Modular Arithmetic Decision Procedure

Id: madp.tex,v 1.13 2005/07/18 22:38:51 root Exp

Domagoj Babit

Computer Science Department, University of British
Columbia, Vancouver, Canada

babic@cs.ubc.ca

Abstract

All integer data types in programs (such as int, short, blgeaje
an underlying finite representation in hardware. This firéts can
result in subtle integer-overflow errors that are hard tsesaabout
both for humans and analysis tools alike. As a first step tdsvar
finding such errors automatically, we will describe two miadu
arithmetic decision procedures for reasoning atimundedinte-
gers.

We show how to deal with modular arithmetic operations and in
equalities for both linear and non-linear problems. Bottcpdures
are suitable for integration with Nelson-Oppen framewdrk?, 3].
The linear solver is composed of Muller-Seidl algorithrhd4d an
arbitrary integer solver for solving preprocessed congeas and
inequalities.

For the non-linear problems we use Newton’s p-adic itematio
algorithm to progressively reason about the satisfiahilftthe in-
put constraints modul@”, for increasingk. We use a SAT solver
only for the base case whén= 1. According to our knowledge,
this is the first Nelson-Oppen decision procedure capabieason-
ing about multiplication over bounded integers without\aning
the entire problem to a SAT instance.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; 1.2.2tificial Intelligencd:
Deduction and Theorem Proving

General Terms Algorithms, Verification

Keywords Modular arithmetic, Automated decision procedures,
Software verification

1. Introduction

Integer data types in programs are represented using arfimite
ber of bits in the underlying hardware and thus, have a fiaitge.
Their finite representation can resultimeger-overflowsvhen the
result of arithmetic operations on these data types liesidet
their range. While it is convenient to neglect these overldar
most programming tasks and treat the data types as esbkeutial
bounded, unexpected integer-overflows are frequent in rpamy
grams. Given that most programmers easily forget to realsonta

Copyright is held by the original authors. Permission toycopre-
distribute all or part of this work is permitted only in thergext of
reviewing this paper for the publication to which it was siitbeal.

Madanlal Musuvathi

Microsoft Research, Redmond, WA, USA
madanm®@microsoft.com

finite nature of basic data types, it is absolutely impeeator pro-
gram analysis toolsotto neglect such behavior. When undetected,
these overflows can result in serious security vulneradmslit

As a motivating example of such behavior, Listing 1 shows
a snippet of code for the JPEG image processing routine. The
functionread_jpeg takes as argument a pointer to a JPEG image.
The macro INPUT2BYTES decodes the length of the image and
stores it in the variablength. The function then allocates a buffer
of size length+2 at line 6, and calls a function at lina2 that
copieslength-2 bytes from the image to the buffer. Before the
call to this function, there is an (implicit) assert that cke if the
buffer has sufficient space. At first sight, it appears thist alssert
can never fail. However, whebength is 0, a buffer of size 2 is
allocated at lines. The subtraction at line@ causes an underflow,
so OXFFFE (65534) bytes are copied, overflowing the buffleis T
fails the assertion.

1 BOOL readjpeg (IN ptr cinfo) {

2 VOID xpBuffer;

3 UINT16 length;

4

5 INPUT_2BYTES (cinfo , length);

6 pBuffer = GpMalloc(length + 2);

7 /1l assume (pBuffer.length == length +2);
8

9 INT size = length— 2;

10

11 Il assert(size< pBuffer.length);
12 GpMemcpy (pBuffer , cinfe=>nxt, size);
13 }

Listing 1. JPEG integer overflow bug

When undetected, the overflow in the function in Listing 1
causes a buffer overrun, which is a serious security vubilésa
This particular vulnerability was recently exploité@nd required
a costly corrective action. A number of other critical bugss h
been related to integer underflows/overflows. Just to merdio
few: OpenSSH buffer overflafy Microsoft JScript bugj FreeBSD
system call buffer overflofy Snort TCP packet reassembly integer
overflow’, Apache chunked-encoding vulnerabifity

As exploits based on integer-overflows are becoming more
prevalent, it is very important to build program-analysisls that

