Linear Types for Aliased Resources (Extended Version)
Chris Hawblitzel
October 2005

Technical Report
MSR-TR-2005-141

Type systems that track aliasing can verify state-dependent program properties.
For example, such systems can verify that a program does not access a resource
after deallocating the resource. The simplest way to track aliasing is to use
linear types, which on the surface appear to ban the aliasing of linear resources
entirely. Since banning aliasing is considered too draconian for many practi-
cal programs, researchers have proposed type systems that allow limited forms
of aliasing, without losing total control over state-dependent properties. This
paper describes how to encode one such system, the capability calculus, using
a type system based on plain linear types with no special support for aliasing.
Given well-typed capability calculus source programs, the encodings produce
well-typed target programs based on linear types. These encodings demonstrate
that, contrary to common expectations, linear type systems can express aliasing
of linear resources.

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1 Introduction

Type systems verify many important properties of programs. A type-safe program cannot
accidentally use a floating point number as a file, for instance, because files and floating-
point numbers have different types. Some properties exceed the grasp of conventional type
systems, though, because the properties depend on the state of a resource. Ideally, a program
should not be able to write to a file after closing the file, but most type systems, including
those of Java, C#, and ML, assign the same type to an open file and a closed file, and thus
cannot distinguish between writing to an open file and writing to a closed file. As another
example, typical safe languages simply ban explicit heap object deallocation rather than
attempting to statically verify that a program never accesses a deallocated heap object.

Several recent languages [7][24][9][10][32] have extended conventional type systems to
track the state of resources, such as files, sockets, hardware devices, regions, and heap
objects. In these languages, the type of an object changes as the object’s state changes.
The central challenge in these languages is aliasing — if both and y refer to the same
resource, then both z’s type and y’s type must change if the resource’s state changes.

As an example, consider a simple interface to a file system, together with two functions
hello and goodbye, expressed in an ML-like notation:

open : string — file

close : file — ()

write : file X string — ()

hello : file x file — ()

hello (xy : file,xq : file) = write (x1, “hello”); write (xq, “hello”)

goodbye : file x file — ()

goodbye (z1 : file,xq : file) = write (x1, “bye”); close x1; write (2, “bye”); close 9

The function goodbye behaves incorrectly if 1 and 2 refer to the same file, because it tries
to write to z2 after closing x:

byebye : file — ()
byebye (x : file) = goodbye (z,x)

In general, a type system’s ability to track object state is limited by its ability to track
aliasing: unless the type system knows that goodbye requires x1 and z2 to refer to distinct
files, it cannot know that “goodbye (z,x)” is a mistake.

Linear type systems [27][28] deal with aliasing in a simple way: programs are not allowed
to duplicate nor discard linear values (values having linear type). If file is a linear type,
for example, then the function byebye is ill-typed because it tries to duplicate the linear
variable z.

At first glance, it might seem that linear type systems prohibit the aliasing of linear
values entirely, which is a rather draconian way to track aliasing. In particular, it is now
impossible to call hello with arguments z; and z2 bound to the same file, even though it
would be safe to do so. This doesn’t mean that it’s impossible to write traditional nonlinear
functions at all in a linear type system; all practical linear type systems provide both linear
and nonlinear types (one common notation uses “!” to indicate nonlinearity; if file is a linear
type, then !file is the corresponding nonlinear type), so hello could declare its arguments
to be nonlinear files. What seems to be missing from linear type systems is a middle ground
between linearity and nonlinearity; the aliasing of linear values is prohibited entirely, and
the aliasing of nonlinear values is completely unrestricted.

This problem motivated the development of the capability calculus [7] and alias types
[24], which allow linear values to become aliased temporarily, but can later recover the
linearity of the aliased values. For example, a function in these systems can pass a single
linear file as both the 1 and x5 arguments to hello, and later recover the linearity of the file
in order to close the file. Unfortunately, these systems require some fairly esoteric typing

constructs, including non-idempotent capability joins, subcapabilities, bounded capability
quantification, and a special stripping operator. This paper demonstrates that these esoteric
features are not necessary to achieve the power of the capability calculus and alias types.
In fact, standard linear type systems, with no special extensions, can encode the capability
calculus and alias types.

To substantiate this claim, this paper takes the capability calculus of Crary, Walker, and
Morrisett (modified to handle generic linear “resources”, rather than memory regions) as a
source language, compiles it to two linear target languages, and proves that the compilation
translates any well-typed source program into well-typed target programs. The first target
language is identical to the source language except for the type system, which replaces
the unusual features of the capability calculus with a straightforward, decidable linear logic.
Since the compilation to the first target language affects only the types, it introduces no run-
time overhead. The second target language is the standard polymorphic lambda calculus
Fuw, extended with linear types. While the compilation to linear Fw does not produce
efficient programs, it does demonstrate that the non-trivial aliasing present in the capability
calculus and alias types is expressible even in a minimal linear type system. Furthermore,
the compilation to linear Fw provides a minimal semantic basis for alias types. Finally,
this paper also translates the unmodified capability calculus (with memory regions) into a
third target language, which supports memory regions but uses the first target language’s
decidable logic.

By replacing the capability calculus’s types with standard linear types, these three com-
pilations reduce the complexity of the type system and thus reduce the trusted computing
base of systems that rely on type checking for security, such as typed assembly language[19].
Furthermore, the techniques in this paper increase the expressiveness of programs that ma-
nipulate linear resources: with a single type system, programs can combine the advantages
of the capability calculus and traditional linear types. Finally, by formalizing three partic-
ular encodings of aliasing within a linear type system, this paper helps dispel the common
wisdom that linearity implies non-aliasing: the central message of this paper is that linear
types can express aliasing of linear resources.

2 Aliasing with linear types

Sections 3-7 describe the complete encodings of the capability calculus. This section de-
scribes the intuition behind the encodings. After all, it seems counterintuitive at first that
linear types, which prohibit a program from duplicating references to linear values, could
express the aliasing of linear values. In fact, the ideas that underlie the encodings are fairly
simple, and are easy to express using the hello and goodbye examples from section 1. The
first step is to rewrite the examples using linear types:

open : string — file

close : file — ()

write : file ® string — file

hello : file ® file — file ® file

hello (x1 : file,xqo : file) = (write (x1, “hello”),write (xa, “hello”))

goodbye : file ® file — ()

goodbye (x1 : file, x5 : file) = close (write (x1, “bye”)); close (write (xa, “bye”))

Nonlinear pairs (e1,e2), of type 71 X 7o, cannot contain linear values (otherwise, a program
could duplicate a linear value by storing it in a nonlinear pair and duplicating the nonlinear
pair). Therefore, the new versions of write, hello, and goodbye store files in linear pairs
(e1,ea) of linear type 71 ® 72. In addition, the new version of write returns the linear file
that it receives as an argument; this allows the caller to continue using the file after writing
to it. For example, the following well-typed function writes to a linear file twice, then closes
it:

byebye : file — ()

byebye (x : file) =
let 2’ = write (z, “bye”) in
let " = write (', “bye”) in
close "

A program cannot continue using a linear file after closing it, though, because close does
not return its argument back to the caller!.

The new version of hello can no longer be called with a single file as both arguments
x1 and z9, as discussed in section 1. Section 2.1 rewrites hello to allow aliasing by using
function abstraction, and section 2.2 rewrites hello to allow aliasing by using the linear
choice operator.

2.1 Aliasing with function abstraction

The hello function takes two arguments x; and x9, and it should be possible for these
arguments to be two different files or for them to be the same file. Suppose that hello
does not receive z; and xy directly, but instead accesses them by invoking methods on an
object, whose private implementation might consist of two separate files or might consist
of a single file. Let « be the private implementation of the object; an implementer could
choose @ = file in the case of a single file or a = file ® file in the case of separate files.
Naively, the object’s methods could be functions of type a — file, so that the method
gets a file from the object’s private implementation. If o = file ® file, this type doesn’t
work; a function of type file ® file — file would have to discard one of the two files. A
more appropriate type would be « — 8 ® file, where 8 = () if @ = file and 8 = file if
a = file ® file. Furthermore, after hello gets one file from «, it should be able to get the
other file from « and then return a back to the caller. Therefore, there should be reverse
methods of type 8® file — «. Altogether, the object consists of one private implementation
«, a method f1 : a« — B ® file to acquire the file z1, a method ¢; : B ® file — « to release
1, a method fs : a — B ® file to acquire zo, and a method g : B® file — « to release xs:

hello : Va.VB.a® (a — B ® file) ® (B file —)
®(a— 0@ file) ® (B® file — a) > «
hello {(a: a, f1:a— B® file, g1 : B file — «,
fo:a— B@ file, go: B® file — a) =

let <b171'1> = fl a in

let o’ = g1 (b1, write (x1, “hello”)) in

let (ba, z2) = fo @’ in

let @’ = go (b, write (xs, “hello”)) ina”

Since hello is polymorphic over all « and 3, it works both when a consists of one file and
when « consists of two files. Nevertheless, hello’s caller knows what « is, and hello returns
a value of type «, so that the caller recovers the linearity of the file or files after hello
returns; thus, hello is able to use x1 and x, as if they were aliased, without the caller losing
track of the aliasing forever. Furthermore, if a devious reimplementation of hello’s body
tried to acquire and close z1, it would have no way to subsequently acquire and close z2,
since acquiring x; consumes «, and « is needed to acquire xo. This is both reassuring,
since it should be impossible to close both z1 and zs if 1 and xo refer to the same file,
and expected, since the underlying linear type system never allows a program to close a
file twice, no matter how deviously and cleverly the program employs function abstraction.
Finally, even though «, (, and file are linear types, the function types o — [® file and

1A note on notation: linear logic often defines 71 — T2 to mean (!71) —o 72, while this paper follows
a different convention [27][17]: 71 — 72 means !(71 —o 72); for example, a program can call the function
close : file — () many times, each time with a linear file argument.

0 ® file — « are nonlinear, so that hello may use fi1, g1, f2, and g2 as many times as it
likes, or never use them at all.

Invoking the functions fi1, g1, f2, and g2 adds considerable syntactic overhead to hello’s
implementation. It’s possible to factor out some of this overhead. First, define a type
abbreviation:

T <= Tg = (Tl — 7'2) X (7'2 —>T1)
Then create a wrapper around the write function:

writeAliased : Va.V3.a ® (o — [& file) ® string — «
writeAliased {(a: «, (f :a — ® file, g: f® file — a), s: string) =
let (b,z) = f aing (b, write (x, s))

Then hello simplifies to:

hello {(a: o, y1: o B® file, yo : a« — B® file) =
let o’ = writeAliased (a, y1, “hello”) in
let o' = writeAliased (@', y2, “hello”) ina”

2.1.1 Capabilities and proofs

In addition to their syntactic overhead, the function calls to fi1, g1, f2, and g2 add run-
time overhead to hello’s implementation. A couple of well-known extensions to the type
system can eliminate this overhead. The first extension [7] splits linear resources into a
run-time handle, of nonlinear type “phandle”’, and a compile-time capability, of linear type
“pcap”, where the type variable p ensures that a handle is always used with the appropriate
capability (a p; handle is incompatible with a ps cap). A compiler erases the capabilities
after type-checking, so that capabilities add no run-time space or time overhead. Each file
operation requires both the capability and the handle for a file:

open : string — dp.pcap @ phandle
close : Vp.pcap @ phandle — ()
write : Vp.pcap @ phandle ® string — pcap
hello : Vp1.¥pa Na VB .¥VGr.a ® (a — 1 ® p1cap) @ (f1 ® p1 cap — «) ® pp handle
®(a — (2 ® pa2cap) ® (P2 @ pa cap — a) ® pg handle — «
hello (a: a, f1: o — (1 @ p1cap, g1 : 01 @ p1cap — «, hy : pr handle
foia— By ® pacap, go: P2 @ pacap — «, hs : pohandle) =

let <b17l’1> = f1 a in

leta’ = g1 (b1, write (x1, h1, “hello”)) in

let (ba, z2) = fo @’ in

let a” = ga (ba, write {xa, ha, “hello”)) ina’”

Since the handles are nonlinear, hello may alias them freely; the function abstraction is
only necessary for the linear capabilities. Since the capabilities p; cap and ps cap occupy
no memory at run-time, the types «, f1, and (2 also occupy no memory. (The new code
requires two variables 31 and (32 rather than a single 8, because there are now two capability
types p1 cap and p cap rather than a single file type file.) At run-time, the functions fi, g1,
f2, and g2 do nothing; they consume empty arguments and produce empty results. There’s
no reason to actually call them. The second extension to the type system [6] formalizes
this observation by making f1, g1, f2, and g» functions in a proof language rather than a
functions in a programming language (the proof functions perform no run-time computation,
perform no I/0, and always terminate, so there’s no reason to actually call them at run
time; the compiler erases the proofs after type-checking, just as it erases the capabilities).
Section 6 describes a particular proof language in detail, but for the moment, assume that
there are types 71 = 7 for proof functions, so that hello has type:

hello : Vp1.¥pa Na V(1 .¥V0r.a® (a = 1 ® p1cap) @ (61 ® p1 cap = a) ® pp handle
®(a = (2 ® p2cap) ® (P2 @ pa cap = a) ® pg handle — «

2.2 Aliasing with choice

This section describes a second way to implement aliasing, based on previous work by Walker
[30] and O’Hearn [14]. As a starting point, consider the wrapper function write Aliased from
section 2.1, updated to use the proof functions and capabilities from section 2.1.1:

writeAliased : Vp.Na.VB.(a ® (o & f ® pcap)) ® phandle ® string — «

Actually, the file system’s primitive write function could simply use this type in the first
place, eliminating the need for a wrapper:

write : Vp.¥Ya.VB.(a® (o & B ® pcap)) ® phandle ® string — «

Furthermore, since write is a trusted built-in function (perhaps written in an unsafe language
like C), it can relax its type slightly. The write function requires a proof of type a = S®p cap
to know that p cap still exists, which proves that the file pointed to by phandle is still open.
The caller relies on write’s return value of « to ensure that write doesn’t close the file; the
caller passes in a proof of type 0 ® pcap = « to allow write to reconstruct « after using
a = [® pcap. A trusted implementation of write needn’t bother with § ® pcap = «,
though; it can simply claim to return «, and the caller trusts this claim. The relaxed type
for write is:

write : Vp.Va.VB3.(a ® (o = B ® pcap)) ® phandle ® string — o

In the new version of write, the scope of 8 need not be so large; the following type works
just as well:

write : Vp.¥a.(a ® (o = (38.8) ® pcap)) ® phandle ® string — «
Abbreviating 36.8 as “true”, the type for write becomes:
write : Vp.¥o.(a ® (o = true ® pcap)) @ phandle ® string — «

This relaxed type breaks with section 2.1 in a fundamental way — whereas the proof lan-
guage in section 2.1 was merely used to optimize away run-time calls to functions, the
soundness of the new version of write depends on the lack of side effects in the implemen-
tation of @ = B ® pcap. In other words, the following type would be unsound:

badWrite : Vp.¥Va.(a ® (« — true ® pcap)) ® phandle ® string — «

Suppose a programmer passes a function f of type a — true ® pcap to badWrite. If
badWrite doesn’t actually call f at run time, then f can subvert soundness using non-
termination (f can produce a return type true ® pcap by infinitely recursing on itself,
regardless of what « is). If, on the other hand, badWrite does call f, then f can deallocate
some linear resource present in «, making it unsound for badWrite to return a. Either way,
badWrite is unsafe.

With the new version of write, the type for hello becomes:

hello : ¥p1.¥pa Va.(a @ (o = true ® p; cap)
®(a = true ® p2 cap)) ® p1 handle ® ps handle — «

One way to think about hello’s type is that hello receives an o and a choice of how to use
a: hello can keep « as-is, it can turn it into true ® p; cap, or it can turn it into true ® ps cap.
This is reminiscent of the linear choice operator “&” in linear logic [28]: if you have a value
of type &9, then you can choose either 7 or 72, but not both (in contrast to the linear
pair operator “® ", where 7y ® 72 gives you both 71 and 73). The correspondence between
hello’s type and the linear choice operator suggests an alternate version of hello, using “&”
rather than “ = ":

CCO (section 3)

l eliminate stripping operator (section 4)

CC1
f segregate unique and alias capabilities (section 5)

CC2
CC/CCL
LC Linear Fw l (appendix D)
(section6) (section7) CC/SLL

Figure 1: Translating CCO to LC, CCO to Linear Fw, and CC/CCL to CC/SLL

hello’ : Vp1.V¥pa.Vy.(v&(true ® p1 cap)&(true ® po cap)) ® p1 handle ® ps handle —

For example, if a caller has a pair of capabilities p; cap ® ps cap, then it can call hello’ with
v = p1cap ® p2 cap, because:

(p1 cap ® pacap) = (p1 cap ® pa cap)&(true ® p; cap)&(true ® p2 cap)

If, on the other hand, the caller has only a single capability pcap, it can choose v = pcap,
because:

(pcap) = (pcap)&(true @ pcap)&(true @ pcap)

In fact, the types for hello and hello’ are interchangeable: hello can call hello’ by instanti-
ating v with «, and hello’ can call hello by instantiating « with v&(true ® p; cap)&(true ®
p2 cap). In section 6’s encoding, “&” is strongly preferable to “ = 7, because a linear propo-
sitional logic with only linear operators is decidable, while nonlinear operators like “ =7
can destroy decidability [16].

2.3 Outline

Sections 2.1 and 2.2 demonstrated that linear types can express aliasing, at least in a simple
example. The rest of the paper extends this expression to a complete language (see Figure
1). Section 3 introduces CCO, a slightly modified version of the calculus of capabilities
[7]. Sections 6 and 7 present the translations of CCO into two target languages. The
first target language, called LC, retains CCO0’s syntax for expressions but replaces CCO0’s
subcapability relation, bounded quantification, join operator, and stripping operator with
a simple, decidable linear logic. To express aliasing, LC uses the linear choice operator, as
described in section 2.2. The translation from CCO to LC leaves the run-time behavior of
a program unchanged: a CCO program’s type erasure is identical to the corresponding LC
program’s type erasure. LC is based on a language developed by David Walker [30], and
the translation from CCO to LC implements his suggested connection between linear types
and the capability calculus (see [30], pp. 37-41).

The second target language, linear Fw, is the higher-order polymorphic lambda calculus
extended with linear types. Since linear Fw lacks LC’s distinction between a programming
language and a proof language, the translation uses the functional abstraction aliasing strat-
egy described in section 2.1. One surprise in the CCO-to-linear Fw encoding is the reliance
on type variables of kind Type — Type, which is not required in the CC0-to-LC encoding;
the difference between the two encodings stems from the use of a proof language in LC but
not in linear Fw. It’s an open question whether there is a CC0-to-linear F2 encoding (i.e.
an encoding using only type variables of kind Type).

Although the CCO-to-linear Fw translation significantly changes all aspects of the source
program (types and expressions), the changes made by the CCO-to-LC translation focus on

kinds k = Type | Res | Cap

constructors c al|T|C
ctorvarsa, B,€,p, . ..
types T = «a phandle |Va:k7 |[Va<Cor | (C,7) = 0| 11 X 7
capabilities C = e|0|{p?}|C1dCy|C
multiplicities p = 1|+

ctor ctwts A = |Aa:k|Ae<C

value ctrts r = - |e:r
word values v = x|vc: K]
heap values h Aa:k.h | da < Ch | MNCyz:7).e]| (vi,v2)
declarations d = z=v|x=h|z=%#nv|newp,x | freev | usev
expressions e = letdine | vy vy | halt

Figure 2: CCO syntax

the logic of capabilities inside CCO’s type system. In fact, it’s easy to adapt this transla-
tion to Crary, Walker, and Morrisett’s original calculus of capabilities (referred to here as
“CC/CCL”), as shown in appendix D.

CCO0 works with generic linear resources, assuming a few basic operations on resources.
Section 7.1 replaces CCQ’s generic resources with a specific resource (heap objects) in order
to implement alias types.

Sections 4 and 5 apply two preprocessing phases to the CC0 source program in prepa-
ration for the translations into LC and linear Fw. The first preprocessing phase eliminates
the stripping operator, which is a special type operator present in CCO but not present in
LC and linear Fw. The second preprocessing phase deals with CC0’s flexible polymorphism
over capabilities. From sections 2.1 and 2.2, it is clear that the translations to linear Fw
and LC will treat the functions hello and goodbye differently. The challenge for the transla-
tion is that CCO allows polymorphic functions that can behave both like hello and goodbye,
depending on how their type arguments are instantiated. The second phase deals with this
problem by splitting all capabilities into separate unique and alias parts.

The two preprocessing phases generate programs in a languages CC1 and CC2, which
are variants of CCO. Unlike LC and linear Fw, CC1 and CC2 are not designed for elegance
and generality, and contain some ad-hoc features and restrictions that serve only to make
the ultimate translations into LC and linear Fw easier. It would be possible, of course, to
formulate the CCO-to-LC and CCO-to-linear Fw translations as single monolithic transfor-
mations, but this makes the translations less clear, and does not improve the quality of the
generated LC code and linear Fw code.

