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ABSTRACT  
What is it that makes software fail?  In an empirical study of the 
post-release defect history of five Microsoft software systems, we 
found that failure-prone software entities are statistically 
correlated with code complexity measures.  However, there is no 
single set of complexity metrics that could act as a universally 
best defect predictor.  Using principal component analysis on the 
code metrics, we built regression models that accurately predict 
the likelihood of post-release defects for new entities.  The 
approach can easily be generalized to arbitrary projects; in 
particular, predictors obtained from one project can also be 
significant for new, similar projects. 

Categories and Subject Descriptors 
D.2,7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement—version control.  D.2.8 [Software Engineering]: 
Metrics—Performance measures, Process metrics, Product 
metrics.  D.2.9 [Software Engineering]: Management—Software 
quality assurance (SQA) 

General Terms 
Measurement, Design, Reliability. 

Keywords 
Empirical study, bug database, complexity metrics, principal 
component analysis, regression model. 

1. INTRODUCTION 
During software production, software quality assurance consumes 
a considerable effort.  To raise the effectiveness and efficiency of 
this effort, it is wise to direct it to those which need it most.  We 
therefore need to identify those pieces of software which are the 
most likely to fail—and therefore require most of our attention. 

One source to determine failure-prone pieces can be their past: If 
a software entity (such as a module, a file, or some other 
component) was likely to fail in the past, it is likely to do so in the 
future.  Such information can be obtained from bug databases—
especially when coupled with version information, such that one 
can map failures to specific entities.  However, accurate 

predictions require a long failure history, which may not exist for 
the entity at hand; in fact, a long failure history is something one 
would like to avoid altogether. 

A second source of failure prediction is the program code itself: 
In particular, complexity metrics have been shown to correlate 
with defect density in a number of case studies.  However, 
indiscriminate use of metrics is unwise: How do we know the 
chosen metrics are appropriate for the project at hand? 

In this work, we apply a combined approach to create accurate 
failure predictors (Figure 1): We mine the archives of major 
software systems in Microsoft and map their post-release failures 
back to individual entities.  We then compute standard complexity 
metrics for these entities.  Using principal component analysis, we 
determine the combination of metrics which best predict the 
failure probability for new entities within the project at hand.  
Finally, we investigate whether such metrics, collected from 
failures in the past, would also good predictors for entities of 
other projects, including projects be without a failure history. 
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Figure 1. After mapping historical failures to entities, we can 
use their complexity metrics to predict failures of new entities. 
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This paper is organized in a classical way.  After discussing the 
state of the art (Section 2), we describe the design of our study 
(Section 3). Our results are reported in Section 4. In Section 5, we 
discuss the lessons learned, followed by threats to validity 
(Section 6).  Section 7 closes with conclusion and future work. 

2. RELATED WORK 
2.1 Defects and Failures 
In this paper, we use the term defect to refer to an error in the 
source code, and the term failure to refer to an observable error in 
the program behavior.  In other words, every failure can be traced 
back to some defect, but a defect need not result in a failure1. 

Failures can occur before a software release, typically during 
software testing; they can also occur after a release, resulting in 
failures in the field.  If a defect causes a pre-release failure, we 
call it a pre-release defect; in contrast, a post-release defect 
causes a failure after a release. 

It is important not to confuse these terms.  In particular, a study 
conducted by Adams [1] found that only 2% of the defects in 
eight large-scale software systems lead to a mean time to failure 
of less than 50 years—implying that defect density cannot be used 
to assess reliability in terms of failures [10].  Only one study so 
far has found that a large number of fixed pre-release defects 
raised the probability of post-release failures [5]. 

For the user, only post-release failures matter.  Therefore, our 
approach is exclusively concerned with post-release defects, each 
of them uncovered by at least one failure in the field. 

2.2 Complexity Metrics 
Over the years, a number of software metrics have been proposed 
to assess software effort and quality [11].  These “traditional” 
metrics were designed for imperative, non-object-oriented 
programs.  The object-oriented metrics used in our approach were 
initially suggested by Chidamber and Kemerer [8].  Basili et al. 
[3] were among the first to validate these metrics.  In an 
experiment with eight student teams, they found that OO metrics 
appeared to be useful for predicting defect density.  The study by 
Subramanyam and Krishnan [21] presents a survey on eight more 
empirical studies, all showing that OO metrics are significantly 
associated with defects.  In contrast to this existing work, we do 
not predict pre-release defect density, but post-release defects, and 
hence actual failures of large-scale commercial software. 

