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Abstract

This paper presents a unifying view of message-
passing algorithms, as methods to approximate a
complex Bayesian network by a simpler network
with minimum information divergence. In this
view, the difference between mean-field meth-
ods and belief propagation is not the amount
of structure they model, but only the measure
of loss they minimize (‘exclusive’ versus ‘inclu-
sive’ Kullback-Leibler divergence). In each case,
message-passing arises by minimizing a local-
ized version of the divergence, local to each fac-
tor. By examining these divergence measures,
we can intuit the types of solution they prefer
(symmetry-breaking, for example) and their suit-
ability for different tasks. Furthermore, by con-
sidering a wider variety of divergence measures
(such as alpha-divergences), we can achieve dif-
ferent complexity and performance goals.

Introduction

variational methodgJordan et al., 1999) which approxi-
mate a complex network by a simpler networlg, opti-
mizing the parameters af to minimize information loss.
The simpler networlg can then act as a surrogate foin

a larger inference process. (Jordan et al. (1999) used con-
vex duality and mean-field as the inspiration for their meth-
ods, but other approaches are also possible.) Variational
methods are well-suited to large networks, especially ones
that evolve through time. A large network can be divided
into pieces, each of which is approximated variationally,
yielding an overall variational approximation to the whole
network. This decomposition strategy leads us directly to
message-passing algorithms.

Message passing is a distributed method for fitting
variational approximations, which is particularly well-
suited to large networks. Originally, variational meth-
ods used coordinate-descent schemes (Jordan et al., 1999;
Wiegerinck, 2000), which do not scale to large heteroge-
neous networks. Since then, a variety of scalable message-
passing algorithms have been developed, each minimizing
a different cost function with different message equations.
These include:

e Variational message-passing (Winn & Bishop, 2005),

Bayesian inference provides a mathematical framework for
many artificial intelligence tasks, such as visual tracking,
estimating range and position from noisy sensors, classify-
ing objects on the basis of observed features, and learning.
In principle, we simply draw up a belief network, instan-
tiate the things we know, and integrate over the things we o
don't know, to compute whatever expectation or probabil-

ity we seek. Unfortunately, even with simplified models of ®
reality and clever algorithms for exploiting independences,
exact Bayesian computations can be prohibitively expen-
sive. For Bayesian methods to enjoy widespread use, there *
needs to be an array of approximation methods, which can
produce decent results in a user-specified amount of time.

Fortunately, many belief networks benefit from an averag-

a message-passing version of the mean-field method
(Peterson & Anderson, 1987)

Loopy belief propagation (Frey & MacKay, 1997)
Expectation propagation (Minka, 2001b)

Tree-reweighted message-passing (Wainwright et al.,
2005b)

Fractional belief propagation (Wiegerinck & Heskes,
2002)

Power EP (Minka, 2004)

ing effect. A network with many interacting elements canOne way to understand these algorithms is to view their
behave, on the whole, like a simpler network. This in-cost functions as free-energy functions from statistical
sight has led to a class of approximation methods calleghhysics (Yedidia et al., 2004; Heskes, 2003). From this



viewpoint, each algorithm arises as a different way to ap4
proximate the entropy of a distribution. This viewpoint can
be very insightful; for example, it led to the development
of generalized belief propagation (Yedidia et al., 2004).

The purpose of this paper is to provide a complementary

viewpoint on these algorithms, which offers a new set of

insights and opportunities. All six of the above algorithms®
can be viewed as instances of a recipe for minimizing in-6
formation divergence. What makes algorithms different isy
the measure of divergence that they minimize. Information8
divergences have been studied for decades in statistics and
many facts are nhow known about them. Using the theoryg
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of divergences, we can more easily choose the appropritO Future work

ate algorithm for our application. Using the recipe, we canp
construct new algorithms as desired. This unified view alsct5
allows us to generalize theorems proven for one algorithm

to apply to the others. C

D
The recipe to make a message-passing algorithm has four

steps: E

1. Pick an approximating family fay to be chosen from. 2
For example, the set of fully-factorized distributions,

Ali-Silvey divergences

Proof of Theorem 1

Holder inequalities

Alternate upper bound proof
Alpha-divergence and importance sampling
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the set of Gaussians, the setietomponent mixtures, This section describes various information divergence mea-
etc. sures and illustrates how they behave. The behavior of di-
vergence measures corresponds directly to the behavior of

2. Pick a divergence measure to minimize. For ex-Mmessage-passing algorithms.

ample, mean-field methods minimize the Kullback-| et our task be to approximate a complex univariate or mul-
Leibler divergence Kly || p), expectation propaga- tjyariate probability distribution(x). Our approximation,
tion minimizes KL(p || ¢), and power EP minimizes ,x) is required to come from a simple predefined family
a-divergenceD,, (p || q). F, such as Gaussians. We wartb minimize a divergence
measureD(p || ¢), such as KL divergence. We will let

3. Construct an optimization algorithm for the chosen di- he ynnormalized, i.ef p(z)dz # 1, becausel p(x)dx
vergence measure and approximating family. Usuallyis usually one of the things we would like to estimate.
this is a fixed-point iteration obtained by setting the For example, ifp(z) is a Markov random fieldy(x) =
gradients to zero. [1,; fij(xi, x;)) then [ p(z)da is the partition function. If

x is a parameter in Bayesian learning arna) is the like-

4. Distribute the optimization across the network, by di- |ihood times prior §(z) = p(z, D) = p(D|z)po(z) where
viding the networkp into factors, and minimizing lo-  the dataD is fixed), then/, p(z)dz is the evidence for the
cal divergence at each factor. model. Consequently, will also be unnormalized, so that

the integral ofy provides an estimate of the integralof

All six algorithms above can be obtained from this recipe

via the choice of divergence measure and approximatinguhe first is the Kullback-Leibler (KL) divergence:

family.

K

The paper is organized as follows:

p(x)

Lp|lg) = / p(z) log 2% gz ¢ / (4(z) — plz))dz

q(z)

'There are two basic divergence measures used in this paper.

1)

This formula includes a correction factor, so that it ap-

1 In.troductlon 1 plies to unnormalized distributions (Zhu & Rohwer, 1995).
2 Divergence measures 2 Note this divergence is asymmetric with respegt emdg.
3 Minimizing a-divergence 4 The second divergence measure is a generalization of KL-
3.1 Afixed-pointscheme . ... ... ... .. 4 divergence, called the-divergence(Amari, 1985; Trottini
3.2 Exponential families . . ... ..... .. 5 & Spezzaferri, 1999; Zhu & Rohwer, 1995). It is actually
3.3 Fully-factorized approximations . . . . . . 5 a family of divergences, indexed hy € (—oo, c0). Dif-
3.4 Equalityexample . ... ... ....... 6 ferent authors use theparameter in different ways. Using
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Figure 1. The Gaussia which minimizesa-divergence tg (a mixture of two Gaussians), for varying o — —oo
prefers matching one mode, while— oo prefers covering the entire distribution.
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Figure 2: The mass, mean, and standard deviation of the Gaysstaich minimizesa-divergence t, for varyinga. In
each case, the true value is matched at 1.

