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Abstract. We present a model for predicting HLA class I restricted
CTL epitopes. In contrast to almost all other work in this area, we train
a single model on epitopes from all HLA alleles and supertypes, yet re-
tain the ability to make epitope predictions for specific HLA alleles. We
are therefore able to leverage data across all HLA alleles and/or their
supertypes, automatically learning what information should be shared
and also how to combine allele-specific, supertype-specific, and global
information in a principled way. We show that this leveraging can im-
prove prediction of epitopes having HLA alleles with known supertypes,
and dramatically increases our ability to predict epitopes having alleles
which do not fall into any of the known supertypes. Our model, which
is based on logistic regression, is simple to implement and understand,
is solved by finding a single global maximum, and is more accurate (to
our knowledge) than any other model.

1 Introduction

The human adaptive immune response is composed of two core elements:
antibody-mediated response (sometimes called humoral response), and T-cell-
mediated response (sometimes called cellular response). To date, essentially all
successful human vaccines have been made by exploiting the underlying mecha-
nisms of the antibody-mediated response, for example with diseases such as polio
and measles. However, for these diseases, it was known that people could recover
upon acquisition of humoral immunity. In contrast, for certain viruses—for ex-
ample, HIV—there are no known documented cases of a person recovering from
the infection, and it is highly unlikely that the same principles of vaccine design
could be successfully applied in these cases. In particular, it is thought that vac-
cines for diseases such as HIV must prime the cellular immune response rather
than or in addition to the humoral response in order to be successful [15, 12].

At the core of cellular response is the ability of certain antigen-presenting cells
to ingest and digest viral proteins into smaller peptides, and then to present these
peptides, known as epitopes, at the surface of the cell. This process is mediated
by HLA (Human Leukocyte Antigen) molecules which form a complex with the
epitope before it is presented. The epitope/HLA complexes can then be recog-
nized by a T-cell, thereby activating the T-cell to subsequently recognize and
kill virally infected cells. Several types of T-cells exist, each playing its own role.
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In ongoing HIV vaccine research, the elicitation of a CD8+ T-cell response has
shown promise. Since CD8+ T-cells recognize only HLA class I bound epitopes
(which range in length from eight to eleven amino acids), our application fo-
cuses on such epitopes. Furthermore, we concentrate on the prediction of 9mer
epitopes, as this length is the most common.

Due to specificity in a number of sequential mechanisms, only certain epi-
topes are both presented at the surface of antigen-presenting cells and then
subsequently recognized by T-cells. This specificity is determined in part by the
sequence and properties of the presented epitope and by the genetic background
(i.e. allelelic diversity) of the host (humans have up to six HLA class I alleles
arising from the A,B and C loci). A crucial task in vaccine development is the
identification of epitopes and the alleles that present them, since it is thought
that a good vaccine will include a robust set of epitopes (robust in the sense of
broad coverage and of covering regions that are essential for viral fitness in a
given population characterized by a particular distribution of HLA alleles). Be-
cause experiments required to prove that a peptide is an epitope for a particular
HLA allele [e.g., Goulder et al., 2001] are time-consuming and expensive, epitope
prediction can be of tremendous help in identifying new potential epitopes whose
identity can then be confirmed experimentally. Beyond vaccine design, epitope
prediction may have important applications such as predicting infectious disease
susceptibility and transplantation success.

In this work, we present a logistic regression (LR) model for epitope predic-
tion which is more accurate than the most accurate model that we can find
in the literature—DistBoost [Yanover and Hertz, 2005], and also has several
practical advantages: (1) it is a well known model with many readily-available
implementations, (2) its output is easy to interpret, (3) training requires O(N)
memory whereas DistBoost requires O(N2) memory, where N is the sample size
of the data, (4) the parameters of LR given data have a single, globally optimal
value that is easily learned (in contrast to DistBoost and artificial-neural-network
based predictors such as NetMHC [4] which have many hidden units), and (5)
it produces probabilities that tend to be well calibrated [e.g., Platt, 1999] and
hence useful for making decisions about (e.g.) whether to confirm a prediction
in the lab.

