
Mining Metrics to Predict Component Failures

Nachiappan Nagappan
Microsoft Research

Redmond, Washington

nachin@microsoft.com

Thomas Ball
Microsoft Research

Redmond, Washington

tball@microsoft.com

Andreas Zeller*
Saarland University

Saarbrücken, Germany

zeller@cs.uni-sb.de

ABSTRACT
What is it that makes software fail? In an empirical study of the
post-release defect history of five Microsoft software systems, we
found that failure-prone software entities are statistically
correlated with code complexity measures. However, there is no
single set of complexity metrics that could act as a universally
best defect predictor. Using principal component analysis on the
code metrics, we built regression models that accurately predict
the likelihood of post-release defects for new entities. The
approach can easily be generalized to arbitrary projects; in
particular, predictors obtained from one project can also be
significant for new, similar projects.

Categories and Subject Descriptors
D.2,7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—version control. D.2.8 [Software Engineering]:
Metrics—Performance measures, Process metrics, Product
metrics. D.2.9 [Software Engineering]: Management—Software
quality assurance (SQA)

General Terms
Measurement, Design, Reliability.

Keywords
Empirical study, bug database, complexity metrics, principal
component analysis, regression model.

1. INTRODUCTION
During software production, software quality assurance consumes
a considerable effort. To raise the effectiveness and efficiency of
this effort, it is wise to direct it to those which need it most. We
therefore need to identify those pieces of software which are the
most likely to fail—and therefore require most of our attention.

One source to determine failure-prone pieces can be their past: If
a software entity (such as a module, a file, or some other
component) was likely to fail in the past, it is likely to do so in the
future. Such information can be obtained from bug databases—
especially when coupled with version information, such that one
can map failures to specific entities. However, accurate

predictions require a long failure history, which may not exist for
the entity at hand; in fact, a long failure history is something one
would like to avoid altogether.

A second source of failure prediction is the program code itself:
In particular, complexity metrics have been shown to correlate
with defect density in a number of case studies. However,
indiscriminate use of metrics is unwise: How do we know the
chosen metrics are appropriate for the project at hand?

In this work, we apply a combined approach to create accurate
failure predictors (Figure 1): We mine the archives of major
software systems in Microsoft and map their post-release failures
back to individual entities. We then compute standard complexity
metrics for these entities. Using principal component analysis, we
determine the combination of metrics which best predict the
failure probability for new entities within the project at hand.
Finally, we investigate whether such metrics, collected from
failures in the past, would also good predictors for entities of
other projects, including projects be without a failure history.

Bug

Database

Code
Code
Code

Entity Entity Entity

PredictorEntity Failure

probability

1. Collect input data

2. Map post-release failures to defects in entities

3. Predict failure probability for new entities

Version

Database

Figure 1. After mapping historical failures to entities, we can
use their complexity metrics to predict failures of new entities.

* Andreas Zeller was a visiting researcher with the Testing,
Verification and Measurement Group, Microsoft Research in the
Fall of 2005 when this work was carried out.

This paper is organized in a classical way. After discussing the
state of the art (Section 2), we describe the design of our study
(Section 3). Our results are reported in Section 4. In Section 5, we
discuss the lessons learned, followed by threats to validity
(Section 6). Section 7 closes with conclusion and future work.

2. RELATED WORK
2.1 Defects and Failures
In this paper, we use the term defect to refer to an error in the
source code, and the term failure to refer to an observable error in
the program behavior. In other words, every failure can be traced
back to some defect, but a defect need not result in a failure1.

Failures can occur before a software release, typically during
software testing; they can also occur after a release, resulting in
failures in the field. If a defect causes a pre-release failure, we
call it a pre-release defect; in contrast, a post-release defect
causes a failure after a release.

It is important not to confuse these terms. In particular, a study
conducted by Adams [1] found that only 2% of the defects in
eight large-scale software systems lead to a mean time to failure
of less than 50 years—implying that defect density cannot be used
to assess reliability in terms of failures [10]. Only one study so
far has found that a large number of fixed pre-release defects
raised the probability of post-release failures [5].

For the user, only post-release failures matter. Therefore, our
approach is exclusively concerned with post-release defects, each
of them uncovered by at least one failure in the field.

2.2 Complexity Metrics
Over the years, a number of software metrics have been proposed
to assess software effort and quality [11]. These “traditional”
metrics were designed for imperative, non-object-oriented
programs. The object-oriented metrics used in our approach were
initially suggested by Chidamber and Kemerer [8]. Basili et al.
[3] were among the first to validate these metrics. In an
experiment with eight student teams, they found that OO metrics
appeared to be useful for predicting defect density. The study by
Subramanyam and Krishnan [21] presents a survey on eight more
empirical studies, all showing that OO metrics are significantly
associated with defects. In contrast to this existing work, we do
not predict pre-release defect density, but post-release defects, and
hence actual failures of large-scale commercial software.

