent hashing as in Chord[31]. Each 
node in XRing has a three-layer data structure main-
tained by three protocols (Figure 6). The first two layers 
are rather conventional. The lowest one is the leafset, 
which is a set of 2L+1 nodes including L closest nodes 
on each side of the DHT logical space plus the home 
node itself. The heartbeat messages carrying the full 
leafset of a node are sent between every pair of leafset 
nodes to maintain the leafset data structure. Leafset 
members use a voting mechanism for detecting and 
broadcasting brick leave and join events to reduce erro-
neous detections. The middle layer consists of a finger 
table, which contains O(logN) entries to implement a 
straightforward O(logN) prefix-based routing algorithm. 
A node’s i-th finger points to the node that owns the key 
that is identical to the node’s ID except with the i-th bit 
flipped. Regular probing messages are sent to finger 
table entries to detect failures and repair the finger table. 
Finally, the third layer SSRT (soft-state routing table) 
enables one-hop lookup performance with high prob-
ability. SSRT is maintained by broadcasting node join 
or leave events detected by the leafset heartbeat proto-
col using a scalable broadcast through finger and leafset 
members. The SSRT structure of XRing already con-
tains most brick membership information, but does not 
satisfy the eventual reliability because the broadcast, 
though has O(L+logN) redundancy, is best-effort.  

To enhance the SSRT structure of XRing to provide an 
eventually reliable membership service, we add a back-
ground anti-entropy protocol so that bricks can periodi-
cally reconcile missing membership information with 
other random nodes in the system. More specifically, at 
some regular interval, each brick x computes a signature 
based on its local SSRT, and sends it out to a brick y 
randomly selected from SSRT. When y receives the 
anti-entropy message, it compares with the signature 
computed from its local SSRT, and if it’s different from 
the received signature, it sends its SSRT back to x. 
Brick x merges its local SSRT with the SSRT received 
from y. If x detects that its local SSRT is actually more 
up-to-date, it sends its SSRT back to y. To guarantee 
that the latest leave or join event about a node is the 
correct one reflecting the node status, timestamps are 
used on events. Therefore, in order to achieve fast 
SSRT reconciliation, in an anti-entropy round a brick is 
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both trying to pull an SSRT from and push its own 
SSRT to a randomly selected brick. We optimize the 
protocol such that when the delta is only one missing 
event, only that event is reconciled instead of sending 
the whole SSRT. 

With the periodic anti-entropy protocol, bricks can 
quickly resolve the differences in their SSRTs in one or 
a few anti-entropy rounds, ensuring that eventually 
every brick will have all the latest membership change 
events. We have verified this through extensive simula-
tions as well as theoretical analysis. 

The anti-entropy protocol is also used when a new brick 
joins for the first time or rejoins after leaving the system 
for a while. In this case, the new brick either has no 
SSRT at all or a possibly outdated SSRT, and the anti-
entropy protocol will quickly bring its SSRT up-to-date. 

It is interesting to see how XRing implements the two 
stages of a weak membership protocol: the leafset de-
tection corresponds to membership change detection in 
a local range, fingers maintain a structured graph for 
fast event dissemination, and that randomized anti-
entropy gives the eventual convergence guarantee. Us-
ing a DHT to implement the membership service has its 
advantages. For instance, the loads of failure detection 
are evenly distributed, and that node join is handled by 
default. 

4.2 In-system monitoring utility 

The task of an in-system monitoring utility is to gather 
various statistics, filter and aggregate them, and dis-
seminate the results back to each brick. These statistics 
are necessary to guide replica placement at check-in, 
repair as well as load balance time. 

This functionality is delivered by an improved version 
of SOMO[36], a self-scaling and self-organizing meta-
data overlay layered over any DHT. The basic idea of 
SOMO is to draw a logical tree with a fixed fan-out (e.g. 
8) first. The positions of the tree nodes can be calcu-
lated by each brick independently. Given its responsible 
zone in the DHT, each node selects the highest logical 
tree node that it hosts as its representation in the SOMO 
hierarchy, and then calculates the position of the parent 
logical node, routes to that parent tree node to form a 
child-parent link. A hierarchy is thus built in a self-
organized fashion. The SOMO hierarchy is completely 
self-governing and self-healing, and can gather and dis-
seminate metadata in O(logfan_outN) time. 

Periodically (e.g. 5s), the top-n and bottom-n list of 
disk-usage information are obtained by performing 
merge-sort when they are gathered towards the root of 
the SOMO tree. Total storage utilization is aggregated 

along the upward path as well, allowing each brick to 
calculate the average load individually. These metadata 
are then propagated downwards through the SOMO 
hierarchy to reach every brick. In our implementation, n 
is 500 and the SOMO fan-out is 8. We note that other 
alternatives such as RanSub[18] can accomplish the 
same functionality as SOMO does. 