1 http://www.microsoft.com/technet/security/Bulletit$04-028.mspx
2 http:/iwww.securityfocus.com/bid/5093
3 hitp://www.microsoft.com/technet/security/bullet#03-008.mspx
4 http:/www.securityfocus.com/bid/5493
5 http:/iwww.securityfocus.com/bid/7178
6 http://www.securityfocus.com/bid/5033

2005/7/18

can detect overflow related errors automatically. Howeter cur-
rent state-of-the-art analysis tools (such as [5, 6]) fadirs of do-
ing so. This is primarily because the theorem provers andsjim
reasoning engines that underly these tools can only redsoum a
(unbounded) integers and thus are unable to detect overéibanb
ior. For instance, when analyzing the function in Listinghtge
tools incorrectly claim that the assertion is always tfuesulting
in unsound analysis.

As a first step towards finding integer-overflow based errors
automatically, this paper proposes two decision procexfioe
boundedintegers. The first one is for linear and the second for
non-linear modular arithmetic. Using linear decision gare, we
later show that a simple verification-condition generatiogl [7]
can detect the error in Listing 1.

An obvious way to detect integer-overflow based errors is of
course is to deteatll integer-overflows in the program and flag
each as an error. This can be done, for instance, by usingia-val
range analysis [8] to obtain conservative upper and lowents
for each program variable and then checking if each arittmet
operation produces a result within the range of the integea d
type. However, such an analysis produces too many falsemeggn
as not all overflows result in an error. By reasoning aboututerd
arithmetic explicitly, our decision procedures can be usetheck
only for those overflows that lead to an assertion failure.

Moreover, many low-level systems prograne$y on the over-
flow behavior of the integer data types for their correct exiea. A
very good example is the Transport Control Protocol (TCRjctv
uses 32-bit sequence numbers for reliable data transfer.pid:
tocol specification [9, 10] allows these sequence numbevgap
around, primarily to support the transfer of very large fiksscord-
ingly, any protocol implementation has to explicitly reasabout
integer-overflows. The decision procedures describedisnpwper
can be used to build program analysis tools that can detexten
such programs.

While there are other decision procedures for reasoningtabo
bounded integers in the research literature, this papaeifisigntly
improves upon previous work in the following novel ways.sEir
our linear decision procedure is the first to support the licb
reasoning ofnequalities This is crucial as many of the program
invariants, including array bounds checking, involve ingiies
between program expressions.

Second, we also propose a decision procedure that support
multiplication. To reason about the resulting non-line&pres-
sions, the decision procedure uses Newton’s p-adic iterédi pro-
gressively reason about the satisfiability of the input tairsts
modulo 2%, for increasingk. For the base casé (= 1), all vari-
ables are restricted to a single bit and the decision proeegses
a SAT solver check satisfiability. Note that reasoning about-
tiplication over unbounded integers is undecidable [1&]&ny
verification tools conservatively treat multiplication @s uninter-
preted function.

Finally, we show how our decision procedures can be used in
a Nelson-Oppen combination framework [2, 3]. This allows tm
combine our decision procedures with other proceduresfsan-
ing about uninterpreted functions, arrays, and lists. FEseilting
combination can support a wide variety of program analysskg.

1.1 Related Work

Our work is most related to that of Miller-Olm and Seidl [#,
which the authors provide a method to infer linear congrasnc
invariant at a program point. However, their algorithm aatnbe
used for solving inequalities and non-linear congruences.

"This is becausgength-2 < length+2 holds wherlength € Z.

S

Many have studied the theory of fixed-width bit-vectors {suc
as [12, 13]), which can be used to model arithmetic operation
on integer data types. However, this body of work has foalisse
on hardware verification and does not support reasoningtabou
inequalities. As an extreme, CBMC [14] is a tool that corven
ANSI-C program into a Boolean circuit and then use a SAT solve
to check for violation of assertions in the program. Theséhous
lose the structure of the program by splitting each integeiable
in the program to a sequence of bits and as a result, do nat. scal
Furthermore, even the problems that can be solved in poliailom
time by Gaussian elimination might take exponential timtéwhe
number of variables when a DPLL SAT solver is used.