Empirical evidence that metrics can predict post-release defects
(rather than pre-release defects) and thus post-release failures is
scarce. Binkley and Schach [4] found that their coupling
dependency metric outperformed several other metrics when
predicting failures of four academia-developed software systems.
Ohlsson and Alberg [18] investigated a number of traditional
design metrics to predict modules that were prone to failures
during test as well as within operation. They found that 20% of
the modules predicted as most failure-prone would account for
47% of the failures. Their problem was, however, that “it was not
possible to draw generalizable conclusions on the strategy for

1 The term fault is usually used as a synonym for defects, but

some authors (e.g. [18]) use it as a synonym for failures. In this
paper, we thus avoid the term.

selecting specific variables for the model”—which is why we rely
on failure history to select the most suitable metrics combination.

2.3 Historical Data
Hudepohl et al. [13] successfully predicted whether a module
would be defect-prone or not by combining metrics and historical
data. Their approach used software design metrics as well as
reuse information, under the assumption that new or changed
modules would have a higher defect density. In our approach,
historical data is used to select appropriate metrics first, which
can then be applied to arbitrary entities; also, we focus on post-
release rather than pre-release defects.

Ostrand et al. [19] used historical data from two large software
systems with up to 17 releases to predict the files with the highest
defect density in the following release. For each release, the 20%
of the files with the highest predicted number of defects contained
between 71% and 92% of the defects being detected. Again, our
approach focuses on post-release rather than pre-release defects;
it also goes beyond the work of Ostrand et al. by not only
identifying the most failure-prone entities, but also determining
their common features, such that entities of other projects can be
assessed.

2.4 Mining Software Repositories
In recent years, researchers have learned to exploit the vast
amount of data that is contained in software repositories such as
version and bug databases [16, 17, 19, 22]. The key idea is that
one can map problems (in the bug database) to fixes (in the
version database) and thus to those locations in the code that
caused the problem [9, 12, 20]. This mapping is the base of
automatically associating metrics with post-release defects, as
described in this work.

2.5 Contributions
This work extends the state of the art in four ways:

1. It reports on how to systematically build predictors for
post-release defects from failure history found in the
field by customers.

2. It investigates whether object-oriented metrics can
predict post-release defects from the field.

3. It analyzes whether predictors obtained from one project
history are applicable to other projects.

4. It is one of the largest studies of commercial software—
in terms of code size, team sizes, and software users.

3. STUDY DESIGN
3.1 Researched Projects
The goal of this work was to come up with failure predictors that
would be valid for a wide range of projects. For this purpose, we
analyzed the project history of five major Microsoft project
components, listed in Table 1.

These projects were selected to form a wide range of product
types. All of them have been released as individual products; they
thus do not share code. All use object-oriented programming
languages like C++ or C#. Finally, all of these projects are
large—not only in terms of code or team size (> 250 engineers),
but also in terms of user base. DirectX, for instance, is part of the
Windows operating system, which has an estimated 600 million
users. (The team sizes are normalized in Table 1 below).

Table 1. Projects researched

Project Description Components Code
size

Team
size

Internet
Explorer 6

Web browser HTML
rendering

511
KLOC

14.3X

IIS W3
Server core

Web server Application
loading

37
KLOC

6.3X

Process
Messaging
Component

Application
communication
and networking

all 147
KLOC

3.4X

DirectX Graphics
library

all 306
KLOC

18.5X

NetMeeting A/V
Conferencing

all 109
KLOC

X

Let us now give a high level outline of each project.

• Internet Explorer 6 (IE6) is the standard Web browser
shipped with most versions of Microsoft Windows.
Since only a part of IE6 is written in object-oriented
languages, we focus upon the HTML rendering part as
an object-oriented component.

• Internet Information Services (IIS) is the standard Web
server shipped with Microsoft Server. Again, we focus
on an object-oriented component responsible for
loading applications into IIS.

• Process Messaging Component is a Microsoft
technology that enables applications running at
different times to communicate across heterogeneous
networks and systems that may be temporarily offline.

• Microsoft DirectX is an advanced suite of multimedia
application programming interfaces (APIs) built into
Microsoft Windows. DirectX is a Windows technology
that enables higher performance in graphics and sound
when users are playing games or watching video on
their PC.

• Microsoft NetMeeting is used for both voice and
messaging between different locations.

In the remainder of the paper, we shall refer to these five projects
as projects A, B, C, D, and E. For reasons of confidentiality, we
do not disclose which letter stands for which project.

3.2 Failure Data
Like any company, Microsoft systematically records all problems
that occur during the entire product life cycle. In this study, we
were interested in post-release failures—that is, failures that
occurred in the field within six months after the initial release.
For each of the projects, we determined the last release date, and
extracted all problem reports that satisfied three criteria:

• The problem was submitted by customers in the field,

• The problem was classified as non-trivial (in contrast to
requests for enhancement), and

• The problem was fixed in a later product update.