3 CCO0, a calculus of capabilities

As a starting point for the translations into LC and linear Fw, this section describes CCO0, a
language based on the calculus of capabilities [7]. There are two major differences between
CCO0 and the calculus of capabilities:

e The calculus of capabilities supports a particular linear resource (regions), and an-
notates all heap value types with regions. This allows the calculus of capabilities to
replace garbage collection with safe manual memory management. CCO, by contrast,

does not focus on any particular linear resource; it assumes some generic resource of
kind “Res”, with operations “new”, “free”; and “use”, which correspond to “newrgn”,
“freergn”, and hval/proj operations of the calculus of capabilities, and correspond to
the “open”, “close”, and “write” operations in the examples from section 2. There are
two reasons for not using regions in CCO. First, region annotations are orthogonal to
the central topic of this paper (aliasing), and would obscure the translation’s treat-
ment of aliasing. Second, the successors to the calculus of capabilities [24][9] choose
different linear resources, such as heap objects and sockets; there’s no reason for this

paper to prefer one resource over any other resource.

e The calculus of capabilities provided both a compile-time syntax for programs and
a syntax for running programs. The latter includes the state of the heap, which is
empty at compile time. Although the translations in this paper would apply to the
run-time state as well as the compile-time state, the compile-time translation is of
more practical interest, so for brevity’s sake, CCO omits the run-time state.

In addition, there are several minor differences, none of which are essential to the translation:

e CCO deliberately omits recursive functions, in order to show that CCO0’s remaining
features do not lead to non-termination. In particular, if the translation from CCO
to linear Fw preserves the run-time semantics of a program, then all well-typed CCO
programs terminate (because all well-typed linear Fw program terminate). The trans-
lation could easily accommodate recursion, assuming recursion is also added to the
target languages.

e For brevity, CCO omits the integer type.

e For simplicity, CC0O assumes each function takes exactly one argument, rather than
multiple arguments.

e For clarity and notational consistency with LC and linear Fw, CCO uses pairs 71 X o
rather than n-tuples (71, ..., 7).

e For clarity, CCO breaks the V[A].(C,7) — 0 type into smaller primitives: VYo: k.7 and
Va < C.r and (C,7) — 0.

e To simplify the presentation of the translations into CC1 and CC2, CCO requires a
kind annotation in the constructor application expression v[c : K].

Otherwise, CCO is identical to the capability calculus. In particular, CCO retains the syn-
tax for capabilities, bounded polymorphism over capabilities, all of the capability equality
rules, and all of the subcapability rules. Figure 2 shows the complete CCO syntax, and
appendix A contains CC0Q’s complete static semantics. For more information about the
capability calculus, see [7]; this section recaps the most important aspects and gives some
short examples.

Consider the goodbye function from section 2. Figure 3 shows this function written in
CCO0 syntax. The first difference between the two versions is that CCO functions are written
in continuation-passing style (CPS). CPS functions do not return — they either halt the
program or call another function. The goodbye function, for example, takes a continuation
function k as an argument, and calls k£ when finished (much like a RISC assembly language
program that jumps to an explicit return address upon completion).

The second difference between the two versions of goodbye is that section 2’s version
passed linear capabilities pcap as first-class arguments, while the CCO version tracks capa-
bilities in a special composite capability C = a®{pi}®{pi}. In general, every CCO function
declares a capability in its type (C,7) — 0. This capability is a precondition that callers
of the function must satisfy. For example, goodbye’s capability specifies that in addition
to some arbitrary «, which the caller chooses, the caller must provide capabilities for two

linear resources p1 and po. Since goodbye deallocates both p; and ps, goodbye’s continuation
k cannot include p; and p2 in its capability; the type system would prohibit goodbye from
calling k if k had type (a @ {pi} & {p3},()) — 0.

CCO types refer to unaliased linear resources using “unique” capabilities, denoted by the
syntax {p'}. For unique capabilities, the CCO join operator “@” operator acts like the linear
pair operator “®”. CCO also supports aliased linear resources, as shown in figure 3’s hello
function. An alias capability {p*} indicates that p may appear elsewhere in the composite
capability that contains {p*}. For example, the capability a®{pf }&{p5 } in hello indicates
that p; and p2 may occur in «, and that that p; and p2 may be equal to each other. Since
p1 and ps are marked as potentially aliased, the type system prohibits hello from freeing p;
and po (although hello can still use p; and ps) — this ensures that the free operation leaves
no dangling capabilities to freed linear resources. A subcapability relation connects unique
capabilities with alias capabilities; in particular, a unique capability is a subcapability of an
alias capability: {p'} < {p™}.

For example, suppose that a function f contains capability {p{} @ {pi} @ {pi}. Then
f can call hello by choosing 3 = {pj} ® {p1} @ {p3} and a = {pj}. These choices satisfy
hello’s subcapability bound 8 < a @ {p] } ® {p3 }:

{ro} @ {pit @ {3} <{ps} o {pi} @ {r3}

Alternately, suppose that f only contains a single capability {p'}. Then f can call hello
by choosing p1 = p and ps = p, together with 3 = {p'} and a = (). Alias capabilities are
duplicable, so that {p™} = {p™} ® {pT}. Therefore, these choices satisfy the subcapability
bound 3 < @ {p{} @ {p5 }:

{p't<0a{p}o{p}

Both versions of f can choose a continuation k that frees f’s capabilities, since k takes 0 as
its capability, and § consists of unique capabilities. Thus the calculus of capabilities allows
hello to temporarily alias linear resources, without losing track of the linearity permanently.

4 From CCO to CC1

The type variables « : Cap and 3 : Cap in section 3 demonstrate the capability calculus’s
polymorphism over capabilities. Since a program can instantiate type variables of kind
Cap with both unique and alias capabilities, the type system must conservatively assume
that these type variables are non-duplicable. To allow duplicable capability variables, the
capability calculus introduces a stripping operator C, which replaces all unique capabilities
in C with alias capabilities (for example, {p'} = {pT}). Stripped capabilities are duplicable,
sothat a =a @ a.

Traditional linear type systems contain no stripping operator. The “!” operator is similar,
but not quite the same: stripping acts recursively on a capability, so that C; & Cy = C, &y,
while (11 X 72) is not equal to 71 x !7o. Rather than adding the stripping operator to the
target languages LC and linear Fw, this section defines a translation C(C') that eliminates
the stripping operator from capabilities in CCO:

o '77

The definition of C(C) is trivial except for the case of C(C), which requires an auxiliary
definition S(C). For most cases, this auxiliary definition just follows CC0’s equality rules
for the stripping operator, which say that {p'} = {p*} and C1 & C> = C1 ® Cs and C =C
and) = 0:

Tz = Tk X (p1 handle x ps handle)
7= (a,()) =0
goodbye : Vpy :Res.Vpa:Res.Va:Cap.(a @ {pi} @ {pi}, 72) — 0
goodbye = \py:Res.\pa:Res. a:Cap Aa @ {pi} @ {pi},x : 7).
let (k, (hl, hg)) =z in
let use hy in
let free hy in
let use ho in
let free hy ink ()

T =1} X (p1 handle x pz handle)
7 =(6,0) —
hello : Vpl Res. Vpg Res.Va:Cap.V3 < a @ {p7 } @ {p3}.(8,7.) — 0
hello = Apy:Res. A\pa:Res. Aa:Cap A3 < a @ {pf } @ {pF }A(B, 2z : 7).
let (]f, (hl, hg)) =2z in
let use hy in
letuse hy ink ()

type abbreviation : () = Va:Type.(0,a) — 0
expression abbreviation : () = Aa: Type.A(D, z :). halt
expression abbreviation : (let (y, (21, 22)) = v ine)=
(lety =#1zinletz = #2x inlet z; = #1 z inlet 20 = #2z ine)

Figure 3: CCO examples

The only nontrivial case is S(«), since there’s no equality rule to simplify @. For this case,
the translation invents a fresh type variable ag for each « in the source program:

S(a) = ag

CCO0’s subcapability rules require that C < C for all well-formed C. In particular, the
translation must ensure that o < ag in all contexts where « is a well-formed type of kind
Cap. This means that any types or expressions declaring a : Cap must also declare ag as a
supertype of a. For example, in the translations 7 (1) of types below, a polymorphic source
type Va: Cap.7 turns into a target type that is polymorphic over both « and ag, with the
bound o < ag:

T(a) =
T(p handle) = phandle
T((C,7) — 0) = (C(C), T(r)) — 0
T(T1 X 7'2) T(Tl) X T(Tg)
T (Va: Type.7) = Va: Type. T (1)
T(Vp:Res.T) = Vp:Res. T (1)
T (Va:Cap.7) = Vag: Cap™.Va:Cap < as.7 (1)

(Note that ag is only relevant to « of kind Cap, and does not affect the rules for 7 (a),
T (phandle), T (Vo : Type.7), and T (Vp: Res.7), which are only relevant to « : Type and
p: Res.)

10

The definition of 7 (Vo < C.7) is similar to the definition of 7 (Vo : Cap.7), in that «
must be a subcapability of «s, but also requires a to be a subcapability of C(C):

T(Va < C.1) =Vag:Cap™ < S(C).Va:Cap < C(C),as.7(7)

This requires the target language CC1 to support multiple bounds on capability variables. In
addition, CC1 supports a new kind Cap™ for capabilities that contain no unique capabilities
{p*}. Both of these new features persist into CC2, and are then eliminated in the translations
to LC and linear Fw.

The syntax of CC1’s kinds, types, and capabilities is as follows:

kinds k = Type | Res| Cap | Cap™
types T = o« phandle |Va:k.7 | (C,7) = 0| 71 X 72
| Ya:Cap™ < C.1 | Va:Cap < Cp,Cy,...,Ch.T
capabilities C = e|0|{p?}]|C1C,

Appendix A contains the complete syntax and rules for CC1, including additional rules and
minor changes to the syntax for h and A. Appendix C contains the CC0-to-CC1 translations
E(e) for expressions, D(d) for declarations, V(v) for values, H(h) for heap values, A(A) for
type variable environments, and T'(T") for variable environments, as well as lemmas for the
type-correctness of these translations (the proofs appear in [12]).

A particularly important lemma is that type equality persists from CCO to CC1, so that
if A C; = Cy: Cap in CCO, then A(A) F C(Cy) = C(C2) : Cap in CC1. The most
challenging rule for this lemma is the CCO rule for duplication of stripped capabilities:

AFC: Cap
AFC=Ca®C:Cap

Clearly this rule should not apply to unstripped capabilities, because unique capabilities
{p'} should not be duplicable. What’s not clear is how to write the rule without mentioning
the stripping operator, which CC1 lacks. CC1’s solution is to introduce a new kind Cap™
for duplicable capabilities (i.e. capabilities containing no unique capabilities {p'}). The
kinding rules specify that alias capabilities {p™} have both kind Cap and Cap™, but unique
capabilities only have kind Cap:

Al p:Res At p:Res AF C:Cap*
AF{p'}: Cap AF {pt}: Cap™ A+ C:Cap

Therefore, composite capabilities of kind Cap may contain both alias and unique capabilities,
but composite capabilities of kind Cap™ may contain only alias capabilities:

AFCy:Cap AFCs: Cap AFCy:Cap™ At Cy: Cap™
AFC,®Cy: Cap AFC,@®Cy:Cap™

With these rules (and a few others, in appendix A), all stripped capabilities in a CCQ
program turn into CC1 capabilities of kind Cap™, which are duplicable via the following
CC1 rule:

AFC:Capt
AFC=C®C:Capt

11

5 From CC1 to CC2

The capability calculus’s polymorphism over capabilities presents a challenge to LC and
linear Fw. Consider the following CC1 function type:

Vaq :Cap.Vas: Cap.(ay @ as, (a1 ® as, () — 0) — 0

If a; and gy represent unique capabilities {p} and {p3}, then a; @ as should turn into a
linear pair in LC and linear Fw. On the other hand, if oy and ay represent alias capabilities
{p{} and {p7 }, then the LC representation of a; & ay would involve the choice operator (as
described in section 2.2) and the linear Fw representation of a1 @ as would involve extra
functions (as described in section 2.1). Since the function type shown above is polymorphic
over all capabilities a; and s, the translated function type must handle both the unique
case and the alias case.

To handle capability polymorphism, the CC1-to-CC2 translation splits every capability
C into two parts: a unique part U and an alias part A, which combine to form the complete
capability C'= UH A, where H is a pairing operator for joining unique and alias capabilities
together. In particular, each capability variable @ becomes two variables ay and a4; the
former holds the unique part of « and the latter holds the alias part of a. The function
type shown above translates to:

T (VYaq : Cap.Vag: Cap.(a1 @ ag, (a1 ® ag,()) — 0) — 0) =
Voga: Cap+.Voz1U : Capl.VagA : Caer.Vong : Capl.
((a1v @ azp) B (a14 @ aza), ((c1r ® asy) B (@14 ® a24),7(())) — 0) — 0

In this form, the subsequent translations into LC and linear Fw can deal with the unique
pair a1y @ asy separately from the alias pair a1 4 @ a4, and yet callers of the function
above can still instantiate a; = vy B g4 and as = asy H agy with arbitrary mixtures of
unique and alias capabilities.

The syntax of CC2’s kinds, constructors, types, and capabilities is as follows (the com-
plete syntax and rules appear in appendix A):

kinds k = Type | Res | Cap®
constructors c = a|7]Q
types T = o phandle |Va:k.7 | (C,7) = 0| 71 X 7o
| Voa:Cap™ whereUy Ba < Ay,...,.U,Ba<A,.T
pure capabilities QAU = a|b|{p’}]Q1DQ-
mixed capabilities C = UHA

The letters @, A, and U denote “pure capabilities”, which are only well-kinded if they
consist entirely of unique capabilities or entirely of alias capabilities. For example, in an
environment where p; and ps have kind Res, Q = {p}} @ {pi} has kind Cap' and Q =
{p7} @ {p3} has kind Cap™, but Q = {p} @ {p5} is not well-kinded. By convention, U
refers to pure capabilities of kind Cap!, A refers to pure capabilities of kind Cap™, and
Q@ refers to pure capabilities of either kind. The letter C' is still used, but only as an
abbreviation for the “mixed capability” U B A. There is no kind for mixed capabilities
(unlike CCO and CC1, CC2 does not contain the kind Cap), but CC2’s rules sometimes use
the syntax “A - U B A : Cap” as an abbreviation for “A - U : Cap' and A+ A : Cap ™.
Similarly, there are no equality rules for mixed capabilities, but CC2’s rules sometimes
use “AFUMBA=UHBA : Cap’ as an abbreviation for “A - U = U’ : Cap® and
A+ A=A : Cap'”. The subcapability relation does require some interaction between
the unique and alias capabilities, as discussed in section 5.1, but otherwise U and A live in
separate, isolated worlds.

The CC1-to-CC2 capability translation splits each capability C into its unique and alias
parts:

12

U(a) = ay Ala) = aq

UD) =0 AD) =10

U{p'}) = 1{r'} A({p'}) =

U{p™H) =10 A{pt}) = {p*}

UCL® C2) =U(C1) 8U(C2) A(Cr & Ca) = A(C1) & A(C2)

Given the definition of C(C), the CC1-to-CC2 type translation is straightforward for types
that do not involve subcapability bounds:

T(a) =«

7T (phandle) = phandle
T(C,7)—0)=(C(C), T(1))—0
T(T1 X 7'2) = T(Tl) X T(Tg)
7(
7(
7(

Va:Res.T) = Va:Res. T (1)
Va:Cap.7) = Yo :Cap ' Vay : Cap' . T (1)
T (Ya:Cap™.7) = Va:Cap™.[ay «— 0)T(7)

Notice that the rule for Yo : Cap™.7 substitutes () for ay rather than quantifying over all
possible ar. Any C substituted for o : Cap™ must have kind Cap™, and for any C of kind
Cap™, U(C) =0, so T (Va: Cap™'.7) need not quantify over all ayy. The lemmas describing
the type correctness of the CC1l-to-CC2 translation (see appendix C) must account for the
substitution of @) into a, so the translation defines a composite substitution [A]:

[-1=]

[: Type, A] = [A]

[: Res, A] = [A]

[: Cap, Al = [A]

[a: Cap™, AT = [ay < 0][A]

One important lemma is that the CC1-to-CC2 translation preserves capability equality: if
FAand A Cy =Cy: k in CCL, where k = Cap or k = Cap™, then A(A) - [AU(Cy) =
[AJU(Cy) : Cap® and A(A) F [AJA(C)) = [A]JA(Cy) : Cap™ in CC2.

5.1 Subcapabilities in CC2

CC2’s unique and alias capabilities have separate translations U (U) and A(A), separate
kinding judgments A F U : Cap® and A - A : Cap ™, and separate equality rules A - U =
U':Cap' and A+ A= A": Cap"’. The unique and alias parts cannot live in complete iso-
lation, though, because the subcapability relationship {p'} < {p*} lets capabilities migrate
from the unique part to the alias part. Therefore, expecting all subcapability relations to
conform to either U < U’ or A < A’ is too restrictive — the subcapability relation must
at least allow relations of the form U < A in order to capture {p'} < {p™}. The most
obvious solution is allow fully general subcapability relations of the form UB A < U’ HA’,
and to adapt CCQ’s subcapability rules to CC2’s syntax. Surprisingly, this general form is
too permissive to support the CC2-to-LC and CC2-to-linear Fw translations. The problem
stems from CCQ’s congruence rule for subcapabilities:

AFCL<Cl AFC<CY
AFCLdCs < Cf @ Ch

The straightforward adaptation of this to CC2’s syntax is:

AFULBA <UBA, AbFUyBA, <ULB A,
AF UL eU)B (AL @ A2) < (U Uj)) B (A @ A))

13

There’s no reason to believe that this rule is unsound; after all, it can be derived in CC0’s
type system if B is replaced by @®. Nevertheless, this rule is not very useful to the section

s CC2-to-LC translation and section 7’s CC2-to-linear Fw translation, because the cor-
responding judgment in LC would be incorrect (as would the corresponding judgment in
linear Fw):

® (A1 ® true) = Uy @ (A} ® true),
Us ® (A2 ® true) = Ul @ (AL @ true)
F (U1 @Us) @ (((A1 ® true)&(As @ true)) ® true) =
(U @ Uj}) @ ((A] ® true)& (AL & true)) ® true)

The following instance of this judgment shows why the judgment is not correct:

I ® (X @true) = X @ (0 @ true),

e (Y @true) = Y @ () @ true)

FO®0) e (X ®true)&(Y & true)) ® true) =
(X®Y)® (0@ true)& () ® true)) ® true)

The premises in this example are true, but the conclusion would require that (X ®true)& (Y ®
true) imply X ® Y, which is not correct: having a choice between X and Y does not give you
both X and Y. The other direction is correct — X ® Y does imply (X ® true)& (Y ® true)
— 50 clearly this example reversed something. The culprit is the choice of A1 = U] = X
and As = U) =Y. These choices assume that capabilities migrate from aliased parts to
unique parts: H X < XHO and 0BY < Y H(@. In other words, they assume that
{p*t} < {p'}, which is exactly backwards. CCO0, CC1, and CC2 allow {p'} < {p*} and
prohibit {p™} < {p'}, which is why the congruence rule shown above works for CC2. By
contrast, LC and linear Fw have no explicit {p'} < {p*} rule, because they lack an explicit
subcapability relation altogether.

Luckily, it is not difficult to modify CC2’s subcapability relation to make the CC2-to-LC
and CC2-to-linear Fw translations smoother. Although UB A < U’'H A’ is too permissive,
and segregated U < U’ and A < A’ are too restrictive, there’s a middle ground that allows
{p'} < {p*} while still preventing {p™} < {p'} from sneaking into LC and linear Fw. If
CC2 restricts subcapabilities to have the syntax U H A < @ B A’, then it is syntactically
impossible to express {p*} < {p'} (assuming that U, A, and A’ have the appropriate kinds).
For example, this syntax forces the U] and U} to be @ in the LC judgment above, so that
the judgment becomes:

® (A1 ® true) = 0 @ (A} ® true),
Us ® (A2 @ true) = 0 @ (A5 ® true)
F (U @Us2) ® (((A; ® true)&(As @ true)) ® true) =
0 ®0)® (((A] @true)&(A) @ true)) ® true)

This judgment is correct. There are other possible syntactic restrictions (e.g. UB(Q < U'HA’
or UBQ <PHEA), but UB A < QB A offers the cleanest way to encode the general case
UBA<U HBHA"

(UBA<UBA) & WUp(U=Up®U and UgBA< B A')

This encoding allows capabilities to migrate from U to A’ using the capability Ug as a
conduit. For example, to express

{1t @ {mh) B{ps} <{p1}B{pst @ {ri})

choose Up = {p}:

14

{pi} @ {ps} = {n3} @ {pi} and {p3} B {p3} < VB {p3} @ {p3})

Furthermore, the encoding does not allow capabilities to migrate the wrong way (from A
to U’) — there is no way for the encoding to express 8 {p*} < {p'} B0, because there’s
no way to satisfy U = Ug ® U’ if U =) and U’ = {p'}.