4.3 Prototype strategy 

BitVault is prototyped entirely using a tool we have 
developed called WiDS (WiDS implements Distributed 
System). WiDS combines three aspects of a typical de-
velopment process: prototyping and debugging, large 
scale simulation and deployment. WiDS defines a mes-
sage-passing API and also includes fundamental utilities 
such as one-time and periodical timers. Protocol logics 
are written using these APIs and timers. Messages and 
events can be queued into an event-wheel, enabling 
many instances of the protocol logics to be debugged 
within one process while causality among events is en-
forced. We can emulate wide-area conditions by speci-
fying simulated latency and packet loss over arbitrary 
pair of communication ends. This allows us to under-
stand how the system behaves in different network set-
tings and also stress different code path. To speed up 
simulation, WiDS also has a parallel and distribute 
simulation version. We have successfully simulated 
complex protocols for 1 million nodes scale, using 250+ 
machines. Finally, when the protocol code is relatively 
mature, we re-link it to a different WiDS package which 
uses sockets to send messages, thus produces an execu-
table that can be deployed and run with real network. In 
this mode, preliminary logging supports are provided. 
In the future, we plan to log enough events so that we 
can replay them in the debug mode. One important 
point of WiDS is that there is no code divergence: the 
core logic remains the same in every aforementioned 
stage.  All components of BitVault and WiDS are im-
plemented using C++. Currently, BitVault, XRing, 
SOMO and WiDS have about 6K, 4K, 2.5K and 7K 
lines of code, respectively. 

The prototype includes most of BitVault’s key features, 
except some advanced QoS control of repair and the 
optimizations to improve index availability.  

5. Building applications over BitVault 

Any complete applications that use BitVault as the 
backend storage must incorporate some mechanism to 
manage the object IDs. One solution is to set aside a 
SQL database for this functionality. However, the data-
base server is single point of failure and, under heavy 
loads, a scalability bottleneck and single point of failure. 
We explore another alternative by using the Catalog 
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utility which builds application-level and soft-state in-
dex inside BitVault. 

When an object is stored into BitVault, it can optionally 
take a “tag” which is persisted to disk along with the 
replicas. The tag must contain a keyword and a descrip-
tor, both supplied by the applications. Later, the appli-
cation can use the hash of the keyword to retrieve a list 
of objects that share the same keyword. This list is 
called a catalog, each entry of which is an <OID, De-
scriptor> pair.  Catalog is entirely soft-state and is built 
in the same way that the object index is built: the node 
that receives a replica, when seeing its tag, publishes 
towards the node that contains the hash of the keyword. 
The node receives the tag then appends the entry to the 
catalog with the specified keyword. If membership pro-
tocol indicates that the node covering the keyword of a 
catalog changes, we rebuild the catalog by republishing 
the tags. This is a simple and robust mechanism to add 
metadata management support inside BitVault. 

We now discuss two BitVault applications, both of 
which respond to day-to-day requirements from users in 
our lab and are ready to be deployed.  

BitVault Client Utility (BCU). BCU allows users to 
backup and retrieve their files (documents and project 
files) from any desktop as long as they can connect to a 
BitVault store. Interestingly enough, in many cases us-
ers do this via the mail server. In BCU, a client piece is 
fully integrated with Explorer, upon right click the user 
can choose to checkin the file or directory, or retrieve 
its version history and select one to checkout. A tag is 
always generated and checked into BitVault along with 
the object. The keyword of the tag is the hash of a 
user’s account name, and the descriptor is the complete 
path of the file name and optional text annotation. Thus, 
inside BitVault there is a complete catalog corresponds 
to a user. BCU can retrieve this catalog keyed by hash 
of the user account, parse and load into an Access data-
base file so the user can perform simple queries and 
checkout different versions of files. 

