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ABSTRACT

What is it that makes software fail? In an empiristudy of the
post-release defect history of five Microsoft safter systems, we
found that failure-prone software entities are istiaally
correlated with code complexity measures. Howetrgme is no
single set of complexity metrics that could actaasniversally
best defect predictor. Using principal componerglysis on the
code metrics, we built regression models that ately predict
the likelihood of post-release defects for new tmgi The
approach can easily be generalized to arbitraryjeptsy in
particular, predictors obtained from one projech caso be
significant for new, similar projects.

Categories and Subject Descriptors

D.2,7 [Software Engineering: Distribution, Maintenance, and

Enhancement-version control. D.2.8 [Software Engineering:

Metrics—Performance measurgsProcess metrics Product
metrics. D.2.9[Software Engineering} Management-Software
quality assurance (SQA)

General Terms
Measurement, Design, Reliability.

Keywords
Empirical study, bug database, complexity metripsincipal
component analysis, regression model.

1. INTRODUCTION

During software production, software quality assgsconsumes
a considerable effort. To raise the effectiversss efficiency of
this effort, it is wise to direct it to those whicleed it most. We
therefore need to identify those pieces of softweanéch are the
most likely to fail—and therefore require most of attention.

One source to determine failure-prone pieces cathdiepast: If
a software entity (such as a module, a file, or esoather
component) was likely to fail in the past, it ikdly to do so in the
future. Such information can be obtained frbog databases-
especially when coupled with version informationgls that one
can map failures to specific entities. Howevercuaate
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predictions require a long failure history, whiclaymot exist for
the entity at hand; in fact, a long failure histégysomething one
would like to avoid altogether.

A second source of failure prediction is ghi@gram codeitself:

In particular,complexity metricchave been shown to correlate
with defect density in a number of case studiesoweler,
indiscriminate use of metrics is unwise: How do kew the
chosen metrics are appropriate for the projecaatid

In this work, we apply aombinedapproach to create accurate
failure predictors (Figure 1): We mine the archivefs major
software systems in Microsoft and map their poltase failures
back to individual entities. We then compute staddccomplexity
metrics for these entities. Using principal comgmtranalysis, we
determine the combination of metrics which bestdjgtethe
failure probability for new entities within the peat at hand.
Finally, we investigate whether such metrics, atdd from
failures in the past, would also good predictors datities of
other projects, including projects be without dufia history.
1. Collect input data
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2. Map post-release failures to defects in entities
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Figure 1. After mapping historical failures to entities, we can
use their complexity metrics to predict failures ofnew entities.

" Andreas Zeller was a visiting researcher with fhesting,
Verification and Measurement Group, Microsoft Reskan the
Fall of 2005 when this work was carried out.



This paper is organized in a classical way. Aétiscussing the
state of the art (Section 2), we describe the desigour study
(Section 3). Our results are reported in Sectioim &ection 5, we
discuss the lessons learned, followed by threatsvatidity
(Section 6). Section 7 closes with conclusion farigre work.

2. RELATED WORK

2.1 Defects and Failures

In this paper, we use the temefectto refer to an error in the
source code, and the tefailure to refer to an observable error in
the program behavior. In other words, every failoan be traced
back to some defect, but a defect need not resalfailure.

Failures can occubefore a software release, typically during
software testing; they can also ocafter a release, resulting in
failures in the field. If a defect causes a piease failure, we

call it a pre-releasedefet; in contrast, apost-release defect
causes a failure after a release.

It is important not to confuse these terms. Intipalar, a study
conducted by Adams [1] found that only 2% of thdedts in
eight large-scale software systems lead to a meantb failure
of less than 50 years—implying that defect denstynot be used
to assess reliability in terms of failures [10].nlPone study so
far has found that a large number of fixed preasde defects
raised the probability of post-release failures [5]

For the user, only post-release failures matteherd@fore, our
approach is exclusively concerned wjtbst-release defecteach
of them uncovered by at least one failure in te&fi

2.2 Complexity Metrics

Over the years, a number of software metrics haes proposed
to assess software effort and quality [11]. Th#saditional”
metrics were designed for imperative, non-obje@ried
programs. The object-oriented metrics used inapproach were
initially suggested by Chidamber and Kemerer [8asili et al.
[3] were among the first to validate these metricsn an
experiment with eight student teams, they found @@ metrics
appeared to be useful for predicting defect densitiie study by
Subramanyam and Krishnan [21] presents a survesigit more
empirical studies, all showing that OO metrics significantly
associated with defects. In contrast to this axgstvork, we do
not predict pre-release defect density, but pdetee defects, and
hence actual failures of large-scale commerciahsog.