Empirical evidence that metrics can predict post-release defects 
(rather than pre-release defects) and thus post-release failures is 
scarce.  Binkley and Schach [4] found that their coupling 
dependency metric outperformed several other metrics when 
predicting failures of four academia-developed software systems.  
Ohlsson and Alberg [18] investigated a number of traditional 
design metrics to predict modules that were prone to failures 
during test as well as within operation.  They found that 20% of 
the modules predicted as most failure-prone would account for 
47% of the failures.  Their problem was, however, that “it was not 
possible to draw generalizable conclusions on the strategy for 

                                                                  
1 The term fault is usually used as a synonym for defects, but 

some authors (e.g. [18]) use it as a synonym for failures.  In this 
paper, we thus avoid the term. 

selecting specific variables for the model”—which is why we rely 
on failure history to select the most suitable metrics combination. 

2.3 Historical Data 
Hudepohl et al. [13] successfully predicted whether a module 
would be defect-prone or not by combining metrics and historical 
data.  Their approach used software design metrics as well as 
reuse information, under the assumption that new or changed 
modules would have a higher defect density.  In our approach, 
historical data is used to select appropriate metrics first, which 
can then be applied to arbitrary entities; also, we focus on post-
release rather than pre-release defects. 

Ostrand et al. [19] used historical data from two large software 
systems with up to 17 releases to predict the files with the highest 
defect density in the following release.  For each release, the 20% 
of the files with the highest predicted number of defects contained 
between 71% and 92% of the defects being detected.  Again, our 
approach focuses on post-release rather than pre-release defects; 
it also goes beyond the work of Ostrand et al. by not only 
identifying the most failure-prone entities, but also determining 
their common features, such that entities of other projects can be 
assessed. 

2.4 Mining Software Repositories 
In recent years, researchers have learned to exploit the vast 
amount of data that is contained in software repositories such as 
version and bug databases [16, 17, 19, 22].  The key idea is that 
one can map problems (in the bug database) to fixes (in the 
version database) and thus to those locations in the code that 
caused the problem [9, 12, 20]. This mapping is the base of 
automatically associating metrics with post-release defects, as 
described in this work. 

2.5 Contributions 
This work extends the state of the art in four ways: 

1. It reports on how to systematically build predictors for 
post-release defects from failure history found in the 
field by customers. 

2. It investigates whether object-oriented metrics can 
predict post-release defects from the field. 

3. It analyzes whether predictors obtained from one project 
history are applicable to other projects. 

4. It is one of the largest studies of commercial software—
in terms of code size, team sizes, and software users. 

3. STUDY DESIGN 
3.1 Researched Projects 
The goal of this work was to come up with failure predictors that 
would be valid for a wide range of projects.  For this purpose, we 
analyzed the project history of five major Microsoft project 
components, listed in Table 1. 

These projects were selected to form a wide range of product 
types.  All of them have been released as individual products; they 
thus do not share code. All use object-oriented programming 
languages like C++ or C#.  Finally, all of these projects are 
large—not only in terms of code or team size (> 250 engineers), 
but also in terms of user base.  DirectX, for instance, is part of the 
Windows operating system, which has an estimated 600 million 
users. (The team sizes are normalized in Table 1 below). 



Table 1. Projects researched 

Project Description Components Code 
size 

Team 
size 

Internet 
Explorer 6  

Web browser HTML 
rendering 

511 
KLOC 

14.3X 

IIS W3 
Server core 

Web server Application 
loading 

37 
KLOC 

6.3X 

Process 
Messaging 
Component 

Application 
communication 
and networking 

all 147 
KLOC 

3.4X 

DirectX Graphics 
library 

all 306 
KLOC 

18.5X 

NetMeeting A/V 
Conferencing 

all 109 
KLOC 

X 

Let us now give a high level outline of each project. 

• Internet Explorer 6 (IE6) is the standard Web browser 
shipped with most versions of Microsoft Windows.  
Since only a part of IE6 is written in object-oriented 
languages, we focus upon the HTML rendering part as 
an object-oriented component. 

• Internet Information Services (IIS) is the standard Web 
server shipped with Microsoft Server.  Again, we focus 
on an object-oriented component responsible for 
loading applications into IIS. 

• Process Messaging Component is a Microsoft 
technology that enables applications running at 
different times to communicate across heterogeneous 
networks and systems that may be temporarily offline. 