The location of the fix gave us the location of the post-release
defect. We thus could assign each entity the number of post-
release defects. The likelihood of a post-release defect is also

what we want to predict for new entities—that is, entities without
a failure history. Since each post-release defect is uncovered by a
post-release failure, predicting the likelihood of a post-release
defect in some entity is equivalent to predicting the likelihood of
at least one post-release failure associated with this entity.

3.3 Metrics Data
For each problem report, Microsoft records fix locations in terms
of modules—that is, a binary file within Windows, built from a
number of source files. Thus, we chose modules as the entities for
which we collected the failure data and for which we want to
predict the failure-proneness.

For each of the modules, we computed a number of source code
metrics, described in the left half of Table 3. These metrics apply
to a module M, a function or method f(), and a class C,
respectively.

Here is some additional information on the metrics in Table 3:

• The Arcs and Blocks metrics refer to a function’s
control flow graph, which is also the base for computing
McCabe’s cyclomatic complexity (separately measured
as Complexity).

• The AddrTakenCoupling metric counts the number of
instances where the address of some global variable is
taken in a function—as in the C++ constructs int
*ref = &globalVar or int& ref =
globalVar.

• The ClassCoupling metrics counts the number of
classes coupled to a class C. A class is “coupled” to C
if it is a type of a class member variable, a function
parameter, or a return type in C; or if it is defined
locally in a method body, or if it is an immediate
superclass of C. Each class is only counted once.

In order to have all metrics apply to modules, we summarized the
function and class metrics across each module. For each function
and class metric X, we computed the total and the maximum
number per module (henceforth denoted as TotalX and MaxX,
respectively). As an example, consider the Lines metric, counting
the number of executable lines per function. The MaxLines
metric indicates the length of the largest function in M, while
TotalLines, the sum of all Lines, represents the total number of
executable lines in M. Likewise, MaxComplexity stands for the
most complex function found in M.

3.4 Hypotheses
So, what do we do with all these metrics? Our hypotheses to be
researched are summarized in Table 2:

Table 2. Research hypotheses

 Hypothesis

H1 Increase in complexity metrics of an entity E correlates
with the number of post-release defects of E.

H2 There is a common subset of metrics for which H1 applies
in all projects.

H3 There is a combination of metrics which significantly
predicts the post-release defects of new entities within a
project.

H4 Predictors obtained using H3 from one project also predict
failure-prone entities in other projects.

Table 3. Metrics and their correlations with post-release defects. For each module M, we determine how well the metrics correlate
with M’s post-release defects. Bold values indicate significant correlation.

Correlation with post-release defects of M Metric Description

A B C D E

Module metrics — correlation with metric in a module M

Classes # Classes in M 0.531 0.612 0.713 0.066 0.438

Function # Functions in M 0.131 0.699 0.761 0.104 0.531

GlobalVariables # global variables in M 0.023 0.664 0.695 0.108 0.460

Per-function metrics — correlation with maximum and sum of metric across all functions f() in a module M

Max -0.236 0.514 0.585 0.496 0.509 Lines # executable lines in f()

Total 0.131 0.709 0.797 0.187 0.506

Max -0.344 0.372 0.547 0.015 0.346 Parameters # parameters in f()

Total 0.116 0.689 0.790 0.152 0.478

Max -0.209 0.376 0.587 0.527 0.444 Arcs # arcs in f()'s control flow graph

Total 0.127 0.679 0.803 0.158 0.484

Max -0.245 0.347 0.585 0.546 0.462 Blocks # basic blocks in f()'s control flow
graph Total 0.128 0.707 0.787 0.158 0.472

Max -0.005 0.582 0.633 0.362 0.229 ReadCoupling # global variables read in f()

Total -0.172 0.676 0.756 0.277 0.445

Max 0.043 0.618 0.392 0.011 0.450 WriteCoupling # global variables written in f()

Total -0.128 0.629 0.629 0.230 0.406

Max 0.237 0.491 0.412 0.016 0.263 AddrTakenCoupling # global variables whose address is
taken in f() Total 0.182 0.593 0.667 0.175 0.145

Max -0.063 0.614 0.496 0.024 0.357 ProcCoupling # functions that access a global
variable written in f() Total 0.043 0.562 0.579 0.000 0.443

Max 0.034 0.578 0.846 0.037 0.530 FanIn # functions calling f()

Total 0.066 0.676 0.814 0.074 0.537

Max -0.197 0.360 0.613 0.345 0.465 FanOut # functions called by f()

Total 0.056 0.651 0.776 0.046 0.506

Max -0.200 0.363 0.594 0.451 0.543 Complexity McCabe's cyclomatic complexity
of f() Total 0.112 0.680 0.801 0.165 0.529