Appendix C defines rules for a relation A - (C < C') ~ Up that generate an appropriate
Ugp in CC2 for any subcapability derivation A = C < C’ in CC1. For example, the rules
produce:

AF(({pi} @ (o) Bios} < {pi} B{p3} @ {p3})) ~ {p}
The key lemma for the subcapability relation states that if F A and A+ (C < C') ~ Up in
CC1, then A(A) F [AJU(C) = [AJUp ® [AJU(C") : Cap' and A(A) F [AJUp B [AJA(C) <
DB [AJA(C) in CC2.
To emphasize the syntactic restriction on CC2’s subcapability relation, the rest of the
paper writes UH A < QB A’ simply as UHA < A'.

5.2 Bounded quantification in CC2

CC1 defines two forms of bounded quantification: Vo : Cap™ < C.7 and Va : Cap <
Cy,C1,...,Ch.7. To make the translation to CC2 easier, CC1 restricts C and C4,...,C,
to have kind Cap™:

AFC:Capt A,o: Capt < CF1:Type
AFVYa:Cap™ < C.7: Type

AFCy: Cap AFCy:Cap™ AFC,:Cap™
A,a:Cap < (Cy,C4,...,Cy) F1:Type
A FVa:Cap < Cy,Ch,...,Ch.T : Type

For any C of kind Cap™, U(C) = (). This means, for example, that the translation of
Va:Cap™ < C.7 need not worry about establishing a Ug for () and U(C), because both
U(a) and U(C) are equal to (. The simplest syntax for the translation would be:

T (Ya:Cap™ < C.7) =Vas:Cap™ < A(C).[ay « 0T (1)

CC2 actually uses a more general syntax for bounded quantification, allowing bounds of the
form U EHay < A’ on the variable a4, rather than just ay < A”:

T (Va:Cap™ < C.1) =Va,:Cap™ where B ay < AC).[ay — 0]7 (1)

The more general syntax allows a translation of Va: Cap < Cy, C4,...,C,.7, where o and
Cp may have non-empty unique parts due to their kind Cap. This case requires encoding
a < Cy as described in section 5.1:

Z/[(Oé) = UB @U(Oo) and UB BE‘.A(O() < .A(Co)

By definition, U(o) = ay and A(a) = a4. Since these are variables, Up must also be a
variable:

ay =ag ®U(CyH) and ap Bas < A(ChH)

Because C;...C,, all have kind Cap™, each of the a < C;...a < C, bounds already
conforms to CC2’s subcapability syntax (U B A < A’) and needs no further encoding;:

ay Bayg < A(Ch) ay Bag < AC,)

15

All told, there is one equality bound (ay = ap ® U(Cy)), one subcapability bound for Cy,
and n subcapability bounds for C ... C),. The easiest way to handle the equality bound is
to substitute ag @ U(Cy) for ay. This changes each of the n subcapability bounds to:

(OéB @U(CQ))HHQASA(C1) (aB @U(Co))EHOéASA(Cn)
and yields a complete (and admittedly, complicated) translation of Va: Cap < Cy, C4,...,Cy.T:

T (Va:Cap < Cy,C4,...,Ch.m) =
Vag:Cap! Vau:Cap” where apHBay < A(Cy),
(ap ®U(Cy)) Baa < A(CY),

(ap BUCY)) Baa < ACh).loy — (ap BUC)T (1)

Any CC1 expression that applies a value v of type Vo : Cap < Cy,C1,...,C,.T to some
capability argument C' must, when translated into CC2, find an appropriate Up to plug in
for ap. Luckily, section 5.1 already established a relation A (C < C') ~» Ug for choosing
Ug, and this relation guides the translation of a CC1 value v[C : Cap] into a CC2 value
V([C : Cap]), where the translation is written as an annotation of v’s typing judgment
A;T HolC: Cap] : 7~ V(v[C : Cap)):

A;T Ho:Va:Cap < Cy,Ch,...,Cph.m ~ 0
AFC<Cy~Ug
AFC<Cy AFC<LC,
AFC:Cap

A;T Fo[C: Cap| : [«— C)7 ~ v'[Up : Cap'][A(C) : Cap™]

Note that CC2 could generalize its bounded quantification even further, allowing bounds
UHBA < A’ instead of just UH« < A’, but would complicate the subsequent translations into
LC and linear Fw (in particular, the translation into LC relies on substitution for o). CC1
and CC2 must to be general enough to handle all well-typed CCO programs, but restrictive
enough to support the final translations into LC and linear Fw. The path through CC1 and
CC2 is a thin and not-entirely-straight line.

6 From CC2 to LC

Figure 4 shows the syntax of LC, which is based on a language developed by Walker [30].
LC is identical to CCO except that:

e LC lacks a subcapability relation (and therefore requires no bounded quantification).
e LC lacks a stripping operator.
e LC lacks multiplicity flags (it has {p} rather than {p'} and {p™}).

e LC uses standard linear logic operators ®, &, and —o in place of CC0’s nonstandard
join operator (6p).

Appendix A presents the complete typing rules for LC. Figure 5 shows the the linear sequent
logic rules that govern capabilities. In each rule, each of the premises is strictly smaller than
the conclusion A - C, so that the height of any derivation of A F C is bounded by a function
of the size of A = C. This ensures that there is at least one algorithm for deciding the validity
of C under assumptions A = Cq, ..., C,: simply try all possible derivations with A F C as
the conclusion [16]. Note that although the order of assumptions A = C1, ..., C,, is irrelevant

16

kinds k = Type | Res | Cap

constructors c al|T|C
ctorvarsa, B¢, p,. ..
types T a | phandle | Va:k.7 | (C,7) = 0| 71 X T2
capabilities C = €e|0|{p}|CL1®Cy| C1&Cs | C1; — Cy | true
cap ctxts AN = C,....C,
ctor ctts A = | Aa:k
value ctats r = -|Da:7
word values v = x|vc: K]
heap values h = Jda:ch | XCiz:7).e| (v1,v2)
declarations d = z=v|z=h|z=%#nv|newp,z | freev | usev
expressions e = letdine | vy vy | halt
Figure 4: LC Syntax
A-C
= - = -
CrC 0 WY A F true
MEC Ao F Cs A-Cy A Cy A, CL Oy
A17A2|_01®CQ A"Cl&CQ A"Cl—OCQ
A C1,Co FCs A CrtCs (ke {1,2}) MECGy Ay, Cy = Cs
ACi®CyFCs A, C1&Cy F Cy ’ A1, A2, Cp — Cy - Cy

Figure 5: Linear sequent logic (without “I”)

17

(C1,C4 is equivalent to Co, Cy), derivations cannot duplicate or discard assumptions: C,C
is not equivalent to C or C,C, C.

LC eliminates all of CCO0’s capability equality rules and subcapability rules, relying
entirely on logical judgments A F C instead. LC defines capability equality in terms of logic
judgments:

A"Clili A"CQZK Cll_CQ Czl_cl
AFCL=05:k

In place of CCO’s subcapability judgment A - C; < Cy, LC uses Cy F Cs. For example, the
CCO rule for use

A;T F o ahandle AFC<C®{a'}
AT CFusev— AT C

becomes the following in LC:

A;T F v : ahandle C+ {a} ® true
A;T;CFRusev = A; T, C

Translating unique CC2 capabilities U into LC is easy — just replace CC2’s join operator
@ with LC’s linear pair operator ®:

Ua) =«

U =0

U({p?}) = {p}

U(U1 D Uz) :U(Ul) ®Z/[(U2)

For alias capabilities A, the translation adopts the linear choice operator &, as described in
section 2.2:

Ala) =

A0) = @
A{p?}) = {p}
A(A1 @ Az) = (A(A1) ® true)&(A(Asz) ® true)

To express the CCO subcapability judgment {pi} @ {pi} < {pT} @ {p{}, the translation
ensures that U({pi} © {p3}) - A{pi} @ {pi }):

{prtE{p} {p2}Ftrue {p2} F{p2}t {p1}F true
{p1},{p2} I {p1} ® true {p1}, {p2} F {p2} ® true
{p1} @ {p2} F {p1} @ true {p1} @ {p2} F {p1} @ true

{p1} @ {p2} F ({p1} ® true)&({p2} ® true)

Note that the the ®true is required for the derivation to absorb the excess linear assumptions
from the assumption list {p1}, {p2}, since a derivation cannot simply discard unwanted
assumptions. Indeed, there is no derivation of {p1} ® {p2} F {p1}&{p2}. In general, the
CC2 judgment U B A < A’ turns into an LC judgment:

UU) 2 A(A) F A(A") @ true

(The ®true after the A(A’) is necessary for relations like 0B {p™} & {pT} < {p*}.)
Translation of types is straightforward, except for bounded quantification:

18

) =
phandle) = phandle

(o

(

(UBAT)—0)=UU)® (A(A) @ true), 7 (1)) — 0
(’7’1 X Tg) T(’Tl) X T(TQ)

(Va: Type.T) = Va: Type. 7T (1)

(Va:Res.T) = Va:Res. T (1)

T (Va: Cap?.7) = Va: Cap.T (1)

T
T
T
T
T
T

The translation of bounded quantification borrows from two alternate encodings of Voo < 7/.7
[2][20][5]:

Va<7'7)=Va.(a —>71)—>T
(Va < 7'.7) =Va.[a — (e AT)|T

The first encoding uses a coercion function (¢« — 7’) to make explicit the idea that any
subtype can be coerced to a supertype. This encoding suggests expressing Va < C.7 using a
coercion implication (o —o C'). The linearity of (o — C') causes problems for the encoding
(a nonlinear implication !(a — C') would be preferable), but the type (o —o C) still plays
a part in the translation described below.

The second encoding uses an intersection type 7 A T2, which indicates a value that can
be coerced to type 71 or T2; as in the first encoding, every value of type « in 7 can be
coerced to type 7', since (o A 7') can be coerced to type 7. Walker [30] observed that since
A corresponds to linear logic’s & operator, Vo < C.7 can be encoded as Va.[a «— (a&C)]T.
CC2’s bounded quantification isn’t as simple as o < C, though — the bounds have the
form U B a < A. Consider again the first encoding, which would turn U B a < A into a
coercion U(U) ® o — A(A) ® true. Now change the order of the argument pair to form
a®U(U) —o A(A)®true, and then curry the implication to form o — (U(U) — A(A)Rtrue).
This version of the coercion suggests an application of the second encoding to the bound
a < (UU) — A(A) @true), which results in a type Voo — (a&(U(U) — A(A) @ true))]r.
More precisely, the encoding of CC2’s bounded quantification type is:

T (Va:Cap™ whereU; Ba < Ay,...,U,Ba < A,.7) =
Va:Cap.[a — (a&(U(Ur) — A(A1)@true)de ... &(UU,) — A(A,)@true))|7 (1)

6.1 Incomplete collection

The capability calculus’s most important property is its ability to safely track linear resource
state changes, such as resource deallocation. The translation from CCO to LC maintains
this property. The capability calculus also guarantees a further property, known as complete
collection: when a program halts, the typing rule for the halt expression guarantees an empty
heap:

AFC=0:Cap
A;T; C F halt

Because the program can only terminate via the halt expression, this implies that programs
can only terminate with an empty heap. Unfortunately, although the CCO0-to-CC1 and
CC1-t0-CC2 translations preserve complete collection, the CC2-to-LC translation fails to
maintain this property, and LC must relax halt’s typing rule to accommodate the translation:

A;T; C F halt

Consider, for example, the translation A(0 & 0) = (0 ® true)& () ® true). Because of the
®true that appears in each branch of the choice, (§} ® true)& (@ ® true) is not equivalent to
() (under LC’s rules, 0 implies true, but true does not imply (). The following CC2 function
accepts an A = () ®) and then halts with an empty heap:

19

AOE @@ 0),z: () halt

The corresponding LC function cannot guarantee an empty heap.

It’s important to note that the CCO-to-LC translation does not introduce any extra
run-time garbage — if the CCO program halts with an empty heap, then the corresponding
LC program will also halt with an empty heap (because the LC program performs exactly
the same sequence of allocations and deallocations as the CCO program). The problem is
LC’s type system doesn’t guarantee complete collection for all programs — even though
programs translated from CCO will halt with an empty heap, there are other well-typed LC
programs that may halt with a non-empty heap.

There are four strategies for dealing with LC’s incomplete collection:

e Ignore incomplete collection. Most practical systems must have a way to stop non-
terminating programs or excessively long-running programs, and this requires that
the system have a mechanism for reclaiming memory from programs that do not
voluntarily halt. If this mechanism is already in place anyway, the system can also
use it to clean up programs that do voluntarily halt.

e Embrace incomplete collection. Without the requirement that programs halt with an
empty heap, the type system can make the subcapability more flexible, by adding a
rule A - C <). Alias types, for example, includes the rule A - C' < () and abandons
complete collection [23].

e Recover complete collection by restricting the source language. For example, if CC2’s
function type (U H A, 1) — 0 is restricted to (U B), 7) — 0, then the translation into
LC no longer has to worry about A = () @ () introducing spurious ®true capabilities
into the environment. It’s not obvious, though, how to push this restriction on CC2
back into CC1 and CCO.

e Recover complete collection by making the translation more precise. Section 6.2 dis-
cusses this option. Unfortunately, section 6.2’s solution adds nonlinear capabilities
to LC’s logic, which probably makes the logic undecidable [16] unless the program
contains additional annotations to guide the decision procedure.

6.2 Complete collection

The translation into LC {orfeited complete collection because A(A1®Az) = (A1 ®true)&(A2®
true) sloppily introduces ®true even when A; and A, are equivalent to (). The following
revised translation eliminates this sloppiness by replacing ®true with @ Z(A):

Ala) =«
AD)y =10
A({p?}) = {p}

A4 & Az) = (A(A1) ® Z2(A1 @ A2))&(A(A2) ® Z(A1 & A))

where Z(A) is defined to be () for A that are equivalent to (), and true otherwise:

Z(a) = ay
Z0)=0
2({p?}) = true

Z(A1 P Az) = Z(A1) ® Z(A2)

Under the revised definition, A0 ®0) = (0 ® (0 ®0))&(0 ® (0 ® 0)), which is equivalent to
(. More subtly, A(a; @ as) will be equivalent to @ if both «; and s are instantiated with
) (or with any A equivalent to). This requires a correlation between « and az: whenever
« is instantiated with A(A), az should be instantiated with Z(A). To capture the relation
between o and oz, the translation embeds the following invariant in the target program:

20

kinds k = Type|k—k
types T = oa|Varkr | —mn| 7| Akt | 71 T2
expressions e = z|da:ke|eT| Aoz):Te|erea] le
linearities o = |
type ctats A = | Aa:k
value ctats r | Do(x:T)

Figure 6: Linear Fw Syntax

da:kr = VB.(Va:kT —f) —f

T1®T = VYa(n —o1m—oa)—o«
X1 = N1 ®m)
Tm— T = (1 —oT2)

T = T o (T2® (2 — 1))
13T = 71— (® (2 — 7))
© = Va:Type.a—o«

0 =10
true = Ja:Type.«

Figure 7: Useful linear Fw type abbreviations

((ae0) x (az & 0)) V (az & true)

This invariant uses nonlinear pairs Cy x Cy, the nonlinear disjunctions (unions) C; V Cs, and
nonlinear implications C; = Cs, where Cy < (5 is an abbreviation for (C; = C3) x (Co =
C1). A nonlinear capability Cy can appear with a linear capability C}, inside a function
type ((Cy ®CL),T) — 0, but it’s often convenient to split the nonlinear capability from the
function type. For example, currying ((Cy ® CL),7) — 0 yields the type Cy = ((Cp,7) —
0), where the type C = 7 is analogous to a function type 71 — 72. The translation of
Vo : Cap'.7 uses the type C' = 7 to ensure that the invariant above is satisfied for every
instantiation of o and az:

T (Va:Cap™.7) = Va: Cap.Vaz : Cap.(((a & 0) x (az < 0)) V (az < true)) = T (1)

Further details of the translation appear in appendix C.
By using Z(A) to track precisely when A is equivalent to), the revised translation
ensures that the program only halts when the current capability is equivalent to 0.

7 From CC2 to linear Fw

Section 6 demonstrated that LC can express CC0’s aliasing without relying on CCOQ’s capa-
bility syntax and capability rules. Nevertheless, LC shares much of its syntax with CC0, and
this raises a theoretical question: which features in LC and CCO are essential for expressing
CCO0’s aliasing? Does a target language powerful enough to encode CCO in well-typed way
require...

21

1. ...a distinction between handles and capabilities?
2. ...the linear choice operator (e.g. in the rule for the “usev” expression)?
3. ...separate proof and programming languages?

4. ...a large set of features?

This section demonstrates that (1), (2), and (3) are not essential (though they are useful
in practice), and that the target language can be very small. Figure 6 shows linear Fw
(the higher-order polymorphic lambda calculus Fw extended with linear types). Linear Fw
contains only 2 basic types for values: 71 —o 75 for linear functions and Vo : k.7 for linear
polymorphic abstractions. The “of course” operator ! turns linear types into nonlinear
types; (71 —o 72) is the type for nonlinear functions (abbreviated here as 71 — 72), and
Wa : k.1 is the type for nonlinear polymorphic abstractions. The polymorphic lambda
calculus has the remarkable ability to encode many other types just using function types
and polymorphic types; figure 7 shows some standard encodings of standard types (as well
as a couple nonstandard types, 71 = 75 and 71 = 79, explained below).

Linear Fw lacks any built-in types for linear resources, such as files, or expressions for
manipulating linear resources. Instead, the translation assumes that the type environment
contains an abstract type constructor x for linear resources, and the value environment
contains variables new, free, and use that act on linear resources:

new : () — 3p:Type.(x p)
free :Wp:Type.(x p) — ()
use : Wp:Type.(x p) — (X p)

Unlike CCOQ’s operations, which manipulate linear capabilities and nonlinear handles, the
operations shown above do not distinguish between capabilities and handles (the linear
type x p contains both the run-time information about a resource and the permission to
use the resource). Section 7.1 describes a particular instantiation of new, free, and use for
alias types; interestingly, implementing these operations for alias types, and even adding
operations for alias type mutation, requires no extensions to linear Fw.