Another important contribution of this paper is that we show how to leverage
information across multiple HLA alleles to improve predictive accuracy for a
specific allele. An epitope is defined with respect to one or more HLA alleles.
That is, a peptide which is an epitope for HLA-allele X may not also be an
epitope for HLA-allele Y . Thus, epitope prediction takes as input both a peptide
and an HLA allele, and returns the probability (or some score) reflecting how
likely that pair is to be an epitope. Note that HLA alleles are encoded in a
hierarchy, where extra digits are used to refer to more specific forms of the
allele. For example, moving up the hierarchy from more specific to less specific,
we have, A*020101, A*0201, and A02. In addition, many 4-digit alleles belong
to a “supertype”—for example, A*0201 belongs to the A2 supertype.
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Typically, a single classifier is trained and tested for each HLA allele (where
the allele is defined with respect to one specific level of the hierarchy) [e.g.,
Buus et al.,2003] or for each HLA supertype [e.g., Larsen et al., 2005]. These
approaches have several shortcomings. One can build classifiers only for alleles
with a large number of known epitopes or for alleles which fall in to one of
the currently defined supertypes—a fairly strong restriction. Also, if one builds
allele-specific or supertype-specific classifiers, then any information which could
have been shared across somewhat similarly behaving alleles or supertypes is
lost. Because sample sizes are usually extremely small, this shortcoming could be
huge in some cases. With supertype classifiers, one is dependent upon the current
definitions of supertypes, which has not been rigorously tested in a quantitative
way. It may also be the case that some information contained in epitopes is very
general, not specific to either alleles or supertypes. Thus, it would be desirable
to simultaneously leverage epitope information from a number of sources when
making epitope predictions:

1. within specific HLA alleles (as available and appropriate),
2. within specific HLA supertypes (as available and appropriate),
3. across all epitopes, regardless of supertype or allele (as appropriate).

That is, in predicting whether a peptide is an epitope for a given HLA allele,
we would like to use all information available to us, not just information about
epitopes for this allele, but from information about epitopes for other alleles
within this allele’s supertype (if it has one), and from information about other
epitopes of any HLA type. Also, we would like to learn automatically when each
type of information is appropriate, and to what degree, allowing us to combine
them in a principled way for prediction.

The essence of how we achieve this goal is in the features we use, and is also
related to the fact that we train on all HLA alleles and supertypes simultane-
ously with these features even though our model makes predictions on whether
a peptide is an epitope for a specific HLA allele. In the simplest application to
epitope prediction, a separate model would either be built for each HLA-allele,
or for each supertype, and the features (inputs to the model) would be the amino
acid sequence of the peptide, or some encoding of these, such as those discussed
for example in [14]. Standard elaborations to this simple approach, in any do-
main, include using higher order moments of the data (e.g., pairwise statistics of
neighboring amino acids) as features in addition to the features of single amino
acids. While such higher-order statistics may improve epitope prediction, such
experimentation is not the focus of our work. Instead, as mentioned above, we
seek to leverage information across HLA alleles and supertypes, and do so by
learning a single model for all HLA alleles using features of the form (1) position
i has a particular amino acid or chemical property and the epitope’s HLA al-
lele is Y , which when used alone would be roughly equivalent to simultaneously
building separate models for each HLA allele, as well as (2) position i has a par-
ticular amino acid or chemical property and the epitope’s HLA has supertype
Y , which helps leverage information across HLA alleles for a given supertype,
and (3) position i has a particular amino acid or position i has an amino acid
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with a particular chemical property, which helps leverage information across all
HLA alleles and supertypes (see Table 2). This leveraging approach can be ap-
plied to various classification models including logistic regression, support vector
machines, and artificial neural networks. In our experiments, we show that our
leveraging approach applied to logistic regression yields more accurate predic-
tions than those generated from models learned on each supertype individually.