2. Basic Definitions

This section defines the basic notions that will be used ithéur
exposition.Bit-vectorsare defined as arrays of bits. Slightly abus-
ing the terminology, bybounded integersve will assume the el-
ements of the ring of integertinbounded integerare elements
of the set of integerd. By bit-vector operators we mean logic
operators, subvector extraction, concatenation, Igftrshift, and
one’s complement (bitwise complement). All operators afineéd

in little-endian arithmetic — higher value bits are storéd aigher
address. We will distinguish signed and unsigned boundedéns.

If the type is not stated explicitly, unsigned bounded ietsgwill
be assumed.

If two integersa, b have the same remaindeupon division by
the natural numbem, where0 < r < m, thena andb are said to
be congruentmodulom, written ase = b mod m. Congruence
naturally extends to polynomials. The following are eqléna

a=b modm

a=b+mt, VteZ Q)

mla —b

Equation of the formf (zo,...,z») = 0 mod m is called
acongruenceA system of congruences is a system of such equa-
tions. A system is said to tsatisfiablef there exists an assignment
to all variables such that all congruences moih the system eval-
uate to0, otherwise it is said to bansatisfiable Complete system
of equations is a system af linearly independent equations over
n variables such that = m. If n > m the system is said to be
incomplete Solutions of a system of equatiors & = b are com-
posed oparticular solutions and solutions of the systetnZ = 0,
calledhomogeneousolutions. For more details see any introduc-
tory book on linear algebra.

We say that an integer dividesan integem if there exists an
integerc such thata - ¢ = b, usually denoted as | b. P-adic
expansiorwas introduced by Hensel. Given any prime Z, each
integera € Z has a unique (up to the first leading zero term) finite
p-adic expansion:

k
a=>Y ap', 0<a; <p
A ring is a setR with two binary operations, + (commonly
interpreted as addition and multiplication) satisfyingligige and
multiplicative associativity, additive commutativityeft and right
distributivity, and existence of additive identity and émge. A
commutative ringalso satisfies multiplicative commutativity. Ring
modulom is denoted aZ.,,. For more details see [15]. Modular
inverse ofa € Zn, if it exists, isb € Z,, such thata - b = 1
mod m. A zero-divisor isa € Z,,, such that:

o there exist$ € Z,

2005/7/18

¢ neither of the elements is zero
ea-b=0 modm

Difference Constraint@re constraints of the form — y
candx < ¢, Wherex,y are variablesc a constant, ande
{=,#,<,>,<,>}. UTVPI constraints are slightly more general
a-x+b-yc suchthaw,b e {0,1} [16].

A singular matrixis a square matrix that does not have a matrix
inverse over a commutative ring. L4, . . ., fm—1 be polynomials
in n variableszy, . . ., z»—1. TheJacobianJ is a square matrix of
partial derivatives, defined as

9fo _9fo
CETY O0xp_1
J = . .
Ofn_1 Ofn_1
oxzq 0Ty 1

Given an incomplete system of congruences, the Jacobianatil

be a square matrix, but can be extended to one appending fows o

zeros. Such a matrix is singular and has no inverse.

Signed and unsigned integers used in programming are bdunde

32-bit unsigned integers have the range, ..,2%* — 1}, while

signed integers have the ran§e-2*', .., 0,..,2*" — 1}. Contem-
porary software formal verification tools reason about plitta-

tion by translating each single bit to a boolean variable emzbd-
ing multipliers directly. The problem is then given to a SA&r.

A disadvantage of this approach is the loss of the naturddleno
structure. Alternative approach is to represent multitian as an
uninterpreted function, loosing precision on the way.

Recently, Miller-Olm and Seidl [4] have presented inténgs
results on software analysis based on modular arithmetipd3ed
algorithm deals only with linear congruences. The auth¢asrc
that their approach is efficient as expensive computationvefses
is avoided. Although the advantage of their approach has bee
somewhat decreased by the discovery of efficient algoritfons
the computation of inverses modu2d [17], we will still consider
the Muller-Seidl algorithm as the basic algorithm for sotvlinear
congruences.