The translation from CC2’s unique capabilities U to linear Fw’s types follows the strategy
from section 6, using linear pairs to implement CC2’s join operator:

Ula) =«

Uu®) = ()

U{p?}) =xp

UUL & Uz) =U(Ur) @ U(Uz)

The translation of alias capabilities A to linear Fw follows the hello example from section
2.1.1;

hello : ¥p1 .¥pa NaVB . ¥VfB.a® (a — [® p1cap) ® (81 ® p1 cap — a) @ pp handle
®(a — P2 ® p2cap) ® (P2 @ pa cap — a) ® po handle — «

In hello’s type, the type variable « serves as a pool of capabilities from which the particular
capabilities p; cap and ps cap can be extracted. An equivalent way to write hello’s type is:

hello : Vp1.¥pa Va.a ® (o — 3P1.01 @ p1 cap ® (B1 ® p1 cap — «)) ® p1 handle
®(a — 3Pa.02 ® pa cap ® (B2 ® pa cap — @) ® p2 handle — «

In this form, the 5, and B2 can hide inside linear functions, yielding a simpler type:

hello : Vp1.Vps Na.a ® (o — p1 cap @ (p1 cap — «)) ® p1 handle
®(a — pa cap ® (p2 cap — a)) ® pz handle — «

22

For convenience, the abbreviation 71 = 72 = 71 — (T2 ® (12 —o 71)) expresses the idea that a
small linear resource 72 can be temporarily extracted from a larger linear resource 7 (note
that even though 71 and 79 may be linear, 71 = 7% is nonlinear). With this abbreviation,
hello’s type becomes:

hello : Vp1.Vpa Va.a ® (o = p1 cap) ® p; handle
®(a = pa cap) ® pe handle — a

The type for hello suggests a translation for CC2’s join operator:
A({pT} @ {p3}) = Ja: Type.a @ (= x p1) ® (@ = X p2)

At first glance, this type satisfies the most crucial test for an encoding of CCO0: unique
capabilities can be coerced to alias capabilities. For example, to encode {pi} @ {pi} <
{pT} @ {p5}, there is a function of type:

(x p1) ® (X p2) — (Ba:Type.a ® (= x p1) ® (@ = x p2))

Similarly, to encode {p'} < {pT} @ {p*}, there is a function of type:

(x p) = Ba:Type.a® (a = x p) @ (@ = X p))

In a proof language, this would be sufficient to express CCO0’s subcapability relation. A
programming language, though, has a harder task: it’s not enough to say that (x p1)®(x p2)
can be coerced to type A({p7} @ {p3}); a running program must actually perform the
coercion if it wants to use a run-time value of type A({p{ } @& {p5 }). More onerously, it must
be able to get back the original value of type (x p1) ® (x p2) after using A({p7 } @ {p3}) —
the whole point of CC0’s bounded quantification is to view resources as temporarily aliased,
and then later restore the resources’ uniqueness. Unfortunately, the reverse direction of the
functions shown above does not hold; there is no value of this type:

(x p1) ® (X p2) <= (Ba:Type.a ® (@ = x p1) ® (@ = x p2))

(Here, 71 < 72 is an abbreviation (71 — 72) X (172 — 71).) On the other hand, there is a
value of the type shown below, where the scope of « is wide enough to ensure that both the
forward and reverse functions agree on the same «:

Ja:Type.(x p1) @ (x p2) <« (@@ (a = x p1) ® (@ = x p2))

This small change in scope puts a large administrative burden on the encoding, because the
declaration of o now sits outside the definition of A({p }®{p3 }). Therefore, A({p] }&{p3})
must be parameterized over .. In other words, A({p] } © {p3}) is no longer a type of kind
Type, but is instead a type constructor of kind Type — Type:

A({pf Y@ {p3}) =Ay:Typer ® (v = x p1) ® (v = X p2)

The translation turns CC2’s kind Cap™ into kind Type — Type, while all other CC2 kinds
become Type:

K(Cap') = Type
K(Cap™) = Type — Type
K(Type) = Type

K(Res) = Type

Once 7 is a parameter to A({p] } ® {p3}) and the “Ivy:Type.” sits outside A({p] } & {p3}),
it’s convenient to pull the “y®” outside as well, so that what’s left inside A({p] } ® {p3 })
is purely nonlinear (and thus easier to manipulate):

23

A({pf Y@ {p3}) = Ay:Type.(y = x p1) X (v = X p2)

The following definitions extend the A({p] } @ {p3}) example to general A(A):

A(a) = My:Type.!(a)

A(0) = Ay:Type.()

A({p?}) = My: Type.(v = x p)

A(A1 @ Ag) = Ay:Type.(A(A1) 7) x (A(A2) 7)

Two small improvements are worth making to these definitions. First, it is convenient to pull
the nonlinear “of course” operator (“!”) outside the definition of A(A), so that the definition
of A(«a) becomes A(a) = Ay:Type.(a 7), or, more simply, just A(a) = a:

Aa) =

A) = /\7 Type.()

A({p?}) = Ay: Type.(y = x p)

A(A; & As) = Ay:Type. [(A(A41) 7)) !(A(A2) 7)

Second, forcing all the A(A) to use the same = is overly restrictive, and makes it difficult to
translate CC2’s equality and subcapability rules. The following definitions give A(A; & As)
the flexibility to refine v so that A; and As can use smaller pieces of v. This flexibility
makes it easier to glue A(A;1) and A(A3) together to form A(A; @ As).

A(A) = Ay:Type.35: Type.(y = §)x (A[A] 9)

;/\ :Type.(0)
#}] = My:Typey @ x p
1@ Ag] = Ay: Type. [(A(41) 7))@ (A(A2) 7)

Given the definitions of U(U) and A(A), most of the type translation is straightforward:

7 («
(7’1 X Tg) 'T()® 'T(’TQ)

T(UBA,T)—0)=Vy:Typery > UU) —(A(A) v) — T (1) —o true
(phandle) ©

TNVa:k.1) =Va:K(k). 1T (1)

Since a resource’s run-time information resides in a value of type x p, there’s no need for
a separate handle value for the resource, so the translation of type phandle is empty. The
translation 7 (UHB A, 1) — 0) defines a curried function that takes arguments of type U (U),
'(A(A) ~), and 7 (7), plus the pool v from which (A(A) 7) extracts capabilities. The func-
tion’s return type “true” allows the function to discard the pool v when the program halts;
this does not capture the complete collection property, but it’s likely that the translation
could be revised to express complete collection using the techniques from section 6.2.

To implement bounded quantification, the translation uses the (Va < 7/.7) = Va.(a —
7') — 7 encoding from section 6:

T(Va:Cap+ whereCy < Ay,...,C, < A,.7) =
Va: Type — Type.IS(C1 < A;) — ... =18(C, < Ap,) =T (1)

This definition relies on an encoding !S(Cy; < A;) of CC2’s subcapability relation, as de-
scribed below.

Linear Fw lacks the rich set of type equivalence, capability equivalence, and subcapa-
bility judgments found in CCO. Following [1], the translation into linear Fw encodes these
judgments as expressions. For example, if two CC2 types 7 and 75 are equivalent, then the
translation produces an expression e

24

AbFT1=1:Type~e

such e has type 7 (11) <17 (72). (See appendix C for the complete definition of A - 13 =
7o : Type ~» e.) Similarly, the translation encodes capability equivalence U; = Us and
Ay = Ay as expressions of type U(Uy) < U(Uz) and Vy:Type. [(A(A1) v) < 1(A(A2) 7).

Encoding subcapabilities is slightly more interesting. Suppose that a function f; of
type (U ® Uy) B A1, 7) — 0 wants to call a function fy of type (U B Ag,7) — 0, where
U; B A; < As. The translations of fi’s type and f2’s type are

T((UaUy)BA;,7) — 0) = Vy:Typey = UU)QU(Ur) —o (A(A1) 7y) —o 1T (1) —o true
T(UB A, 7) — 0) =V :Type.y) - UU) —(A(Az) ') —o T (1) —o true

While fo accepts only two linear arguments, v and U(U), f1 holds three linear values, -,
UU), and U(U;). Clearly, fi should pass its own U(U) value as the U(U) argument to
fao. This leaves f1’s other two values, v and U(U;), to instantiate fo’s 4/ argument, so
f1 should choose v/ = v ® U(Uy). Now f1 needs to instantiate fo’s nonlinear argument
'(A(A2) (v @ U(U1))), but f1 only holds a value of type !(A(A1) 7). This is where the
translation of U; H A; < As comes in — to allow f; to call fo, encode Uy HH A; < A5 as an
expression of type:

S(U1 B Ay < Ap) =Vy:Type. [(A(A1) 7) — (A(42) (y@U(Uh)))
As an example, consider the CC2 typing rule for the “usev” expression:

A;THv:ahandle AFU=Ug®U’ :Cap' AFUzgBA<A @®{at}
AT UBARusev = A;TUHA

The encoded type for the Ug B A < A’ @ {at} that appears in the typing rule is:
SUBA< A & {at}) = ¥y:Type. (A(4) 7) — (AL & {a™}) (v UTR))
The definition of A(A’ ® {at}) (y@U(Up)) is:

A(A" @ {a™}) (Y@U(Up)) = 30: Type.((y @ UUp)) = §)x I(A[A" @ {aT}] §)
AlA" @ {a"}] 0 =!(A(A") 9)@(A({a}) 9)

A{a™}) 6 = Xe:Type.35: Type.(§ = €)x (A[{aT}] €)

Ao} e=e= x o

Using a value of type A(A’ & {a™}) (y®@U(Up)), the translation of “usev” retrieves values
of type (Y@ U(Up)) = J, 0 = ¢, and ¢ = x a. Because the extraction operator = is
transitive, the translation combines these into a single value of type (y @ U(Up)) = x «,
from which it temporarily extracts the resource x « so that it can call the use function:

use : Wp:Type.(x p) — (x p)

7.1 Alias types in pure linear Fw

So far, this paper has treated resources as abstract, assuming only some generic operations
“new”, “free”, and “use” on resources. This section replaces abstract resources with a partic-
ular concrete resource, mutable linear heap objects, in order to implement the malloc, load,
store, and free operations of alias types [24]. For simplicity, each heap object will be a linear
pair, rather than an arbitrary-size linear tuple. To start with, consider the new, free, and
use functions targeted by section 7’s translation:

25

new : () — 3p: Type.(x p)
free :Wp:Type.(x p) — ()
use : Wp:Type.(x p) — (x p)

Define the abstract type x to be a linear pair:
x = Ap:Type.71 ® T2

Suppose that 71 = () and 72 = (). Then the following definitions of new, free, and use are
correctly typed, though rather boringly implemented:

new =\ lz: ().pack[(), (), ())] as Ip: Type.() @ ()
free =Dp:Type. A (121, 122): () @ ().()
use =\p: Type. Dz: () @).z

(These definitions rely on encodings of “pack”, pair operations, and pattern matching, as
defined in appendix B.)

Unlike the capability calculus, whose capabilities only track the existence or non-existence
of a resource p, alias types associate a state with each resource, so that capabilities have the
form {p — state¥}, rather than just {p¥}. For the example of linear heap pairs, the state
in each capability is the type of the two fields of the pair: {p — 7 ® 75’ }. To track this
state, the resource type and resource operations must be parameterized over all possible 7
and 7o:

x = Ap:TypeABr : Type.ABa: Type. |31 52

new : () — 3p:Type.(x p () ©))

free :Wp:Type. W03y : Type. W3y : Type.(x p B1 B2) — ()

use : Wp:Type. W01 : Type. WBs: Type.(x p 81 B2) — (x p 51 B2)

Furthermore, it’s useful to have use actually return a value from a heap object, rather than
simply touching the object. Replace use with two functions load; and loads, which read
the first and second fields of a heap pair:

loady, : Wp:Type. WG : Type. WB2:Type.(x p 01 B2) — (x p 81 B2)R Bk

It’s straightforward to update the CCO-to-linear Fw translations to target the new versions
of x, new, free, and use (load). Furthermore, it’s also easy to support another operation,
store:

storey : Wp:Type. V31 : Type. VB : Type. V3" : Type.(x p 81 B2)®!8 — (x p B’ B2)
storeg : Wp:Type. V31 : Type. VB : Type. V3" : Type.(x p 81 B2)®!8 — (x p 51)

where the CCO typing rule for store is a slight variation on the rules for new and free:
A;T F v phandle AT 7!

AFC=C"®{p—n @75} :Cap
A;T; C Fstorev[k] — v/ = A0 & {p— 1 @ 75!}

(T]/c:Tlv T;:ij?#k)

(Because the rule for store does not involve subcapabilities or alias capabilities, “store” is
no more difficult to translate than “new” and “free”, and is much easier to translate than
“use”.) Given a revised translation targeting x, new, free, load, and store, the following
definitions are correctly typed:

new =!Az: ().pack[(), ((), ())] as 3p: Type.() @ ()

free =1\p:Type. A0 : Type. !\Ga: Type. IN(1zq, 1) :18:®16.()

loady, ="\p:Type. !I\Gy : Type. !A\B2: Type. !\ (lz1, lxo) 151 @ 8a. ({21, x2), 1)
store, =!\p: Type. !\By : Type. !I\B2: Type. I\G": Type. IN{((1zq, o), 1a'):
(151®182) ® B'.(x},)

wherez) = r' andx; = x; for j # k

26

8 Related work

This paper demonstrates that linear type systems can encode aliasing (multiple references
to a linear resource) even if the linear type system forces the program to have only a single
reference to each linear resource at each step of the program’s execution (as for example,
LC and linear Fw do). Other papers [4][26] have pointed out that some implementations
do not enforce the “single reference” property for some linear expressions, which leads to
another form of aliasing. Suppose that the expression “let lz =1(2,3) in l{z, z)” steps to a
new expression “1((2,3),(2,3))”. The new expression holds two linear values, both equal
to (2,3), and both have a single reference to them. An efficient implementation of this
expression, though, might only create a single (2,3) value, rather than making two copies
of the value. In this case, there would be two references to the shared (2,3) value. This
sharing does not apply to linear resources in general, though — if z has linear type Flile,
then “let 'z =!z in (z, x)” is ill-typed, because the linear variable z is not available when
type-checking the nonlinear expression !z. Therefore, it’s not clear that this form of aliasing
is useful as a programming technique for general linear resources, even though it may have
an impact on compiler design and run-time system design, depending on the details of the
linear type system.

Wadler [27] described a “let!” expression that allowed temporary aliasing of a linear
resource. This expression’s typing rule relied on an unusual constraint on the type of its
bound variable, so it would be interesting to see if there is an encoding of this expression
using conventional linear types.

Fluet and Morrisett [11] used monads to encode a variant of Tofte and Talpin’s region
calculus [25]. In particular, they represented Tofte and Talpin’s “letregion” construct using a
monadic operation “letRGN” that allows an expression to build arbitrary state transforma-
tions on a region s, which is allocated before the transformations take place and deallocated
after the transformations complete. The state transformers for s must be polymorphic over
all s, which is not in scope in the type of the transformation’s final result. This guarantees
that the transformers cannot leak s to the outside world, so that no dangling references to s
are possible. If state transformers were only allowed to access one region at a time, then this
approach would just be monadic way of expressing s’s linearity. However, the state trans-
formers for s also have access to s’s enclosing regions, which may be aliased. Effectively,
the transformers see s with kind Cap' and s’s enclosing regions 71, . .., r, with kind Cap™.
This seems similar to section 2.1’s approach of treating aliased files (corresponding to the
aliased 71, ...,7,) as nonlinear references into a linear pool « (corresponding to the linear
s). Tt also seems related to Fahndrich and Deline’s idea of a linear object s “adopting” other
objects 71, ..., 7, [10]. This connection suggests that some of letRGN’s limitations (such as
a LIFO ordering on region allocation/deallocation) are not fundamental.

Walker and Watkins [31] described how to use linear types to manipulate regions (as
an alternative to using the capability calculus for regions). On the positive side, first-class
linear types allowed many idioms, such as heterogeneous data structures, that were not
easily expressible in the capability calculus. On the negative side, unlike the capability
calculus, their language was not able to encode Tofte and Talpin’s region calculus (although
it could, by using a form of Wadler’s “let!” expression, encode a simplified form of Tofte and
Talpin’s “letregion” construct).

Crary and Vanderwaart [6] describe how to represent the capability calculus in their
language LTT. Like the CCO-to-L.C encoding in this paper, their representation relies heavily
on linear types. Unlike the CCO-to-LC encoding, though, they introduce CCO0’s equality and
subcapability rules as axioms rather than deriving CCQ’s rules from linear type rules, so that
the soundness of their system requires a proof of CCO’s soundness.

Morrisett, Ahmed, and Fluet [18] provide denotational semantics for L3, a subset of alias
types based on linear types. In addition to proving soundness, the semantics show that all
well-typed L? programs terminate. The CCO-to-linear Fw translation could also serve as
denotational semantics for alias types (albeit a non-set-theoretic semantics). In particular,

27

like the L? semantics, the CCO-to-linear Fw translation demonstrates that well-typed pro-
grams terminate. The CCO-to-linear Fw translation is, admittedly, far more complicated
than the L3 semantics. Then again, L3 lacks CC0’s duplicable capabilities, CC0’s capability
equality rules, and CCO0’s subcapability rules; almost all of the work in the CCO-to-linear
Fw translation is devoted to handling these CCO features.

Cheney and Morrisett [3] compile a nonlinear source language into a linear target lan-
guage. They eliminate aliasing by copying aliased data structures. Their copying technique
does not apply to general linear resources, though — a compiler can’t generate copies of a
hardware device, for example, nor can it duplicate mutable data structures without chang-
ing the semantics of mutation. For these reasons, the CCO-to-LC and CCO-to-linear Fw
translations do not try to copy aliased linear resources.

Jia and Walker describe ILC- [15], a decidable program logic with support for linearity
(this was inspired partly by separation logic [14][22]). Hopefully, some of the techniques
in the CCO-to-LC translation are applicable to ILC-, so that programs based on ILC- can
employ CCO0’s style of aliasing.

Hawblitzel, Huang, and Wittie [13] use the technique from sections 2.1 and 2.1.1 to
encode aliased pointers inside a region [25]. Unfortunately, their mechanism for allocation
in regions prevented them from using an elegant proof language, such as LC’s proof language.
They did not deal with CCO0’s capability equality and subcapability rules.

9 Conclusions

In a narrow, literal sense, linear type systems disallow aliasing of linear resources. The
semantics of the language can state and prove this literal prohibition precisely. In practice,
though, linear type systems can faithfully emulate common aliasing idioms. Therefore, it
is not necessary to add new type system features to support these idioms, as CCO does;
programs can simply tap the aliasing already inherent in linear type systems.

Of course, the encodings presented in this paper are not simple. This complexity, though,
is mostly a reflection of how elaborate CCOQ’s rules are, and it’s not clear that most programs
need the full power of CCO’s type system. For example, the hello function in section 2 was
quite simple. As another example, alias types [23] omitted many of CC0’s features, such as
a stripping operator. Encoding aliasing with linear types need not be complicated, but a
linear type system is powerful enough to let the encoding grow in complexity as needed.

In his pioneering 1990 paper [27], Wadler announced that “Linear types can change the
world!”. On the other hand, in a later tutorial [28], he used linear logic to express the dour
wisdom that you can’t both have your cake and eat it (Cake —o Full, Cake t/ Cake ® Full).
This paper concludes on a more upbeat sentiment: with linear types, you can have your
world and alias it, too.

Acknowledgments
The author would like to thank David Walker for his inspiration and suggestions for devel-
oping the translation into LC.

References

[1] Martin Abadi and Marcelo P. Fiore. Syntactic considerations on recursive types. In
LICS ’96: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer
Science, page 242, Washington, DC, USA, 1996. IEEE Computer Society.

[2] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance
as implicit coercion. In C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects

28

[3]

[4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

of Object-Oriented Programming: Types, Semantics, and Language Design, pages 197—
245. The MIT Press, Cambridge, MA, 1994.

James Cheney and Greg Morrisett. A linearly typed assembly language. Technical
report, Department of Computer Science, Cornell University.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Reference counting as a com-
putational interpretation of linear logic. Journal of Functional Programming, 6(2):195—
244, 1996.

Karl Crary. Typed compilation of inclusive subtyping. In 2000 ACM SIGPLAN Inter-
national Conference on Functional Programming, pages 6881, 2000.

Karl Crary and Joseph C. Vanderwaart. An expressive, scalable type theory for certi-
fied code. In Proceedings of the seventh ACM SIGPLAN international conference on
Functional programming, pages 191-205. ACM Press, 2002.

Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a
calculus of capabilities. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 262-275. ACM Press, 1999.

Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a
calculus of capabilities. Technical Report TR2000-1780, Cornell University, 2000.

Robert DeLine and Manuel Féhndrich. Enforcing high-level protocols in low-level soft-
ware. In SIGPLAN Conference on Programming Language Design and Implementation,
pages 59-69, 2001.

M. Fahndrich and R. Deline. Adoption and focus: Practical linear types for imper-
ative programming. In Proceedings of the SIGPLAN’02 Conference on Programming
Language Design and Implementation, June 2002.

Matthew Fluet and Greg Morrisett. Monadic regions. In ICFP ’04: Proceedings of
the ninth ACM SIGPLAN international conference on Functional programming, pages
103-114, New York, NY, USA, 2004. ACM Press.

Chris Hawblitzel. http://research.microsoft.com/~chrishaw /linearaliasing/proofs/,
2005.

Chris Hawblitzel, Edward Wei, Heng Huang, Eric Krupski, and Lea Wittie. Low-
level linear memory management. In Workshop on Semantics, Program Analysis, and
Computing Environments For Memory Management, 2004.

Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data
structures. In Symposium on Principles of Programming Languages, pages 14-26, 2001.

Limin Jia and David Walker. A refined proof theory for reasoning about separation.
In Prakash Panangaden, editor, Proceedings of the Twentieth Annual IEEE Symp. on
Logic in Computer Science, LICS 2005. IEEE Computer Society Press, June 2005.
Short Presentation.

Patrick Lincoln, John C. Mitchell, Andre Scedrov, and Natarajan Shankar. Decision
problems for propositional linear logic. Ann. Pure Appl. Logic, 56(1-3):239-311, 1992.

John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-
by-value, call-by-need, and the linear lambda calculus. In 11th International Conference
on the Mathematical Foundations of Programming Semantics, 1995.

Greg Morrisett, Amal J. Ahmed, and Matthew Fluet. L3: A linear language with
locations. In TLCA, pages 293-307, 2005.

29

[19] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed
assembly language. In ACM Transactions on Programming Languages and Systems
(TOPLAS), volume 21, pages 527-568. ACM Press, 1999.

[20] Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymorphism.
PhD thesis, 1991.

[21] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[22] J. Reynolds. Separation logic: a logic for shared mutable data structures. In $rd ACM
SIGPLAN Workshop on Types in Compilation (TIC2000), 2002.

[23] Frederick Smith, David Walker, and Greg Morrisett. Alias types. Technical Report
TR99-1773, Department of Computer Science, Cornell University, 1999.

[24] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In In Furopean
Symposium on Programming, 2000.

[25] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information
and Computation, 132(2):109-176, 1997.

[26] David N. Turner and Philip Wadler. Operational interpretations of linear logic. Theo-
retical Computer Science, 227(1-2):231-248, 1999.

[27] P. Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, IFIP
TC 2 Working Conference on Programming Concepts and Methods, Sea of Galilee,
Israel, pages 347-359. North Holland, 1990.