Empirical evidence that metrics can predicst-release defects
(rather than pre-release defects) and tmst-release failuress
scarce. Binkley and Schach [4] found that theiupting
dependency metric outperformed several other nsetvihen
predicting failures of four academia-developedwsafe systems.
Ohlsson and Alberg [18] investigated a number aflitronal
design metrics to predict modules that were pramdatlures
during test as well as within operation. They fduhat 20% of
the modules predicted as most failure-prone woulcbant for
47% of the failures. Their problem was, howeveat tit was not
possible to draw generalizable conclusions on thategy for

! The termfault is usually used as a synonym fiefects but
some authors (e.g. [18]) use it as a synonynfiditures In this
paper, we thus avoid the term.

selecting specific variables for the model’—whictwigy we rely
on failure history to select the most suitable mstcombination.

2.3 Historical Data

Hudepohl et al. [13] successfully predicted whethemodule
would be defect-prone or not by combining metried historical
data. Their approach useftware design metricas well as
reuse information under the assumption that new or changed
modules would have a higher defect density. In approach,
historical data is used to select appropriate weffirst, which
can then be applied to arbitrary entities; also,fe@is onpost-
releaserather than pre-release defects.

Ostrand et al. [19] used historical data from twogé software
systems with up to 17 releases to predict the Viliéls the highest
defect density in the following release. For esabase, the 20%
of the files with the highest predicted number efettts contained
between 71% and 92% of the defects being detecdeghin, our
approach focuses gmost-releaseaather than pre-release defects;
it also goes beyond the work of Ostrand et al. loy only
identifying the most failure-prone entities, busaldetermining
their common features, such that entities of ofitejects can be
assessed.

2.4 Mining Software Repositories

In recent years, researchers have learned to éxffiei vast
amount of data that is contained in software ra@pdes such as
version and bug databases [16, 17, 19, 22]. Thedea is that
one can mapproblems (in the bug database) tixes (in the
version database) and thus to those locations énctide that
caused the problem [9, 12, 20]. This mapping is lbhse of
automatically associating metrics with post-reledsdects, as
described in this work.

2.5 Contributions

This work extends the state of the art in four ways

1. It reports on how to systematically build predistdor
post-release defects from failure history foundthie
field by customers.

2. It investigates whether object-oriented metrics can
predict post-release defects from the field.

3. It analyzes whether predictors obtained from omgept
history are applicable to other projects.

4. Itis one of the largest studies of commercialvsafe—
in terms of code size, team sizes, and softwansuse

3. STUDY DESIGN

3.1 Researched Projects

The goal of this work was to come up with failuregictors that
would be valid for a wide range of projects. Hustpurpose, we
analyzed the project history of five major Micrasgiroject

components, listed in Table 1.

These projects were selected to form a wide rarfgpraduct
types. All of them have been released as indivigeaducts; they
thus do not share code. All use object-orientedggmmming
languages like C++ or C#. Finally, all of thesejpcts are
large—not only in terms of code or team size (> 2B@ineers),
but also in terms of user base. DirectX, for ins& is part of the
Windows operating system, which has an estimatéin@ion
users. (The team sizes are normalized in Tablddipe



Table 1. Projects researched

Project Description Components | Code| Team
size size
Internet Web browser HTML 511 | 14.3X
Explorer 6 rendering KLOC
IS W3 Web server Application 37 6.3X
Server core loading KLOC
Process Application all 147 3.4X
Messaging | communication KLOC
Component | and networking
DirectX Graphics all 306 | 18.5X
library KLOC
NetMeeting AV all 109 X
Conferencing KLOC

Let us now give a high level outline of each prajec

* Internet Explorer 6 (IE6)s the standard Web browser
shipped with most versions of Microsoft Windows.
Since only a part of IE6 is written in object-oried

languages, we focus upon the HTML rendering part as

an object-oriented component.