2 Related Work

The general idea of leveraging has been described previously under the names
“multitask learning” and “transfer learning” (e.g., [5]). To our knowledge, the
only published epitope prediction algorithm that might leverage information
across alleles or supertypes is DistBoost [19], which could do so indirectly by
learning a distance function across the entire space of epitopes (i.e., for all alleles
or supertypes). However, they did not explicitly seek to leverage information in
the way we have described, and therefore did not explicitly show that their
algorithm does in fact leverage this type of information.

Other approaches to the problem of epitope prediction (or the slightly dif-
ferent problem of binding affinity prediction) include the use of weight matrices
(sometimes called PSSMs—position-specific scoring matrices), whereby a prob-
ability distribution or score over amino acids at each position is used to make a
prediction [18, 1, 6], artificial-neural-network approaches which are said to model
amino acid position correlations in a fruitful way [1, 4, 13, 20], support vector ma-
chine (SVM) approaches [1, 2, 20, 7] and decision trees [20]. In addition, there is
the mostly hand-crafted SYFPEITHI classifier [17]. The approach of Nielsen et
al. also uses a Hidden Markov Model (HMM) whose output is used as feature
for their neural network [14]. In the recent approach of Larsen et al. in [11], they
demonstrate that their binding affinity neural network approach combined with
TAP transport efficiency predictors and proteasomal cleavage predictors does
better than a non-integrated approach where the latter two pieces of informa-
tion are not used.

Among the aforementioned papers, [18, 4, 2, 6, 20, 7] build classifiers for in-
dividual HLA alleles (or just a single HLA allele) using only data from each
respective HLA class for training. [11] build classifiers for individual supertypes
using only data from each respective supertype for training, while [14] use some
combination of the two, but never train on data outside of a the respective
allele or supertype. Furthermore, perhaps with the exception of PSSM-based
approaches, our method is simpler to understand and to implement, yet out-
performs PSSM-based methods, and also achieves better results than the most
sophisticated methods.

3 Logistic Regression

Let y denote the binary variable (or class label) to be predicted and x =
x1, . . . , xk denote the binary (0/1) or continuous features to be used for
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prediction. In our case, y corresponds to whether or not a peptide–HLA pair
is an epitope and the features correspond to 0/1 encodings of properties of the
peptide–HLA pair. In this notation, the logistic regression model is

log
p(y|x)

1 − p(y|x)
= w0 +

k∑

i=1

wi · xi (1)

where w = (w0, . . . , wk) are the model parameters or weights. Given a data set
of cases (y1,x1), . . . , (yn,xm) that are independent and identically distributed
given the model parameters, we learn the weights by assuming that they are
mutually independent, each having a Gaussian prior p(wi|σ2) = N(0, σ2), and
determining the weights that have the maximum a posteriori (MAP) probability.
That is, we find the weights that maximize the quantity

n∑

j=1

log p(yi|xi,w) +
k∑

i=0

log p(wi|σ2) (2)

This optimization problem has a global maximum which can be found by a
variety of techniques including gradient descent. We use the method (and code)
of Goodman [2002], which he calls sequential conditional generalized iterative
scaling. We tune σ2 using ten-fold cross validation on the training data.

4 Data and Methods

We used two data sets to evaluate our approach. The first, called MHCBN,
contains selected 9mer–HLA and 9mer–supertype pairs from the MHCBN data
repository. In this repository, both epitopes and non-epitopes are experimentally
confirmed. See [19] for details.

The second, called SYFPEITHI+LANL, includes all unique 9mer–HLA epi-
topes from the SYFPEITHI database (www.syfpeithi.de) in March 2004 and
the Los Alamos HIV Database (www.hiv.lanl.gov) in December 2004. Exam-
ples not classified as human MHC class I (HLA-A, HLA-B, or HLA-C) were
excluded, yielding 1287 and 339 positive examples of epitopes from SYFPEITHI
and LANL, respectively. Neither SYFPEITHI nor LANL contains experimen-
tally confirmed negatives, so we generated examples of non-epitope HLA–9mer
pairs by randomly drawing from the distributions of HLAs and amino acids in
the positive examples. The amino acid at each position in a 9mer was generated
independently.1 For each positive example, we generated 100 negative examples.