[28] P. L. Wadler. A taste of linear logic. In Proceedings of the 18th International Symposium
on Mathematical Foundations of Computer Science, Gddnsk, New York, NY, 1993.
Springer-Verlag.

[29] Philip Wadler. Is there a use for linear logic? In Proceedings of the Symposium on
Partial Evaluations and Semantics-Based Program Manipulation, pages 255-273, New
Haven, Connecticut, 1991.

[30] David Walker. Mechanical reasoning about low-level programs. lecture notes,
http://www.cs.cmu.edu/~dpw/papers.html, 2001.

[31] David Walker and Kevin Watkins. On regions and linear types (extended abstract).
In Proceedings of the sizth ACM SIGPLAN international conference on Functional
programming, pages 181-192. ACM Press, 2001.

[32] Lea Wittie. Type-Safe Operating System Abstractions. Technical Report TR2004-526,
Dartmouth College, Computer Science, Hanover, NH, June 2004.

A Syntax and typing rules: CC0,CC1,CC2,LC

CCo0, CC1, CC2, and LC are defined as extensions to a common sublanguage, CoreCC.

A.1 CoreCC
kinds k = Type | Res | Cap
constructors ¢c = a|7|C

ctorvarsa, B¢, p, ...

types T = «aphandle |Va:k.7 | (C,7) = 0| 11 X 7

30

capabilities C = €|

ctor ctxts A Ak
value ctrts r = - |e:r
word values v = x|vfc:K]
heap values h = Jda:sh | ANC,z:7).e| (v1,v2)
declarations d = z=v|z=h|z=%#nv|newp,z | freev | usev
expressions e = letdine | vy vo | halt
AR A
AF- _ in(A, A
IR H(a & domain(A, A"))
AEFT Al 7 : Type)
AF- r
AFT.o.7 (x & domain(T"))
AF «:Res AtF 1 Type AF 7y Type
LK, . Fa:k
A F ahandle : Type AF 1 X o Type

Aja: kb T:Type AF 7 :Type AFC:Cap

(o & domain(A))

AFVa:k.7: Type AF(C,7)—0:Type
AlFc:k Alco=ci: kK Alci=co: kK Alco=c3:kK
AlFc=c:k AFci=co: kK AFeci=c3:k
Arbm=71:T Abr=1:T Aa:kbET=7:T
7 =11 : Type T2 =Tyt Type YRTTZT PPy o domain(A))
AF T x1=1 xT15: Type AFVa:k.1T=VYo:k.1": Type

AFT7=1":Type AFC=C":Cap
AF(C,7)—=0=(C",7") — 0: Type

Aa:kTFh:T
AT F (Aack.h) - (Va:k.T)

(o & domain(A))

AFC: Cap AF 7 :Type A;T,z:7;Cke
A;TEMNC z:7)e: (Co1) — 0

(x & domain(T"))

ATFov:m AT Fwvg:my
AT E (v1,v9) : 11 X T

AT R At 7 =7:Type
A;THh:T

VAU R U o

A;T'Ho:Va:k.T AFc:k
AT Eole: K] [a—dr

31

ATy 7 At 7 =7:Type
A;THo: T

AThRwo:T

A;F;C’Fx:v:>A;F,:c:T;C’(mgdomam(r))

ATHh:T
AT CRez=h= A;T,z:7;C

(z & domain(T))

A;THv:T X T

AT.Crz=#nv— ATz Tn;c(x & domain(T") andn € {1,2})

AT, CHd= AT, C AT C e
A;T;CFletdine

A.2 CCoO
CCO0 consists of CoreCC, plus the following.

types T o Ya< Cr
capabilities C = ... |{p}|CiaCy|C
multiplicities p = 1|+
ctor ctxts A = ... |Ae<C
heap values h = ... | xa<Ch

A A AA'FC o Cap

. ’
AFAN a<C (o & domain(A, A"))

AFC:Cap A,a<CFE71:Type

AFVa < C.r: Type (o & domain(A))

At a: Res
,a<O,... Fa: AFD: -
,a<C, o : Cap 0 : Cap AT (a7} Cap
AFCi:k AI—CQ:F;(K_Ca) AFC:Cap
AFCi®Cy: K - vap AFC:Cap
AFCL=C1:k AFC’ng’é:/{(K:Cap)

AFCLaC=Clal) nr

32

AFC:k AFCl:k AFCy: kK

A'_(Z)@C:CK(K/:Cap) Al_Ol@OQZCQ@ClZK(Hzcap)
AFCi: kK AFCy: K A}—C'gzm(m_ca)
AF(CLa0)aC=Ca(CamCy)n TP
AFC=C":Cap AFC:Cap
AFC=C":Cap AFC=Ca®C:Cap

= AFa:
FO=10:Cap o a Res
A {al} = {a*}: Cap
AFC:Cap AFCy:Cap AF Cs: Cap
AFC = C : Cap AFCL®Cy=C,®Cy: Cap
M(H*C) ARG <0, ARG <Gy
AFCr <Gy TP AFCy < Cs
AFC <C AFCy <Y
AFCI®C, <ClLB 0
< :
ARC=C" a<C,..Fa<C AFC:Cap
AFC<LC AFCLC

A}_C:C/:Cap A7aSC}_T:T/:Type .
A
AFVYa<Cr1=Va<C'.1: Type (o € domain(A))

AFC:Cap Aa<CT'kh:T
A;THF M < Ch:Va<C.r
ATHov:Va<C'.1 AFC<C
A;T Ho[C: Cap): [a«— Clr
A;T;C Fnewa,r = A,a: Res;T', z : ahandle; Co{a'} (a € domain(A) andx & domain(T))
A;T F o ahandle AFC=C"®{at}:Cap
AT CF freev = AT C7

(o € domain(A))

A;TFv:ahandle ARCL<CO @®{aT}
AT CFusev = AT C

AT R (C1) — 0 AT FRovy T AFC<C
A;F;O"Ul V2

AFC=0:Cap
A;T; C F halt

33

A3 CC1
CC1 consists of CoreCC, plus the following.

kinds kK = ...|Cap™
types T = ... |VYa:Capt <C.7|Va:Cap < Cy,C4,...,Cp.T
capabilities C = ... |[{p?}|CL1dCy
multiplicities e = 1|+
ctor ctats A = ... |Ae:Capt <C|A e:Cap<(CyCh,...,Cp)
heap values h = ... Aa:Capt < C.h | Aa:Cap < Cy,C1,...,Ch.h

AFA AN FC:Cap™

, in(A, A/
AFAa Capr<c (@7 domain(&, A7)

AFA AANFCy:Cap AAFC:Capt AN FC, o Cap™

. /
AF A" a:Cap < (Co,C4,...,Ch) (o ¢ domain(A, A))

...,a:Capt <C,...Fa:Cap"
.oy Cap < (Co,C4,y...,Ch),...Fa: Cap

A+ C:Cap™ A,a:Capt < CF 7:Type
AFVa:Cap™ < C.7: Type

(o & domain(A))

AFCy: Cap AFCy:Cap™ AFC,:Cap"
A,a: Cap < (Co,C4,...,Cy) F 1 :Type

in(A
AFVoa:Cap < Cy,Ch,...,Ch.7: Type (a & domain(A))

AF a:Res AF a:Res AFC:Cap*
AF{a'}: Cap AF {a*}: Cap™ AFC:Cap

AFCi: kK AFCy: K
A"Cl@CQHQ

AFQ:Cap™ (k€ {Cap,Cap™})

AFCL=Cl:k AFCy=0Ch: kK
AFCieCo=C1Ch kK

(v € {Cap,Cap™})

A"Clili A"CQII{
AFCi®eCo=0CyCt: Kk

AFC:k

N
AFIaC=Cn' (s € {Cap, Cap™ })

r € {Cap, Cap™})

34

AFCy:k AFCy:k AFCs:k .
€ {Cap, C
A"(Cl @02)@03201@(02@03):’%(5 { ap, Lap })

AFC’1:C2:Cap+
AFCy=0Cs:Cap

AFC:Capt
AFC=C®C:Cap"

AFC <0y At Cy < (3

AI—CIZC2:KJ +
= 2 (ke {Cap, Cap™}) AFCL <Cs

AFCL <0y

AFC <Ol ARG <G,

e k< (000, Fa< O

At «a: Res
AF{al} <{at}

AFC=C":Cap* A,a:Capt <CF7=1":Type)
- - (o & domain(A))
AFVa:Cap™ < C.r =Va:Cap™ < C'.7': Type

AFCy=Cl:Cap AFC,=C}:Capt AFC,=C!:Cap"
A,a: Cap < (Cy,Ch,...,Cp) 7 =17": Type ¢ d (A
AFVa:Cap < (Co,C4,...,Ch). 1 =Va:Cap < (C},C1,...,CL).7" : Type (o ¢ domain(A))
AFVa:xk <Cy,...,C,.7: Type Aa<(Cr,...,Ch);THER:T)
A;THAa:k <Cy,...,Chh) s (Va:k < Cy,...,Ch.T) (o ¢ domain(A))

A;TFov:Va:k <Ch,...,Ch.T
AFC<Cy AFC<L<C,
AFC:k

ATFo[C] oy € {Cap Cap™])

Use CCO’s typing rules for: (new o, z), (freev), (usev), (v1 ve2), (halt).

A4 CC2
CC2 consists of CoreCC, plus the following.

kinds k = Type | Res | Cap®
constructors c = a|7|Q
types T = ... \Va:CaerWhereUlEEIozSAl,...,UnEEIoz§An.7'
pure capabilities QAU = alb|{p}] Q1 Q-
maized capabilities C = UHA
multiplicities o = 1|+

35

ctor ctxts A = ... \A,oz:Cap+WhereU153a§Al,...,UnHHagAn

heapvalues h . Aa:Capt whereUy Ba < A;,...,U,Ba < A,.h

Let “A+ U H A : Cap” be an abbreviation for “A + U : Cap’ and A+ A : Cap™”.
Let “AFUMBA = U8B A : Cap” be an abbreviation for “A + U = U’ : Cap' and

AFA=A":Cap™.

AF A
A, A+ Uy : Cap? A, A+ U, : Cap’
AN F A Capt AN F A, :Cap™

= (o & domain(A, A))
AF A a:Cap” whereU) Ha < Aq,..., U, Ba< A,

...,a:Capt whereUy Ba < Ay,...,U,Ba<A,,...ra:Cap"

AF U : Cap' AF U, : Cap'
A}—Al:Caer A}—An:Caer
A,a:Cap” whereU; Ba < Ay,..., U, Ba < A, F7: Type

- (a € domain(A))
AFVa:Cap” whereUy Ba < Aq,...,U,Ba < A,.7: Type

AF a:Res AFQ:k AFQs: K
. 2 — %2}
AFD: Cap AF {a¥} : Cap? AFQi®Q2:k (r = Cap®)
A}_leQIIZFL AI—Q2:Q/2:K,
:C ¥
AF Q6 =@ o w0
AFQ:k AFQ:k AFQs:k
= Cap” — Cap¥
AF0eQ=q: s~ o) AFQIoGr=Qro Qo 07

A"Qlili A"Qg!:‘{ A"Qgi:‘{(&:caw)
AF(@Q19Q2)PQ:s=Q1B(Q29Q3) : k p

AF A:Cap™
AFA=ADA:Capt

...,(a:CapT where ..., UBa<A,..),...rUBa<A

Al «a: Res AF A=Ay :Cap’
A"{QI}BHQS{O[’_} A"@EHAlgAQ

AFUBA <Ay, AFU,BAy < Ay
AFU @ Us BA; < A

AU BA <A, ArU,BA, <A
AFrU, 06U, BA &A, < A & A

36

AU, =U, : Cap' ... AFU,=U:Cap

AF A=A : Cap™ AF A, =A, :Cap’
A,a:Capt whereUy Ba < Ay,...,U,Ba< A, F7=1":Type

AI—Va:Cap+whereU1ElE|a§A1,...,U,LEE|04§AH.T

=Va:Capt whereU] Ba < A),..., U Ba < A7 : Type

(o & domain(A))

AFVa:Capt whereU; Ba < Ay, ..., U, Ba < A,.7 : Type
A,o:Cap whereU; Ba < Ay,..., U, Ba< A,;TFh:7
A;T F Aa:Capt whereUy Ba < Ay,...,U,Ba < Ap.h:

Va:Capt whereUy Ba < Ay,..., U, Ba < A,.7

(a € domain(A))

AT Fov:Va:Capt whereU Ba < Ay,...,U,Ba< A,.7
AU Ba<A AU, Ba<A,
AT HA:Cap™
A;THo[A: CapT]: [« AT

A;T;UBAF newa,r = A, : Res; T, 2 : ahandle; Ud{a'}HA (o & domain(A) andx & domain(T"))

A;T F v : ahandle AFU=U @ {a'}: Cap'
AT UBAE freev = AT U/BA

A;:T v : ahandle A+U=Up@®U" : Cap' AFUgBA<A @{at}
AT UB AR usev = AT UBA

ATFo : (UBA,7) -0 ATkuwu:r AFU=Ug®U :Cap’ AFUgBHA<A
A;F;UEEA"’Ulvg

AFU=0:Cap AFA=0:Cap"
AT:UBAF halt

A5 LC
LC consists of CoreCC, plus the following.

capabilities C = ... |{p} 1 C1®Cy| C1&C5 | C; —o Cy | true
cap ctrts A = C,...,C,

Al a:Res

A F true : Cap

AFCy:Cap AFCs: Cap AFCy:Cap AFCs: Cap
AFCi®Cy: Cap AF C1&Cs : Cap

37

AFCy:Cap AFCy: Cap
AFCy —Cy:Cap

A-C
CcCrC "@ m A+ true
AMFECy Ao - Cs A C A Cs A Cy Oy
A, A HCL®Cy AF C1&Cy AFCL — Oy
A C1,CoF Cy A CpFCs (ke {1,2}) AMFECy Ao, Co - Cs
ANCieCyFCy A, Ch&Cy F Cs ’ A, Ay, C7 — Cy F (5

Al‘Clilﬁl Al‘CQIKJ Cl'_CQ CQ'_C]
AFCi=0C5:k

Ce{a}rHC
A;T;CFnewa,z = A,«a: Res;I', z : ahandle; C’

(a & domain(A) and x & domain(T))

A;T F v : ahandle CrHC ®{a}
AT CFfreev = A; T C7

A;T F v : ahandle C+{a} ®true
A;T;CFRusev = AT C

ATERov : (C7) =0 AT FRovy:T CcrC
AT CFop vy

A;T; C F halt

B Linear Fw

Linear Fw extends standard Fw[21] with linear types. The syntax is straightforward:

kinds k = Type|k—k
types T = a|Vaikr | —on| 7| dikT | T T
expressions e = z|da:ke|eT | Nox):Te|erex]| le
linearities o = |
type ctxts A = |Aa:k
value ctats r = | Ig(xz:7)

The typing rules require some explanation, because obvious typing rules for the !e expression
lead to subtle problems. First, unrestricted use of le would allows a program to copy linear
resources — if variable x has linear type file, then the expression !z would have nonlinear
type !file, which allows unrestricted duplication of a file handle. More subtly, the nonlinear
function 'Ay:().z has type !(() — file), so the program may duplicate the function and then

38

call each copy of the function separately to obtain multiple copies of the same file handle;
in this case, each file copy has linear type file, giving no indication that other copies of the
file exist. The standard solution to this problem is to restrict the typing rules so that le
only type-checks in a nonlinear environment !T", which contains no linear assumptions. This
rules out both the !z and 'A\y:().x examples, since x : file is a linear assumption.

Unfortunately, this isn’t the end of the story, because many systems have nonlinear
functions that create linear resources. Consider a nonlinear function open of type !(string —o
file). Even with the nonlinear environment restriction described above, the expression
(open “foo.c”) is legal and has nonlinear type !file. One solution to this, at least in a call-
by-value system, is to restrict the expression e in le to be a value [18] (this is occasionally
inconvenient — the nonlinear pair (2 4+ 2,3) must be written as letx = 2+ 2 in ¥z, 3)) .
The rules below follow Wadler’s “steadfast types” [29][27], which limit the typing rules for
le to particular forms of e, including functions '\z:7.e and pairs !{e1, e3), but not variables
lz and function applications !(ey e2).

In addition to the problem with expressions creating linear resources, a non-call-by-value
linear system must address the reverse problem: expressions consuming linear resources.
Consider a nonlinear function close of type !(file — ()). Assuming z has linear type
file, the expression (close x) has nonlinear type () and may therefore be copied, as in the
expression (Az:().!(z,2)) (close x). A non-call-by-value language could copy the expression
first and evaluate the copied expressions later, thereby closing the linear file x more than
once. Furthermore, the unevaluated copied expressions will be ill-typed, because they all
rely on a single linear variable z, which cannot be copied. The standard solution to this (see
[28]) restricts the operational semantics so that any expression substituted for a nonlinear
variable (such as (close x) for z) must first be evaluated to a form le, which is freely
duplicable because, as described above, it type-checks using only nonlinear assumptions.
For example, the evaluation rule for function calls, assuming z is nonlinear, would be:

(Az:7.ep) (leg) — [z < legley

How does the evaluation rule know whether z is nonlinear? It could examine 7 for
nonlinearity, but a cleaner solution [28] is to distinguish between linear variable bindings Az
and nonlinear variable bindings A!z. A nonlinear parameter binding signals that a function
argument must have the form !e before substitution:

(Az:1.ep) (eq) — [z < eqlep

(Mz:7.ep) (leg) — [z —led]es

(Note that [28] actually substitutes e, for z, while the rule above substitutes le, for
z. In a non-steadfast type system, e, is more useful than le,, and the program can easily
recover le, after the substitution by using the expression !z. Steadfast types prohibit the
expression !z, though, making le, is more useful than e,.)

The environment I' tracks linearly bound variables using assumptions of the form x :
7, and nonlinearly bound variables using assumptions of the form !(x : 7). A nonlinear
environment !I" contains only nonlinearly bound variables.

The environments A, « : £ and IT',z : 7 are well-formed only if a ¢ domain(A) and
x & domain(I"), respectively. The rules below apply only to well formed environments.

A,a:kF7:Type AF 7 Type AF 71 Type AF 7:Type

{.,a:kK,..}Fa:k

Ak Va:k.7: Type A1 —o 1y Type A Flr: Type
Aok BTk AT kg — Ky Al 79 Ky
AF (Aa:k1.T) : K1 — Ko AT 13Ky
AFT AI—TQZTl AI_leTQ Al_TQZT?,
AFT=17 AT =1 AT =13

AF (Aa:k.m) 70 = o T]T1

39

AbT=7 ArFT=1 A1 =1 AbT1o=1)

K

Arlr =17 AFVa:k1m =Va:k.1 AbFT —o =1 —T)
AFT=17 Ab7m =1 Abr=1)
Al da:kT = kT AFTm =T 7}
Aa:rkol'Fe: T AT Fe: ¢Va:k.1 AbT1,:

A; T TR x:
D glwsr) Fa:gr A; ¢ F (pAac:k.e) : PV kT AT Ee Ty [ae— 7T

A; (@), d(x 1) ey ATy bFer: ¢d(mq — 1) AT Feg:my
A;¢'T (¢ Mx): ¢7q-€) : ¢ (¢Ta — T) ATy, To b (e1 e2) 1 7

AsThe: 7 AT =71

A;Tke:T
(PAa:k.e) T — [« Tle (P’ Agpx):7.p) (Peq) — [1 +— deglep
e —¢ e —¢ e — ¢
eT — e T e ey — e ey e1e— ey e

B.1 Standard extensions

Figure 7 lists some type abbreviations used by the CC2-to-linear Fw translation. This
section defines expressions and patterns for these types, based on standard lambda calcu-
lus encodings [21]. Some expressions are simple abbreviations, while others use a typing
derivation to guide their encoding.

B.1.1 Let bindings

AT Fep ¢~ e A;To,d(x 1) Feg:mo~ e
AT, To b (let gz = eq ineg) : 1o~ (A(px): ¢p71.€4) €}

B.1.2 Patterns

p=_1¢x| (p1,p2) | [, D]

Ap:T.e = (A(z):7]etp = x ine) where z is fresh
(let =e; iney) = (let lz = ey iney) where x is fresh
The sections below define (let p = ey ineg) for p = ¢z, p = (p1,p2), and p = [«, p|.