* Internet Information Services (118 the standard Web
server shipped with Microsoft Server. Again, weus

on an object-oriented component responsible for

loading applications into IIS.

« Process Messaging Componeris a Microsoft
technology that enables applications

networks and systems that may be temporarily &flin

*  Microsoft DirectXis an advanced suite of multimedia
application programming interfaces (APIs) builtaint
Microsoft Windows. DirectX is a Windows technology
that enables higher performance in graphics anddsou

when users are playing games or watching video on

their PC.

e Microsoft NetMeetingis used for both voice and
messaging between different locations.

In the remainder of the paper, we shall refer eséhfive projects
as projects A, B, C, D, and E. For reasons ofidentiality, we
do not disclose which letter stands for which proje

3.2 Failure Data

Like any company, Microsoft systematically recoadlsproblems

that occur during the entire product life cyclen this study, we
were interested irpost-release failuresthat is, failures that
occurred in the field within six months after thetial release.

For each of the projects, we determined the |detise date, and
extracted all problem reports that satisfied thuteria:

e The problem was submitted by customers in the field

e The problem was classified as non-trivial (in cestrto
requests for enhancement), and

¢ The problem was fixed in a later product update.

The location of the fix gave us the location of thest-release
defect We thus could assign each entity the number ait-po
release defects. The likelihood of a post-reledeect is also

running at
different times to communicate across heterogeneous

what we want to predict for new entities—that istitexs without
a failure history. Since each post-release déaabcovered by a
post-release failure, predicting the likelihood afpost-release
defect in some entity is equivalent to predictihg tikelihood of
at least one post-release failure associated histentity.

3.3 Metrics Data

For each problem report, Microsoft records fix libmas in terms
of modules—that is, a binary file within Windows, built from a
number of source files. Thus, we chosedulesas the entities for
which we collected the failure data and for whick want to
predict the failure-proneness.

For each of the modules, we computed a number wiceccode
metrics, described in the left half of Table 3.e%a metrics apply
to a moduleM, a function or method(), and a classC,
respectively.

Here is some additional information on the metiic$able 3:

* The Arcs and Blocks metrics refer to a function’s
control flow graph, which is also the base for cothmg
McCabe’s cyclomatic complexity (separately measured
asComplexity.

e The AddrTakenCouplingmetric counts the number of
instances where the address of some global variable
taken in a function—as in the C++ constructst
*ref = &globalvVar or int& ref =
gl obal Var.

* The ClassCoupling metrics counts the number of
classes coupled to a claSs A class is “coupled” t&€
if it is a type of a class member variable, a fiorct
parameter, or a return type @@; or if it is defined
locally in a method body, or if it is an immediate
superclass of. Each class is only counted once.

In order to have all metrics apply to modules, wmmarized the
function and class metrics across each module.e&ah function
and class metricX, we computed the¢otal and themaximum
number per module (henceforth denotedTasalX and MaxX
respectively). As an example, consider ltireesmetric, counting
the number of executable lines per function. TWaxLines
metric indicates the length of the largest functionM, while
TotalLines,the sum of allLines, represents the total number of
executable lines iM. Likewise, MaxComplexitystands for the
most complex function found .

3.4 Hypotheses
So, what do we do with all these metrics? Our liypses to be
researched are summarized in Table 2:

Table 2. Research hypotheses

Hypothesis

H; Increase in complexity metrics of an entiycorrelates
with the number of post-release defect&of

H, There is a common subset of metrics for whighapbplies
in all projects.

Hs There is a combination of metrics which signifittgn
predicts the post-release defects of new entitidisirwa
project.

—

Hy4 Predictors obtained using; fom one project also prediq
failure-prone entities in other projects.




Table 3. Metrics and their correlations with post-elease defects. For each moduM, we determine how well the metrics correlate
with M’s post-release defects. Bold values indicate sificant correlation.