• Microsoft DirectX is an advanced suite of multimedia 
application programming interfaces (APIs) built into 
Microsoft Windows. DirectX is a Windows technology 
that enables higher performance in graphics and sound 
when users are playing games or watching video on 
their PC. 

• Microsoft NetMeeting is used for both voice and 
messaging between different locations. 

In the remainder of the paper, we shall refer to these five projects 
as projects A, B, C, D, and E.  For reasons of confidentiality, we 
do not disclose which letter stands for which project. 

3.2 Failure Data 
Like any company, Microsoft systematically records all problems 
that occur during the entire product life cycle.  In this study, we 
were interested in post-release failures—that is, failures that 
occurred in the field within six months after the initial release.  
For each of the projects, we determined the last release date, and 
extracted all problem reports that satisfied three criteria: 

• The problem was submitted by customers in the field, 

• The problem was classified as non-trivial (in contrast to 
requests for enhancement), and 

• The problem was fixed in a later product update. 

The location of the fix gave us the location of the post-release 
defect. We thus could assign each entity the number of post-
release defects.  The likelihood of a post-release defect is also 

what we want to predict for new entities—that is, entities without 
a failure history.  Since each post-release defect is uncovered by a 
post-release failure, predicting the likelihood of a post-release 
defect in some entity is equivalent to predicting the likelihood of 
at least one post-release failure associated with this entity. 

3.3 Metrics Data 
For each problem report, Microsoft records fix locations in terms 
of modules—that is, a binary file within Windows, built from a 
number of source files.  Thus, we chose modules as the entities for 
which we collected the failure data and for which we want to 
predict the failure-proneness. 

For each of the modules, we computed a number of source code 
metrics, described in the left half of Table 3.  These metrics apply 
to a module M, a function or method f(), and a class C, 
respectively. 

Here is some additional information on the metrics in Table 3: 

• The Arcs and Blocks metrics refer to a function’s 
control flow graph, which is also the base for computing 
McCabe’s cyclomatic complexity (separately measured 
as Complexity). 

• The AddrTakenCoupling metric counts the number of 
instances where the address of some global variable is 
taken in a function—as in the C++ constructs int 
*ref = &globalVar or int& ref = 
globalVar. 

• The ClassCoupling metrics counts the number of 
classes coupled to a class C.  A class is “coupled” to C 
if it is a type of a class member variable, a function 
parameter, or a return type in C; or if it is defined 
locally in a method body, or if it is an immediate 
superclass of C.  Each class is only counted once. 

In order to have all metrics apply to modules, we summarized the 
function and class metrics across each module.  For each function 
and class metric X, we computed the total and the maximum 
number per module (henceforth denoted as TotalX and MaxX, 
respectively).  As an example, consider the Lines metric, counting 
the number of executable lines per function.  The MaxLines 
metric indicates the length of the largest function in M, while 
TotalLines, the sum of all Lines, represents the total number of 
executable lines in M.  Likewise, MaxComplexity stands for the 
most complex function found in M. 

3.4 Hypotheses 
So, what do we do with all these metrics?  Our hypotheses to be 
researched are summarized in Table 2: 

Table 2. Research hypotheses 

 Hypothesis 

H1 Increase in complexity metrics of an entity E correlates 
with the number of post-release defects of E. 

H2 There is a common subset of metrics for which H1 applies 
in all projects. 

H3 There is a combination of metrics which significantly 
predicts the post-release defects of new entities within a 
project. 

H4 Predictors obtained using H3 from one project also predict 
failure-prone entities in other projects. 



Table 3. Metrics and their correlations with post-release defects.  For each module M, we determine how well the metrics correlate 
with M’s post-release defects.  Bold values indicate significant correlation. 

 

Correlation with post-release defects of M Metric Description 
  

A B C D E 

Module metrics — correlation with metric in a module M 

Classes # Classes in M   0.531 0.612 0.713 0.066 0.438 

Function # Functions in M   0.131 0.699 0.761 0.104 0.531 

GlobalVariables # global variables in M   0.023 0.664 0.695 0.108 0.460 

Per-function metrics — correlation with maximum and sum of metric across all functions f() in a module M 

Max -0.236 0.514 0.585 0.496 0.509 Lines # executable lines in f() 

Total 0.131 0.709 0.797 0.187 0.506 

Max -0.344 0.372 0.547 0.015 0.346 Parameters # parameters in f() 