Per-class metrics — correlation with maximum and sum of metric across all classes C in a module M

Max 0.244 0.589 0.534 0.100 0.283 ClassMethods # methods in C (private / public /
protected) Total 0.520 0.630 0.581 0.094 0.469

Max 0.428 0.546 0.303 0.131 0.323 InheritanceDepth # of superclasses of C

Total 0.432 0.606 0.496 0.111 0.425

Max 0.501 0.634 0.466 -0.303 0.264 ClassCoupling # of classes coupled with C (e.g. as
attribute / parameter / return types) Total 0.547 0.598 0.592 -0.158 0.383

Max 0.196 0.502 0.582 -0.207 0.387 SubClasses # of direct subclasses of C

Total 0.265 0.560 0.566 -0.170 0.387

As a first step, we examine whether there are any significant
correlations between complexity metrics and post-release defects
(H1). We then want to find whether there is some common subset
of these metrics that is correlated with post-release defects across
different projects (H2). As a third step, we evaluate whether we
can predict the likelihood of post-release defects in new entities
by combining multiple metrics (H3). Finally, we evaluate whether
predictors obtained from one project are also good predictors of
failure-proneness for another project (H4).

4. RESULTS
Let us now discuss the results for the four hypotheses. Each
hypothesis is discussed in its individual section.

4.1 Do complexity metrics correlate with
failures in the field?
To investigate our initial hypothesis H1, we determined the
correlation between the complexity metrics (Section 3.3) for each
module M with the number of post-release defects (Section 3.2).
The resulting standard Spearman correlation coefficients2 are
shown in Table 3. Correlations that are significant at the 0.05
level is shown in bold; the associated metrics thus correlate with
the number of post-release defects. For instance, in project A, the
higher the number of classes in a module (Classes), the larger the
number of post-release defects (correlation 0.531); other
correlating metrics include TotalClassMethods, both
InheritanceDepth and both ClassCoupling measures. Clearly, for
project A, the more classes we have in a module, the higher its
likelihood of post-release defects. However, none of the other
metrics such as Lines correlate, implying that the length of classes
and methods has no significant influence on post-release defects.

Projects B and C tell a different story: Almost all complexity
metrics correlate with post-release defects. In project D, though,
only the MaxLines metric correlates with post-release defects,
meaning the maximum length of a function within a module.
Why is it that in project B and C, so many metrics correlate, and
in project D, almost none? The reason lies within the project
nature itself, or more precisely within its process: The team of
project D routinely uses metrics like the ones above to identify
potential complexity traps, and refactors code pieces which are
too complex. This becomes evident when looking at the
distribution of post-release defects across the modules: In
project D, the distribution is much more homogeneous than in
project B or C, where a small number of modules account for a
large number of post-release defects. These modules also turn out
to be the more complex ones—which is what makes all the
metrics correlate in B and C.

Nonetheless, one should note that we indeed found correlating
metrics for each project. This confirms our hypothesis H1:

2 The Spearman rank correlation is a commonly-used robust

correlation technique [11] because it can be applied even when
the association between elements is non-linear.

4.2 Is there a single set of metrics that
predicts post-release defects in all projects?
As already discussed, each of the projects comes with its own set
of predictive metrics. It turns out that there is not a single metric
that would correlate with post-release defects in all five projects.

All in all, this rejects our hypothesis H2, which has a number of
consequences. In particular, this means that it is unwise to use
some complexity metric and assume the reported complexity
would imply anything—at least in terms of post-release defects.
Instead, correlations like those shown in Table 3 should be used to
select and calibrate metrics for the project at hand, which is what
we shall do in the next steps.

4.3 Can we combine metrics to predict post-
release defects?
If there is no universal metric to choose from, can we at least
exploit the failure history and its correlation with metrics? Our
basic idea was to build predictors that would hold within a
project. We would combine the individual metrics, weighing the
metrics according to their correlations as listed in Table 3.

However, one difficulty associated with combining several
metrics is the issue of multicollinearity. Multicollinearity among
the metrics is due to the existence of inter-correlations among the
metrics. In project A, for instance, the Classes, InheritanceDepth,
TotalMethods, and ClassCoupling metrics not only correlate with
post-release defects, but they also strongly correlated with each
other. Such an inter-correlation can lead to an inflated variance in
the estimation of the dependent variable—that is, post-release
defects.

To overcome the multicollinearity problem, we used a standard
statistical approach, namely principal component analysis (PCA)
[14]. With PCA, a smaller number of uncorrelated linear
combinations of metrics that account for as much sample variance
as possible are selected for use in regression (linear or logistic).
These principal components are independent and do not suffer
from multicollinearity.

We extracted the principal components for each of the five
projects that account for a cumulative sample variance greater
than 95%. Table 4 gives an example: After extracting five
principal components, we can account for 96% of the total
variance in project E. Therefore, five principal components
suffice.