Metric Description Correlation with post-release defects o
A B C D E
Module metrics — correlation with metric in a moduh
Classes # Classes i 0.531 0.612 0.713 0.066 0.438
Function # Functions irM 0.131 0.699 0.761 0.104 0.531
GlobalVvariables # global variables iV 0.023 0.664 0.695 0.108 0.460
Per-function metrics — correlation with maximum and sum of metric acrdsfuactionsf() in a moduleM
Lines # executable lines iff) Max -0.236 0.514 0.585 0.494 0.50
Total 0.131 0.709 0.797 0.187 0.506
Parameters # parameters if{) Max -0.344 0.372 0.547 0.015 0.346
Total 0.116 0.689 0.790 0.152 0.478
Arcs # arcs inf()'s control flow graph Max -0.209 0.376 0.587 0.527 0.444
Total 0.127 0.679 0.803 0.158 0.484
Blocks # basic blocks irf()'s control flow | Max -0.245 0.347 0.585 0.546 0.462
graph Total 0.128 0.707 0.787 0.158 0.472
ReadCoupling # global variables read i) Max -0.005 0.582 0.633 0.362 0.229
Total -0.172 0.676 0.756 0.277 0.445
WriteCoupling # global variables written if{) Max 0.043 0.618 0.392 0.011 0.450
Total -0.128 0.629 0.629 0.230 0.406
AddrTakenCoupling | # global variables whose addressg ilax 0.237 0.491 0.412 0.016 0.263
taken inf() Total 0.182 0593 0.667] 0175 0.145
ProcCoupling # functions that access a globhaMax -0.063 0.614 0.496 0.024 0.357
variable written irf() Total 0.043 0.562 0579  0.000 0.443
Fanin # functions callind() Max 0.034 0.578 0.846 0.037 0.530
Total 0.066 0.676 0.814 0.074 0.537
FanOut # functions called b¥() Max -0.197 0.360 0.613 0.345 0.465
Total 0.056 0.651 0.776 0.046 0.506
Complexity McCabe's cyclomatic complexity Max -0.200 0.363 0.594 0.451 0.543
off() Total 0.112 0.680 0.801 0.165 0.529
Per-class metrics— correlation with maximum and sum of metric acraslasse< in a modulev
ClassMethods # methods inC (private / public /| Max 0.244 0.589 0.534 0.100 0.283
protected) Total 0.520 0.630 0581  0.094 0.469
InheritanceDepth # of superclasses @f Max 0.428 0.546 0.303 0.131 0.323
Total 0.432 0.606 0.496 0.111 0.425
ClassCoupling # of classes coupled with (e.g. as| Max 0.501 0.634 0.466 -0.303 0.264
attribute / parameter / return typesyoy 0.547 0.598 0592  -0.158 0.383
SubClasses # of direct subclasses 6f Max 0.196 0.502 0.582 -0.207 0.387
Total 0.265 0.560 0.566 -0.170 0.387




As a first step, we examine whether there are aggifcant
correlations between complexity metrics and polstase defects
(Hy). We then want to find whether there is some comsubset

of these metrics that is correlated with post-rededefects across
different projects (B). As a third step, we evaluate whether we
can predict the likelihood of post-release deféctaew entities
by combining multiple metrics @)L Finally, we evaluate whether
predictors obtained from one project are also goeadlictors of
failure-proneness for another projectYH

4. RESULTS

Let us now discuss the results for the four hypsgke Each
hypothesis is discussed in its individual section.

4.1 Do complexity metrics correlate with

failures in the field?

To investigate our initial hypothesis Hwe determined the
correlation between the complexity metrics (Sec8@) for each
module M with the number of post-release defecectiSn 3.2).
The resulting standard Spearman correlation caeffi€ are
shown in Table 3. Correlations that are significanthe 0.05
level is shown in bold; the associated metrics ttarselate with
the number of post-release defects. For instangapject A, the
higher the number of classes in a mod@agsey, the larger the
number of post-release defects (correlation 0.53a)her
correlating  metrics  include TotalClassMethods, both
InheritanceDepthand bothClassCouplingneasures. Clearly, for
project A, the more classes we have in a moduke higher its
likelihood of post-release defects. However, nofighe other
metrics such akinescorrelate, implying that the length of classes
and methods has no significant influence on pdsese defects.

Projects B and C tell a different story: Almost admplexity
metrics correlate with post-release defects. bjgot D, though,
only the MaxLines metric correlates with post-release defects,
meaning the maximum length of a function within adule.
Why is it that in project B and C, so many metigcsrelate, and
in project D, almost none? The reason lies witthie project
nature itself, or more precisely within its proce$he team of
project D routinely uses metrics like the ones @bty identify
potential complexity traps, and refactors code ggewhich are
too complex. This becomes evident when looking ttet
distribution of post-release defects across the utesd In
project D, the distribution is much more homogersethan in
project B or C, where a small nhumber of modulesoant for a
large number of post-release defects. These medide turn out
to be the more complex ones—which is what makesthel
metrics correlate in B and C.