the convention of Zhu & Rohwer (1995), withinstead of  different values ofy, figure 1 plots the global minimum of
0, the formula is: D.(p || q) overg. The solutions vary smoothly with, the
o e most dramatic changes happening aroung 0.5. When

f:r ap(z) + (1 — a)g(x) — p(x)*q(z) ~*dz « is a large negative number, the best approximation rep-
a(l —a) resents only one mode, the one with largest masstbie

(2)  mode which is highest). Whed is a large positive num-
As in (1), p and ¢ do not need to be normalized. Both ber, the approximation tries to cover the entire distri_bution,
KL-divergence anch-divergence are zero jp — ¢ and  €ventually forming an upper bound when— oo. Fig-
positive otherwise, so they satisfy the basic property ofre 2 shows that the mass of the approximation continually
an error measure. This property follows from the fact/"Créases as we increase

thata-divergences are convex with respecptandg (ap-  The properties observed in this example are general, and

Da(pllg) =

pendix A). Some special cases: can be derived from the formula fer-divergence. Start
1 [ (g(2) — p())? with the mode-seeking property far< 0. It happens be-
—ilplle) =5 / —————dx (3)  cause the valleys qof force the approximation downward.
2 Je p(x) Looking at (3,4) for example, we see that< 0 empha-
lim Do (p [[ q) = KL (g || p) (4)  sizesq to be small whenever is small. These divergences
are zero-forcing becausen(x) = 0 forcesg(x) = 0. In
Dy rllq = 2/ (\/ —\/q ) (5)  other words, they avoid “false positives,” to an increasing
) degree ag: gets more negative. This causes some parts of
lim Da(pllg) =KL(p|lg) (6) ) to be excluded. The cost of excluding &ni.e. setting
1 [ (p(z) - qx))? q(x) = 0,isp(x)/(1 — «). Thereforeg will keep the ar-
Da(p|lq) = 5 / wa (7)  eas of largest total mass, and exclude areas with smalll total
r mass.

The casex = 0.5 is known as Hellinger distance (whose
square root is a valid distance metric), ane= 2 is the 2
distance. Changing to 1 — o swaps the position gf and

q.

Zero-forcing emphasizes modeling the tails, rather than the
bulk of the distribution, which tends to underestimate the
variance ofp. For example, whep is a mixture of Gaus-
sians, the tails reflect the component which is widest. The
To illustrate the effect of changing the divergence measuregpptimal Gaussiary will have variance on similar to the
consider a simple example, illustrated in figures 1 and 2variance of the widest component, even if there are many
The original distributionp(x) is a mixture of two Gaus- overlapping components. For examplep tias 100 identi-
sians, one tall and narrow, the other short and wide. Theal Gaussians in a row, forming a plateau, the optignal
approximatiory(x) is required to be a single (scaled) Gaus- only as wide as one of them.

sian, with arbitrary mean, variance, and scale factor. For



Theorem 2 Z, is nondecreasing in. As a consequence,

zero inclusive (zero
€ e )
forcing avoiding) 7 < /p(q;)dx if o<1 (9a)
BP, T
MR | JEP ~
< t 1 t > 7= / p(x)ydz  fa=1 (9b)
o 0 1 TRW —> z
< FBP, > 5 :
e Z > /mp(x)dx ifa>1 (9c)

Proof: In Th. 1, letz = p(z)/gq(z) and take the expecta-

. . tion with respect tgj(x). O
Figure 3: The structure af-divergences.

Theorem 2 is demonstrated in figure 2: the integra; of
monotonically increases with, passing through the true
value whery = 1. This theorem applies to an exact min-
imization overZ, which is generally not possible. But it

Whena > 1, a different tendency happens. These diver-Shows that ther < 1 divergence measures tend to underes-
gences want to cover as muchyofis possible. Following timate the intggral op, whilea > 1 tend; to overestimate.
the terminology of Frey et al. (2000), these divergenceONly @ = 1 tries to recover the correct integral.

areinclusive (o < 1 areexclusivg. Inclusive divergences Now that we have looked at the properties of different di-

requireq > 0 whenevep > 0, thus avoiding “false nega- yergence measures, let's look at specific algorithms to min-
tives.” If two identical Gaussians are separated enough, ajize them.

exclusive divergence prefers to represent only one of them,
while an inclusive divergence prefers to stretch across both3 s .
Minimizing «-divergence

Figure 3 diagrams the structure of space. As shown
later, the six algorithms of section 1 correspond to Min-Tpis section describes a simple method to minimize

imizing different a-divergences, indicated on the figure. giergence, by repeatedly minimizing KL-divergence. The
Variational message-passing/mean-field uses 0, belief  method is then illustrated on exponential families and fac-
propagation and expectation propagation ase 1, tree-  torized approximations.

reweighted message-passing can use a variety of 1,
while fractional belief propagation and power EP can us
any a-divergence.

The divergences with < o < 1 are a blend of these ex- Wheng minimizes the KL-divergence toover a family,
tremes. They are not zero-forcing, so they try to representve will say thatg is theKL-projection of p onto 7. As a
multiple modes, but will ignore modes that are far awayshorthand for this, define the operatanj|-] as:

from the main mass (how far depends@n

S.1 A fixed-point scheme

proj = argminKL(p || ¢ (10)
Now consider the mass of the optimal Write ¢(z) = 2 qEF wlle)

Zq(x), where g is normalized, so thaZ represents the
mass. It is straightforward to obtain the optimufm Theorem 3 Let F be indexed by a continuous parameter
6, possibly with constraints. ki # 0:

q is a stationary point oD, (p || q) (11)

5 exp (ft q(x)log 28;;

B if =0 < gis astationary point oproj [p(z)“q(z)"' ]

dx
)1/a

([, p(x)*q(z)~dx otherwise
Proof: The derivative of thev-divergence with respect to
0is
This is true regardless of whethgis optimal. dDy(p|lq) 1 dq(z) p () dg(x) p
—_— = —dzr — x
Theorem 1 If z is a non-negative random variable, then do o </x do /z q(z) db )
E[z*]*/* is nondecreasing ia. (12)
Proof: See appendix B. O wherepj(z) = p(z)*q(z)' (13)



Whena = 1 (KL-divergence), the derivative is 3.3 Fully-factorized approximations

q(x) do

Comparing (14) and (12), we find that

dKL(p || q) dq(x) p(z) dg(z) A distribution is said to béully-factorized if it can be writ-
dr — dx (14) ten as
de de .
q(x) = s [ [ a:(@:) (21)

We will use the convention that is normalized, so that

x

dD.(p || q) 1 dKL(pp, || ) (15) represents the integral of
do 9o, @ do 9=0, KL-projection onto a fully-factorized distribution reduces
to matching the marginals of
Therefore ifa. # 0, the corresponding Lagrangians must (22)
have the same stationary points. O q = projfp] <= Vi/ q(x)dx :/ p(x)dx
x\z; x\z;