B.1.3 Pairs

A;gbfll—el:gbﬁwe'l A;gf)Fg}—eg:d)Tgwe’Q
A; Ty, s = dler, e2) 1 d(PpT1 @ ¢12) ~ PAAf:(¢pT1 —0 ¢T2 —0 a).f €] €

ATobeq: d(om ® o) ~ €l ANy Tpyx1 0 ¢, 20 dT2 b ey 1 Tp ~ €
AT, Ty b= (letpair x1, 22 = eqinep) : 7y ~ €}, Ty (AT : T AT PTo.€})

40

(let {p1,p2) = e, inep) =
(let x = e, inletpair zq, 9 = xinlet p; = 21 inlet po = x5 inep)
where z, x1, xo are fresh

(61, 62) = !<€1, 62>

#le= (let(x1,)=einz)

#2e = (let (_,x2) =einxg)
B.1.4 Unit
() =Naiz:ax

B.1.5 Existentials

A; 9L ke 2 [a — 71](p12) ~ €] AFT kK
A; T + ¢pack[ry, e] as pFa: k.97 : pFa: k.10 ~> PABAS: (Va: k.1 — B).f 71 €

ATy Fey: pFaik.gpro ~ €, Aokl x:omabey:m e AF 1 Type

AT, Ty b (unpack a, x = e, inep) : 7 v e, 7, (MK Az :¢T.€))

(let [, p] = ey ines) = (unpack a, z = ey inlet p = x iney) where z is fresh

B.2 Some useful functions

Section C.4’s CC2-to-linear Fw translation relies on the functions below.

freflit— 1

frefl =1 \x:1.x

ftrans: (11 — 12) —o (1o = 73) —0 T4 — T3

ftrans = Nz:m = A\ ly:m — 5. D21y (2 2)

refl .7 T

wrefl =Y frefl, frefl)

isymm : (Tg <& T1) —0 T1 < To

isymm = A(1xzq, lxe) 19 — 1. (22, 21)

itrans : (11 < Tg) —o (T2 & T3) —0 T < T3

itrans = A(1xy, lxa) 1 o . A(ly1, lya) 112 — 73. [ftrans ©1 yi1, ftrans ya xa)
iexist : |(Va:Type. Ty < Img) —o(Ja: Type. 1) <« /(3 : Type. I12)
iexist = Ax:l(Va: Type.lm <). {I\[a, 12]:

I(3a: Type. 7). Ipack|ey, (#1 x «) z] as Ja: Type. I, \[a, 12]:

!(3a: Type. I12). Ipack|e, (#2 2 «) z] asJa: Type. I11)

iall : (Va:Type.!my < Im) —o(Va: Type. 1) < |(Va: Type. I13)

iall = MNz:!(Va: Type. Ity < 17m2) {1\ ly:!(Va: Type. I11). Na:
Type.(#1z @) (y a), !Ny:!(Va:Type. !m2). \a: Type.(#22) (y a))
iprod : (11 < 113) — (g o l7y) —olm X Imy — lrgx Iy

iprod = X(lzq, 1z}) I = I A(lxg, 1ah) by o Iy I My, 1yo)
!7'1>< !TQ. '<.’L‘1 Y1,T2 y2>, !/\<!y17 !y2>2!7’3>< !T4. '<l‘/1 yl,l'/Z y2>>
iprodleft : (11 < lr3) —olm xIm «lryxIn

iprodleft = Ax:\1y < 713.9prod x irefl

ilprod : (11 = 73) —o (To = T4) 0TI @ Ty = T3 R Ty

ilprod = MNa1:m © 13029179 — 4. /{1y 171 @ To.let (y1,y2) = y in

41

((#1x1) 11, (#1x2) ya), \y:73 @ 14.let (y1,y2) =y in

(#221) y1, (#222) y2))

ilprodright : (to < T3) 0TI @ T2 <> T1 @ T3

ilprodright = \x: 19 < 73.ilprod irefl x

ilfun: (r & 713) — (T o 7y) —o (T — T2) & T3 —o T4

ilfun = Azy:im o 3.0 a1 o 7. 1 (Dy i1 — 1202

T3(#1a2) (y ((#221) 2)), \y:73 — T Az:7.(F#222) (y (#121) 2)))
ilfunleft: (11 < 13) —o (11 —0 T2) <> T3 — T2

ilfunleft = Ax:11 < 130l fun x irefl

il funright : (12 <> 73) —0 (11 —0 T2) <> T —o T3

il funright = Ax: 1o < 13.48l fun irefl x

ifun:(m o 13) — (p o Ty) — (11 > T2) & T3 =74

ifun =ANz1:m o 3.0 @0 o T (I Yy — 1. M2

m3.(#1x2) (y (#221) 2)), Nlyims — 7 Iz (#222) (v (#L21) 2)))
ifunright : (19 < 73) —o (11 — T2) <> 71 — T3

ifunright = \x:7m < 13.0fun irefl x

iinter : (11 & 73) —o (T2 = Ty) —o (11 & T2) & T3 & T4

sinter = ANxq:11 < 3.0 a1 > Tyuiprod (ifun x1 xe) (ifun vy x1)
iextractleft : (11 < 13) —o (11 B T2) < T3 I T2

iextractleft = XNxy:71 < 13.0fun x1 (ilprodright (il funright x1))
idup : \7 < lrx It

idup =1\ lz:1r N, z), W la:lrx Ir#1l)

iprodcomm : 1 X 119 < o x 17y

iprodcomm ={IX\(1xy, 1z} 11y X o Hag, 1), A (1xg, 1zq) I X Iy Ny, 22))
ilprodcomm : 71 @ To < To @ Ty

ilprodcomm =1{\\(z1,z2): 71 @ To.(T2,21), !N (T2,21) : T2 ® T1.(x1, T2))
iprodassoc : 11 x (Imax Ir3) < lryx g x 73

iprodassoc =1(I\(1z1, (1o, lzs)) Iy X (Imox I73). W Wz1, 22), 23), N ({121, l22), lw3):
!7’1X !TQX !7’3. !<.I1, !<1‘2,l’3>>>

ilprodassoc: 171 @ (7o @ T3) = T1 @ T2 @ T3

ilprodassoc =1 \x:1 ® (12 ® 73).let (z1,y) =z in

let (xo,23) = y in

({x1,m2),23), Az:T1 @ T2 @ T3.let (y, 23) = x in

let (x1,x2) =y in

(1, (2, 23)))

ilprodswapinner : 71 @ T @ (T3 ® T4) < 71 @ T3 ® (T2 ® T4)
ilprodswapinner =11 \z:71 @ 72 ® (13 ® 74)Jet (y1,y2) =z in

let (x1,22) = y1 in

let (x3,x4) = y2 in

({(x1,m3), (T2, 24)), N2 @ T3 ® (T2 ® T4).let (y1,y2) = x in

let (x1,x2) = y1 in

let (x3,x4) = y2 in

((z1,23), (22, 24)))

iprodunitleftleft :)x v <17

iprodunitle ftleft =1(INz: () x 7. #2x, a1 1), z))
ilprodunitleftleft :) @7 < 7

ilprodunitleftleft ={(IN_,z): () @ 7.z, N :7.((), z))
ilprodunitrightleft : 7 — ()@ T

ilprodunitrightle ft = isymm ilprodunitle ftle ft
ilprodunitrightright : 7 < 7 & ()

ilprodunitrightright = itrans ilprodunitrightle ft ilprodcomm
eextractinter : (11 <> T2) — 71 = To

eextractinter = A1z, 12’y i1y < 1.\ y1 i1 (@ y1, Ay2 1 2.2 y2)
erefl:7=71

42

erefl = eextractinter irefl

etrans : (11 2 1) —o (o R 73) —o 71 = 73

etrans = Axy:11 = 7oA om0 = 73 1Ay i1 det (Yo, yh) = 21 y1 in

let (ys3, y5) = 22 Y2 in

(Y3, \z3:73.95 (Y3 23))

elprodassoccomm : 7o @ 71 @ T3 = 71 @ (T2 @ T3)

elprodassoccomm =\{((x2, 1), T3) : 72 @ T1 @ T3.{{x1, (X2, x3)), A(x1, (T2, x3)):
T1 X (7’2 X T3).<<172, .Z‘1>, £ZE3>>

egetright : 1 ® 7o = T

egetright =\ (a1, z2) 171 ® To.{X2, Ay : T2.(T1,Y2))

egetleft : M @ =371y

egetleft = etrans (eextractinter ilprodcomm) egetright

egetleftright : 11 ® 7o ® T3 2 @ T3

egetleftright = etrans (eextractinter (isymm ilprodassoc)) egetright
egetleftleft : M @ T ® 73 371 QT3

egetleftleft = etrans (eextractinter (ilprod ilprodcomm irefl)) egetle ftright
egetrightleft : 11 @ (T2 @ T3) 71 Q@ To

egetrightle ft =

etrans (etrans (eextractinter ilprodcomm) egetle ftleft) (eextractinter ilprodcomm)
egetrightright : 11 @ (Ta @ 73) = 11 ® T3

egetrightright =

etrans (etrans (eextractinter ilprodcomm) egetleftright) (eextractinter ilprodcomm)
elprod: (11 3 m3) = (2 T) =TI @M IR

elprod = XMay:1 = 130 w0170 = 74. N y1, y2) 171 @ Todet (21, 2]) = x1 y1 in
let (22, 25) = 22 ya in

((21,22), Myt ¥5) : 73 © 74.(21 W1, 25)

elprodleft : (11 =2 T3) 0TI @ T2 B T3 QT

elprodleft = A\x:m =2 13.elprod x erefl

elprodright : (T = 73) = T1 QT = 71 ® T3

elprodright = Ax:19 =2 13.elprod erefl x

C Translations and lemmas

Sections C.1, C.2, C.3, and C.4 define the CC0-to-CC1, CC1l-to-CC2, CC2-to-LC, and
CC2-to-linear Fw translations. They also state the lemmas that constitute the proof of the
translation type correctness. The lemmas are proved in [12].

C.1 Translation: CC0—CC1

Cla)=a

C)y=0

C({a?}) = {a®}

C(Cr® Ca) =C(Ch) & C(C2)
C(C) =8(0)

S(a) = ag

S =0

S({a?}) ={a"}

S(C1 @ C2) = S(C1) ®S(Co)
S(C)=8(C

T(a)=a

7 (phandle) = phandle
T((C,7)—0)=(C(C), T(r))—0

43

71 X TQ) = T(Tl) X T(T2)

Va:Type.T) = Va:Type.T (1)

Vp:Res.T) = Vp:Res. T (1)

Va:Cap.7) = Vag:Capt.Va: Cap < ag.7(7)

Va < C.1) = VYag:Cap™ < S(C).Va:Cap < C(C), as.T (1)
()=

(a: Type A) = a: Type, A(A)
(o : Res, A) = a : Res, A(A)
(
(

e Y i Y e

a:Cap,A) =ag:Cap™,a: Cap < ag, A(A)
C,A) = ag: Cap™ < 8(C),a: Cap < (C(C),), A(A)

=

8 O

s iac

i‘i

8 oo
I
8
=
2
=
=

v[r : Type]) = V(0)[T(7) : Type]
[: Res]) = V(v)[« : Res]
[C: Cap]) = V(v)[S(C) : Cap™][C(C) : Cap]

S

XXX

new o, T) = New a, &

free v) = free V(v)

usev) = use V(v)

(letd ine) = let D(d) in&(e)
(v1 v2) = V(v1) V(v2)

(halt) = halt

U@@U@@iiiiii<<<<ﬂﬂpppppqqqqq

(Aa: Type.h) = Aa: Type H(h)

(Aa:Res.h) = Aa:Res. H(h)

(Aa:Cap.h) = Aags:Cap’.\a:Cap < as.H(h)
(A < C.h) = Aag:Cap™ < S(C).\a:Cap < C(C), as. H(h)
(MC,z:71).e) = XC(C),z : T(1)).E(e)
((v1,v2)) = (V(v1), V(22))

(z =v) = (z=V(v))

(2 =) = (x = H(h))

(e = 1) = (0 = uV10)

(

(

M tn M

C.1.1 Lemmas for CC0—CC1
o If A C: Cap then A(A)F S(C): Cap™
o If A C: Cap then A(A)FC(C) : Cap
o Tt AF7: Type then A(A) F 7(r) : Type

o If A A’ then A(A) - A(AY)

e If A C) =Cy: Cap then A(A) F S(Cy) = S(Cs) : Cap™
e If A+ C; =C5: Cap then A(A) - C(Cy) =C(Cs) : Cap
e If A7 =7 : Type then A(A)F T(ry) = T(72) : Type

e If A+ C: Cap then A(A)FC(C) <S8(C)
o IfAF Cl S CQ then A(A) = S(Cl) S S(Cl)
e If AFC; < C5then A(A)FC(Cy) < C(Co)

o If - Aand At o : Cap and AF C : Cap then S([of — C'|C) = [— C(C'),aly —

S(C))s(0)

44

X

B i o i i i i B B N N
Q
®
S

' A A A D

IFFAand AF o' : Cap and AF C : Cap then C([of «— C']C) = [/ «— C(C"),als «—
S(C)e(e)

IfFAand AFa: Cap and At 7: Type then 7 ([of «— C']1) = [/ « C(C"), oy «—
ST (7)

If - Aand AF o' : Type and A 7: Type then T ([o/ «— 7'|7) = [o/ «— T (7")|T (1)
If - A and A - T then A(A) - I(T)
If - A and A+ T then:
— IfA;TFo:7 then A(A);T(T) FV(v) : T(7)
— IfA;TFh:7then A(A);T(T) FH(h) : T(7)
- IfA;T;CHd= A";T";C' then A(A);T'(T);C(C) - D(d) = A(A"); T(IV); C(C")
— If A;T; C F e then A(A);T(T);C(C) F E(e)

Translation: CC1—CC2

8

U(C) B AC)

VD O -
>
ol | TR
=0
=)

no
—
Sb
>
—

+
=z

) =U(CL) DU(Cy)

o) QFHF"HSQ

——=
berva)—‘
=1 e
< =5 Q
[
~— =

e

+

—

) = A(C1) ® A(C2)

a) =«

phandle) = phandle

(C,7) = 0) = (C(C),T(7)) = 0

71 X 72) =T(11) X T(12)

Va:Type.T) = Va: Type. 7 (1)

Va:Res.T) = Va:Res. T (1)

Va:Cap.7) = Vo :Cap™ Vay : Cap'. T (1)

Va:Cap™t.7) = Vaa:Cap™'.[ay « 0]7(7)

Va:Cap® < C.7) = Vaa:Capt where 0 Baa < A(C).Jay « 0]7 (1)
T (Va:Cap < Cy,Ch,...,Cp.1) =

Vap:Cap' Vo :CapT where ap Bay < A(C)),

(ap ®U(Co)) Baa < A(Ch),

(a ®UCH)) Bax < ACw).Jov — (ap SUCHIT(T)

(.
(a: Type,A) = «: Type, A(A)

(o : Res,A) = a: Res, A(A)

(a: Cap,A) =y : Cap™,ay : Capl,A(A)

(: Capt,A) = a4 : Cap™,[ay «— D]A(A)

(a: Cap™ < C,A) =a,:Capt where) Bay < AC), [ay «— 0]A(A)

45

A(OZ : Cap S (C(],Ch .. 7Cn),A) =
ap: Cap',ax:Cap” where apHBay < A(Cy),
(OéB @U(Co)) 28] A S A(Cl),

- (0 DU(CH)) Bas < A(Cy), o — (0 U(CH)A(A)
[o : Type, A] = [A]

o Res, A] = [A]

[: Cap, A] = [A]

fo s Capt, A = [av — 0][A]

[a: Capt < C,A] = [ay « 0][A]

[a(:)Cap <(Cy,C1y...,Cn), Al = [ary — ag ®U(Cy)][A]

() =.

T(z:7,T)=2:7(r),T()

The translations of v, h, d, and e are directed by typing judgments:

e AsTHv:T~ V(v)

o AT Fh:7~ H(h)

e AsT;CHd= AT, C' ~~ D(d)
o A;T;CHe~ Ee)

For conciseness, though, most of the definitions below suppress the typing judgment when
it is not immediately relevant.

V() ==

V(v[r : Type]) = V(v)[T () : Type]

V(v[a : Res]) = V(v)[a : Res]

AT Fo:VaikT ~ v Alc:k

=C
AT Fofe: k] 2 [T~ v/[A(C) : Cap™|[U(C) : Cap'] (ap)
A;THo:VaikT ~ v Atc:
; v:Vaik.T ~s v C: K +(n:Cap+)
AT Fole: k] Ja« 7~ v'[A(C) : Cap™]
AT Fo:Va:k <Co1m '
AFC<Cy
AFC:k
= Capt
A;FI—U[C:K]:[a&C]va’[A(C):Capﬂ(ﬁ)
AT Hv:Va:k < Cy,Ch,...,Cpm~ 0
AFC<Cy~Up
AFC<Cy AFCLCy
AFC:k
(x = Cap)

AT Fo[C: K] & [« C]7 ~ o'[Ug : Cap'][A(C) : Cap™]

AT Hv:7 0 At 7 =71:Type
ATFv T~

H(Aa: Type.h) = Aa: Type. H(h)
H(Aa:Res.h) = Aa:Res. H(h)

46

H(\a:Cap.h) = Aas:Cap™ Aoy : Cap' H(h)
H(Aa:Cap™.h) = Aaa:Cap™.[ay «— O]H(h)
H(Aa:Cap® < C.h) = Aas:Cap” where) B ay < A(C).[ay « OH(h)
H(Aa:Cap < Cy,C4,...,Ch.h) =
Xap:Cap' daa:Cap™ where apHBay < A(Cy),
(ap @U(Co)) Bas < A(Ch),

A;TER:T ~h A7 =71:Type
ANTHER:T~ N

freev) = free V(v)

D
D
D
D
D v
D(usev) = use V(v)

(x =
(x =
(=
(new o,) = new «,
(
(

E(letd ine) =let D(d) inE(e)
g(’Ul ’Ug) = V(’Ul) V(’UQ)
E(halt) = halt

A}_CH:CQZH(
AFCL <Cy~0

k € {Cap, Cap™})

A}—CHSCQWU AFCQSCgWU/
AFC <C3~UaU

AFCl@CQSC{@CéWUl@UQ

.,oz:CaerSC',...l—aSCW(Z)

La:Cap < (Co,...),...Fa<Cy~ ap

La:Cap < (Co,y...y,Chyor)yo .. Fa < Cp ~ ag ®U(Ch)

At «a: Res
AF{at} <{at}~ {a'}

C.2.1 Lemmas for CC1-CC2
e If-Aand AFC:kand k € {Cap,Cap™} then A(A) - [AJU(C) : Cap’
e IfFAand AFC:xand x € {Cap,Cap™} then A(A) - [AJA(C) : Cap™
e If - Aand AF C; < Cy ~ U then A(A) F [AJU : Cap?
o If A A/ then A(A) - [AJA(AY)

47

C.3

NNNNNNAas

aQ

BrrSSSE

If - A and AF 7: Type then A(A) - [A]T(7) : Type
If FAand A+ C: Cap™ then A(A) F [AU(C) = () : Cap®

If - Aand AF C, = Cy : k and k € {Cap,Cap'} then A(A) F [AJU(C,) =
[AJU(Cs) : Cap*

If - Aand AF C;, = Cy : kand & € {Cap,Cap’} then A(A) F [AJA(C,) =
[AJA(Cy) : Cap™

If - Aand AF 7 =75 : Type then A(A) F [A]JT (1) = [A]T (12) : Type

If A and At Cp < Cy ~ U then A(A) - [AJU(CY) = [AJU @ [AJU(Cs) : Cap' and
A(A) - [AJU B [AJA(CY) < [AJA(Cy)

If-Aand AF o : s and & € {Cap,Cap™} and A F C : k and s € {Cap, Cap™'}
then A([o/ — C'|C) = [ag; — U(C"), !y — A(C")]A(C)

If-Aand AF o : k" and & € {Cap,Cap™} and A+ C : k and x € {Cap,Cap™}
then U([o/ — C']C) = [ay;, — U(C"),d!y — AC")U(C)

IfFAand AF o :«" and &' € {Cap,Cap™} and A F 7 : Type then 7 ([o/ «— C']7) =
oy —U(C),)y — A(C)]T(7)

If - Aand AF o : Type and A b 7 : Type then 7([o/ — 7'|7) = [of — T(')]T ()
If - A and A F T then A(A) - JAJD(T)
If - A and A F T then:

— A TFuv:7~ v then A(A); JAIL(T) F [Af' : [AJT(7)

— IEA;TF A7~ k' then A(A); JAIL(T) - [AJR : [AT(7)

- If A;T;C R d = AL TY;C" ~» d then A(A); [AILT); [AIC(C) + [Ald =
A(A"); [A[T(I); [AJC(CT) and [A] = [A']
If A;T;C F e~ e then A(A); [AIL(D); [AJC(C) - [A]e!