3. Decision Procedure for Linear Congruences

In this section we present a decision procedure for lineadutao
arithmetic with inequalities that makes it possible to cerabout
overflows in a mathematically clean way. Linear congrueruzes
be solved with Muller-Seidl algorithm [4]. The congruersmver
alone does not suffice because the ordering of elementaigiting
is not defined on the rings of integers. Dumping everythingon
integer solver wouldn’t work either because there is noamtf
overflow in Presburger arithmetic.

In our approach we simulate modular arithmetic with aritime
over unbounded integers with an additional set of rangetcaings
that bound the range of each variable. The congruence sislver
used to preprocess the congruences in polynomial time |iResun
be either parametric or concrete solutions over the setteférs.
As the solutions are expressed o¥gan integer solver can be used
to solve the set of constraints consisting of preprocessedra-
ences and inequalities. Although none of the decision phaes
on its own can reason about both overflows and inequalities, t
two together can.

This approach has several advantages. First, a lineamsyste
congruences is solved in polynomial time, while integeved
might take exponential time in the worst case. Second, tis-c
bination yields a mathematically clean way to reason abuet-0
flows.

Muller-Seidl algorithm is based on a modified Gaussian €lim
ination. The goal is to bring the coefficient matrix to a tgan

lar form through a series of elementary and invertible tiemsa-
tions. Carefully choosing the pivot, the algorithm avoidenput-
ing modular inverses. Given am x n linear system of congru-
encesA - 7 = b mod 2, the algorithm computes all solutions in
O (k- n+log (k) - n*). Elements of the rin@.,» can have zero
divisors, thus homogeneous system # = 0 mod 2% can have
non-trivial solutions. All homogeneous solutions can benid in
time O (log (k) - n?).

Given a satisfiable and linearly independent set @fguations
with n variables fromZ,,, solutions can be expressed as a linear
combination of particular solutions and homogeneous solutions
hi; (Eg. 2). Solutions of an incomplete system can be expressed
in parametric form. If the system of congruences is complete
congruence solver will return a set of concrete solutions aju
which each consists of a particular papt)(and a homogeneous
part (»;). By introduction of a decision variable = {0, 1}, each
concrete solution can be represented as a linear equality:

i =pi+0; - hy 2
Solving incomplete systems yields a set of parametric st
E of the form:

Y1

g Cl,i - Ti+ti-m
i

Yn : icn,i'l‘i“v‘tn'm

Dependant variableg; are expressed as a linear combination of
independent variables,;. As explained previously (Eqg. 1), con-
gruences modulen can be represented as equalities with an ad-
ditional factort; - m. The bounds of slack variableéscan be lim-
ited without loss of generality. Essentially, the slackiables rep-
resent the number of wraparounds and can be computed in linea
time with the number of additive terms in the parametric gohs.

For example, giveny, z1,z2 € uints2 and a parametric solution
y=11-z1 +5- 22 +t- 2%, itfollows that—15 < ¢ < 0. In
general, the bounds of slack variables can be larger tharatiges

of regular variables.

All dependant and independent variables are restricteordecc
ing to their type with a range constraint given as a predicate
will represent the set of range predicates withFor example, for
an unsigned 32-bit integer : uints2 corresponding range con-
straint would be) < z < 232,

The Muller-Seidl algorithm takes a set of congruenéeand
returnsUNSAT if the system is unfeasible, a set of parametric so-
lutions Es if the system is incomplete, or a set of concrete solutions
otherwise. We extend the basic algorithm with a postpragebst
computes bounds of slack variables for incomplete syst@ims.
set of range predicates andbounds is denoted &3.

The algorithm is given in Listing 1. Unless the Miller-Seid
algorithm returndJNSAT, the setEs U P is satisfiable, bufs U
P, U D, where D is a set of inequalities over dependant and
independent variables, might not be. If the number of cdacre
solutions is small (ie. if there is a small number of nonitdiv
homogeneous solutions), all concrete points are evaliegathst
the set of inequalitie® U P in linear timeO (|D U P|). The value
of that “small number” is determined heuristically. Alttghu all
solutions of a complete system can be found in the polynomial
time, in the worst case, the number of concrete solutionsbean
exponential. If the number of non-trivial homogeneous sohs is
large or if the result is a set of parametric solutions, a netvo$
constraintsE@Q = Es U P, U D is constructed and passed to an
integer solver.