To find aq satisfying (11), we can apply a fixed-point iter-
ation. Guess an initiaj, then repeatedly update it via
T el s= [ p(x)dx (23)
¢'(x) = proj[p(x)*q(z)' =] (16) /x

q(z)"™ = q(2)°q (z)' ¢ (17) Vi qi(m;) = é/ p(x)dx (24)
x\z;

which simplifies to

This scheme is heuristic and not guaranteed to convergg&quation (16) in the fixed-point scheme simplifies to:
However, it is often successful with an appropriate amount

of damping €). s = /p(x)aq(x)lfo‘dx (25)
More generally, we can minimiz®, by repeatedly mini- )

mizing any othetD, (o’ # 0): o) = 51//\ p(x)%g(x)'~dx (26)
¢'(z) = argmin D (p(x)™/* q(2) =" || ¢ (2)) (18) 7
=)™ [ [l e @)

J#i
In this equationg is assumed to have no constraints other
A set of distributions is called axponential family if ~ than being fully-factorized. Going further, we may require

3.2 Exponential families

each can be written as g to be in a fully-factorized exponential family. A fully-
factorized exponential family has featurgs(z;), involv-
az) = exp(X.g;(@)v;) (19) ing one variable at a time. In this case, (20) becomes
- 393 J

wherev; are the parameters of the distribution ayjdare 4= projlp] =y xg” (w:)g(x)dx 28
fixed features of the family, such &s, x, #2) in the Gaus- (28)
sian case. To work with unnormalized distributions, we = /xgij(xf?)p(x)dx

makego(z) = 1 a feature, whose corresponding parameter._, . . . —
Vo captures the scale of the distribution. To ensure the dis-—rhIS can be abbreviated using a projection onto the features

tribution is proper, there may be constraints onithee.g. Of z; (which may vary witf):

the variance of a Gaussian must be positive.
o _ . _ _ proj / q(x)dx| = proj / p(x)dx (29)
KL-projection for exponential families has a simple inter- Jx\x; x\z;

pretation. Substituting (19) into the KL-divergence, we
find that the minimum is achieved at any memberfof or 5qi(x;) = proj [/ p(x)dx] (30)
whose expectation af; matches that op, for all j: x\xi

Equation (16) in the fixed-point scheme becomes:

i=proils] = % [ @@= [ g@p@d 1

@ @ q;(xi) = —proj p(x)%q(x) " “dx (31)

(20) s o\
For example, ifF is the set of Gaussians, themojp]
is the unique Gaussian whose mean, variance, and scale sl—« . o o
matchew. Equation (16) in the fixed-point scheme reduces ~ — g P g () / p(x) qu (z;) " "dx
. . o 11— . X\wi j;éi

to computing the expectationsfr)“q(x)' ~* and setting
¢’ (x) to match those expectations. (32)



Let's approximate this distribution with a fully-factorized
q (21), minimizing differentn-divergences. This approxi-

1/4 2 [1 0] mation has 3 free parameters: the total masg.(0), and
3/4 01 ¢,(0). We can solve for these parameters analytically. By
z Yy symmetry, we must havg, (0) = ¢,(0). Furthermore, at a

fixed pointg = ¢’. Thus (27) simplifies as follows:
Figure 4: Factor graph for the equality example

11—«
0o(@) = " aa(2) D pla,y) gy (9)
Note thatg;(z;)'~ is inside the projection. s » (36)
Whena = 0, the fixed-point scheme of section 3.1 doesn't Qe(2)® =57¢ ZP(% Y)*q(y) (37)
apply. However, there is a simple fixed-point scheme for y
minimizing KL(q || p) whenq is fully-factorized and other- ¢2(0)® = 57 %p,(0)%q(0)' (38)
wise unconstrained (the other cases are more complicated). (0)2a_1 — O, (0)° (39)
With ¢ having form (21), the KL-divergence becomes: e . =5 P
q:(1)"7 " =57 p,(1)" (40)
KLigllp) =53 [ oo logai(ede, (qu))“—l N "
~ Ja, = (41)
‘ qz(1) Pz (1)
- s/ Hq,;(xi)logp(x)dx
L(0)>/ (2a=1)
+slogs—s +/p(x)dx (33) 4u(0) = {pz(o)a/@a(nﬂz(l)a/(za1) a>1/2 (42)
* 0 a<1/2
Zeroing the derivative with respect tg(z;) gives the up- YN
date s = pa(1)ga (1) 729/ (43)

qi ()™ oc exp / H g;(x;) log p(x)dx (34)  Whena = 1, corresponding to running belief propagation,
X\Ti ot the result i(¢,(0) = p,(0), s = 1) which means

which is analogous to (27) with — 0. Cycling through

these updates for allgives a coordinate descent procedure. [1/4} [1/4}
Because each subproblem is convex, the procedure must ¢ee(z,y) = [3/4] |3/4
converge to a local minimum. z Y

x[1/16 3/16]
= "[3/16 9/16] (44
y

3.4 Equality example The approximation matches the marginals and total mass of
p. Because the divergence is inclusive, the approximation

This section considers a concrete example of minimizingncludes both modes, and smooths over the zeros. It over-

a-divergence over fully-factorized distributions, illustrat- represents the higher mode, making it 9 times higher than

ing the difference between different divergences, and by exthe other, while it should only be 3 times higher.

tension, different message-passing schemes. Consider a bj- . . ' .

nary variabler whose distribution i, (0) = 1/4, p, (1) = Whena = 0, corresponding tp running mean-field, or in

3/4. Now add a binary variablg which is constrained [aCt Whena < 1/2, the result is(¢.(0) = 0,5 = ps(1))

to equalz. The marginal distribution fox should be un- which means

changed, and the marginal distribution foshould be the

same as fox: p,(0) = 1/4. However, this is not necessar- H m 2 [0 0 ]
ily the case when using approximate inference. aur(z,y) =3/4 1] [1] = "[0 3/4 (45)
€ Yy Y

These two pieces of information can be visualized as a fac-
tor graph (figure 4). The joint distribution aof andy can

i . This divergence preserves the zeros, forcing it to model
be written as a matrix:

only one mode, whose height is represented correctly.

- 1/4 0 There are two local minima in the minimization, corre-
p(x,y) = 0 3/4 (35) sponding to the two modes—the global minimum, shown
Y here, models the more massive mode. The approximation

This distribution has two modes of different height, similar does not preserve the marginals or overall mags of

to the example in figure 1. At the other extreme, whem — oo, the result igq,(0) =



V(0 The first step is to choose an exponential family. The rea-
(v/p=(0) + ) which means i all = - e
VP (0 +\/ ’ son to use exponential families is closure under multiplica-
tion: the product of any distributions in the family is also

1 1
2 | 1+/3 1+v/3 in the family.
lany) = LY [ ﬁ] [ ﬁ] (46)

4 1+v3 1+v/3 The next step is to write the original distributignas a
z Yy product of nonnegative factors:
1/4 /3/4
= Lf/z; 3/4 } (47) p(x) =[] fa(x) (48)