Total 0.116 0.689 0.790 0.152 0.478 

Max -0.209 0.376 0.587 0.527 0.444 Arcs # arcs in f()'s control flow graph 

Total 0.127 0.679 0.803 0.158 0.484 

Max -0.245 0.347 0.585 0.546 0.462 Blocks # basic blocks in f()'s control flow 
graph Total 0.128 0.707 0.787 0.158 0.472 

Max -0.005 0.582 0.633 0.362 0.229 ReadCoupling # global variables read in f() 

Total -0.172 0.676 0.756 0.277 0.445 

Max 0.043 0.618 0.392 0.011 0.450 WriteCoupling # global variables written in f() 

Total -0.128 0.629 0.629 0.230 0.406 

Max 0.237 0.491 0.412 0.016 0.263 AddrTakenCoupling # global variables whose address is 
taken in f() Total 0.182 0.593 0.667 0.175 0.145 

Max -0.063 0.614 0.496 0.024 0.357 ProcCoupling # functions that access a global 
variable written in f() Total 0.043 0.562 0.579 0.000 0.443 

Max 0.034 0.578 0.846 0.037 0.530 FanIn # functions calling f() 

Total 0.066 0.676 0.814 0.074 0.537 

Max -0.197 0.360 0.613 0.345 0.465 FanOut # functions called by f() 

Total 0.056 0.651 0.776 0.046 0.506 

Max -0.200 0.363 0.594 0.451 0.543 Complexity McCabe's cyclomatic complexity 
of f() Total 0.112 0.680 0.801 0.165 0.529 

Per-class metrics — correlation with maximum and sum of metric across all classes C in a module M 

Max 0.244 0.589 0.534 0.100 0.283 ClassMethods # methods in C (private / public / 
protected) Total 0.520 0.630 0.581 0.094 0.469 

Max 0.428 0.546 0.303 0.131 0.323 InheritanceDepth # of superclasses of C 

Total 0.432 0.606 0.496 0.111 0.425 

Max 0.501 0.634 0.466 -0.303 0.264 ClassCoupling # of classes coupled with C (e.g. as 
attribute / parameter / return types) Total 0.547 0.598 0.592 -0.158 0.383 

Max 0.196 0.502 0.582 -0.207 0.387 SubClasses # of direct subclasses of C 

Total 0.265 0.560 0.566 -0.170 0.387 



As a first step, we examine whether there are any significant 
correlations between complexity metrics and post-release defects 
(H1).  We then want to find whether there is some common subset 
of these metrics that is correlated with post-release defects across 
different projects (H2).  As a third step, we evaluate whether we 
can predict the likelihood of post-release defects in new entities 
by combining multiple metrics (H3).  Finally, we evaluate whether 
predictors obtained from one project are also good predictors of 
failure-proneness for another project (H4). 

4. RESULTS 
Let us now discuss the results for the four hypotheses.  Each 
hypothesis is discussed in its individual section. 

4.1 Do complexity metrics correlate with 
failures in the field? 
To investigate our initial hypothesis H1, we determined the 
correlation between the complexity metrics (Section 3.3) for each 
module M with the number of post-release defects (Section 3.2).  
The resulting standard Spearman correlation coefficients2 are 
shown in Table 3.  Correlations that are significant at the 0.05 
level is shown in bold; the associated metrics thus correlate with 
the number of post-release defects.  For instance, in project A, the 
higher the number of classes in a module (Classes), the larger the 
number of post-release defects (correlation 0.531); other 
correlating metrics include TotalClassMethods, both 
InheritanceDepth and both ClassCoupling measures.  Clearly, for 
project A, the more classes we have in a module, the higher its 
likelihood of post-release defects.  However, none of the other 
metrics such as Lines correlate, implying that the length of classes 
and methods has no significant influence on post-release defects. 

Projects B and C tell a different story: Almost all complexity 
metrics correlate with post-release defects.  In project D, though, 
only the MaxLines metric correlates with post-release defects, 
meaning the maximum length of a function within a module.  
Why is it that in project B and C, so many metrics correlate, and 
in project D, almost none?  The reason lies within the project 
nature itself, or more precisely within its process: The team of 
project D routinely uses metrics like the ones above to identify 
potential complexity traps, and refactors code pieces which are 
too complex.  This becomes evident when looking at the 
distribution of post-release defects across the modules: In 
project D, the distribution is much more homogeneous than in 
project B or C, where a small number of modules account for a 
large number of post-release defects.  These modules also turn out 
to be the more complex ones—which is what makes all the 
metrics correlate in B and C. 