Nonetheless, one should note that we indeed fowncelating
metrics for each project. This confirms our hysis H:

For each project, we can find a set of complexiggrios that
correlates with post-release defects—and thusrizélu

2 The Spearman rank correlation is a commonly-ussulist
correlation technique [11] because it can be agpteen when
the association between elements is non-linear.

4.2 Is there a single set of metrics that

predicts post-release defects in all projects?
As already discussed, each of the projects comisitsiown set
of predictive metrics. It turns out that theren@ a single metric
that would correlate with post-release defectdlifive projects.

All in all, this rejects our hypothesis,Hwhich has a number of
consequences. In particular, this means that iinisise to use
some complexity metric and assume the reported ity
would imply anything—at least in terms of post-relealefects.
Instead, correlations like those shown in Table@ud be used to
selectandcalibrate metrics for the project at hand, which is what
we shall do in the next steps.

There is no single set of metrics that fits alljpobs.

4.3 Can we combine metrics to predict post-

release defects?

If there is no universal metric to choose from, eem at least
exploit the failure history and its correlation kimetrics? Our
basic idea was to build predictors that would heldhin a
project. We would combine the individual metrics, weighithg
metrics according to their correlations as listed able 3.

However, one difficulty associated with combiningveral
metrics is the issue ohulticollinearity. Multicollinearity among
the metrics is due to the existence of inter-catiehs among the
metrics. In project A, for instance, tlidasses, InheritanceDepth,
TotalMethodsand ClassCouplingmetricsnot only correlate with
post-release defects, but they also strongly catedl with each
other. Such an inter-correlation can lead to #ated variance in
the estimation of the dependent variable—that ist-pelease
defects.

To overcome the multicollinearity problem, we usedtandard
statistical approach, namepyincipal component analysi®®CA)
[14]. With PCA, a smaller number of uncorrelatedehr
combinations of metrics that account for as muchpa variance
as possible are selected for use in regressioeaflior logistic).
These principal components are independent andoticsuffer
from multicollinearity.

We extracted the principal components for each haf five
projects that account for a cumulative sample wagagreater
than 95%. Table 4 gives an example: After extractfive
principal components, we can account for 96% of to&l
variance in project E. Therefore, five principabngponents
suffice.

Table 4. Extracted principal components for projecte

Principal Initial Eigenvalues
Component Total % of Variance  Cumulative %
1 25.268 76.569 76.569
2 3.034 9.194 85.763
3 2.045 6.198 91.961
4 918 2.782 94.743
5 523 1.584 96.327




Table 5. Regression models and their explanative per

Project Number of principal % cumulative variance R? Adjusted R F - test
components explained
A 9 95.33 0.741 0.612 5.731, p<0.001
B 6 96.13 0.779 0.684 8.215, p <0.001
C 7 95.34 0.579 0.416 3.541, p <0.005
D 7 96.44 0.684 0.440 2.794, p <0.077
E 5 96.33 0.919 0.882 24.823, p < 0.0005

Using the principal components as the independariable and
the post-release defects as the dependent variabl¢hen built
multiple regression models. We thus obtained aliprer that

would take a new entity (or more precisely, theueal of its
metrics) and come up with failure estimate.The regression
models built using all the data for each projeet enaracterized
in Table 5. For each project, we presentRhgaluewhich is the
ratio of the regression sum of squares to the stal of squares.
As a ratio, it takes values between 0 and 1, watigdr values
indicating more variability explained by the modahd less
unexplained variation. In other words: The higtter R value,

the better the predictive power.

Theadjusted R measurealso can be used to evaluate how well a
model will fit a given data set [7]. éxplains for any bias in the
R? measure by taking into account the degrees ofifneeof the
independent variables and the sample populatioa.afusted R
tends to remain constant as th& Reasure for large population
samples. TheF-ratio is to test the null hypothesis that all
regression coefficients are zero at statisticatipiicant levels.