2005/7/18

Algorithm 1 Linear modular arithmetic decision procedure
1: procedure SOLVE(E,P,D)

2: Es = MULLER-SEIDL(E)

3: if Es # UNSAT then

4: P. = P U { bounds oft;}

5: if The number of concrete solutions is snthkn
6: while Es # 0 do

7: pick s € Es

8: Es — E\{s}

9: if s satisfiesD U P, then
10: return s
11: end if
12: end while
13: else
14: EQ=E;UP,UD
15: return INTSOLVE(EQ)
16: end if
17: end if
18: return UNSAT

19: end procedure

EXAMPLE 1. Let us consider the formalization of the JPEG inte-
ger overflow bug in listing 1. Variablezze is denoted ag, and
length as!. Althoughs is a 32-bit signed integer variable, the
right value of the assignment expression can be only a 16sbit
signed integer. The range efs adjusted accordingly. These adjust-
ments might not be straightforward in all cases. Later wespre

a more general way to deal with multiple types — congruendés w
multiple moduli.

s = [—2 mod2'
s > 1+2
0 < Il,s<2'°

A parametric solution iss = | — 2 4t - 2'°. V¢ € Z. Then
we compute the range dfto restrict the number of cases the
integer solver needs to consider. In this case, the range isf
0 <t < 1. There are two solutions that satisfy all constraints;
0z FFFF(65535),l = 1,t = 1ands = 0z FFFE(65534),1 =
0,t = 1. Finding one of them proves the existence of the counterex-
ample.

It might not be obvious that a set of congruences and a set
of equalities with slack variables, resulting from coniregtcon-
gruences into equalities, are equisatisfiable. The edsfisdility
property means that both set of constraints have exactlgate
set of solutions, or no solution at all. This property is ¢aliéor
the soundness of our method and can be easily proven. Althoug
it suffices to prove equisatisfiability for the set of pararicetolu-
tions with dependant and independent variables, we praseote
general proof that holds for any set of constraints.

THEOREM1 (Equisatisfiability).Givenf: [fo, oy fao1], & =
[€1,...,Zn_1],andi = [t1,...,t,_1] the two sets of constraints

f(@) =0 mod m and f(Z) = - m are equisatisfiable.

-

Proof 1. Assume thaty is a solution off(Z) = 0 mod 0, then
eachf;(z0),1 < j < n evaluates to some multiple of, which is
congruent to 0 modh. Hence, there exists#& such thatf(x?,)
to - m, so for each solution of the set of congruences there is a
solution of the corresponding system of equalities withkstarms.
In the other direction, ifi is a solution off () = - m, obviously
it satisfies the set of congruencﬁéfo) = 0 mod m. It follows
that if one set of constraints has a solution, so does ther.diye

contrapositive it follows that if one is unsatisfiable, sahie other.
O

3.1 Optimizations and Extensions of the Basic Algorithm

The decision procedure (Listing 1) can be optimized by using
crementally more expensive decision procedures befoliag#he
integer solver in order to try to prove unsatisfiability asheas
possible. This approach corresponds to layered decisaregdures
[18]. After line 14, a call to a solver for difference constta could
be added. Difference constraints can be solved in polyridinia
by detection of negative cycles. If the set of differencestmints
is unsatisfiable, the algorithm can retudNSAT. If the unsatisfi-
ability cannot be proven by solving difference constraints still
might want to try replacing all integer variables with rai#b ones
and call a solver (Simplex) for linear constraints overomadils. This
can still be cheaper in practice than immediately callingnéeger
solver.