Nonetheless, one should note that we indeed found correlating 
metrics for each project.  This confirms our hypothesis H1: 

 

                                                                  
2 The Spearman rank correlation is a commonly-used robust 

correlation technique [11] because it can be applied even when 
the association between elements is non-linear. 

4.2 Is there a single set of metrics that 
predicts post-release defects in all projects? 
As already discussed, each of the projects comes with its own set 
of predictive metrics.  It turns out that there is not a single metric 
that would correlate with post-release defects in all five projects.   

All in all, this rejects our hypothesis H2, which has a number of 
consequences.  In particular, this means that it is unwise to use 
some complexity metric and assume the reported complexity 
would imply anything—at least in terms of post-release defects.  
Instead, correlations like those shown in Table 3 should be used to 
select and calibrate metrics for the project at hand, which is what 
we shall do in the next steps. 

 

4.3 Can we combine metrics to predict post-
release defects? 
If there is no universal metric to choose from, can we at least 
exploit the failure history and its correlation with metrics?  Our 
basic idea was to build predictors that would hold within a 
project.  We would combine the individual metrics, weighing the 
metrics according to their correlations as listed in Table 3. 

However, one difficulty associated with combining several 
metrics is the issue of multicollinearity.  Multicollinearity among 
the metrics is due to the existence of inter-correlations among the 
metrics.  In project A, for instance, the Classes, InheritanceDepth, 
TotalMethods, and ClassCoupling metrics not only correlate with 
post-release defects, but they also strongly correlated with each 
other.  Such an inter-correlation can lead to an inflated variance in 
the estimation of the dependent variable—that is, post-release 
defects. 

To overcome the multicollinearity problem, we used a standard 
statistical approach, namely principal component analysis (PCA) 
[14]. With PCA, a smaller number of uncorrelated linear 
combinations of metrics that account for as much sample variance 
as possible are selected for use in regression (linear or logistic). 
These principal components are independent and do not suffer 
from multicollinearity. 

We extracted the principal components for each of the five 
projects that account for a cumulative sample variance greater 
than 95%. Table 4 gives an example: After extracting five 
principal components, we can account for 96% of the total 
variance in project E.  Therefore, five principal components 
suffice. 

Table 4. Extracted principal components for project E 

Initial Eigenvalues Principal 
Component Total % of Variance Cumulative % 

1 25.268 76.569 76.569 
2 3.034 9.194 85.763 
3 2.045 6.198 91.961 
4 .918 2.782 94.743 
5 .523 1.584 96.327 

For each project, we can find a set of complexity metrics that 
correlates with post-release defects—and thus failures. 

There is no single set of metrics that fits all projects. 



Table 5. Regression models and their explanative power 

Project Number of principal 
components 

% cumulative variance 
explained 

R2 Adjusted R2 F - test 

A 9 95.33 0.741 0.612 5.731, p < 0.001 

B 6 96.13 0.779 0.684 8.215, p < 0.001 

C 7 95.34 0.579 0.416 3.541, p < 0.005 

D 7 96.44 0.684 0.440 2.794, p < 0.077 

E 5 96.33 0.919 0.882 24.823, p < 0.0005 

Using the principal components as the independent variable and 
the post-release defects as the dependent variable, we then built 
multiple regression models.  We thus obtained a predictor that 
would take a new entity (or more precisely, the values of its 
metrics) and come up with a failure estimate. The regression 
models built using all the data for each project are characterized 
in  Table 5. For each project, we present the R2 value which is the 
ratio of the regression sum of squares to the total sum of squares. 
As a ratio, it takes values between 0 and 1, with larger values 
indicating more variability explained by the model and less 
unexplained variation.  In other words: The higher the R2 value,  
the better the predictive power. 

The adjusted R2 measure also can be used to evaluate how well a 
model will fit a given data set [7].  It explains for any bias in the 
R2 measure by taking into account the degrees of freedom of the 
independent variables and the sample population. The adjusted R2 
tends to remain constant as the R2 measure for large population 
samples.  The F-ratio is to test the null hypothesis that all 
regression coefficients are zero at statistically significant levels. 

How does one interpret the data in Table 5?  Let us focus straight 
away on the R2 values of the regression models. The R2  values 
indicate that our principal components explain between 57.9% 
and 91.9% of the variance—which indicates the efficacy of the 
built regression models.  The adjusted R2 values indicate the lack 
of bias in our R2 values—that is, the regression models are robust. 