Machine Bank. Like many research institutes, MSRA 
has a large shared-lab for hundreds of intern students. 
The shared-lab scenario is such that there is a tension 
between flexible resource utilization and productivity. 
A student may get a different PC across different work-
ing sessions. It is therefore important to preserve their 
entire working environment across sessions, or other-
wise the students will frequently use the server of their 
associated research group, and consequently reduce a 
capable PC to a dummy terminal. In Machine Bank, 
analogous to the safebox of a banking institute, PCs in 
the shared-lab run Microsoft’s Virtual PC. A VM (Vir-
tual Machine) is broken into 64KB blocks and stored 
into BitVault. Since majority of the VM images across 

different users and time are the same, thus most of the 
blocks are the same. This avoids the problem of having 
each VM takes its entire space, Each PC also imple-
ments local persistent cache to improve the performance, 
and at the end of a session only modified blocks are 
checked into BitVault. The mapping between the blocks 
and their hash is captured in a file called Virtual Ma-
chine Instance (VMI). When all modified blocks are 
checked into BitVault, VMI is checked in as well with a 
tag which uses the hash of the user account name as the 
keyword. Thus, a catalog of the user’s VM images are 
built and stored inside BitVault. At the beginning of the 
login, the user can select any VM instances in the past 
to reinstantiate at the current PC, thus accomplishing 
the task of seamless work environment migration both 
across time and space. More details can be found in []. 

-- old stuff below -- 

Figure 7 illustrates a prototype application we have 
built on top of BitVault. The Web application presents a 
Microsoft Sharepoint-like interface, displaying objects 
for which there is a local copy. A SQL server stores, for 
each object, the hash key, metadata such as replication 
policy, user supplied descriptions and finally its audit 
trail (the access history). Simple queries can be issued 
against the SQL. 

 

Figure 7. BitVault cross-site architecture. 

In this application, multiple geographically distributed 
BitVault sites can link up for disaster-tolerance. As a 
user-specified parameter at the time of check-in, an ob-
ject can be replicated within a site only, or across multi-
ple sites. If an object can not be retrieved from the local 
site, the checkout request is sent to other sites that have 
the replica, which is then re-inserted into the local site. 
The set of sites where an object is replicated is also part 
of the check-in parameter and kept in SQL.  

We have set up BitVault with 5 sites: two in our Beijing 
lab, two in Redmond each at different building, and 
finally one in Silicon Valley. The setup survived several 
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unplanned downtime (moving an entire site to a differ-
ent location, or unplugging cables).  

While the first application uses database to do the 
bookkeeping, we are also evaluating the option of lev-
eraging per-client’s local file system for interactive and 
online backup using BitVault. One design lets user se-
lect what files and/or directories they want to backup. 
Each file can thus have three states: no backup, local 
copy + backup, and backup only. This gives the user the 
flexibility of moving and reclaiming capacity between 
his local machine and his allotment in BitVault. A small 
database file that records the files being backed up is 
also backed up into BitVault, and is accessed with a 
unique key known only to each user. This allows the 
user to reborn his backed up files on another machine.  

Finally, we note that BitVault’s smart brick is underuti-
lized in terms of their CPU power. We are evaluating 
the option of introducing some preliminary searching 
and index building functionality into the BitVault layer. 

6. Evaluation 

This section provides detailed evaluations of all major 
aspects of BitVault. We build a prototype of 30 bricks, 
each of which is a commodity PC. These PCs run Win-
dows XP, and their hardware configurations are 3GHZ 
Pentium4 CPU, 512MB memory and 120GB STAT 
Seagate disk. These PCs are connected with two AT-
8324SX 100Mb switches stacked together. Unless oth-
erwise specified, k=3 in all experiments.  

Except the one on MRL performance, all results are 
obtained through the direct measurement of the 30-brick 
prototype. 

6.1 Performance of MRL 

We use simulation to study the performance of MRL. In 
this experiment, we select a node to crash from a stabi-
lized system. As we mentioned earlier, the membership 
protocol works in two phases. In the failure detection 
phase, the leafset nodes vote out a dead neighbor. In the 
failure dissemination phase, the takeover node starts a 
broadcast through its fingers and leafset nodes. The 
broadcast is best-effort and the anti-entropy protocol 
ensures eventual convergence.  

XRing’s leafset heartbeat, finger probing and anti-
entropy use interval of 5s, 5s and 10s respectively. The 
leafset size is 8 (i.e. 4 logical neighbors on each side). A 
brick marks a neighbor as dead after failing to hear 
from it in 3 heartbeat cycles. The vote among the leafset 
members will declare a brick’s departure in 10~20 sec-
onds. To understand the MRL’s robustness, we drop r% 
of packets. The dropping applies uniformly to all types 
of MRL messages. 
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Figure 8. Failure detection time (a) and convergence 
time of MRL (b) 

Figure 8 shows the failure detection and convergence 
speed, for different system scale and we use two drop 
rate, 0% and 40%. The failure detection time is around 
16 seconds, irrespective of system size. This is because 
that the detection is done through the leafset nodes. This 
value is consistent with what we observed in prototype. 
We set the network latency to be 2ms, and thus conver-
gence speed is very fast and rises with O(logN) in gen-
eral. Higher drop rate yields longer converging time, 
but the difference is negligible in practice. 