Y
This defines the specific way in which we want to divide

As expected, the approximation is a point-wise upperthe network, and is not unique. Each factor can depend on
bound top. It preserves both peaks perfectly, but smoothsseveral, perhaps all, of the variablepoBy approximating
away the zeros. It does not preserve the marginals or tot&ach factorf, by fa € F,we get an approximation divided

mass ofp. in the same way:
From these results, we can draw the following conclusions: fa(x) = exp(_;95(X)Ta;s) (49)
X) = ~a X 50
e None of the approximations is inherently superior. It 4(x) 1:[f () (50)

depends on what properties pfyou care about pre-
serving. Now we look at the problem from the perspective of a given

approximate factof, . Defineq\*(x) to be the product of
» Fitting a fully-factorized approximation does not im- g other approximate factors:

ply trying to match the marginals qgf. It depends

on what properties the divergence measure is trying to q\a( )= /fa H fb (51)
preserve. Usinge = 0 is equivalent to saying that ze- b#a

ros are more important to preserve than marginals, S%|mllarly, definep\e(x) — Hb# f.(x). Then factor

when faced with the choice, mean-field will preserve ~ i
the zeros. fa seeks to minimizeD(f,p\* || fuq\*). To make this

tractable, assume that the approximations we've already

e Under approximate inference, adding a new variablenade,q\“(x), are a good approximation to the rest of the

(y, in this case) to a model can change the estimatiometwork, i.ep\® ~ ¢\, at least for the purposes of solving

of existing variablesx), even when the new variable for f,. Then the problem becomes

provides no information. For example, when using z . . a = @

mean-field, adding suddenly makes us believe that Ja(x) = argmin D(fa(x)g"* (%) || fa(x)q"*(x))  (52)

x=1. This problem is tractable, provided we've made a sensi-
ble choice of factors. It can be solved with the procedures
of section 3. Cycling through these coupled subproblems

4 Message-passing gives the message-passing algorithm:

This section describes a general message-passing schep®@neric Message Passing
to (approximately) minimize a given divergence measure

) _ : e Initialize f,(x) for all a.
D. Mean-field methods, belief propagation, and expectar

tion propagation are all included in this scheme. e Repeat until allf, converge:
The procedure is as follows. We have a distributioand 1. Pick a factora.
we want to findg € F that minimizesD(p || q). First, 2. Computeg\* via (51).
we must restrictF to be an exponential family. Then 3. Using the methods of section 3:
we will write the distributionp as a product of factors, new
(x) = [, fa(x), as in a Bayesian network. Each factor Jae)™ = ~
will be approximated by a member @, such that when argmin D(fa(x)q"*(x) || fa(x)q"*(x))

we multiply these approximations together we geta F
that has a small value @ (p || ¢). The best approximation This algorithm can be interpreted as message passing be-
of each factor depends on the rest of the network, givingween the factorg,. The approximatiory, is the message

a chicken-and-egg problem. This is solved by an iterativethat factora sends to the rest of the network, apd is the
message-passing procedure where each factor sends its @pllection of messages that factoreceives (its “inbox”).
proximation to the rest of the net, and then recomputes it3he inbox summarizes the behavior of the rest of the net-
approximation based on the messages it receives. work.



Figure 5: Message-passing on a factor graph

4.1 Fully-factorized case

When ¢ is fully-factorized as in section 3.3, message-

1

Ma—i(25) M (@) = 7% (59)
proj \ x)* [ [ ma—ss(@)' = mya(;)dx
X\T; ]
Mai(51) = 10 [mai(w:) "~ mia(21)
a—1 1 s/mlﬂa(xl) a—1 3 1—a K3
) H Mo () "M q(z;)dx| (60)
x\x; i

A special case arises if; does not appear inf,(x).

passing has an elegant graphical interpretation via factofhen the integral in (60) becomes constant with respect
graphs. Instead of factors passing messages to factors, mée-z; and the projection is exact, leaving,—;(z;)

sages move along the edges of the factor graph, betweena—i(z:)' ™

. In other wordsymn,_.;(z;) = 1. With this

variables and factors, as shown in figure 5. (The case whergubstitution, we onl_y need_ to propagate messages between
¢ is structured can also be visualized on a graph, but a mora factor and the variables it uses.

complex type of graph known ass&ructured region graph
(Welling et al., 2005).)

Becausgy is fully-factorized, the approximate factors will
be fully-factorized into messages,_.; from factora to

variables::
fa(x) = [ [ ma—i(a:)

Individual messages need not be normalized, and need n
be proper distributions.

(53)

The inboxesg\*(x) will factorize in the same way ag
We can collect all terms involving the same variableto
define messages; ., from variablei to factora:

mz%a xz H nlbﬂz 1’1 (54)
b#a
q\a H H mbﬂz xz H miﬂa(xi) (55)
b#a 1 i

This impliesg; (x;) = ma—i(z;)m;—q(z;) for anya.

Now solve (52) in the fully-factorized case. ¥ is ana-

The algorithm becomes:

Fully-Factorized Message Passing
e Initialize m,_;(x;) for all (a, 7).
e Repeat until alin,_,; converge:

1. Pick a factora.
2. Compute the messages into the factor via ($4).

3. Compute the messages out of the factor via (60)
(if D is ana-divergence), and apply a step-sjze
€ (17).

ot

If D is not ana-divergence, then the outgoing message
formula will change but the overall algorithm is the same.

4.2 Local vs. global divergence

The generic message passing algorithm is based on
the assumption that minimizing thkvcal divergences
D(fa(2)q\*(x) || fa(z)q\*(x)) approximates minimizing
the global divergenc®(p || ¢). An interesting question
is whether, in the end, we are minimizing the divergence

divergence, we can apply the fixed-point iteration of secyve intended, or if the result resembles some other diver-

tion 3.1. Substitutep(x) = f.(x)g‘*(x) and g(x) =
fa(x)g\*(x) into (25) to get

5 7/fa )7\ (x)dx
- / fa<x>“HWLaﬂj(xj>l*

Make the same substitution into (31):

(56)

“mj_q(xj)dx  (57)

Fa(x)* fa(3)' ¢\ (x)dx

1 .
qi(wi) = ,PTOJ[
s x\z;
(58)

gence. In the case = 0, minimizing local divergences
corresponds exactly to minimizing global divergence, as
shown in section 5. Otherwise, the correspondence is
only approximate. To measure how close the correspon-
dence is, consider the following experiment: given a global
a-divergence indexyg, find the corresponding local-
divergence indexv;, which produces the besgtaccording

to ag.

This experiment was carried out witlix) equal to at x 4
Boltzmann grid, i.e. binary variables connected by pairwise

factors:
Hfz xz H fzg Zi, T

ijeE

(61)



minimize.

We can also improve the quality of the approximation by
changing the number of factors we divigénto. In the ex-
treme case, we can use only one factor to represent all of
p, in which case the local divergence is exactly the global

4 4 divergence. By using more factors, we simplify the com-
2 2 putations, at the cost of making additional approximations.

local alpha
local alpha

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

gloalaphia global apha 4.3 Mismatched divergences
(a) coupling~ U(—1,1) (b) coupling=1
It is possible to run message passing with a different diver-
Figure 6: The best local for minimizing a given global  gence measure being minimized for each faatoFor ex-
a-divergence, across ten networks with (a) random or (bample, one factor may use= 1 while another uses = 0.
positive couplings. The motivation for this is that some divergences may be
easier to minimize for certain factors (Minka, 2004). The
o o effect of this on the global result is unclear, but locally the
The grapht was a grid with four-connectivity. The unary qpservations of section 2 will continue to hold.

potentials had the forny;(z;) = [exp(6i1)exp(6:2)], _ _ _ . _

and the pairwise potentials had the forfy(z;,z;) = While less motivated theoretically, mismatched diver-
1 exp(wg;) i gences are very useful in practice. Henceforth we will al-

exp(wiy) 1 7|+ The goal was to approximaie o each factor to have its own divergence inde.