Logic operators are often used in software, although nottas o
as in hardware design. A decision procedure for modulanragtic
and inequalities must also support logic operators to betioed.
Logic operators and conditionals can be encoded as lineagen
programming problems (see pg. 232, [19]). Bit vector ofesatan
be encoded by introduction of a fresh variable for each sigl
When it is necessary to reason about bits, this seems urzédoleid

4. Decision Procedure for Non-linear
Congruences

In this section we will present a decision procedure for hioear
congruences which does not depend on the integer solver.TA SA
solver is used only for solving the base case. The proceétuens
concrete solutions that need to be checked against inégqaat
and that can be done in linear time with the number of inetjaali

It is essentially a depth-first search procedure based ortavésv
p-adic iteration. In its elementary forewton’s iteratioris given

as

Tk = Th—1 — f/(xk—1)71 - fzr=1)

Newton’s iteration formula on the space of p-adic expansion
has been successfully applied to factorization of polymdsncom-
putation of the greatest common divisor of polynomialsypot
mial division, and partial fraction decomposition [20]. WHhNew-
ton’s iteration is applied to factorization of polynomiéti$s called
Hensel's lifting [15]. The foundations of the work presehie this
paper are based on its application to interpolation of urét@ and
multivariate polynomials [21].

To derive the polynomial iteration formula we need to stathw
Taylor’s expansion:

1)

fl) = /= @-n)"+ ot @)+
+Hf(r) - (@ =r)+ f(r) =
= fo@=n) et fa @)+

+fi-(@=r)+fo

If R is an arbitrary (commutative with unity) ring arfde R [z]
is a polynomial of degree at mast Taylor’s expansiownf f around
r € R is given below. Forf € Z[z] andn € Z all factors

% are integers. The proof is available in the literature [22].
Polynomials have a unique p-adic representation:

2005/7/18

2 fwt =3 (Z fﬁpf) .

and can be approximated with lower order terms as follows

f@)=Fep"+ +Fp’+ Fop+ Fo M

Intuitively, Newton’s p-adic iteration constructs moredanore
precise approximations from the initial solutionin € Z,. In
programming, polynomial coefficients, as well as the vdeab
themselves, are most ofteniie, Zs2, or Zes+. Hence, only a small
finite number of iterations is needed to compute the exadatisol.

Newton'’s iteration formula on the space of p-adic expansam
be used for solving non-linear congruences. As we are istiegen
congruences modul2®, we will use 2-adic expansion. Solving a
system of equations over 32-bit integral variables is exaivt to
solving the corresponding system of congruences &73d First,
the system is solved mod 2, meaning that the least signiftaiant
is solved first. If there is no solution ifA2, the entire system is
unsatisfiable. Otherwise, the algorithm lifts solutiong &y one in
a depth-first search manner.

It is well known that solving multivariate non-linear congr
ences over the ring- is N'P-complete [23]. We will assume that
a SAT solver is used for solving the base case. Each bit witkeo
spond to a boolean variable with the usual interpretatioh) =
TRUE ando(0) = FALSE. Base case solutions are iteratively
lifted. Let us consider solving a univariate non-linear garence
f(x) =0 mod p* toillustrate the technique. Assume that a solu-
tion rx_1 € Zyk, k < K is known. Obviously,f(z)] =0

T=TR—1
k—1
)

mod p

mod p*. Then it also follows thaif (z =0 modp

Nocry
so solutions are given ag_; +t-p* 1. Now the p-adic expansion
of the polynomial can be rewritten as

f(’r'k_l-’-t'pk_l) = f('f'k 1)+f(7"k 1 p -t
+f(re-a) - (8P 4

+fE D (riea) - (t P 1)" mod p"

) +

t-
1)2

fre—i4+t-p" = 0
Fre—1) + f (ri—r) -t -p* " 0 mod p~
_ Tk—
t= 1) oa ®
Higher order terms are congruent@decause” | pt =D vy

2 < 4 < n. Final result (Eg. 3) follows from a well known rule
for solving congruences saying that both sides of the camgrel
and the modulo can be divided by the same number. Solutids
therefore given by the recurrence

_ Tk— —

Tk = 7"k71+|:_f,(7ﬂk71) b (f;;_;)) mod p} p*~! mod p*

o . o)
The lifting is repeated until the target ririg, « is reached or the
system becomes unsatisfiable. Eq. 4 can be naturally exte¢ode
multiple multivariate polynomials. Defing, Z, andt as transposed
f = [f07 s 7fm—1]y z= [1’17 e 73371—1], andt = [tl, AN 7tn_1],
then the recurrence can be written as