Table 4. Extracted principal components for project E

Initial Eigenvalues Principal
Component Total % of Variance Cumulative %

1 25.268 76.569 76.569
2 3.034 9.194 85.763
3 2.045 6.198 91.961
4 .918 2.782 94.743
5 .523 1.584 96.327

For each project, we can find a set of complexity metrics that
correlates with post-release defects—and thus failures.

There is no single set of metrics that fits all projects.

Table 5. Regression models and their explanative power

Project Number of principal
components

% cumulative variance
explained

R2 Adjusted R2 F - test

A 9 95.33 0.741 0.612 5.731, p < 0.001

B 6 96.13 0.779 0.684 8.215, p < 0.001

C 7 95.34 0.579 0.416 3.541, p < 0.005

D 7 96.44 0.684 0.440 2.794, p < 0.077

E 5 96.33 0.919 0.882 24.823, p < 0.0005

Using the principal components as the independent variable and
the post-release defects as the dependent variable, we then built
multiple regression models. We thus obtained a predictor that
would take a new entity (or more precisely, the values of its
metrics) and come up with a failure estimate. The regression
models built using all the data for each project are characterized
in Table 5. For each project, we present the R2 value which is the
ratio of the regression sum of squares to the total sum of squares.
As a ratio, it takes values between 0 and 1, with larger values
indicating more variability explained by the model and less
unexplained variation. In other words: The higher the R2 value,
the better the predictive power.

The adjusted R2 measure also can be used to evaluate how well a
model will fit a given data set [7]. It explains for any bias in the
R2 measure by taking into account the degrees of freedom of the
independent variables and the sample population. The adjusted R2
tends to remain constant as the R2 measure for large population
samples. The F-ratio is to test the null hypothesis that all
regression coefficients are zero at statistically significant levels.

How does one interpret the data in Table 5? Let us focus straight
away on the R2 values of the regression models. The R2 values
indicate that our principal components explain between 57.9%
and 91.9% of the variance—which indicates the efficacy of the
built regression models. The adjusted R2 values indicate the lack
of bias in our R2 values—that is, the regression models are robust.

To evaluate the predictive predictors, we ran a standard
experiment: For each project, we randomly split the set of entities
into 2/3 and 1/3, respectively. We then built a predictor from the
2/3 set. The better the predictor, the stronger the correlations

would be between the actual and estimated post-release defects; a
correlation of 1.0 would mean that the sensitivity of the predictor
is high and vice versa.

The results of our evaluation are summarized in Table 6. Overall,
we performed five random splits to build five models for each
project to evaluate the prediction efficacy. We repeated the same
process using different random splits, overall leading to 25
different models and predictions. Again, positive correlations are
shown in bold. We present both the Spearman and Pearson
correlations for completeness; the Pearson bivariate correlation
requires the data to be distributed normally and the association
between elements to be linear. In three of the five projects, all but
one split result in significant predictions. The exceptions are
projects C and E, which is due to the small number of binaries in
these projects: In random splitting, a small sample size is unlikely
to perform well, simply because one single badly ranked entity is
enough to bring the entire correlation down.

What does this predictive power mean in practice? In Figure 2,
we show two examples of ranking modules both by estimated and
actual number of post-release defects. The left side shows one of
the random split experiments from Table 6 with a Pearson
correlation of >0.6. The project shown had 30 modules; the
history and metrics of 2/3 of these were used for predicting the
ranking of the remaining ten modules. If a manager decided to
put more testing effort into, say, the top 30% or three of the
predicted modules, this selection would contain the two most
failure-prone modules, namely #4 and #8. Only one selected
module (#6) would receive too much testing effort; and only one
(#3) would receive too little.

Table 6. Predictive power of the regression models in random split experiments

Project Correlation type Random split 1 Random split 2 Random split 3 Random split 4 Random split 5

Pearson 0.480 0.327 0.725 -0.381 0.637 A

Spearman 0.238 0.185 0.693 -0.602 0.422

Pearson -0.173 0.410 0.181 0.939 0.227 B

Spearman -0.055 0.054 0.318 0.906 0.218

Pearson 0.559 -0.539 -0.190 0.495 -0.060 C

Spearman 0.445 -0.165 0.050 0.190 0.082

Pearson 0.572 0.845 0.522 0.266 0.419 D

Spearman 0.617 0.828 0.494 0.494 0.494

Pearson -0.711 0.976 -0.818 0.418 0.007 E

Spearman -0.759 0.577 -0.883 0.120 0.152

On the right side of Figure 2, we see another experiment from
Table 6 with a Pearson correlation of <0.3. Here, the inaccurate
ranking of module #5 in a small sample size is the reason for the
low correlation. However, for any top n predicted modules
getting extra effort, one would never see more than one module
not deserving that effort, and never more than one of the top n
actual modules missed.