with a fully-factorizedq. For a given local divergence;,,

this was done using the fractional BP algorithm of section 74.4 Estimating Z

(all factors used the samg,). ThenD,,, (p || ¢) was com-

puted by explicit summation over (enumerating all states JUst as in section 2, we can analytically derive fhehat

of the network). Ten random networks were generated witiyvould be computed by message- passmg, for any approxi-
(6, w) drawn randomly from a uniform distribution over mating family. Letg(x) = [T, fa(x), possibly unnormal-
[—1,1]. The results are shown in figure 6(a). For individ- ized, wheref, (x) are any functions in the famil§. Define

ual networks the best; sometimes differs from when  the rescaled factors

ag > 1 (not shown), but the one best, across all 10 net-

works (shown) isx;, = ag, with a slight downward bias fo(x) = sqfa(x) (62)
for largeag. Thgs by minimizing Iogahzed divergence we q(x) = H fé(x) = (H $a)q(x) (63)
are close to minimizing the same divergence globally. - ”

In general, if the approximating famil§ is a good fit to 7 / / _ / 4
p, then we should expect local divergence to match global x ¢ (x)dx x a(x)dx 1:[ % (64)

divergence, since\® ~ p\*. In a graph with random po-
tentials, the correlations tend to be short, so approximatThe scales, that minimizes locat-divergence is
ing p\* with a fully-factorized distribution does little harm

(there is not much over-counting due to loops).plhas / g(x) log % fa(x )dx

long-range correlations, then® will not fit as well, and x (%) .

we expect a larger discrepancy between local and global exp ifa, =0
divergence. To test this, another experiment was run with /q(x)dx

w;; = 1 on all edges. In this case, there are long-range cor- $a = f (X)X Qg 1/aa (65)
relations and message passing suffers from over-counting / ( - ) (x)

effects. The results in figure 6(b) now show a consistent fa(x) otherwise
discrepancy betweemi; anday,. Whenag < 0, the best /q(x)dx

ar = ag as before. But wheng > 0, the besty;, was x

strictly larger thanag (the relationship is approximately ) o ]

linear, with slope> 1). To understand why large;, could ~ Plugging this into (64) gives (fat, # 0):

be good, recall that increasiagleads to flatter approxima- =5 1/

tions, which try to cover all op. By making the local ap- _ </ ( )dx) %

proximations flatter, we make the messages weaker, which x

reduces the over-counting. This example shows that if Fa(x) ) 1/aa (66)
is a poor fit top, then we might do better by choosing a H </ ( = ) (x)d )

local divergence different from the global one we want to a s \ fa(X)



Because the mass gfestimates the mass pf (66) pro- the fact that it provides a bound on the model evidence
vides an estimate of, _p(x)dx (the partition function or  Z = [ p(x)dz, as shown by (9a). However, theorem 2
model evidence). Compared to (8), the minimum of theshows that there are many other upper and lower bounds
global divergence, this estimate is more practical to comwe could obtain, by minimizing other divergences. What
pute since it involves integrals over one factor at a timereally makesae = 0 special is its computational proper-
Interestingly, whemy = 0 the local and global estimates ties. Uniquely among atk-divergences, it enjoys an equiv-
are the same. This fact is explored in section 5. alence between global and local divergence. Rather than
minimize the global divergence directly, we can apply the

Theorem 4 For any set of messag¢s generic message-passing algorithm of section 4, to get the

- ) variational message-passing algorithm of Winn & Bishop
Z= /xp(x)dx if o <0 (672)  (2005). Uniquely fora = 0, the message-passing fixed
points are exactly the stationary points of the global KL-
~ . ag >0 .
Z > /p(x)dx if (67b)  divergence.
x Yool /e <1

To get variational message-passing, use a fully-factorized
) ) o approximation with no exponential family constraint (sec-
Proof: Appendix C proves the following generalizations tjon 3.3). To minimize the local divergence (52), substitute

of the Holder inequality: p(x) = fa(x)g\%(x) andg(x) = fa(x)q\“(x) into the
@il /o . fixed-point scheme fote = 0 (34) to get:
Elllz:] > [ Bz if ; <0 (68a)
;i >0
E X < E o 1/a; i (07 68b ; inew / ()1 A d
MLz < I1Blaf] S 1Jar <1 (680)  qi(x:)"" o exp( x\zi]l;[iqj(%) 0g fa(x)dx)x
Substitutingz; = f;/f; and taking the expectations with exp(/ qu(xj) log ¢\*(x)dx) (69)
X\ oty

respect to the normalized distributiatf |, ¢(x)dx gives
exactly the bounds in the theorem. O

The upper bound (67b) is equivalent to that of Wainwright
etal. (2005b), who proved it in the case whe(g) was an
exponential family, but in fact it holds for any nonnegative oy, / M i (2:)M i —a(:) log fa(x)dx)x
p(x). Appendix D provides an alternative proof of (67b), ( x\z; Jl;[z 3()mi—a(z;) (x)dx)
using arguments similar to Wainwright et al. (2005b).

Mg (24)""Mi—q ()

exp( [14(@))dx | logmia(x:)) (70)

4.5 The free-energy function X\&i i

Besides its use as an estimate of the model evidence, (66)
has another interpretation. As a function of the message
parameters,, its stationary points are exactly the fixed
pqlnts of a-divergence message passing (Minka, 2004; exp( Hma—q'(xj)mj—m(l'j)log fa(x)dx) (71)
Minka, 2001a). In other words, (66) is the surrogate ob- x\i 2

jective function that message-passing is optimizing, in lieu

of the intractable global divergende, (p || q). Because Applying the template of section 4.1, the algorithm be-
mean-field, belief propagation, expectation propagationCOmMes:

etc. are all instances efdivergence message passing, (66)| Variational message-passing
describes the surrogate objective for all of them.

Mg ()"

) _ | e Initialize m,_,;(x;) for all (a, 7).
Now that we have established the generic message-passing

algorithm, let’s look at specific instances of it. e Repeat until alin,_,; converge:
_ 1. Pick a factora.
5 Mean-field 2. Compute the messages into the factor via (54).
3. Compute the messages out of the factor|via

This section shows that the mean-field method is a spe
cial case of the generic message-passing algorithm. In t
mean-field method (Jordan et al., 1999; Jaakkola, 2000) w&he above algorithm is for general factofs. However,
minimize KL(q || p), the exclusive KL-divergence. Why because VMP does not project the messages onto an expo-
should we minimize exclusive KL, versus other divergencenential family, they can get arbitrarily complex. (Section 6
measures? Some authors motivate the exclusive KL bgiscusses this issue with belief propagation.) The only way

(71).

P
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to control the message complexity is to restrict the factorsnode ofp. When the modes are equally massive, it will

f. to already be in an exponential family. This is the re-
striction onf,, adopted by Winn & Bishop (2005).