To evaluate the predictive predictors, we ran a standard 
experiment: For each project, we randomly split the set of entities 
into 2/3 and 1/3, respectively.  We then built a predictor from the 
2/3 set.  The better the predictor, the stronger the correlations

would be between the actual and estimated post-release defects; a 
correlation of 1.0 would mean that the sensitivity of the predictor 
is high and vice versa.  

The results of our evaluation are summarized in Table 6.  Overall, 
we performed five random splits to build five models for each 
project to evaluate the prediction efficacy.  We repeated the same 
process using different random splits, overall leading to 25 
different models and predictions.  Again, positive correlations are 
shown in bold. We present both the Spearman and Pearson 
correlations for completeness; the Pearson bivariate correlation 
requires the data to be distributed normally and the association 
between elements to be linear.  In three of the five projects, all but 
one split result in significant predictions.  The exceptions are 
projects C and E, which is due to the small number of binaries in 
these projects: In random splitting, a small sample size is unlikely 
to perform well, simply because one single badly ranked entity is 
enough to bring the entire correlation down. 

What does this predictive power mean in practice?  In Figure 2, 
we show two examples of ranking modules both by estimated and 
actual number of post-release defects.  The left side shows one of 
the random split experiments from Table 6 with a Pearson 
correlation of >0.6.  The project shown had 30 modules; the 
history and metrics of 2/3 of these were used for predicting the 
ranking of the remaining ten modules.  If a manager decided to 
put more testing effort into, say, the top 30% or three of the 
predicted modules, this selection would contain the two most 
failure-prone modules, namely #4 and #8.  Only one selected 
module (#6) would receive too much testing effort; and only one 
(#3) would receive too little. 

Table 6. Predictive power of the regression models in random split experiments 

Project Correlation type Random split 1 Random split 2 Random split 3 Random split 4 Random split 5 

Pearson 0.480 0.327 0.725 -0.381 0.637 A 

Spearman 0.238 0.185 0.693 -0.602 0.422 

Pearson -0.173 0.410 0.181 0.939 0.227 B 

Spearman -0.055 0.054 0.318 0.906 0.218 

Pearson 0.559 -0.539 -0.190 0.495 -0.060 C 

Spearman 0.445 -0.165 0.050 0.190 0.082 

Pearson 0.572 0.845 0.522 0.266 0.419 D 

Spearman 0.617 0.828 0.494 0.494 0.494 

Pearson -0.711 0.976 -0.818 0.418 0.007 E 

Spearman -0.759 0.577 -0.883 0.120 0.152 



On the right side of Figure 2, we see another experiment from 
Table 6 with a Pearson correlation of <0.3.  Here, the inaccurate 
ranking of module #5 in a small sample size is the reason for the 
low correlation.  However, for any top n predicted modules 
getting extra effort, one would never see more than one module 
not deserving that effort, and never more than one of the top n 
actual modules missed. 

All in all, both the R2 values in Table 5 and the sensitivity of the 
predictions in Table 6 confirm our hypothesis H3 for all five 
projects, illustrated by the examples in Figure 2.  In practice, this 
means that within a project, the past failure history of a project 
can successfully predict the likelihood of post-release defects for 
new existing entities; therefore, the predictors can also be used 
after a change to estimate the likelihood of failure.  The term 
“new entities” also includes new versions of existing entities; 
therefore, the predictions can also be used after a change to 
estimate the likelihood of failure. 

 
4.4 Are predictors obtained from one project 
applicable to other projects? 
Finally, our hypothesis H4 remains: If we build a predictor from 
the history and metrics of one project, would it also be predictive 
for other projects?  We evaluated this question by building one 
predictor for each project, and applying it to the entities of each of 
the other four projects.  Once more, we checked how well the 
actual and predicted rankings of the entities would correlate. 

Our findings are summarized in Table 7.  The entry “yes” 
indicates a significant correlation, meaning that the predictor 
would be successful; “no” means no or insignificant correlation. 