How does one interpret the data in Table 5? Ldbags straight
away on the Rvalues of the regression models. The Walues
indicate that our principal components explain lestw 57.9%
and 91.9% of the variance—which indicates the efficaf the
built regression models. The adjustetvBlues indicate the lack
of bias in our Rvalues—that is, the regression models are robust.

To evaluate the predictive predictors, we ran andsed
experiment: For each project, we randomly splitgbeof entities
into 2/3 and 1/3, respectively. We then built edictor from the

would be between the actual and estimated posigeldefects; a
correlation of 1.0 would mean that the sensitiaifythe predictor
is high and vice versa.

The results of our evaluation are summarized inég &b Overall,
we performed five random splits to build five maldbr each
project to evaluate the prediction efficacy. Wpeated the same
process using different random splits, overall iegdto 25
different models and predictions. Again, positdbagrelations are
shown in bold. We present both the Spearman andsé&ea
correlations for completeness; the Pearson biaratrelation
requires the data to be distributed normally arel aksociation
between elements to be linear. In three of the fiisojects, all but
one split result in significant predictions. Theceptions are
projects C and E, which is due to the small nundfebinaries in
these projects: In random splitting, a small sansie is unlikely
to perform well, simply because one single badhkeal entity is
enough to bring the entire correlation down.

What does this predictive power mean in practida?igure 2,

we show two examples of ranking modules both byreded and
actual number of post-release defects. The léé& shows one of
the random split experiments from Table 6 with aarBen

correlation of >0.6. The project shown had 30 nestuthe

history and metrics of 2/3 of these were used fedjcting the

ranking of the remaining ten modules. If a manadgided to
put more testing effort into, say, the top 30% loreé of the
predicted modules, this selection would contain tive most

failure-prone modules, namely #4 and #8. Only sekcted

module (#6) would receive too much testing effartd only one
(#3) would receive too little.

2/3 set. The better the predictor, the stronger dbrrelations
Table 6. Predictive power of the regression models random split experiments
Project Correlation type Random splitl Randomt&pl] Random split 3] Random split4  Random split 5

A Pearson 0.480 0.327 0.725 -0.381 0.637
Spearman 0.238 0.185 0.693 -0.602 0.422

B Pearson -0.173 0.410 0.181 0.939 0.227
Spearman -0.055 0.054 0.318 0.906 0.218

C Pearson 0.559 -0.539 -0.190 0.495 -0.060
Spearman 0.445 -0.165 0.050 0190 0.082

D Pearson 0.572 0.845 0.522 0.266 0.419
Spearman 0.617 0.828 0.494 0.494 0.494

E Pearson -0.711 0.976 -0.818 0.418 0.007
Spearman -0.759 0.577 -0.883 0.120 0.152
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Figure 2. Comparing predicted and actual rankings

On the right side of Figure 2, we see another éwyart from
Table 6 with a Pearson correlation of <0.3. Héhme,inaccurate
ranking of module #5 in a small sample size isréweson for the
low correlation. However, for any top predicted modules
getting extra effort, one would never see more thae module
not deserving that effort, and never more than @hthe topn
actual modules missed.

All in all, both the B values in Table 5 and the sensitivity of the
predictions in Table 6 confirm our hypothesis fdr all five
projects, illustrated by the examples in Figurel2.practice, this
means that within a project, the past failure histof a project
can successfully predict the likelihood of poseesle defects for
new existing entities; therefore, the predictora edso be used
after a change to estimate the likelihood of falurThe term
“new entities” also includes new versions of exigtientities;
therefore, the predictions can also be used aftehange to
estimate the likelihood of failure.

Predictors obtained from principal component analyere
useful in building regression models to estimatestpq
release defects.

4.4 Are predictors obtained from one project

applicable to other projects?

Finally, our hypothesis fremains: If we build a predictor from
the history and metrics of one project, would goabe predictive
for other projects? We evaluated this questiorbbyding one
predictor for each project, and applying it to émgities of each of
the other four projects. Once more, we checked @i the
actual and predicted rankings of the entities waaldelate.

Our findings are summarized in Table 7. The ertygs”
indicates a significant correlation, meaning thia¢ tpredictor
would be successful; “no” means no or insignificamtrelation.