Translation: CC2—LC

(Type) = Type
(Res) = Res
(Cap”) = Cap
(@) =a
(phandle) = phandle
((C,7) = 0) = (C(C),T(7)) = 0
(7'1 X TQ) = T(Tl) X T(Tg)
(Va: k1) =Va:K(k).T(7)
(Va:Cap® whereU; Ba < Ay,..., U, Ba < A,.7) =
Va: Cap.[a — (a&c(U(Ur) — A(A1) @ true)de. .. &(U(U,) — A(A,) ® true))|7 (1)

(UBA) =UU)® (A(A) @ true)

48

A(A1 @ Az) = (A(A1) @ true)&(A(Asz) ® true)

a:Capt whereU; Ba < Ay,..., U, Ba< A,,A) =a: Cap,

A() =+
Ala:k,A)=a: K(k), A(A)
A

[a — (a&U(Ur) — A(A1) @ true)& ... &U(U,,) — A(A,) @ true))|A(A)

[-1=1
% HA] [A]
[a:Capt whereU; Ba < Ay,..., U, Ba< A, A]=

M tn M

TxxxxxxAH

—~~

(
(
(
(z=h) = (
(z =
(
(

@@U@U@ii

[0 — (a&U(Uy) —o A(A;) @ true)& . .. &UU,) —o A(An) @ true))][A]

g_/
I

D) =xz:7(r),T(T)
v[r : Type]) = V()[T(7) : Type]
v[a: Res]) = V(v)[e : Res]
[U : Cap']) =V(u)lU ()+ Cap]
[A: Cap™]) = V(v)[A(A) : Cap]
Aa:k.h) = Aa:K(k). H(h)
Aa:Cap’ whereU; Ba < Ay,..., U, Ba < A,.h) =
Aa:Cap.[a — (a&U(Uy) — A(41) @ true)& ... &(U(U,) — A(A,) & true))|H(h)
AMC,z:7).e) = ANC(C),z: T(1)).E(e)
(v1,v2)) = (V(v1), V(v2))
z=v)=(r=V([))

8

ST

New o, T) = New o, &
freev) = free V(v)

(use v) = use V(v)

(let d ine) = let D(d) in&(e)
(v1 v2) = V(v1) V(v2)

(halt) = halt

C.3.1 Lemmas for CC2—-LC

If - Aand A+ U : Cap' then A(A) - [AJU(U) : Cap

If - Aand A A: Cap' then A(A) - [AJA(A) : Cap

If - A and A+ 7 : Type then A(A) - [A]T(7) : Type

If FA and A+ U; = Us : Cap' then A(A) F [AJU(UL) = [AJU(Uy) : Cap

IfF Aand A+ A; = Ay : Cap™ then A(A) F [AJA(A;)@true = [AJA(A)®true : Cap
If - A and A+ C < A then [AJC(C) F [AJA(A) ® true

If - A and A+ 7 =7 : Type then A(A) F [AJT(11) = [A]T (72) : Type

If- Aand Ao’ : Cap™ and A+ A: Cap™ then A([o/ «— A']A) = [/ « A(A")]A(A)

If-Aand AF o : Cap’ and AF U : Cap' then U([o/ — AU) = [o’ — A"JUU)
for any A"

If - Aand AF o : Cap' and A+ A : Cap™ then A([o/ « U'|A) = [o/ — U"]A(A)
for any U"”

If - Aand AF o : Cap' and A F U : Cap' then U([o/ «— U'|U) = [o/ «— UUU(U)
If - Aand Ak o' : Cap™ and A F 7 : Type then 7 ([«— A']7) = [o/ «— A(A)]|T (1)

49

e If - Aand AF o : Cap' and A+ 7 : Type then T ([o/ «— U']7) = [o/ «— UU")]T (1)

e IfFAand Ak o : Type and A+ 7: Type then 7 ([¢ — 7']7) = [0/ — T(7)]T (1)

o If H A and A+ T then:

— If AT Fo: 7 then A(A); [AIT(D) F [AV(v) : [A]T (1)
— If A;T F A7 then A(A); [AD(T) F [AJH(R) : [A]JT(T)
— ITA;T;C FHd= A’;TV;C' then A(A); [AT(T); [AIC(C) F [AID(d) = A(A"); [A]L(T); [A]C(C")

and [A] = [A]

— If A;T;C F e then A(A); [AJT(D); JAIC(C) F [AJE(e)

C.3.2 Complete collection in extended LC

Extensions to LC for nonlinear capabilities:

types
capabilities
nonlinear cap ctats

cap ctxts

wordvalues

heap values

Abbreviations:

C1 x Cy
Cy = Cy
C1 & Cs
C1V Cy

New and modified rules:

AFCy:Cap AFCy: Cap

T = ... |IC=>r71
C = ... |CiuCy | IC

A] = [1C4],....[\Ch]

A = Cuo O [\Crsal,- . [1C]

vo= .|l

h = ...|ACh

I(Cy @ Cb)

1(Cy —o Cs)

(C1 = Cy) x (Cy = Cy)
1(Cy U C)

AFC:Cap AFC:Cap AF 7 :Type

AFCLUCy: Cap ARIC: Cap AHC =1
[A,C+C [Al,[IC]+C [A]F0
AICLICTECY A=C
A[ICIHC ANJICIHC
[A]FC ANJICTECY
[A] F!C A ICHCY

50

AECy ACECs ACy-Cy
_APCE e
ircug Fetlh2) A CyUC,F Cs

In A;THo:7and A;T F A7 rules, replace A; T with A; T [A].
In A;T;CFd= A;T; C’ rules, replace A;T; C with A;T;[A]; C.
In A;T;C | e rules, replace A;T'; C with A; T [A]; C.

AFCy: K AFCy: K [A],Cy F Cy [A],Ca - Cy
A;[A]"C1:CQZI€

AT A FolC =1 [A] HIC
AT Al R[] o7

AFC:Cap N TS [AL[IC F R T
AT [AJFACAIC = 7

A, C®{a}FC’

A;T;[A]; C Fnewa,x = A, a: Res; T, x : ahandle; [A]; C7 (o ¢ domain(A) and z & domain(T))

A;T;[A]l F v : ahandle [Al,CFC' ®{a}
A;T;[A]; C F freev = AT [A]; C7

A;T;[A] F v ahandle [A],C F {a} ® true
AT A CFusev = AT [A]; C

AT Al F o (C7) — 0 AT Aoy T [A,CHC
A;T[A]; C F vy vg

A [A]FC=0:Cap
A;T; [A]; C F halt

Modifications to CC2-to-LC translation:

1) = {pr}

Z(A1 ® Az) = 2(A1) ® Z(Az)
CUBA) =UT)® (AA) @ Z(A))
S{U1BA; <A)=(C(U1BA) = A(Ay) ® Z(Ay)) x (Z/é(Ul) UZ(4)) = Z(A4y))
T(
T(Va:Cap+ whereCh < A;,...,C, < A,.7) =
Va:Cap.Vaz:Cap.((((a & 0) x (az
S(Cy <A x...x8(C, < A)
A(a:Cap™,A) =a: Cap,az: Cap, A(A)
A(a:Capt whereU; Ba < Ay,...,U,Ba < A, A)=a:Cap,az: Cap, A(A)
A=

K, A) = A(A) where ks # Cap™
a: Cap+,A) =[(ae0) x (az < 0)V (az & true)], A(A)
a:Capt whereC; < A44,...,C, < AnA) =
(e = 0) x (az & 0)) Vv (az & true)) x

(Cl<A1 XS(C SA)] ()
V(o[A: Cap*]) = V()[A(A) : Cap][Z(4) : Cap][!]
H(Aa:Cap™.h) = Aa:Cap.\ay: Cap.

M((ae D) x (az & 0)V (az & true)). H(h)

H(Aa:Cap™ whereCy < Ay,...,C, < A,.h) = Aa:Cap.Aaz: Cap.
M(((a = 0) x (az < 0) V (az < true))x

e If - Aand AF U : Cap' then A(A) FU(U) : Cap

e If-Aand AF A: Cap™ then A(A)F A(A) : Cap and A(A) - Z(A) : Cap

o If-Aand AF A:Cap™ then A(A) F ((A(A) & 0) x (Z(A) < 0)) V (Z(A) & true)
o If H A and AF 7: Type then A(A) T (7) : Type

e If FAand AF U, = U, : Cap' then A(A); A(A) FUU,) =U(Us) : Cap

e If- Aand AF A; = Ay : Cap™ then A(A); A(A) F A(A)RZ(A;)) = A(A2)®Z(As) :
Cap

e IfFAand AFUHBA<A then A(A),UU)UZ(A)F Z(A)
o If FAand A C < Athen A(A),C(C)F A(A) ® Z(A)
o If - Aand Ak 7 =75 : Type then A(A); A(A)F T (1) =T (72) : Type

eIf - Aand A - o : Cap’t and A F A : Cap’ then A([o/ «— AJA) = [/
A(A"), oy = Z(A)]A(A)

eIf - Aand A o : Cap’ and A F A : Capt then Z([o/ «— AJA) = [/
A(A"), oy — Z(A)]Z(A)

e If FAand Ak o : Cap® and A F U : Cap' then U([o/ «— A'JU) = [— A" oy —
AZIUU) for any A" A%

e If-Aand At o : Cap' and A+ A: Cap™ then A([e/ «— U']A) = [o/ «— U"]A(A)
for any U"”

e If - Aand A+ o : Cap' and A+ A: Cap™ then Z([o/ — U'|A) = [o/ «— U"|Z(A)
for any U"”

e IfFAand Ak o : Cap' and A+ U : Cap' then U([o — U'|U) = [o — UU")UU)

e If-Aand Ao’ : Capt and A I 7: Type then T ([o/ « A']7) = [o «— A(A"), o’y —
Z(A)T(7)

e If A and A+ o' : Cap' and A F 7 : Type then T([o/ «— U'|7) = [o «— UU")]T (1)
e IfFAand Ak o : Type and A+ 7: Type then 7 ([¢ — 7']7) = [o/ — T(7")]T (1)
o If - A and A T then:

— IfA;TFov:7then AA);T(T); A(A) FV(v) : T(7)

If A;TFh:7then A(A);T(T); AA) FH(B) : T(1)

CIEAT;CFd= A;T;C" then A(A); T(D); A(A); C(C) F D(d) = A(A');T(I"); A(A); C(C")
— If A;T;CF e then A(A);T(T); A(A);C(C) = E(e)

(
) :

52

C.4 Translation: CC2—linear Fw

Cap') = Type

Cap™) = Type — Type
Type) = Type

Res) = Type

2
\
oo

Q\/
Iy e S

Us) =U(Ur) @ U(U2)

Ay:Type.30: Type.(y =2 §) x I(A[A] J)

[«

[0] = Ay:Type.(0)

{a?}] = Ay: Typey = x a

[A1 © As] = Xy:Type. [(A(A1) 7)®!(A(Az) 7)

UBA)=M\y: Typed(U)R (A(A
)

(
(
(
(
(
(
(
(

=S

(

SRR ESSISRIaaAaAASR
"*"EQ

C()Y
SUBA<LA)=V:Type. l(A(A) §) = (A(A) (6 @U(U)))
T(a) =«
T(Tl X ’7'2) :'T(T1)®'T(T2)
T(UBA,7)—0)=Vy:Type.y > UU) —(A(A) v) — T (1) —o true
7 (ahandle) = (9
T (Va:k.1) =Va:K(k). 1T (1)
T (Va:Cap’ whereCy < Ay,...,Cp < Ap.m) =
Va: Type — Type. !S(Cy < A) — ... =18(C, < A,) =T (1)
A() =
Aa: HA)—CM K(k), A(A)
Ala: Cap whereU; HBa < Ay,...,U,Ba < A,,A) =a: Type — Type, A(A)
r(;) =
L(z:7,0)=Yz:7T(1)),T(T)
L(a: kA T)=T(A;T)
T'(a:Cap™ where (C; < Ay,...,C, < Ay),A;T) =

Naar : S(CL < A1),y {xan : S(Cn < Ap)), T(A;T)
The translations of v, h, and e are directed by typing judgments:

e A;THuv:7~ V(v)
e AsTHh:1~ H(h)
o A;T;C e~ Ee)

For conciseness, though, some of the definitions below suppress the typing judgment when
it is not immediately relevant.

A;TFov:Voa:Capt whereU; Ba < Ay,...,U,Ba< A, 7~e
AU BHBa< A ~ e AFU, Ba<A, ~we,
A;THA: Cap™t
A;THo[A:CapT]:[a— Al ~e AlA] e ...en

ATFv:7 ~e AF 7 =71:Type~ €
A;ThHo:T~ (#1e) e

53

HAa:k.h) =Da:K(k).H(h)
H(Aa:Cap’ whereCy < Ay,...,C, < Ay.h) =

Na:Type — Type. A 241 :1S(C1 < Aq).... W\ x4, 1S(C < Ay) H(R)
HANUBA,x:7).e) =\y:Type. Nzp:y. ey :UU) N za 1 (A(A) v) AT (7).E(e)
H((vr,02)) = (V(o1), V(en))

A;TER:7T ~e A7 =171:Type ~ ¢
A;THER:7~ (#1€) e

(letz =vine) =let lz = V(v) inE(e)
(letx = hine) =let lx = H(h) in&(e)
(letx = #nvine) =let lz = #nV(v) in&(e)
(letnew o,z ine) =
let [, z4] = new () in
let zy = (2,2 4) in
let lx = () in

E(e)

A;T F v : ahandle AFU=U®{a'}: Cap' ~ ¢; AT U BARe~ €
AT UB AF letfreev ine ~ expfree

expfree =

let (zp,z4) = (#ley) zy in

let = free azy in

el

A;TFov:ahandle AFU=Ug®U':Cap' ~ ¢
AFUgBHA<A ®{at}~ e AT, UBAR e~ €
A;T;UB AR letusev ine ~ expuse

expuse =

let <ZU1,ZU2> = (#1 61) zZU in
let 1)y = ez v z4 in

let [0, (lzpg, 124)] = #/4 in

let (_,12%/) =2 in

let e, (lzgr, lxra)] = 2} in
let lzpr = etrans xpg xgr in
let lxpy = etrans xpr Tra in
let <33A,Z‘Ap> =Tpa <ZP,ZU1> in
letxy = use @ x4 in

let (zp, zy1) = Tap T4 in

le/t 2y = (#2 61) <ZU1,ZU2> in

e
AT o (UBA) 7) >0~ e AT Fwvg 7~ e
AFU=Up®U :Cap' ¢, AFUgBA<LA ~¢)
A;T;UH AR v vg ~ expeall
expcall =

let (zu2, 2y;) = (F#1e€}) zy in
let 12/, = €h v 24 in
e1 vy ®ug (zp, 2u2) 2y 2y €2

AFU=0:Cap' ~ e AFA=0:Capt ~ e
A;T;UB A halt ~ let = (#1e1) zy inpack[y, zp] as true

54

AFQL=Q) Kk~ e AFQQZQ’Q:KweQ

_ 1
AFQ1®Qr=Q, DQ,: Kk~ ilprod ey ey (1 = Cap’)
AFQ:k B 1
AF@@QZQ:liwz'lprodunitleftleft(ﬁiCap)
AFQ:k AFQs:k (k=C 1)
AF QLB Qs =QsP Q1 : Kk~ ilprodcomm F=ap
AFQq:k AFQs:k AFQs:k (k = Cap')

AF Q18 Q) Qs =01 & (Q2B Q3) : k ~ isymm ilprodassoc

A"QIZQEZK“’“’el A"QQZQétmweg

_ +
AFQ1®Q2=Q) ®QY: Kk~ aeqcong (k= Cap™)

aeqcong = \y: Type.exist (1(Ad: Type.iprod irefl (iprod (e1) (e2 9))))

AFQ:k

_ +
AF@@QZQ:/@Waequm’t(ﬁ_Cap)

aequnit =!\y: Type. |
NS, {Lepgy (6, {qr,)] LA & A) 4.
Ipackle, l(etrans zpg xor,x)| as A(A) v,
Nz:lA(A) ~.
Ipack[y, Werefl, \{packly, (erefl, ())] as A(D) v, z))] as A(D ® A) v)

AFQq:k AFQs:k
AF Q1 Qr=Q2® Q1 : Kk~ aegcomm

(k= Cap™)

aeqgcomm =\ vy: Type.iexist (1(Ad:Type.iprod irefl iprodcomm))

A"Qliﬁ A"QQZH A"Q3I€
AF Q10 Q2)®Qs=Q1®(Q2®Q3) : kK~ aeqassoc

(k= Cap™)

aeqassoc =\v:Type. (

'A[(S, < !SCPQ, < !I127 ’,I3>>] '.A(Al D A2 D A3) Y-
let [e, (\zgr, (121, l22))] = 212 in
let [, (!zrs, X a2)] = 22 in
let [, (12'pg, l241)] = 21 In
let ly; =pack[n’, (etrans xgr t'g, 1)l a3 A(A1) § in
let lyo =lpack[n, letrans zgr Trs,T42)] as A(A2) 0 in
let lya3 =packl[d, l{erefl, (ya, z3))] as A(A2 © A3z) ¢ in
ipackls, (zpq, !y, s as A(A1 & (A3 & Ag)) 7,

!)\[(5, < lzpg, (lzq, !:L‘23>>] :!.A(A1 @ (A @ A3)) .
let [e, (\zgr, (122, lx3))] = 23 in
let [, (zrs, xa2)] = 22 in
let [, (2T, 12 a3)] = 23 in
let lys = Ipack[n/, etrans zqr 2'hg, xa3)] as A(A3z) 6 in
let lyo = Ipack(n, !(etrans xor TRrs, T a2)]as A(Asz) § in
let ly12 =pack[d, {erefl, {x1,y2))] as A(4; & A3) § in
Ipack[d, {zpq, (yi2,y3))] as A(A1 & Az & A3) 7)

95

AF A:Cap™
AFA=A@A:Capt ~ aegidem

aegidem =1 y:Type. |{
Nz :LA(A) ~.
Ipack[y, erefl, {z,z)) as A(A @ A) v,
A6, (lzpg, (6 (lzgr, 12)])]:LA(A® A) 4.
Ipackle, letrans zpg zgr, x)) as A(A) v)

.., (a:CapT where ..., Uy Ba < Ag,...),...r U Ba < Ap ~ zap

At o: Res
A {a'} B0 < {at} ~ subres

subres =
I\y:Type. !X :LA(0) .
let lx1 = egetright in
let zo = erefl in
'pack[X o, Yz1,22)]as A{AT}) (7@ X «)

AFAleg:Caer
AFQHA; < Ay ~ subaeq

subaeq =
y:Type. !\ gL A(Ar) .
let lzg = (#le) 21 in
let [0, (lzpg, lza)] = 2 in
let ly; = egetleft in
let lys = etrans y1 zpg in
tpack(s, ys, z.4)] as A(Az) (v ® ()

AU BA <A, AUy B Ay < Az
AU ®U; B A; < Az ~ subtrans

subtrans =
y:Type. !\ zq L A(Ay) .
let lzo = €1 v x1 in
let lx3 = e v ® up 2 in
let [d, (12, lz4)] = x5 in
let !y = eextractinter ilprodassoc in
let 12’ = etrans y z in
Ipack[d, 1(2',x4)] as A(A3) (yQU(U; @ Uz))

AFULEA <A, AFUB Ay < A
AFUL @U, B A @ Ay < A] & Al ~ subcong

subcong =
IAy:Type. !Nz :lA(A; @ Ag) 7.
let [0, ('zpg, 1Ta12)] =2 in
let (1x a1, 12 42) = 412 In
let) =e1 6 41 in
let !z, = eg & 42 in
let [01, (lzg1, 12/y;)] = 2] in
let (g2, (!xQ% '$£42>] = 1'/2 in

56

let lx g1 = egetrightle ft in

let 'z ro = egetrightright in

let lxg1 = etrans xr1 zg1 in

let lxgo = etrans xr2 zg2 in

let ly; =pack[d1, (xs1,2'4;)] as A(A}) (6 @U(UL @ Us)) in

let lyo =pack[gs, (g2, 2'45)] as A(AL) (6 @U(UL @ Us)) in

let 1z = elprodleft xpg in

Ipack[d @U(U; @ Us), Nz, Wy1,y2))] as A(A] @ AL) (yU(U; & Us))

AFc:k

AFc=c:k~irefl

Kk = Type

Abco=ci:k~e

=T
AFcl:CQ:AWZ'symme"€ ype
Abci=cy:k~ e AFcy=c3: Kk~ ey
- Kk = Type
Aty =c3: Kk~ itrans e ey
AkFc:k
= Cap?
Al—c:c:/iwz'reflK ap
AFco=ci:k~e 1
- k = Cap
AFci=co: Kk~ isymme
AF61:CQSKZW61 AFCQZCQJ):HWGQ 1
- k = Cap
AFcp =c3: Kk~ itrans e e
Abc:k
¢ - k= Cap™
AFc=c: K~ \y:Type.irefl
AFc=c:
e Kw.e k= Cap™
AF ¢y =cy:k~ Ay:Typedsymm (e)
AF = N AF = :
C1 Cy iR~ €1 C2 C3 i kK~ €9 /{:Caer

AF ¢ =c3: Kk~ Ay:Type.trans (eg v) (e2)

AF 71 =7 :Type~ e AF 1 =75: Type ~ e

AF 1 x 1 =17 x75: Type ~ iprod e; ez

Aja:kbT=7":Type~e
AFVa:k1 =Va:k.1': Type ~ iall (!(Aa:K(k).€))

(a € domain(A))