All in all, both the R2 values in Table 5 and the sensitivity of the
predictions in Table 6 confirm our hypothesis H3 for all five
projects, illustrated by the examples in Figure 2. In practice, this
means that within a project, the past failure history of a project
can successfully predict the likelihood of post-release defects for
new existing entities; therefore, the predictors can also be used
after a change to estimate the likelihood of failure. The term
“new entities” also includes new versions of existing entities;
therefore, the predictions can also be used after a change to
estimate the likelihood of failure.

4.4 Are predictors obtained from one project
applicable to other projects?
Finally, our hypothesis H4 remains: If we build a predictor from
the history and metrics of one project, would it also be predictive
for other projects? We evaluated this question by building one
predictor for each project, and applying it to the entities of each of
the other four projects. Once more, we checked how well the
actual and predicted rankings of the entities would correlate.

Our findings are summarized in Table 7. The entry “yes”
indicates a significant correlation, meaning that the predictor
would be successful; “no” means no or insignificant correlation.

Table 7. Prediction correlations using models built from a
different project

Sensitivity correlations between actual and
predicted

Project
used to

build the
model

 A B C D E

Pearson No No No No A

Spearman No No No No

Pearson No Yes No No B

Spearman No No No No

Pearson No Yes No Yes C

Spearman No Yes No Yes

Pearson No No No No D

Spearman No No No No

Pearson No No No No E

Spearman No No Yes No

As it turns out, the results are mixed—some project histories can
serve as predictors for other projects, while most cannot.
However, after our hypothesis H2 has failed, this is not too
surprising. Learning from earlier failures can only be successful
if the two projects are similar—from the failure history of an
Internet game, one can hardly make predictions for a nuclear
reactor.

What is it that makes projects “similar” to each other? We found
that those project pairs which are cross-correlated share the same
heterogeneous defect distribution across modules which would
also account for the large number of defect-correlated metrics, as
observed in Section 4.1. The cross-correlated projects B and C,
for instance, both share a heterogeneous defect distribution,

In essence, this means that one can learn from code that is more
failure-prone to predict other entities which are equally failure-
prone. For projects which are already aware of failure-prone
components, one should go beyond simple code metrics, and
consider the goals, the domain, and the processes at hand to find
similar projects to learn from. This, however, is beyond the scope
of this paper.

To sum up, we find our hypothesis H4 only partially confirmed:
Predictors obtained from one project are applicable only to similar
projects—which again substantiates our word of caution against
indiscriminate use of metrics. Ideas on how to identify similar
projects are discussed in Section 7.

Predictors obtained from principal component analysis are
useful in building regression models to estimate post-
release defects.

Predictors are accurate only when obtained from the same
or similar projects.

6

4

8

1

5

7

3

9

10

2

predicted

4

8

3

5

1

7

10

2

6

9

actual

5

7

1

2

3

6

4

predicted

2

7

1

4

3

5

6

 actual

Figure 2. Comparing predicted and actual rankings

5. LESSONS LEARNED
We started this work with some doubts about the usefulness of
complexity metrics. Some of these doubts were confirmed:
Choosing metrics without a proper validation is unlikely to result
in meaningful predictions—at least when it comes to predict post-
release defects, as we did. On the other side, metrics proved to be
useful as abstractions over program code, capturing similarity
between components that turned out to be a good source for
predicting post-release defects. Therefore, we are happy that the
failure history of the same or a similar project can indeed serve to
validate and calibrate metrics for the project at hand.

Rather than predicting post-release defects, we can adapt our
approach to arbitrary measures of quality. For instance, our
measure might involve the cost or severity of failures, risk
considerations, development costs, or maintenance costs. The
general idea stays the same: From earlier history, we select the
combination of metrics which best predicts the future. Therefore,
we have summarized our approach in a step-by-step guide, shown
in Figure 3. In the long term, this guide will be instantiated for
other projects within Microsoft, using a variety of code and
process metrics as input for quality predictors.

6. THREATS TO VALIDITY
In this paper, we have reported our experience with five projects
of varying goal, process, and domain. Although we could derive
successful predictors from the failure history in each of the
projects, this may not generalize to other projects. In particular,
the specific failure history, the coding and quality standards, or
other process properties may be crucial for the success. We
therefore encourage users to evaluate the predictive power before
usage—for instance, by repeating the experiments described in
Section 4.3.

Even if our approach accurately predicts failure-prone
components, we advise against making decisions which are based
uniquely upon such a prediction. To minimize the damage of
post-release defects, one must not only consider the number of
defects, but also the severity, likelihood, and impact of the
resulting failures, as established in the field. Such estimations,
however, are beyond the scope of this paper.