Table 7. Prediction correlations using models builtfrom a
different project

Project Sensitivity correlations between actual and
used to predicted
build the A B c D E
model
A Pearson No| No| Nol No
Spearman No No| No NQ
B Pearson No Yes | No No
Spearman No No| No NQ
C Pearson No| Yes No | Yes
Spearman No| Yes No | Yes
D Pearson No| No| No Ng
Spearman No No No NQ
E Pearson No No No No
Spearman No No| Yes | No

As it turns out, the results are mixed—some pradjgstories can
serve as predictors for other projects, while maeannot.

However, after our hypothesis,Hhas failed, this is not too
surprising. Learning from earlier failures canyobhk successful
if the two projects are similar—from the failure toiy of an

Internet game, one can hardly make predictionsafanuclear

reactor.

What is it that makes projects “similar” to eachat? We found
that those project pairs which are cross-correlatete the same
heterogeneous defect distribution across moduleshwvould
also account for the large number of defect-coredlanetrics, as
observed in Section 4.1. The cross-correlatedept®jB and C,
for instance, both share a heterogeneous defaobdison,

In essence, this means that one can learn from ttadés more

failure-prone to predict other entities which agualy failure-

prone. For projects which are already aware dirfiprone

components, one should go beyond simple code mgtand

consider the goals, the domain, and the procesddesnd to find

similar projects to learn from. This, howeverb&yond the scope
of this paper.

To sum up, we find our hypothesis, bnly partially confirmed:
Predictors obtained from one project are applicahlg to similar
projects—which again substantiates our word of caution again
indiscriminate use of metrics. Ideas on how tontie similar
projects are discussed in Section 7.

Predictors are accurate only when obtained from shene
or similar projects.




5. LESSONS LEARNED

We started this work with some doubts about thdulisess of
complexity metrics. Some of these doubts were inoefl:
Choosing metrics without a proper validation isikelly to result
in meaningful predictions—at least when it comeprdict post-
release defects, as we did. On the other sidejangiroved to be
useful asabstractionsover program code, capturing similarity
between components that turned out to be a goodcesdior
predicting post-release defects. Therefore, wehappy that the
failure history of the same or a similar projech @adeed serve to
validate and calibrate metrics for the projectaich

Rather than predicting post-release defects, we adapt our
approach to arbitrary measures of quality. Fotaimse, our
measure might involve the cost or severity of fa&ily risk
considerations, development costs, or maintenansts.c The
general idea stays the same: From earlier histweyselect the
combination of metrics which best predicts the fatuTherefore,
we have summarized our approach in a step-by-stiele gshown
in Figure 3. In the long term, this guide will bestantiated for
other projects within Microsoft, using a variety obde and
process metrics as input for quality predictors.

DO NOT use complexity metrics without validating thgm
for your project.

DO use metrics that are validated from history tonitify
low-quality components.

6. THREATS TO VALIDITY

In this paper, we have reported our experience fiith projects

of varying goal, process, and domain. Althoughowseld derive
successful predictors from the failure history iaclke of the
projects, this may not generalize to other projedts particular,

the specific failure history, the coding and quabktandards, or
other process properties may be crucial for thecesx We
therefore encourage users to evaluate the preeliptwer before
usage—for instance, by repeating the experimentsrides in

Section 4.3.

Even if our approach accurately predicts failurergr
components, we advise against making decisionshndrie based
uniquely upon such a prediction. To minimize tremdge of
post-release defects, one must not only considemtimber of
defects, but also the severity, likelihood, and aetpof the
resulting failures, as established in the fielducl® estimations,
however, are beyond the scope of this paper.

While the approach easily generalizes, we wouldicaltagainst
drawing general conclusions from this specific ampl study.

In software engineering, any process dependsdoga degree on
a potentially large number of relevant context ablés. For this
reason, we cannot assume a priori that the resdlts study

generalize beyond the specific environment in whithvas

conducted [2]. Researchers become more confideat theory
when similar findings emerge in different contef@s Towards

this end, we hope that our case study contribatesrengthening
the existing empirical body of knowledge in thisldi.

Building quality predictors:
A step-by-step guide

1. Determine a softwarg from which to learn.E can
be an earlier release of the software at hand, or a
similar project.

2. Decomposé into entities (subsystems, modules,
files, classes...E ={g,&,,...} for which you can

determine the individual quality.

In this paper, we decomposed the software into
individual binaries—i. e. Windows components—
simply because a mapping between binaries and
post-release failures was readily available.