 

Table 7. Prediction correlations using models built from a 
different project 

Sensitivity correlations between actual and 
predicted 

Project 
used to 

build the 
model 

 A B C D E 

Pearson  No No No No A 

Spearman  No No No No 

Pearson No  Yes  No No B 

Spearman No  No No No 

Pearson No Yes  No Yes C 

Spearman No Yes   No Yes 

Pearson No No No  No D 

Spearman No No No  No 

Pearson No No No No  E 

Spearman No No Yes No  

As it turns out, the results are mixed—some project histories can 
serve as predictors for other projects, while most cannot.  
However, after our hypothesis H2 has failed, this is not too 
surprising.  Learning from earlier failures can only be successful 
if the two projects are similar—from the failure history of an 
Internet game, one can hardly make predictions for a nuclear 
reactor. 

What is it that makes projects “similar” to each other?  We found 
that those project pairs which are cross-correlated share the same 
heterogeneous defect distribution across modules which would 
also account for the large number of defect-correlated metrics, as 
observed in Section 4.1.  The cross-correlated projects B and C, 
for instance, both share a heterogeneous defect distribution, 

In essence, this means that one can learn from code that is more 
failure-prone to predict other entities which are equally failure-
prone.  For projects which are already aware of failure-prone 
components, one should go beyond simple code metrics, and 
consider the goals, the domain, and the processes at hand to find 
similar projects to learn from.  This, however, is beyond the scope 
of this paper. 

To sum up, we find our hypothesis H4 only partially confirmed: 
Predictors obtained from one project are applicable only to similar 
projects—which again substantiates our word of caution against 
indiscriminate use of metrics.  Ideas on how to identify similar 
projects are discussed in Section 7. 

 

Predictors obtained from principal component analysis are 
useful in building regression models to estimate post-
release defects. 

Predictors are accurate only when obtained from the same 
or similar projects. 
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Figure 2. Comparing predicted and actual rankings 



5. LESSONS LEARNED 
We started this work with some doubts about the usefulness of 
complexity metrics.  Some of these doubts were confirmed: 
Choosing metrics without a proper validation is unlikely to result 
in meaningful predictions—at least when it comes to predict post-
release defects, as we did.  On the other side, metrics proved to be 
useful as abstractions over program code, capturing similarity 
between components that turned out to be a good source for 
predicting post-release defects.  Therefore, we are happy that the 
failure history of the same or a similar project can indeed serve to 
validate and calibrate metrics for the project at hand. 

Rather than predicting post-release defects, we can adapt our 
approach to arbitrary measures of quality.  For instance, our 
measure might involve the cost or severity of failures, risk 
considerations, development costs, or maintenance costs.  The 
general idea stays the same: From earlier history, we select the 
combination of metrics which best predicts the future.  Therefore, 
we have summarized our approach in a step-by-step guide, shown 
in Figure 3.  In the long term, this guide will be instantiated for 
other projects within Microsoft, using a variety of code and 
process metrics as input for quality predictors. 

 

6. THREATS TO VALIDITY 
In this paper, we have reported our experience with five projects 
of varying goal, process, and domain.  Although we could derive 
successful predictors from the failure history in each of the 
projects, this may not generalize to other projects.  In particular, 
the specific failure history, the coding and quality standards, or 
other process properties may be crucial for the success.  We 
therefore encourage users to evaluate the predictive power before 
usage—for instance, by repeating the experiments described in 
Section 4.3. 

Even if our approach accurately predicts failure-prone 
components, we advise against making decisions which are based 
uniquely upon such a prediction.  To minimize the damage of 
post-release defects, one must not only consider the number of 
defects, but also the severity, likelihood, and impact of the 
resulting failures, as established in the field.  Such estimations, 
however, are beyond the scope of this paper. 

While the approach easily generalizes, we would caution against 
drawing general conclusions from this specific empirical study.  
In software engineering, any process depends to a large degree on 
a potentially large number of relevant context variables.  For this 
reason, we cannot assume a priori that the results of a study 
generalize beyond the specific environment in which it was 
conducted [2].  Researchers become more confident in a theory 
when similar findings emerge in different contexts [2].  Towards 
this end, we hope that our case study contributes to strengthening 
the existing empirical body of knowledge in this field.  

Figure 3. How to build quality predictors 

Ø  DO NOT use complexity metrics without validating them 
for your project. 

Ø  DO use metrics that are validated from history to identify 
low-quality components. 

Building quality predictors: 
A step-by-step guide 
 

1. Determine a software E from which to learn.  E can 
be an earlier release of the software at hand, or a 
similar project. 

2. Decompose E into entities (subsystems, modules, 
files, classes…) ,...},{ 21 eeE = for which you can 

determine the individual quality. 
In this paper, we decomposed the software into 
individual binaries—i. e. Windows components—
simply because a mapping between binaries and 
post-release failures was readily available. 