6.2 Check-in and check-out  

Table 1. Latency of Checkin/out request 

Client Request Latency(ms) 
Remote NTFS 1-brick  30-brick  Size 

CI CO CI CO CI CO 
10K 5 4 11 4 17 7 
100K 17 14 19 12 34 18 
1M 147 118 105 99 220 105 
10M 1437 1155 1003 995 2126 1009 

Our first study compares the raw checkin and checkout 
performance in the 30-brick prototype with different 
object sizes. The requests are issued synchronously, and 
the results are the averages of 10 runs. We also compare 
against a 1-brick and the native read/write performance 
of a remote mounted NTFS directory (k=1 for these two 
configurations). The result is summarized in Table 1. 
The 1-brick data is comparable with the remote NTFS. 
The 30-brick case adds more network trips, but the per-
formance is still competitive.    

Next we study scalability. In this test, there are 14 cli-
ents. Each client executes a loop to fire synchronous 
requests to a prototype system with varying numbers of 
bricks (from 2 to 16). Objects requested do not overlap 
across clients, and object IDs are random. Checkin and 
checkout are measured separately. Figure 9 shows the 
total throughputs in MBytes-per-second against number 
of bricks. The results are average values over 20 runs 
and the object placement policy is random. 
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Figure 9: checkin and checkout throughput for 1MB 
and 10MB objects. 

The checkout performance is 3~4 times better than 
checkin, simply because for each checkin there are 3 
times more requests going to the disks. Checkout of 
10MB objects is better than 1MB due to sequential ac-
cess to disks. After brick number increases to 14, the 
curves become flat because the client requests can no 
longer overload the bricks. Because the clients fire re-
quests synchronously and that the requests are randomly 
scheduled to bricks, brick loads are not completely even 
and thus the scalability curve is sub-linear. We can not 
fully get rid of the caching effect of the hosting file sys-
tem, and this is the reason that checkin performance of 
1MB is close to that of 10MB. The maximum through-
puts of checkin and checkout of 10MB object is 
97MB/s and 35MB/s, respectively. These numbers are 
comparable with the GFS[14] data  on a similar testbed 
configuration.  

6.3 Repair performance 

Table 2 takes a closer look at what happens inside the 
system under repair. We let each brick log the number 
of objects and indices it hosts periodically, and merge 
them at the end after aligning the clocks. In this experi-
ment, every brick has 30K 1MB objects (30GB/brick), 
and we fail several bricks in sequence. We vary the total 
number of initial bricks at a step of 5 bricks. 

Table 2. Repair speed experiment. The experiment is 
done by initially setting 5i healthy bricks with each one 

filled by 30G replicated data. Then manually fail one brick 
and measure the time to repair 90% of the lost 30G data. 

Repair Bandwidth  Brick Number 
(after crashed) 

Time to repair 
90% (min) 

MB/s  GB/m 

4 56.4 8.2,   0.5 
9 20.3 22.8,  1.4 
14 9.9 46.5,  2.8 
19 9.3 49.4,  3.0 

24 5.3 86.4,  5.2 
29 5.3 87.8,  5.3 

The total duration to repair 30GB data with 20 and 30 
bricks takes 600 and 300 seconds each, giving a repair 
rate of 50MB/s and 100MB/s, respectively. The super-
linear improvement is probably due to better utilization 
of memory and other per-brick resources. The rate of 20 
bricks is about 1/8 of what a 227-node GFS cluster 
achieves [14].  BitVault’s repair performance shall im-
prove nicely with number of bricks (up to a ceiling im-
posed by the network bandwidth), and we are confident 
that it is comparable with the GFS performance.   

6.4 Performance under failure 

BitVault should self-heal and continue to function even 
in the face of failure. To verify this, we conducted 
checkin from 16 clients into a 16-brick BitVault, and 
then failed one brick. Each client continuously checks 
in 1MB size objects. We gather statistics in units of 5-
second granularity. For the client-side throughput, we 
log the aggregate throughput in terms of total successful 
checkins. Similarly, we log the total number of objects 
that the bricks receive, again aggregated over all bricks. 
At the 10th minute, we failed one brick. The client-side 
throughput corresponds to what users perceive, while 
the server-side throughput reflects both the checkin traf-
fics as well as the repair traffics. The expected behavior 
is that the performance will drop while repair is going 
on, and then return to the normal level afterwards. 