3. Build a functionquality: E — R which assigns to
each entityeJ E a quality. This typically requires
mining version and bug histories (Section 2.4).

In our case, the “quality” is the number of defeits
an entity e that were found and fixed due to post-
release failures.

4. Have a set ofetric functionsM ={m,m,,...} such

that eachmOM is a mappingn: E — R which
assigns a metric to an ent&y] E . The set of
metricsM should be adapted for the project and
programming language at hand.
We use the set of metrics M described in Table 3.
5. For each metrion(0M and each entitg ] E ,
determinam(e).
6. Determine the correlations betweenralg) and
quality(e), as well as the inter-correlations betweer
all m(e).
The set of correlations betweath m(e) and

quality(e) is shown in Table 3; the inter-correlation$

are omitted due to lack of space.
7. Using principal component analysis, extract a §et
principal component8C ={ pg, pc,,...} , where

each componenpg O PC has the

form pg = <cl,c2,...,qM‘> .

An example of the set PC is given in Table 4.

8. You can now use the principal compondP@&to
build a predictor for new entitieg' ={¢,,&,,...}
with E'n E =0 . Be sure to evaluate the
explanative and predictive power—for instance,
using the experiments described in Section 4.3.
We used P@o build a logistic regression equation,
in which we fitted the metrics m(e’) for all new
entities€ 0 E and all metricsmO M. The
equation resulted in a vector

P= <pl, p2'---’HE'\> where eactp; OP is the
probability of failure of the entitg O E'.

b

Figure 3. How to build quality predictors



7. CONCLUSION AND FUTURE WORK

In this work, we have addressed the question “Wigric is
best for me?” and reported our experience in résghthat
question. It turns out that complexity metrics carccessfully
predict post-release defects. However, there isingle set of
metrics that is applicable to all projects. Usiogr approach,
organizations can leverage failure history to bgided predictors
which are likely to be accurate for similar progdbo.

This work extends the state of the art in four walgss one of the
first studies to show how to systematically builekgictors for
post-release defects from failure history from fiedd. It also
investigates whether object-oriented metrics caedipt post-
release defects. It analyzes whether predicto@imdd from one
project history are applicable to other projectsqd dast but not
least, it is one of the largest studies of comna¢eoftware—in
terms of code size, team sizes, and software users.

Of course, there is always more to do. Our futena@k will

concentrate on these “more” topics:

« More metrics. Right now, the code metrics suggested

are almost deceptively simple. While in our study,
McCabe’s cyclomatic complexity turned out to be an
overall good predictor, it does not take into actoall
the additional complexity induced by method calls—
and this is where object-oriented programs typycgét
complicated. We plan to leverage the failure deim
several projects to evaluate more sophisticatedicaet
that again result in better predictors.

More data. Besides only collecting source code
versions and failure reports, we have begun toecbll
and recreate run-time information such as testragee
usage profiles, or change effort. As all of thesght
be related to post-release defects, we expectthiegt
will further improve predictive power—and provide
further guidance for quality assurance.

More similarity. One important open question in our
work is: What is it that makes projects “similariaigh
such that predictions across projects become aecura
For this purpose, we want to collect and classiftacbn
the process and domain characteristics. One pessib
characterization would be polar chart as shown in
Figure 4, where we would expect similar projects to
cover a similar space. As a side effect, we could
determine which process features correlate withitgua

More automation. While we have automated the
extraction and mapping of failure and version
information, we still manually use third-party $tital
tools to obtain the predictors. We want to aut@nzatd
integrate this last step as well, such that we can
automatically obtain predictors from software avelsi
The next step would be to integrate these predicitio
development environments, supporting the decisains
programmers and managers.

More projects. Given a fully automated system, we
shall be able to apply the approach on furthergutsj
within and outside of Microsoft. This will add neor
diversity to the field—and, of course, help companie
like Microsoft to maximize the impact of their qitgl
efforts.
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Figure 4. A Boehm-Turner polar chart [6] which
characterizes the software process [15]

All in all, modern software development producesaaandance
of recorded process and product data that is noailadole for
automatic treatment. Systematic empirical invesiign of this
data will provide guidance in several software aesgiing
decisions—and further strengthen the existing ewgdibody of
knowledge in software engineering.
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