Now we show that this algorithm has the same fixed point
as the global KL-divergence. Lethave the exponential
form (19) with free parameters;. The global divergence
is

q(x)

KL(q|lp) = / q(x) log ()

dx+ [ () - a()ix
(72)

Zeroing the derivative with respect tg gives the station-
ary condition:

q(x)

: /
—KL = (x)q(x)lo dx=0 73
i, (¢l p) xg;( )a(x) 8 () (73)
Define the matrice$ andB with entries
i = [ 50 (x)alx)ax (74)

bay = / 0;(x)q(x) log fa(x)dx (75)

Substituting the exponential form gfinto (73) gives

Hu—Zba:O

In message-passing, the local divergence for facier

(76)

KL (g(x) || fa(x)q\*(x))

[

fa(x)
fa(x)

Here the free parameters are the from (49). The deriva-

tive of the local divergence with respect tg; gives the

stationary condition:

@)
dx + / (Fa(3) — ()0 ()

[ sx)atx) 108 ;8 dx =0 (78)
Hr,—b,=0 (79)
(80)

where Z To=v
a

pick one of them at random. This symmetry-breaking
property is discussed by Jaakkola (2000). Sometimes
symmetry-breaking is viewed as a problem, while other

Simes itis exploited as a feature.

6 Belief Propagation and EP

This section describes how to obtain loopy belief prop-
agation (BP) and expectation propagation (EP) from the
generic message-passing algorithm. In both cases, we lo-
cally minimize KL(p || ¢), the inclusive KL-divergence.
Unlike the mean-field method, we do not necessarily min-
imize global KL-divergence exactly. However, if inclusive
KL is what you want to minimize, then BP and EP do a
better job than mean-field.

To get loopy belief propagation, use a fully-factorized ap-
proximation with no explicit exponential family constraint
(section 3.3). This is equivalent to using an exponential
family with lots of indicator features:
9ij(2:) = 6(x; — j) (81)
wherej ranges over the domain af. Sincea = 1, the
fully-factorized message equation (60) becomes:

Ma—i(z;) fa(x) H Mmj_q(z;)dx (82)

x\ei J#i

Applying the template of section 4.1, the algorithm is:

Loopy belief propagation
e Initialize m,_.;(z;) for all (a, ).
e Repeat until alin,_,; converge:

1. Pick a factora.
2. Compute the messages into the factor via (%4).

3. Compute the messages out of the factor|via
(82), and apply a step-size

It is possible to improve the performance of belief prop-
agation by clustering variables together, corresponding to
a partially-factorized approximation. However, the cost of

Now we show that the conditions (76) and (79) are equiv-the algorithm grows rapidly with the amount of clustering,

alent. In one direction, if we have’s satisfying (79) and
(80), then we have a& satisfying (76). In the other direc-
tion, if we have av satisfying (76), then we can compute
(H, B) from (74,75) and solve for, in (79). (If H is sin-
gular, there may be multiple valid’s.) The resultingr’s
will satisfy (80), providing a valid message-passing fixed

point. Thus a message-passing fixed point implies a globaz

fixed point and vice versa.

since the messages get exponentially more complex.

Because BP does not project the messages onto an expo-
nential family, they can have unbounded complexity. When
discrete and continuous variables are mixed, the messages
in belief propagation can get exponentially complex. Con-
ider a dynamic Bayes net with a continuous state whose
ynamics is controlled by discrete hidden switches (Hes-
kes & Zoeter, 2002). As you go forward in time, the state

From the discussion in section 2, we expect that in multi-distribution acquires multiple modes due to the unknown
modal cases this method will represent the most massivewitches. The number of modes is multiplied at every time

11



step, leading to an exponential increase in message conkquatingm,—.;(x;) on both sides gives
plexity through the network. The only way to control the

complexity of BP is to restrict the factors to already be in 1, _;(z;)" (85)
an exponential family. In practice, this limits BP to fully- 1/a
discrete or fully-Gaussian networks.

. . . . . fa(x)aHma—d(xj)liamj—m(xj)dx
Expectation propagation (EP) is an extension of belief x\z; A

propagation which fixes these problems. The essential dif-

ference between EP and BP is that EP imposes an exponewhich is the message equation for fractional BP.
tial family constraint on the messages. This is useful in two
ways. First, by bounding the complexity of the mes:sages8
it provides practical message-passing in general networks
with continuous variables. Second, EP reduces the cost of

clustering variables, since you don't have to compute thérh's section describes how to obtain tree-reweighted mes-

exact joint distribution of a cluster. You could fit a jointly sagehpassin%](TEW) fro_m the ger?eric. n;}essagle-passir;g al-
Gaussian approximation to the cluster, or you could fit s3°1ithm. In the description of Wainwright et al. (2005b),

tree-structured approximation to the cluster (Minka & Qi, treg-reweighted message passing is an algorithm for com-
2003). puting an upper bound on the partition functicgh =

J. p(z)dz. However, TRW can also be viewed as an in-
With an exponential family constraint, the fully-factorized ference algorithm which approximates a distributjphy
message equation (60) becomes: minimizing a-divergence. In fact, TRW is a special case of
fractional BP.

Tree-reweighted message passing

1

p— (x‘)proj [Mi—a (i) In tree-reweighted message passing, each fattds as-

signed amappearance probability.(a) € (0,1]. Let the
powera, = 1/u(a). The messaged/;;(z,) in Wain-
. fa(x) Hmﬂéa(mﬂ')dx (83) wright et al. (2005b) are equivalent to, ;(x;)“ in this

‘ 7 paper. In the notation of this paper, the message equation
of Wainwright et al. (2005b) is:

mn,—»i(xi)/ X

Applying the template of section 4.1, the algorithm is:

Expectation propagation Mai(i)®
o Initialize m,_;(z;) for all (a, ). fa(x)% H [Thza mbaj(itj)dx (86)
N . Nag—1
e Repeat until alin,_,; converge: x\@; G e (z5)

1. Pick a factora.
2. Compute the messages into the factor via (%4).

3. Compute the messages out of the factor|via
(83), and apply a step-size

=/ fa() [ [ ma—i(@)' =" m;a(z;)dx  (87)
AT i

This is exactly the fractional BP update (85). The TRW
update is therefore equivalent to minimizing locat
divergence. The constraifit< p(a) < 1 requiresa, > 1.

This section describes how to obtain fractional belief prop-NOte that (86) applies to factors of any degree, not just pair-

agation (FBP) and power expectation propagation (Powe\fvIse factors as in Wainwright et al. (2005b).

EP) from the generic message-passing algorithm. In thiThe remaining question is how to obtain the upper bound

case, we locally minimize any-divergence. formula of Wainwright et al. (2005b). Because, /i(a) #

Previous sections have already derived the relevant equsll-In general, the. upper bom_md in (67D) dqes not directly
apply. However, if we redefine the factors in the bound to

tions. The algorithm of section 4.1 already implements : . .
Power EP. Fractional BP excludes the exponential familyCorreSpond tothe trees in TRW, then (67b) gives the desired

projection. If you drop the projection in the fully-factorized upper bound.