Tp = Tp—1+

—J(Zp_1)""- <m> modp} " mod p*

pkl

Every solution inZ,. is also a solution irZ 1. This obser-
vation can be used to optimize the linear iteration. Instefagbm-
puting the inverse of Jacobian for every point, it is suffitieo
compute it only for the initial points:

rr, = x1 modp
=
J(Zx—1) = J(&@1) modp
Ty = D1+ |=J(@F) - (%) mod p} " mod p*

Three cases need to be distinguish@dlf the inverse of Ja-
cobian is computablenod p, the system has a unique solution
Tr_1+Ep"71,0 < ¢; < p.(ii) Ifthere is no inverse and the second
factor evaluates to zero, solutions are givel¥as; +i-2° =1, Vt; :

0 < t; < p. All solutions are candidates for the starting points for
the next iteration(iii) Otherwise, the starting poif,—, was a bad
choice and there is no solution. In generalandm do not need
to be equal. Ifn # m, the Jacobian will always be singular and it
suffices to computg (Z_1).

ExAMPLE 2. The following example will illustrate how to solve a
simple non-linear congruence using Newton’s iterationusens
mod 2 are computed by some other means, for example with a
SAT solver. Solution candidates #y.11, resulting from lifting
solutions from previous iteration, is denoted_ &s.

Syx2 +7r = 0 mod 16
2zy+13y°+3 = 0 mod 16
It follows thatz, = {0, 1], [1, 1]}. Jacobian is

6ry+7 3a°
2y 2z + 26y

and has no inverse mod 2 in the starting points. Both poinésine
to be lifted toZ4, yielding X, = {[0, 1], [0, 3], [2, 1], [2, 3], [1, 1],
[1,3],[3,1],[3, 3]}. Out of these, only two are solutions #y,
namelyz, = {[0, 1], [0, 3]}. Again, both solutions can be lifted
resulting in X, = {[0,1], 0, 5], [4,1],[4, 5], [0, 3], [0, 7] [4 3,
[4,7]}. CheckingX> for solutions inZs giveszs = {[0, 1], [0, 3],
[0, 5], [0, 7]}. Repeating the iteration for one more step finds the
solutions of the system, = {[0, 1], [0, 7], [0, 9], [0, 15]}.

When lifting an unsigned solutiony, to the ringZ,x+1 it suf-
fices to consider only solutiors < x, < 2**!. Lifting of signed
bounded integer solutions differs only in the range thatisge be
considered-2* < z;, < 2%. For linear iteration there are only two
possible values for each variable:in that need to be considered
at each step. If higher order iteration schemes are useduthbeer
of cases grows exponentially.

Now, let us consider solving a base case of a typical noratine
congruence

0 mod 2
0 mod 2

3x2y +7x =
2uy +13y° +3 =
According to Fermat’s little theorem

a’® =a mod p

2005/7/18

any exponent can be iteratively reduced to 1. All polynoro@ef-
ficients can be reduced too. Hence, we obtain

zy+x = 0 mod?2
y+1 = 0 mod2

These congruences can be reduced to a boolean satisfipbdly
lem of the form— ((z A y) @ x) A (y), where@ is logical XOR.
Replacing the literalz A y with z we get—-(z @ z) A (y) A
(z< (zAy)), whichequalston (z® z) A (y) A(z2VEZVE)A

(zVx)A(zVy). XOR clauses can be represented as positive and

negative equivalences, while literal conjunctionsMofliterals can

CompletenessThe completeness of the lifting process follows from
the mathematical derivation of the Newton’s iteration gibefore.

The only part that remains to be proven is the completeness of
solving the base case. Any satisfiable system of congruences

2 has a finite number of solutions. From the assumption of adou
and complete SAT solver it follows that the SAT solver wsitaver

all and only valid solutions. This concludes the proof.

THEOREM3 (Termination).Assuming that the SAT solver termi-
nates, the above algorithm terminates too.