AI—Ule{:Caplweyl Al—Uan;L:CaplweUn
AF A=A} :Capt ~ eq AF A, =A :Cap’ ~ ean
A,o:Capt whereUyBa < Ay,...,.U,Ba< A, F7=17":Type~e

= (o € domain(A))
AFVa:Cap” whereUy Ba < Ay,..., U, Ba< A,.7

=Va:Capt whereU/ Ba < A},..., U, Ba < A 7" : Type ~ tegbound

teqgbound = iall (!(Aa:Type — Type.ifun sy (... (ifun s, €)...)))
s = (tall (M(A\y:Type.ifunright (itrans (ear v ® uq)
(texist (1(A\0:Type.iprodleft (iextractleft (ilprodright eyy)))))))))
At T1=1":Type ~ e, AFU=U":Cap' ~ ey AFA=A":Cap’ ~ ey
AF(C,7)—>0=(C"7") — 0: Type ~ teqfun

teqfun = iall (V(A\y:Type.ifunright (ilfun ey (ilfun (ea 7y) (il funleft e;)))))

57

C.4.1 Lemmas for CC2—linear Fw
o If - A and AF U : Cap' then A(A), x : Type — Type - U(U) : Type
e If-Aand AF A:Cap™ then A(A),x : Type — Type - A(A) : Type — Type
o If H A and AF 7: Type then A(A),x : Type — Typet T(7) : Type

e If - Aand A+ U; = U, : Cap! ~ e then A(A),x : Type — Type,T'(A;-) e :

e If-Aand AF A = Ay : Cap' ~ e then A(A), x : Type — Type,T'(A;-) F e :!Vy:
Type. 1(A(A1) 7) < !(A(Az2) 7)

eIf - Aand AU BA < Ay ~ e then A(A),x : Type — Type,I'(A;-) F e :
IS(UL B Ay < Ag)

eIf-FAand AF 7 =1 : Type ~ e then A(A),x : Type — Type,I'(A;-) F e :
1T (1) < T (2)

e If-FAand Ao’ :Cap” and AF A: Cap™ then A([a/ «— A'JA) = [o/ «— A[A]JA(A)

e If - Aand Ak o : Cap™ and A F U : Cap' then U([o/ «— A'|U) = [— A"JU(U)
for any A"

e If - Aand A o : Cap' and A+ A: Cap™ then A([e/ «— U']A) = [o/ «— U"]A(A)
for any U"”

o - Aand Ao : Cap' and AU : Cap" then U([o/ — U'U) = [o — UUU)
o fFAand AFa’:Cap’ and AF 7: Type then T(jo/ — A']7) = [/ — A[A]|T(r)
o fFAand AF o’ : Cap' and A+ 7 : Type then T([of — U')7) = [of — UU")]T(r)
o fFAand AF o’ : Type and A b 7 : Type then T([of — 7]7) = [— T(')]T(r)

o IfF A and AF T then:

— It A;TFo: 7 then A(A), x : Type — Type; T(A; T), TV F V(v) 17 (1)
— If A;T F A7 then A(A), x : Type — Type; T(A;T), TV = H(h) : 17 (1)

— IfA;T;UBAR e then A(A), x : Type — Type, v : Type; T(A;T), TV, T F E(e) :
true

where IV =!(new : () — Jp : Type.x p), (free : ¥Yp : Type.x p — ()), luse : Vp:

Type.x p — X p)
where I'' = zp : v, zp : U(U), (24 : A(A))

D Translating CC/CCL to CC/SLL

This section applies the techniques from the CCO-to-LC translation to the original calculus
of capabilities [7] (referred to here as “CC/CCL”). Sections D.1 and D.2 define CC/CCL in
two pieces: a small logic inside the type system, called CCL (section D.2), and the logic-
independent part of the language (section D.1). Section D.3 defines an alternate logic, SLL,
based on LC, and adapts the soundness proof of Walker, Crary, and Morrisett [8] to show
the soundness of CC/SLL. Section D.4 translates CC/CCL to CC/SLL and describes the
proof of the translation’s type correctness.

58

D.1 Calculus of capabilities (logic-independent portion)
The syntax and rules are taken directly from [7] and [8].

kinds k = Type | Res| Cap
constructors ¢c = al|7|r|C

ctorvarsa, €, p,. ..

types 7 = «|int | rhandle | VIAI(C,11,...,7) — Oatr | (71,...,7s) atr
regions r = plv
ctor ctrts A = |Aa:k

value ctrts r = - |e:r

region types YT = {l1:7,..., 0 :Tn}
memory types U = {v:Tq,..,vn: Tyt
word values v x | i| vt | handle(v) | v[]
heap values h = fix fIAI(C,x1 i o, @y i)€ | (V1,...,Un)
arithmetic ops p = +| —| x
declarations d = z=v|z=vipvs|z=hatv|x=#nv|newrgnp,z | freergnv
expressions e = letdine | if0vtheneselsees | v(vy,...,v,) | haltw
memory regions R = {li—hy,....0h— hy}
memories M = {v1— Ry,...,uvp— R,}
machine states P = (M,e)
AR A
Al S in(A, A
NS H(a & domain(A, A"))
AFT AbF7:T
AF- AFT.2 :TT ype (z & domain(T))
At r: Res
LK. Fac: AlFint: T
AR b 2ype A F rhandle : Type
A1 Type A1, : Type At r: Res

AFv:R
voes AF(r,...,m)atr: Type

AFA AA B Type.. . A A F o7y s Type AA'FC:Cap AF7r:Res
AFV[ANC,1,...,7m) — 0atr : Type

] FY, -+ 711 : Type -+ 7, : Type
R EZ N0 TS 7Ry gy F{lyim,.o by Ta}
Ab-=- AFAi=24; (a & domain(A, Ay))

AFA,a:k=00,a: K

59

AlFc:k AFca=c K AFci=co: kK AbFco=c3:k
Abc=c:k Abci=c:k AbFci=c3:k

At 71 =7 : Type At 1, =1 : Type

AFA(r,...,m)atr = (ry,...,7.)atr : Type

ATEFA=A A" AFC=C":Cap
A" At 1 =7 Type A" At T, =1 :Type
A" EV[A(C, T, ..,) — Oatr = V[A|(C,71,...,7}) — 0atr : Type

A A AA'FC:Cap
A,A"F 1 Type A A F 1, Type AFr:Res
UA AT, forpeim,.., 2, T C e
T =VY[ANC,m,..., 1) — Oatr

e Xy €d in(T°
U AT Hfix fIANC, 21 : 71y oo Ty 2 Ty) €80T 2 T (fyz1,. 2 & domain(T'))

U AT Foimg AT Fo, o1, AFr:Res
U AT (vr,. .. op)atr: (Tq,...,Thyatr

U, AT hatr: 7/ AF 7 =71:Type
U A;T'Fhatr: 7

U:A;T'Fi:int

AF(r,...,mm)atv: Type
U AT vl (...,) atv

(v & domain(P))

AFVIANC,T,...,7) — 0atv : Type
U AT Howl :VA)NC, 1,y ...,7) — Oaty

(v & domain(¥))

U AT Ewd: U(ve)

U; A; T+ handle(v) : vhandle

U AT Ho:Va: gk, A|(Cymyy ...) — 0atr AbFc:k
U AT Fold : [a— (V[A)(C,T,...,7) — Oatr)

U AT R 7 Ak 7' =71:Type
U:A;THo:T

Ao T
VA, Chrr=v= A;Tz:1;C

(x & domain(T))

60

U:A;T F o :int U:A;T g :int
U AT CRe=vpve = AT 2 int; C

(z & domain(T"))

U AT CHd = AT C ;AT C' e
U, A;T5CFletdine

U:A;TFo:int U, AT CFeg U AT CFeg
U A; T, C F if0 v then e else e3

W Uk Riatry : Ty Uk Ryaty,: 1), U={v;:YVq,...,vn:Tp}
F{vy— Ry,...,up— Rp}: 0

;- hjatv:m U hyatv T,
Uk{ly—hy,....lp—=hptatv:{l:m, .y i T}

FM:U U+ C sat U Che
F(M,e)

D.2 CC/CCL

CC/CCL extends section D.1 with the following. The syntax and rules are taken directly
from [7] and [8]. Note that [7] includes a rule A - {rt} = {r*} : Cap, while the technical
report [8] omits this rule. This section omits the rule as well, since the rule can be derived

from A C =C:Cap and A+ {r'} = {r*}: Cap and the congruence rule for C:

AF{rt}={rt}:Cap A+ {rl} : Cap L
A {rt} ={r1}: Cap A+ {r1} = {r1} : Cap AF{rt} ={rt}:Cap
AF{rt} ={rt}: Cap

capabilities ~ C = €| 0| {r¥}|C1®Cy | C
multiplicities v = 1|+
ctor ctxts A = ...]Ae<C

/ / :
AFA AA'EC:Cap (o & domain(A, A"))

AFA, a<C
At r:Res
,a<C,...Fa:Cap () : Cap AT {71 Cap
AFCy:Cap AFCy: Cap AFC:Cap
AFCiCy: Cap A)—é:Cap

AFAliAQ A,AlFCH:Cg:Cap
AFAL,a< O =7 a <0y

(a & domain(A, Ay))

61

AR C; =0Cf: Cap AFCy=CY: Cap
AFCi®Cy=C{®Ch: Cap

AFC:Cap AFCy:Cap AFCs: Cap
A0 C=C:Cap AFCi®Cy=Cy® Cy: Cap
AFCy:Cap AFCs: Cap AFCs: Cap
Al—(Cl@CQ)@C;;:ClEB(CQ@Cg):Cap

AFC=C":Cap Ak C:Cap
AFC=C:Cap AFC=CaC:Cap
= AbFr:
AFT=0:Cap AFr Res
AF{rt} ={rt}:Cap
AFC:Cap AFCy: Cap AF Csy: Cap
A+FC=C:Cap AFCi®Cy=Cr @0, : Cap
A|—01:CQ:Cap A}—CHSCQ A}_OQSC%
AFCy <0y AFCL <Cs

AFCL STl AFC<CY
AFCiaC, <0l ad)

<! .
arc=¢ ..,a<C,...Fa<C AFC:Cap
AFC<C AFC<C

U:A;THov:V[a<C" ANC",7,...,7,) — Oatr ARC<C”
U AT Ho[C] : [a— C(Y[AN(C T4,y ...,T) — Oatr)

U:A;T v : rhandle U:A;TFhatr:7 AFCLZ<C' @ {rt}

in(T
AT CRae=hatv = A;Tz:7;C (z ¢ domain(T))

U AT o {70,...Th1)atr AFC<C®{rt}

d in(T) and0 < k
VA CFx=H#ko= AT,z :13;C (z & domain(I")and0 < k <)

U; A;T;C F newrgn o, # = A, o : Res; T,z : ahandle; C @ {a'}
(o & domain(A) andz & domain(T"))

¥; A;T' v : rhandle AFC=C"®{r'}: Cap
U AT C F freergnv = A; T C7

U AT Ho:V(C1,...,7h) — Oatr
U AT Fo i AT Fo, i1,
AFC<C"®{rt} AFC <
U A;T;C oo,y op)

U A;T o int AFC=10:Cap
U:A;T;C F haltv

FC={f"}e...a{vfm}: Cap
{v1:Y1,...,vp: Ty} F Csat

(all v; distinct)

62

D.3 CC/SLL
CC/SLL extends section D.1 with the following.

capabilities C = ... |{p}] C1@Cs| Cr&C5 | C; —o Cy | true
cap ctxts A = C,....C,

At 7 :Res

A true : Cap

AFCy:Cap AFCs:Cap AFCy:Cap AFCy: Cap
AFC’1®C’2:Cap AFCl&C’g:Cap

AFCy:Cap AFCy: Cap
AFCy —Cy:Cap

A-C
A+
ck+C (] AOFC true
AMEC Ay - Cy A-Ch A+ Cy A CiECy
A17A2 FCL®OCy A+ C1&Cy AFCp — Oy
A C,Co = Csg A Cp - Cs (ke {1,2}) AMEC Ao, Cy F Cy
ANCiCyFCy A, C1&Cy F Cy ’ A, Ay, C1 — Cy F (5

AI—C;LZKJ AI—CQZH Oll_CQ Cgl—cl
AFC&:CQZI{

A"Clili A"CQZH Cl|—CQ
AFCL <0y

¥; A; T+ v rhandle U, AT Hhatr: T AFC<{r}®true
AT CRz=hatv= ATz :71;C

(z & domain(T))

U AT R (1g,...Tho1)atr AFC < {r}®true .
d Mand0 < k
UV:AT;CFHa=H#kv= A;T,z:7:C (z & domain(I') and0 < k < n)

AFC®{a}=C":Cap
U AT C Fnewrgn o, = A, o : Res; I, x : ahandle; C7

(a &€ domain(A) and x & domain(T'))

U; A; T F o : rhandle AFC=C"®{r}:Cap
U AT C F freergnv = A; T C7

AT o V(C1,...,T) — Oatr
U: Ao i AT Fo, 7y
AFC<{r}®true AFC<C
U AT C Fo(vg, ..o, vp)

63

U A;TFo:int
U, A; T C F halt v

Define ¥ = U, U, iff ¥ = ¥; U ¥, and the domains of ¥; and U5 are disjoint.

{}+ Dsat

{v:T}F{v}sat

\Ill - C’l sat \112 - C’Q sat
U, Uy FCr ® Cy sat

v+ Cq sat U+ Cy sat
\ F 01&02 sat

forall ¥y and ¥o.((Vg = U, Uy and Uy - C sat) implies Uy - Cy sat)
v+ Cl —0 CQ sat

U F true sat

v, C osat v, - C, sat
\Ill,...,\Iln}—C'l,...,Cnsat

D.3.1 CC/SLL lemmas
o If U Asat and At C then ¥ C sat. Proof: see [12].

o If - (M,e) and (M,e) —* (M’,¢) then either ¢’ = haltv or there is some (M",e")
such that (M’ ,e’) — (M",€"). Proof: based on proof in [8]; see [12].

D.4 Translation: CC/CCL—CC/SLL

From the CC0—CC1 translation, keep C(), S(), A(), changing {p¥} to {r¥}. Call these
c'(), 810, A'().

From the CC1—CC2 translation, keep U(), A(), A(), [], changing {p¥} to {r*}. Call
these U2 (), A%(), A*(), [°.

From the CC2—LC translation, keep U(), A(), A(), [], changing {p*} to {r¥} and {p}
to {r}. Call these U7 (), A7(), A(), []’.

C(8,C) = [5C(C) ”
C(C) =UTUP(CT(C))) ® A7(A*(CT(C))) ® true
A(A) = A7(A%(A(A)
A] = [AZ(AT(A) U (AT (A)]) |
Z/[L?([1<—U1,.. , Ol < n]) [1<—Z/13(U1),...,an <—L{3(Un)]
T(a)=a
7 (int) = int
7 (r handle) = r handle
TNV[ANC, 11, ...,m) — 0atr) = VIA(A)([AIC(C), [A]T (11), ..., [A]T (1)) — Oatr
T,y moyatr) ={(T(r1),..., 7T (1)) atr

64

I‘() =.

L(z:7,T)=2:7(r),T()

Y({l:m1,. b)) ={l:T(11),. . L : T(10)}

‘I’({Vl i ST 7% Tn}) = {Vl : T(Tl)a ceeyUn it T(Tn)}

The translations of v, h, d, and e are directed by typing judgments:

o AT Fv: 7T~ V(v)

o U;A;THhatr: 7~ H(hatr)

e UA;T;CHd= ATV;C" ~ D(d)
e ;A T;CHe~ E(e)

For conciseness, though, most of the definitions below suppress the typing judgment when
it is not immediately relevant.

V(z) =2z

V(i)=1

V(L) =vL

V(handle(v)) = handle(v)

VAT Fo:Va:k AN|(Coryy... 1) — 0atr ~> v AlFc:k
U AT Fold : [a— (V[A)(C, T1,...,7Tn) — 0atr) ~ v'[]

(k = Res)

U AT Fo:Va: g, A)|(Comyy ..) — 0atr ~ 0 Al—c:/f(H_T)
U AT Fofd] : [a— ¢(V[A](C, Ty ..y Tn) — Oatr) ~ /[T (c)] © P

U AT Fo:Va: kg, A|(Comyy ... ym) — 0atr ~ 0 AFc:k
U AT R ol [a— (V[ANC, 11,...,7) — Oatr)
s V' [AT (AP (ST ())]U7 (U (CT ()] [A (AZ(CT ()]

(k= Cap)

U AT o V[a< O ANC , 11,...,7m) — 0atr ~ v AFC<C”
A (A)FCH(O) <CH(C") ~ Up
U AT Ho[C] : [a— C(V[A)(C 11y, T) — Oatr)
~ V' [AT (AZ(ST(O)U? (Up)][A7 (A% (CH(C)))]

U, AT Ro:7 ~ A7 =71:Type
U:A;THo:7

U, A;T' - hatr: 7/~ R/ At 7 =71:Type
U A;T'Fhatr: 7~ B
H(fix f[AI(Cy 2y : 11y Ty 2 Ty)€ AET) =
fix f[AQ)(JAIC(C), 21 : [A]T(11),... 20 : [A]T (15)).E(e)
H((v1,---vn)atr) = (V(v1),..., V(va))
D(z =v) = (z=V(v))
D(x =v1pve) = (x =V(v1) pV(v2))

U: A;T' v : rhandle ~ o U:A;T' - hatr: 7~ b AFCL<C' @ {rt}
U:A;T;ChHx=hatv= A;T,z:7;C ~ (x = h atv')

D(z = #nv) = (x = #nV(v))
D(newrgn p, x) = newrgn p, x
D(freergnv) = freergn V(v)

(z & domain(T"))

65

£
&
&
&

letd ine) =let D(d) in&(e)

(v1, -y vn) = V() (V(vr), ..., V(vn)))
halt v) = halt V(v)

(
(if0 v then eg else e3) = if0 V(v) then E(ea) else E(e3)
(v
(

Fw Uk Ryatvy : Ty ~ R} U+ Ryatv,: Ty~ R,
U={v:Yq,...,vp: Ty}
F{vs—Ry,....vp = Ry} : ¥~ {1y —~R|,...,v, — R}

Ui Fhjatv:m ~ b U;- bk hpaty 7, ~ b

Uk {1 hy,....ly—hptatv:{l1:71,... .0y o}~ {€1— Ry, ..., 0, — R}

D.4.1 Lemmas for CC/CCL—CC/SLL

If FA and AF r:Res then [Afr =1

If - A and A+ C: Cap then A(A) F [AJC(C) : Cap

If - Aand AFCy =C5: Cap then A(A) F [AJC(Ch) = [AJC(Cy) : Cap
If FAand AF Cp <5 then A(A) F[AJC(Ch) < [AJC(Cy)

— If in addition A’ (A) FC!(Cy) < CH(Cy) ~ U
then A(A) F [AJUP(U?(CT(CL))) = [AJUP (U U (C(Cy))) : Cap
and A(A) F [AJUP (U)R[AJAS (A2 (CT(CY)))@true < [AJAT (A®(CT(Cy))) @true

If-Aand A C=C @ {r'}:Cap then A(A) - [AJC(C) = ([A]C(C")) @ {r} : Cap
IfFAand AFC<C' @& {rt} then A(A) - [AIC(C) < {r} @ true

If - A then I [AJC(0)

If - A and AF 7: Type then A(A) - [A]T(7) : Type

If - Aand AF 7 =75 : Type then A(A) F [A]T (1) = [A]T (72) : Type

If ¥ and ¥(v.f) exists then ¥(¥)(v.f) = [A]T (¥ (v.h))

IfFAand AFco' : Cap and AF C : Cap then

C(la/ « C]C) = oy, —UIU*(CT(C"))), an — AT (A*(C(C"))),
agy — U U (ST(C))), asa — A7 (A*(ST(C)))]C(C)

If - Aand At o' : Cap and A F 7 : Type then

T([of — C']r) = oy < U UP(CT(C"))), an A7 (A*(CT(C"))),
agy — U UP(ST(C))), asa — A7 (A*(ST(C)))|T (7)

IfFAand AF o : Type and A F 7 : Type then T ([0 «— 7']7) = [/ «— T(7)]T(7)
If - ¥ and - A and A+ T then:
— LU AT Fo:7~ v then ¥(0); A(A); [AILT) F [AR' : [A]T(7)
— IO, AT Fhatr: 7~ b/ then W (0); A(A); [AIT(T) F [AJp atr : [A]T(T)
—If ;ATC F d = ATC ~ d then W (0); A(A); [AIT(D); [AJC(C) +
[Ald" = A(A); [AJL(I7); [A[C(C') and [A] = [A']
— IO, AT5C ¢ e~ € then O(U); A(A); [AT(T); [AIC(C) E [Ale

Ift 9 and A M : VU ~ M and U F Csat and U;{};{};C F e ~ € then
FM :®(V) and ¥(V) FC(C) sat and ¥ (¥); {};{};C(C) F ¢

For proofs, see [12].

66