7 Fractional BP and Power EP

message equation (60), you get: Specifically, letA be any subset of factoy, and letu(A)
be a normalized distribution over all possible subsets. In
Mai(T) o< Mai(25) 7% TRW, u(A) > 0 only for spanning trees, but this is not

. e essential. Lef:(a) denote the appearance probability of
Fa()* [T ma—i(@)'~*mj—a(a;)dx  (84)  factora, i.e. the sum ofu(A) over all subsets containing
x\ei i factor a. For each subsetl, define thefactor-group f 4
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according to:

fax) = T fale) /@

a€A

(88)

These factor-groups define a valid factorizatiopof

p(x) =[] fax) (89)
A

This is true because of the definition @fa). Similarly, if

q(x) =11, fa (x), then we can define approximate factor-

groupsf4 according to:

fA(X) - H fa(x)u(A)/u(a) (90)
a€A
which provide another factorization of
(91)

depending on the specific factors involved. Some diver-
gences also have lots of local minima, to trap a would-
be optimizer. So an important step in designing a mes-
sage passing algorithm should be to determine which diver-
gences are the easiest to minimize on the given problem.

Next we have the approximating family. If the approxi-
mating family is a good fit to the true distribution, then it
doesn’'t matter which divergence measure you use, since
all will give similar results. The only consideration at that
point is computational complexity. If the approximating
family is a poor fit to the true distribution, then you are
probably safest to use an exclusive divergence, which only
tries to model one mode. With an inclusive divergence,
message passing probably won’t converge at all. If the ap-
proximating family is a medium fit to the true distribution,
then you need to consider the inference goal.

For some tasks, there are uniquely suited divergence mea-

sures. For exampleg;? divergence is well-suited for choos-
ing the proposal density for importance sampling (ap-
pendix E). If the task is to compute marginal distributions,
using a fully-factorized approximation, then the best choice
(amonga-divergences) is inclusive KLa( = 1), because

it is the only o which strives to preserve the marginals.
Papers that compare mean-field versus belief propagation
at estimating marginals invariably find belief propagation
Because) _ , u(A) = 1, we haved ® , 1/aq = 1. By the-  to be better (Weiss, 2001; Minka & Qi, 2003; Kappen &
orem 4, (92) is an upper bound dh When restricted to  Wiegerinck, 2001; Mooij & Kappen, 2004). This is be-
spanning trees, it gives exactly the upper bound of Waincause mean-field is optimizing for a different task. Just
wright et al. (2005b) (their equation 16). To see the equiv-because the approximation is factorized does not mean that
alence, note thatp(®(0(T))) in their notation is the same the factors are supposed to approximate the marginals of

q(x) =[] fa(x)
A

Now plug this factorization into (66), using poweks, =
1/p(A):

() ) .

as [, (M o q(x)dx, because of their equations 21, p—it depends on what divergence measure they optimize.
22 58 ji{}%%g The inclusive KL should also be preferred for estimating

the integral ofp (the partition function, see section 2) or
In Wainwright et al. (2005b), it was observed that TRW other simple moments of
sometimes achieves better estimates of the marginals thaP

BP. This seems to contradict the result of section 3 tha]( the task is Bayesian learning, the situation is more com-
' . _plicated. Herex is a parameter vector, apdx) = p(x|D)

« = 1 is the best at estimating marginals. However, in! L T . L .
section 4.2, we saw that sometimes it is better for messagéé the posterior distribution given training data. The predic-

passing to use alocal divergence which is different from thé'ye (T}strtlﬁgtlon for ftuttgre dat% 'Is.'kfx tp (ylx)p (X.)dx' To
global one we want to minimize. In particular, this is true simplify this computation, we'd like to approximagx)

when the network has purely attractive couplings. Indeed\,’vith q(x) an_d predict qSing/xp(y‘X)Q(x)dx' Typ@cally,
this was the good case for TRW observed by WainwrightWe are not interested in(x) directly, but only this pre-
et al. (2005b) (their figures 7b and 9b) dictive distribution. Thus a sensible error measure is the

divergence between the predictive distributions:

D ( [ st || [ p(y|x>q<x>dx) (93)

This section gives general guidelines for choosing a diverBecause(y|x) is a fixed function, this is a valid objective
gence measure in message passing. There are three mé#&m ¢(x). Unfortunately, it is different from the divergence
considerations: computational complexity, the approximatimeasures we've looked at so far. The measures so far com-
ing family, and the inference goal. parep to g point-by-point, while (93) takes averages;of

. L : and compares these to averageg.off we want to use al-
First, the reason we make approximations is to save compu-

; . ) . cgorithms fora-divergence, then we need to find thenost
tation, so if a divergence measure requires a lot of work ta’.” .

S , ; . similar to (93).
minimize, we shouldn’t use it. Even amongdivergences,
there can be vast differences in computational complexityConsider binary classification with a likelihood of the form

9 Choosing a divergence measure
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This is hard to capture with a point-wise divergence. For
0.22¢ l example, if our prior is symmetric with respect to the pa-
rameters and we condition on data, then any mode in the
posterior will have a mirror copy corresponding to swap-
0.18} 1 ping components. Minimizing an inclusive divergence will
waste resources by trying to represent all of these identi-
cal modes. An exclusive divergence, however, will focus
0.14} ] on one mode. This doesn’t completely solve the problem,
since there may be multiple modes of the likelihood even
for one component ordering, but it performs well in prac-
04l ] tice. This is an example of a problem where, because of the
complexity of the posterior, it is safest to use an exclusive
divergence. Perhaps with a different approximating fam-
ily, e.g. one which assumes symmetrically placed modes,
Figure 7: Average predictive error for various alpha-inclusive divergence would also work well.

divergences on a mock classification task.

021

0.16

Total predictive error

0.121

-3 -2 -1 0 1 2 3 4 5

10 Future work

p(y = +1|x,2z) = ¢(yxTz), wherez is the input vector,

y is the label, andy is a step function. In this case, the The perspective of information divergences offers a vari-
predictive probability thay = 1 is Pr(xTz > 0) under €ty of new research directions for the artificial intelligence
the (normalized) posterior fot. This is equivalent to pro- community. For example, we could construct informa-
jecting the unnormalized posterior onto the lixé€z, and tion divergence interpretations of other message-passing al-
measuring the total mass above zero, compared to belo@orithms, such as generalized belief propagation (Yedidia
zero. These one-dimensional projections might look like€t al., 2004), max-product versions of BP and TRW (Wain-
the distributions in figure 1. By fitting a Gaussiantx), ~ Wright et al., 2005a), Laplace propagation (Smola et al.,
we make all these projections Gaussian, which may alte?003), and bound propagation (Leisink & Kappen, 2003).
the total mass above/below zero. A gaget) is one which ~ We could improve the performance of Bayesian learning

preserves the correct mass on each side of zero; no othéection 9) by finding more appropriate divergence mea-
properties matter. sures and turning them into message-passing algorithms.
) . ) . In networks with long-range correlations, it is difficult to
To find the a-divergence which best captures this er-haict the best local divergence measure (section 4.2). An-
ror measure, we ran the following experiment. We firstg,yering this question could significantly improve the per-
sampled 210 random one-dimensional mixtures of Worormance of message-passing on hard networks. By con-
Gaussians (means froif(0,4), variances from squaring ining to assemble the pieces of the inference puzzle, we

N(0,1), scale factors uniform off), 1]). For each one, can make Bayesian methods easier for everyone to enjoy.
we fit a Gaussian by minimizing-divergence, for several

values ofa. After optimization, bothp and ¢ were nor-

malized, and we computedz > 0) andg(z > 0). The Acknowledgment
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A Ali-Silvey divergences