Figure 10 shows the variation of the throughput of both 
clients and servers, and the server-side throughput is 
normalized by 3 (the replication degree). Before the 
crash and after the repair, the client-side throughput 
matches with the server-side throughput. However, after 
the crash and during the repair window, the client-side 
throughput decreases because resources are dedicated to 
repair the failed disk. The repair traffic, represented by 
the exceeding dark area, corresponds to about 3GB 
worth of data on the failed disk. The repair window is 
about 70 seconds. If there were more data on the failed 
disk, the repair window would increase. During repair, 
whether repair traffic takes higher priority than user 
requests is a policy issue. In this prototype, they com-
pete against each other with the same priority (only 
MRL messages have higher priority). 
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Figure 10: performance under failure experiment. 
Server throughput is normalized by 3. A failure is intro-
duced around the 10th minute. 

7. Related work 

As stated in [25], the primary challenges for systems 
like BitVault will not be performance but, instead, man-
agement and availability. The primary contributions of 
BitVault are: 1) use eventual membership protocol with 
a DHT abstraction to offer great scale-out capability 
with low overhead and in a self-managing fashion, and 
2) employ massively parallel repair to achieve very high 
data reliability and availability, and 3) deliver both with 
a simple architecture. Below we will contrast its core 
contributions with previous systems.  

Single-box solutions such as Venti[26] cannot meet the 
challenge of coping with the volume and growth rate of 
reference data; client/server architecture such as 
GFS[14], NASD[14] and WiND[4] works to certain 
extent but will hit bottleneck as well. The fact that ob-
jects are often small and there is no or little access lo-
cality exacerbates the scaling problem further. Existing 
fully distributed proposals such as Boxwood[23], 
FAB[11], Petal[20] and xFS[3] all require strong con-
sensus protocol which, even when is not placed on the 
critical path, presents a scalability challenge. 

The DHT-based systems such as Oceanstore [19], Pond 
[28], CFS [10], Ivy [24], PAST [30] and Pastiche [9] 
have gone to the other extreme. They operate over a 
logical space with a hash table abstraction, maintain a 
small list of other members (O(logN) and traverse the 
space in O(logN) steps, often require replicas to be 
placed on a fixed set of nodes starting from the one that 
hosts the hash of the object.  They primarily target at 
wide-area P2P sharing scenario, and are thus self-
organizing and can scale out. However, their target con-
text is dynamic and has led to legitimate concerns on 
what guarantee these systems can provide [7]. In the 

course of designing BitVault, we have found that, un-
fortunately, these designs do not fit the more benign 
environment either. The restriction of placing replicas 
sequentially impacts the ability of handling heterogene-
ity for better storage utilization, causing data movement 
not for the sake of repair but to satisfy the placement 
invariants. Coupling object placement with the logical 
space does not support self-identifying disks, and does 
not leverage abundant network bandwidth to achieve 
rapid and parallel repair.  These are the issues that can 
only be solved by using indices to control the placement. 

The problem of using indirection is that it introduces the 
indices as yet another vulnerability point. The conven-
tional methodology, adopted by many including 
GFS[14] and TotalRecall[5], has been to first ensure the 
integrity of index, which then reacts to failures via fail-
ure detection. BitVault demonstrated that, if coupled 
with an eventual membership service, the object-driven 
repair strategy, one in which the survival of the last rep-
lica can quickly restore both the index and the rest of 
replicas, is both simple and effective. This architecture 
also affords very rapid repair by spreading repair loads, 
which has so far only been done in a centralized-
indexed system such as GFS [14]. 

EMC Centera [12] is a brick-based retention platform 
that aims at self-healing and manageability. However, 
no architectural details are available, and its scalability 
target is not clear.  

BitVault as a scalable store for immutable object is only 
a starting point.  For example, it is conceivable to use 
Farsite[2]’s directory service for the namespace while 
storing objects inside BitVault. Similarly, if we com-
bine an in-system P2P locking protocol [22], it is possi-
ble to build a file system, perhaps in the same style as 
Frangipani [33].  

8. Conclusion and future work 

The main objectives of a large-scale distributed storage 
system are its maintainability and availability. P2P 
technologies – currently widely explored for wide-area 
context, are immensely interesting design alternatives in 
keeping the management cost down. When large 
amount of components are brought together, they also 
bring the possibility of doing massively parallel repair 
for high data availability. BitVault has demonstrated 
both of the above points. 

Our future work will focus on developing BitVault ap-
plications in order to understand whether new function-
alities are necessary inside BitVault. This includes the 
client utility that backs up user selected files/directories 
in their private namespace, and also an initiative to 
build search and query layer on top of BitVault. 
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