3. Build a function quality: E  R which assigns to 
each entity Ee∈  a quality.  This typically requires 
mining version and bug histories (Section 2.4). 
In our case, the “quality” is the number of defects in 
an entity e that were found and fixed due to post-
release failures. 

4. Have a set of metric functions ,...},{ 21 mmM =  such 

that each Mm∈  is a mapping m: E  R which 
assigns a metric to an entity Ee∈ .  The set of 
metrics M should be adapted for the project and 
programming language at hand. 
We use the set of metrics M described in Table 3. 

5. For each metric Mm∈  and each entity Ee∈ , 
determine m(e). 

6. Determine the correlations between all m(e) and 
quality(e), as well as the inter-correlations between 
all m(e). 
The set of correlations between all m(e) and 
quality(e) is shown in Table 3; the inter-correlations 
are omitted due to lack of space. 

7. Using principal component analysis, extract a set of 
principal components ,...},{ 21 pcpcPC = , where 

each component PCpci ∈  has the 

form Mi cccpc ,...,, 21= . 

An example of the set PC is given in Table 4. 
8. You can now use the principal components PC to 

build a predictor for new entities ,...},{ 21 eeE ′′=′  

with ∅=∩′ EE .  Be sure to evaluate the 
explanative and predictive power—for instance, 
using the experiments described in Section 4.3. 
We used PC to build a logistic regression equation, 
in which we fitted the metrics m(e’) for all new 
entities Ee ′∈′  and all metrics Mm∈ .  The 
equation resulted in a vector 

EpppP ′= ,...,, 21 where each Ppi ∈  is the 

probability of failure of the entity 'Eei ∈′ . 



7. CONCLUSION AND FUTURE WORK 
In this work, we have addressed the question “Which metric is 
best for me?” and reported our experience in resolving that 
question.  It turns out that complexity metrics can successfully 
predict post-release defects.  However, there is no single set of 
metrics that is applicable to all projects.  Using our approach, 
organizations can leverage failure history to build good predictors 
which are likely to be accurate for similar projects, too. 

This work extends the state of the art in four ways.  It is one of the 
first studies to show how to systematically build predictors for 
post-release defects from failure history from the field.  It also 
investigates whether object-oriented metrics can predict post-
release defects.  It analyzes whether predictors obtained from one 
project history are applicable to other projects, and last but not 
least, it is one of the largest studies of commercial software—in 
terms of code size, team sizes, and software users. 

Of course, there is always more to do.  Our future work will 
concentrate on these “more” topics: 

• More metrics.  Right now, the code metrics suggested 
are almost deceptively simple.  While in our study, 
McCabe’s cyclomatic complexity turned out to be an 
overall good predictor, it does not take into account all 
the additional complexity induced by method calls—
and this is where object-oriented programs typically get 
complicated.  We plan to leverage the failure data from 
several projects to evaluate more sophisticated metrics 
that again result in better predictors. 

• More data.  Besides only collecting source code 
versions and failure reports, we have begun to collect 
and recreate run-time information such as test coverage, 
usage profiles, or change effort.  As all of these might 
be related to post-release defects, we expect that they 
will further improve predictive power—and provide 
further guidance for quality assurance. 

• More similarity.   One important open question in our 
work is: What is it that makes projects “similar” enough 
such that predictions across projects become accurate?  
For this purpose, we want to collect and classify data on 
the process and domain characteristics.  One possible 
characterization would be a polar chart as shown in 
Figure 4, where we would expect similar projects to 
cover a similar space.  As a side effect, we could 
determine which process features correlate with quality. 

• More automation.  While we have automated the 
extraction and mapping of failure and version 
information, we still manually use third-party statistical 
tools to obtain the predictors.  We want to automate and 
integrate this last step as well, such that we can 
automatically obtain predictors from software archives. 
The next step would be to integrate these predictors into 
development environments, supporting the decisions of 
programmers and managers. 

• More projects.  Given a fully automated system, we 
shall be able to apply the approach on further projects 
within and outside of Microsoft.  This will add more 
diversity to the field—and, of course, help companies 
like Microsoft to maximize the impact of their quality 
efforts. 

All in all, modern software development produces an abundance 
of recorded process and product data that is now available for 
automatic treatment.  Systematic empirical investigation of this 
data will provide guidance in several software engineering 
decisions—and further strengthen the existing empirical body of 
knowledge in software engineering. 
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