While the approach easily generalizes, we would caution against
drawing general conclusions from this specific empirical study.
In software engineering, any process depends to a large degree on
a potentially large number of relevant context variables. For this
reason, we cannot assume a priori that the results of a study
generalize beyond the specific environment in which it was
conducted [2]. Researchers become more confident in a theory
when similar findings emerge in different contexts [2]. Towards
this end, we hope that our case study contributes to strengthening
the existing empirical body of knowledge in this field.

Figure 3. How to build quality predictors

Ø DO NOT use complexity metrics without validating them
for your project.

Ø DO use metrics that are validated from history to identify
low-quality components.

Building quality predictors:
A step-by-step guide

1. Determine a software E from which to learn. E can
be an earlier release of the software at hand, or a
similar project.

2. Decompose E into entities (subsystems, modules,
files, classes…) ,...},{ 21 eeE = for which you can

determine the individual quality.
In this paper, we decomposed the software into
individual binaries—i. e. Windows components—
simply because a mapping between binaries and
post-release failures was readily available.

3. Build a function quality: E R which assigns to
each entity Ee∈ a quality. This typically requires
mining version and bug histories (Section 2.4).
In our case, the “quality” is the number of defects in
an entity e that were found and fixed due to post-
release failures.

4. Have a set of metric functions ,...},{ 21 mmM = such

that each Mm∈ is a mapping m: E R which
assigns a metric to an entity Ee∈ . The set of
metrics M should be adapted for the project and
programming language at hand.
We use the set of metrics M described in Table 3.

5. For each metric Mm∈ and each entity Ee∈ ,
determine m(e).

6. Determine the correlations between all m(e) and
quality(e), as well as the inter-correlations between
all m(e).
The set of correlations between all m(e) and
quality(e) is shown in Table 3; the inter-correlations
are omitted due to lack of space.

7. Using principal component analysis, extract a set of
principal components ,...},{ 21 pcpcPC = , where

each component PCpci ∈ has the

form Mi cccpc ,...,, 21= .

An example of the set PC is given in Table 4.
8. You can now use the principal components PC to

build a predictor for new entities ,...},{ 21 eeE ′′=′

with ∅=∩′ EE . Be sure to evaluate the
explanative and predictive power—for instance,
using the experiments described in Section 4.3.
We used PC to build a logistic regression equation,
in which we fitted the metrics m(e’) for all new
entities Ee ′∈′ and all metrics Mm∈ . The
equation resulted in a vector

EpppP ′= ,...,, 21 where each Ppi ∈ is the

probability of failure of the entity 'Eei ∈′ .

7. CONCLUSION AND FUTURE WORK
In this work, we have addressed the question “Which metric is
best for me?” and reported our experience in resolving that
question. It turns out that complexity metrics can successfully
predict post-release defects. However, there is no single set of
metrics that is applicable to all projects. Using our approach,
organizations can leverage failure history to build good predictors
which are likely to be accurate for similar projects, too.

This work extends the state of the art in four ways. It is one of the
first studies to show how to systematically build predictors for
post-release defects from failure history from the field. It also
investigates whether object-oriented metrics can predict post-
release defects. It analyzes whether predictors obtained from one
project history are applicable to other projects, and last but not
least, it is one of the largest studies of commercial software—in
terms of code size, team sizes, and software users.

Of course, there is always more to do. Our future work will
concentrate on these “more” topics:

• More metrics. Right now, the code metrics suggested
are almost deceptively simple. While in our study,
McCabe’s cyclomatic complexity turned out to be an
overall good predictor, it does not take into account all
the additional complexity induced by method calls—
and this is where object-oriented programs typically get
complicated. We plan to leverage the failure data from
several projects to evaluate more sophisticated metrics
that again result in better predictors.

• More data. Besides only collecting source code
versions and failure reports, we have begun to collect
and recreate run-time information such as test coverage,
usage profiles, or change effort. As all of these might
be related to post-release defects, we expect that they
will further improve predictive power—and provide
further guidance for quality assurance.

• More similarity. One important open question in our
work is: What is it that makes projects “similar” enough
such that predictions across projects become accurate?
For this purpose, we want to collect and classify data on
the process and domain characteristics. One possible
characterization would be a polar chart as shown in
Figure 4, where we would expect similar projects to
cover a similar space. As a side effect, we could
determine which process features correlate with quality.

• More automation. While we have automated the
extraction and mapping of failure and version
information, we still manually use third-party statistical
tools to obtain the predictors. We want to automate and
integrate this last step as well, such that we can
automatically obtain predictors from software archives.
The next step would be to integrate these predictors into
development environments, supporting the decisions of
programmers and managers.

• More projects. Given a fully automated system, we
shall be able to apply the approach on further projects
within and outside of Microsoft. This will add more
diversity to the field—and, of course, help companies
like Microsoft to maximize the impact of their quality
efforts.