1 In preliminary experiments, we found that, in contrast to the findings of [19] on
MHCBN, the use of real negatives from a proprietary data source and the use of
randomly generated negatives produced essentially the same results. Here, we report
results for the randomly generated negatives, so that we may publish the data on
which these results are based.
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Table 1. Mapping from HLA to supertype (available at www.hiv.lanl.gov/content/
immunology/motif scan/supertype.html)

Supertype HLAs
A1 A01, A25, A26, A32, A36, A43, A80
A2 A02, A6802, A69
A3 A03, A11, A31, A33, A6801
A24 A23, A24, A30
B7 B07, B1508, B35, B51, B53, B54, B55, B56, B67, B78
B27 B14, B1503, B1509, B1510, B1518, B27, B38, B39, B48, B73
B44 B18, B37, B40, B41, B44, B45, B49, B50
B58 B1516, B1517, B57, B58
B62 B13, B13, B1501, B1502, B1506, B1512, B1513, B1514, B1519, B1521, B46, B52

As the research in our lab focuses primarily on the prediction of HIV epi-
topes, we trained our models on both SYFPEITHI and LANL data, but then
tested only on LANL data with appropriate cross validation. In particular, we
used ten-fold cross validation where the training data of a given fold consisted
of all SYFPEITHI data and nine-tenths of the LANL data, and the test data
consisted of one-tenth of the LANL data. If an epitope appeared in both SYF-
PEITHI and LANL, we treated it as if it were in LANL only. As mentioned,
HLA alleles are encoded in a hierarchy. Because many examples in the SYF-
PEITHI and LANL databases have HLA alleles encoded only to two digits,
we encoded all our examples with two-digit HLA alleles, except for the allele
classes B15xx and A68xx, which have elements that belong to different super-
types. There are several supertype classifications; we used the one available from
LANL shown in Table 1. The train–test splits of each fold are available at
ftp://ftp.research.microsoft.com/users/heckerma/recomb06.

As discussed, we introduced a variety of feature types in an effort to leverage
information across HLA alleles and supertypes. The types of features that we
used are described in Table 2. In addition to features representing the presence or
absence of amino acids at positions along the epitope, we included features rep-
resenting the chemical properties of the amino acids in our LR models. We used
the chemical properties available (e.g.) at www.geneinfinity.org/rastop/manual/
aatable.htm: cyclic, aliphatic, aromatic, hydrophobic, buried, large, medium,

Table 2. Feature types used for prediction. Examples are shown for the peptide
SLYNTVATL which is an epitope for HLA allele A*0201, which in turn belongs to
the A2 supertype.

Feature type Description
HLA The HLA allele with 2 or 4 digit encoding; HLA=A02
Supertype (S) The supertype of the HLA allele; S=A2

HLA ∧ amino acid (AA) Conjunction of HLA and AA; HLA=A02 and AA1=Ser
HLA ∧ chemical property (CP) Conjunction of HLA and CP; HLA=A02 and polar(AA1)

S ∧ AA Conjunction of S and AA; S=A2 and AA1=Ser
S ∧ CP Conjunction of S and CP; S=A2 and polar(AA1=Ser)

AA Amino acid at a given position in the peptide; AA1=Ser
CP Chemical property of amino acid at given position; polar(AA1)
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small, negative, positive, charged, and polar. We note, however, that in a sep-
arate comparison using LR, the addition of the chemical-property features did
not improve predictive accuracy.