Ali & Silvey (1966) defined a family of convex divergence
measures which includes-divergence as a special case.
These are sometimes call¢gelivergences because they are
parameterized by the choice of a convex functforsome
properties of thev-divergence are easier to prove by think-
ing of it as an instance of afi-divergence. With appro-
priate corrections to handle unnormalized distributions, the
general formula for arf-divergence is

p(x)
Dy(pllq) = i )/q(x)f (q(l’)> +
(f'(1) = f(1)g(z) = f'(Dp(x)dr  (94)

Y. (2003). Tree-structured approximations by \yhere f is any convex or concave function (concave func-

tions are turned into convex ones by tffeterm). Evaluat-
ing f”(r) atr = 1 is arbitrary; only the sign of” matters.
Some examples:

KLl 1) =tout) 02 o9
KLl F0) = rlogtr) 1,071 (99

1) =« 97
Daplla): gy = 7 D

The L; distance [ [p(z) — ¢(x)|dx can be obtained as
f(r) = |r — 1] if we formally define(f’(1) = 0, f"(1) =
1), for example by taking a limit. Th¢-divergences are
a large class, but they do not include e.g. fhedistance

J(p(x) — q(z))da.

The derivatives with respect gpandq are:

Bila_ L ((52) o) o
dqu(f |>| 2= (f (ZEB)‘f ® ©9
cir(sd) o)

Therefore the divergence and its derivatives are zero at
p = ¢. It can be verified by direct differentiation that,

is jointly convex in(p, q) (the Hessian is positive semidefi-
nite), therefore it must be: 0 everywhere.



As illustrated by (95,96), you can swap the positiorpof C Holder inequalities
andg in the divergence by replacingwith » f (1/r) (which
is convex if f is convex). Thug andg can be swapped in  Theorem 5 For any set of non-negative random variables
the definition (94) without Changing the essential famlly T,y Ty (not necessar”y independent) and a set of posi-
tive numbersyy, ..., o, satisfying) |, 1/a; < 1:
B Proof of Theorem 1 .
E[];xi] < T1Eff ] (115)
Theorem 1 (Liapunov’'s inequality) If = is a non-
negative random variable, and we have two real numbers
ag > aq, then: Proof: Start with the casé _, 1/«; = 1. By Jensen’s in-
equality for the logarithm we know that

Elz®2]"/*2 > B[z (100)
1 —1 xe) 1 i 116
wherea = 0 is interpreted as the limit o8 Z: og(® 2; og(:)  (116)
lim E[z a1l/e — exp(Elog ;]) (101)  Reversing this gives:
i <> 2% ay 117
Proof: Itis sufficient to prove the cases > 0 andas < 0 HI - zi:x’ /o (117)
since the other cases follow by transitivity. flfis a convex
function, then Jensen’s inequality tells us that Now consider the ratio of the Ihs of (115) over the rhs:
E[f(z*)] > f(B[z*]) (102) E([].x: :
_ Bzl [ (118)
[LEfaf ]/ o L Elag]t e
If ag > oy > 0, thenf(x) = 292/ is convex, leading to: '
1 af
<F —— 117
E[ } > E[Jjal}QQ/al (103) = Xl: o E[xf“] by( )
E[zo2)l/e2 > plpo] (104) (119)
1 Flx
If 0> ap > o, thenf(z) = z°2/*1 is concave, leading - Z o; E[z8] (120)
to: ’
ar o/ Now if . 1/a; < 1, this means some; is larger than
Elz®] < Ela®]*2/ (105)  nheeded. By Th. 1, this will only increase the right hand
E[xaz]l/a > Bz (106)  side of (115). O

Theorem 6 For any set of non-negative random variables

If as > oy = 0, Jensen’s inequality for the logarithm says . ., and a set of non-positive numbers, ..., a,, <

0.
Ellogz*?] < log E[x;?] (107)
s Ellog z;] < log E[x$?] (108) E[Lx] > [1, Bz o (121)
1 -
Ellog ;] < a log Elx7] (109)  \where the case; = 0is interpreted as the limitin (101).
exp(E[log z;]) < Elz§2]t/e (110)  Proof: By Th.1, this inequality is tightest far; = 0. By

Jensen'’s inequality for the logarithm, we know that
If 0 = as > a1, Jensen’s inequality for the logarithm says

log E[][;z;] > Eflog [ [, ] Z Ellogz;] (122)

Ellogz®t] < log E[z;"] (1112)
o Bllog ;] f log Ela"] (112) This proves the case; = 0 for all :
Ellog x] 2 — log Elz}) (113)
E[[[;zi] = I1; exp(E[log 2:]) (123)
exp(E[log z;]) > E[ ]t/ (114)
By Th.1, settingy; < 0 will only decrease the right hand
This proves all cases. O  side. O
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D Alternate upper bound proof E Alpha-divergence and importance
sampling
Define an exponential family with parametérs a):
Alpha-divergence has a close connection to importance
p(z;v,a) = sampling. Suppose we wish to estimate= | p(z)dz.
_ In importance sampling, we draw samples from a nor-

Z(v,a)"" exp(3ax log fi(x) + 3 vi9i(x)) - (124) malizlz:‘d proposal digtrigutiom(x), giving 21, ...y Zn. Then

Z is estimated by:

5 1 pl@i)
=02 )

. . . . . This estimator is unbiased, because
Because itis the partition function of an exponential family,

log Z is convex in(v, a). Define a set of parameter vectors - 1 p(x)
((A1,a1), ..., (An,an)) and non-negative weights, ..., c,, E[Z] = - Z/T —q($)q(x)dx =7 (136)
which sum to 1. Then Jensen’s inequality says LT

wherelog Z(v,a) =

(135)

log [ exp(Sanlog fla) + X,v05())dn (125)

The variance of the estimate (across different random
log Z (Y, Yciai) < Y cilog Z(Ai,ai)  (126)  draws) is

whereZci =1 (127) var(Z) = % / Zggzq(x)da? - %ZQ (137)

Because it is a sum of convex functions, this upper boundin optimal proposal distribution minimizear(Z2), i.e. it

is convex in((A1,a1), ..., (An,a,)). The integral that we  minimizes | ”((’?)2 dx overq. This is equivalent to mini-

are trying to bound i, p(z)dx = Z(0,1). Plugging this  mizing a-divergence witn — 2. Hence the problem of

into (126) and exponentiating gives selecting an optimal proposal distribution for importance
sampling is equivalent to finding a distribution with small

/p(x)d;v < H Z(Ai,a;)% (128)  a-divergence t@.

provided that) " ¢;A; = 0 (129)
Zciai =1 (130)

Choosea; to be the vector withl /¢; in positioni and 0
elsewhere. This satisfies (130) and the bound simplifies to:

/w s 1:[ (/w F eXp(Zﬁ‘iij(?C))clm) Ci

(131)
provided thatd _ c;A; = 0 (132)
To put this in the notation of (66), define
ci =1/a (133)
Ai :ZTj — ;T (134)
J

whereT; is the parameter vector g%(:c) via (49). This
definition automatically satisfies (132) and makes (131) re-
duce to (67b), which is what we wanted to prove.
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