All in all, modern software development produces an abundance
of recorded process and product data that is now available for
automatic treatment. Systematic empirical investigation of this
data will provide guidance in several software engineering
decisions—and further strengthen the existing empirical body of
knowledge in software engineering.

Acknowledgments. Andreas Zeller’s work on mining software
archives was supported by Deutsche Forschungsgemeinschaft,
grant Ze 509/1-1. We thank Melih Demir, Tom Zimmermann and
many others for their helpful comments on earlier revisions of this
paper. We would like to acknowledge all the product groups at
Microsoft for their cooperation in this study.

REFERENCES
[1] E. N. Adams, "Optimizing Preventive Service of Software

Products", IBM Journal of Research and Development,
28(1), pp. 2-14, 1984.

[2] V. Basili, Shull, F.,Lanubile, F., "Building Knowledge
through Families of Experiments", IEEE Transactions on
Software Engineering, 25(4), pp. 456-473, 1999.

[3] V. R. Basili, L. C. Briand, and W. L. Melo, "A Validation of
Object-Oriented Design Metrics as Quality Indicators", IEEE
Transactions on Software Engineering, 22(10), pp. 751-761,
1996.

[4] A. B. Binkley, Schach, S., "Validation of the coupling
dependency metric as a predictor of run-time failures and
maintenance measures", Proceedings of International
Conference on Software Engineering, pp. 452 - 455, 1998.

[5] S. Biyani, Santhanam, P., "Exploring defect data from
development and customer usage on software modules over
multiple releases", Proceedings of International Symposium
on Software Reliability Engineering, pp. 316-320, 1998.

Figure 4. A Boehm-Turner polar chart [6] which
characterizes the software process [15]

[6] B. Boehm and R. Turner, "Using Risk to Balance Agile and
Plan-Driven Methods", IEEE Computer, 36(6), pp. 57-66,
June 2003.

[7] F. Brito e Abreu, Melo, W., "Evaluating the Impact of
Object-Oriented Design on Software Quality", Proceedings
of Third International Software Metrics Symposium, pp. 90-
99, 1996.

[8] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for
Object Oriented Design", IEEE Transactions on Software
Engineering, 20(6), pp. 476-493, 1994.

[9] D. ubrani , Murphy, G.C., "Hipikat: recommending
pertinent software development artifacts", Proceedings of
International Conference on Software Engineering, pp. 408-
418, 2003.

[10] N. E. Fenton, Neil, M., "A critique of software defect
prediction models", IEEE Transactions in Software
Engineering, 25(5), pp. 675-689, 1999.

[11] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach: Brooks/Cole, 1998.

[12] M. Fischer, Pinzger, M., Gall, H., "Populating a Release
History Database from version control and bug tracking
systems", Proceedings of International Conference on
Software Maintenance, pp. 23-32, 2003.

[13] J. P. Hudepohl, Aud, S.J., Khoshgoftaar, T.M., Allen, E.B.,
Mayrand, J., "Emerald: software metrics and models on the
desktop", IEEE Software, 13(5), pp. 56 - 60, 1996.

[14] E. J. Jackson, A User's Guide to Principal Components.
Hoboken, NJ: John Wiley & Sons Inc., 2003.

[15] L. Layman, L. Williams, and L. Cunningham, "Exploring
Extreme Programming in Context: An Industrial Case

Study", Proceedings of Agile Development Conference,
Salt Lake City, UT, pp. 32-41, 2004.

[16] A. Mockus, Zhang, P., Li, P., "Drivers for customer
perceived software quality", Proceedings of International
Conference on Software Engineering (ICSE), St. Louis, MO,
pp. 225-233, 2005.

[17] N. Nagappan, Ball, T., "Use of Relative Code Churn
Measures to Predict System Defect Density", Proceedings
of International Conference on Software Engineering (ICSE),
St. Louis, MO, pp. 284-292, 2005.

[18] N. Ohlsson, Alberg, H., "Predicting fault-prone software
modules in telephone switches", IEEE Transactions in
Software Engineering, 22(12), pp. 886 - 894, 1996.

[19] T. Ostrand, Weyuker, E., Bell, R.M., "Predicting the location
and number of faults in large software systems", IEEE
Transactions in Software Engineering, 31(4), pp. 340 - 355,
2005.

[20] J. Sliwerski, Zimmermann, T., Zeller, A., "When Do
Changes Induce Fixes?" Proceedings of Mining Software
Repositories (MSR) Workshop, 2005.

[21] R. Subramanyam and M. S. Krishnan, "Empirical Analysis
of CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects", IEEE Transactions on
Software Engineering, 29(4) pp. 297-310, April 2003.

[22] T. Zimmermann, Weißgerber, P., Diehl, S., Zeller, A.,
"Mining Version Histories to Guide Software Changes",
IEEE Transactions in Software Engineering, 31(6), pp. 429-
445, 2005.