Using a large number of features in LR can lead to poor prediction unless
some method for feature selection is used [e.g., Kohavi, 1995]. In our experi-
ments, we set the Z weights with the smallest magnitudes to zero, where Z was
determined by optimizing the average log probability of prediction on a ten-
fold cross validation of the training set. (We used these same cross-validation
runs to tune σ2.) In our largest model, which used all feature types and was
trained on all of the data, this feature selection method chose 3,180 out of 23,852
features.2

Finally, to evaluate prediction accuracy, we used ROC curves—in particular,
plots of the false-positive rate (% non-epitopes identified as epitopes) versus the
false-negative rate (% epitopes missed). We summarized the prediction accu-
racy for a given method using the area under the curve (AUC) of the ROC.
To determine whether two methods are significantly different, for each distinct
false-negative value, we determined corresponding false-positive values for the
two methods, and applied the resulting pairs to a two-sided Wilcoxon matched-
pairs signed-ranks test. We deemed a difference to be significant if it’s p-value
(corrected for multiple tests when appropriate) was less than 0.05.

5 Results

First, we examined whether LR with our features can leverage information about
epitopes associated with a variety of supertypes and/or HLA alleles to help pre-
dict epitopes associated with different supertypes and/or alleles. To do so, for
each supertype (including “none”), we compared the predictive accuracy of a
leveraged model that was learned from all training examples with a non-leveraged
or individual model that was trained only on epitopes (and non-epitopes) as-
sociated with that supertype. Our comparison used ten-fold cross validation,
stratified by class label. We pooled the results across the ten folds before gen-
erating the ROC curves. In this case, pooling was justified because LR models
produce calibrated probabilities. Figure 1 shows ROC curves for leveraged and
individual models for each supertype. Leveraging helps significantly for two of
the supertypes (A24 and B7)3, and helps dramatically when predicting epitopes
whose HLA alleles have no supertype. In two cases (B27 and B62), the AUC for
predictions of the leveraged model is greater than that for non-leveraged model,
but the differences are not significant.

Second, we compared the predictions of our (leveraged) LR model with those
of DistBoost. In their paper, Yanover and Hertz [19] compared their approach to

2 Many more than 23,852 features were possible, but only this many were warranted
based on the training data (e.g., if amino acid Arg was never found in position 3,
then no corresponding feature was created).

3 The p-value of 0.0267 for A2 is not significant after Bonferroni correction.
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Fig. 1. ROC curves, AUCs, and p-values (not Bonferroni corrected) for leveraged and
non-leveraged (individual) predictions of epitopes having alleles in each supertype (in-
cluding “none”, i.e., those not belonging to any supertype). ROC curves plot false-
positive rate versus false-negative rate.
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Fig. 2. ROC curves for LR and DistBoost applied to five-fold cross validation 9mer
data from MHCBN. The two-sided p-value from false-positive rates pooled across the
five folds is 1.8210e-08.
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Fig. 3. ROC curves for LR and DistBoost applied to five-fold cross validation of
the SYFPEITHI+LANL data. The two-sided p-value from false-positive rates pooled
across the five folds is 5.1581e-29.

RANKPEP (PSSM), NetMHC (artificial neural network), and SVMHC (support-
vector machine). Their comparison used a 70/30 train–test split of the MHCBN
data set, and evaluated performance on A2 supertype epitopes. Yanover and Hertz
found that DistBoost predicted significantly better than the other methods. Here,
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Table 3. A portion of a model learned from the full SYFPEITHI+LANL data set. The
forty features with the largest magnitude weights are shown. Positive weights increase
the probability of being an epitope. Feature names are described in Table 2.

weight feature
-3.87821 large(AA1)
-3.01895 S=A1
2.8267 S=B27 and AA2=Arg

-2.61487 polar(AA1)
-2.48691 large(AA2)
-2.09559 HLA=A01
-1.83075 polar(AA2)
1.73488 S=A1 and polar(AA1)
1.71218 S=A1 and charged(AA1)
1.66352 S=B27 and positive(AA2)
-1.62407 charged(AA1)
1.47669 S=A24 and AA2=Tyr
-1.4628 aliphatic(AA3)
1.45694 negative(AA2)
1.44531 S=A1 and large(AA1)
-1.39833 AA1=Pro
1.35753 S=B44 and large(AA2)
-1.32388 buried(AA4)
1.31555 HLA=B27 and large(AA2)
1.29462 AA4=Trp
1.28076 HLA=B27 and AA2=Arg
1.27827 S=B44 and AA2=Glu
1.26313 HLA=A02 and AA2=Leu
-1.26253 medium(AA1)
1.24698 S=A1 and hydrophobic(AA3)
1.24487 S=B62 and AA2=Gln
1.22292 S=A24 and charged(AA1)
1.19599 S=A24 and positive(AA1)
1.18911 S=A1 and aliphatic(AA3)
-1.17646 charged(AA2)
1.16866 S=A3 and positive(AA1)
1.09196 S=B27 and large(AA2)
1.08261 HLA=A02 and large(AA1)
1.07628 S=B7 and AA2=Pro
-1.07365 S=B44 and hydrophobic(AA2)
1.04742 AA4=Pro
1.04397 S=none and large(AA1)
-1.0417 S=B27 and hydrophobic(AA2)
1.03173 AA9=Leu
1.02222 HLA=A02 and polar(AA1)
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we compared DistBoost with LR on this same data and on the SYFPEITHI+
LANL data4, in both cases using five-fold cross validation stratified by class label
and HLA. We ran DistBoost for 30 boosting iterations on the MHCBN data set,
and for 50 iterations on the larger SYFPEITHI+LANL data set. (We also tried
100 boosting iterations for each data set, with no substantial change in results.)
The results, illustrated in Figures 2 and 3, indicate that the predictive accuracy
of LR is better than that of DistBoost. Two-sided p-values computed from false-
positive rates pooled across the five folds of the MHCBN and SYFPEITHI+LANL
data are 1.8210e-08 and 5.1581e-29, respectively.

Finally, it is interesting to look at the learned features and their weights to
see where leveraging is taking place. Table 3 contains a portion of a model
trained on the full SYFPEITHI+LANL data set. The forty features with the
largest magnitude weights are shown. Many of these strong features are general
(e.g., large(AA1) and polar(AA1)) or contain conjunctions with supertypes (e.g.,
Supertype=A1 and polar(AA1)) and thereby facilitate leveraging.

6 Discussion

We have presented a model for predicting HLA class I restricted CTL epitopes.
Our model, which is based on logistic regression, is simple to implement and
understand, is solved by finding a single global maximum, and is more accurate
(to our knowledge) than the best published results. In addition, we have shown
how to leverage information about epitopes having one allele or supertype to
predict epitopes having different alleles or supertypes. We have shown that this
leveraging can improve prediction of epitopes having HLA alleles with known
supertypes, and dramatically increases our ability to predict epitopes having
alleles which do not fall into any of the known supertypes.

Our next steps will be to build and evaluate LR predictors for HLA class
I epitopes of lengths eight, ten, and eleven amino acids. In addition, rather
than use a predefined set of supertypes, we plan to learn a set of (overlapping)
supertypes that lead to accurate prediction. In particular, we plan to extend
the LR model to include hidden variables that represent these new supertypes.
Finally, we are looking at whether the inclusion of additional features such as
distances between amino acids in the epitope and in the HLA molecule when
the epitope and HLA molecule are in their minimum-energy configuration can
improve prediction accuracy.

4 After the publication of [19], the entry AYAKAAAAF–A02 was deleted from the
MHCBN repository. We similarly deleted this entry from the MHCBN data set.
The SYFPEITHI+LANL data set contained nine entries with unique HLA types.
We deleted these entries as they could not be processed by DistBoost. In addi-
tion, we used only one negative example for every positive example to accom-
modate DistBoost’s computational requirements, and used the feature encoding
of [19] when training and testing with DistBoost. The train–test splits of each
fold for both comparisons are available at ftp://ftp.research.microsoft.com/users/
heckerma/recomb06.
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