Proof 3. There is a finite number of solutions of the base case.

be converted intdV + 1 new CNF clauses. Odd number of literals A new blocking clause is added in line 7 for each solution.tTha

in an XOR clause results in positive equivalences and everbeu
in negative equivalences. In general, a positive equicale@valu-
ates toTRUE if an even number of literals afeALSE. Negative

equivalence evaluates TRUE when odd number of literals evalu-
ate toTRUE [24]. Equivalence clauses are solvable in polynomial

time by Gaussian elimination or by applying special prepsse
ing [25, 24], but Davis-Putnam based SAT algorithms cahtalie
exponential time on random XOR-SAT formulae [26].

In order to get the initial set of points one can either conver

prevents the rediscovery of the same solution. Terminaifcthe
base case follows. Lifting process itself terminates bseat each
iteration only a finite number of solutions can be generatedj
there is a final number of iterations]

THEOREM4 (Optimality). Given an unsatisfiable system of con-
gruences, the algorithm will prove unsatisfiability exaimgna min-
imal number of bits.

the congruences into CNF and use any incremental SAT salver t proof 4. A solution &, mod 2¢ is also a solution mod?

discover all the solutions. Transformation of N-literabaglence

Vi,j | ¢ > j > 0. By contrapositive argument it follows that

- ielgg™N ! ianifi . . . ; . .
clause into CNF yield2 clauses, and can cause a significant i there is no solution mod®’, then there is no solution mod

memory blow out. One way to remedy this is to use solvers tmat c

reason about equivalence clauses [27] without convertirgitto
CNF.

2¢i > j > 0. As the algorithm starts with a base case and it-
eratively lifts the solutions in a DFS manner, it follows tHar
each initial point it will prove unsatisfiability mod#*, wherek is

For finding an inverse of Jacobian, our decision procedure re iha smallest: for which the system becomes unsatisfiable.

lies on Muller-Seidl algorithm for solving linear congnees. The

inverse of Jacobian needs to be computed only for the base cas

Furthermore, systems of equations resulting from softwardi-
cation are often incomplete, so in that case it can be imrtedgia
concluded that Jacobian will be singular and have no inverse

The second term in recurrence in Eq. 4 can be easily computed

by substituting the variables with concrete values. Evethd
system of equations is incomplete, all the concrete salatinod 2
will be discovered in the base step.

4.1 Algorithm

The algorithm for solving non-linear congruences is présgin
Listing 2. It finds one solution if a system of non-linear cang
ences with multiple moduli is satisfiable, or retuthSAT if there

is no solution. According to our experience, many problems i

software verification form incomplete systems of congresnand
therefore are, most often, easily satisfiable. That ingightivated
us to organize the search as a depth first search (DFS).
Parameters to the algorithm afe- FIFO queue for storage of
temporal solutionsf— initial set of congruences‘TBOOL — simpli-
fied (according to Fermat's little theorem and coefficieduaion)

congruences mod 2, and — a column vector of moduli. Procedure

It is important to note that because the algorithm enumerate
concrete solutions (if there are any), slack variables ate@eded.
The lifting algorithm needs to be aware of the types of vdesb
but range constraints need not be expressed explicithugtiag
inequalities is trivial as each concrete point is evaluagainst the
set of inequalitiedD.

4.2 Extensions and Optimizations

In this section we propose an extension and suggest seessit p
ble optimizations of the basic approach. So far, we presetite
mathematical tools for solving systems of non-linear caegces
and therefore also how to reason about multiplication ofnioied
integers. Handling logic operators with a modular aritimeeci-
sion procedure is much harder. Strictly speaking, Newtaais-
tion is defined only on multiplication and addition, so logiger-
ators cannot be directly supported. There are severahatfees.
One possibility would be to solve the system of equationd,raa-
son about bit-vector operators later. The bit-vector dpesaepre-
sent additional constraints that should be used to prunedaech
space during iteration. Using them only after the final Sohg are

EXTEND performs zero/sign extension of concrete assignments to found would result in a performance penalty. The secondoopti

variables. Only concrete values that participate in exgioas with
mixed types need to be extended.
Although there exist efficient algorithms for computing 15

is to encode bit-vector operators as additional linear noertces
and inequalities (section 3). A disadvantage of this apgraae
large constants that can appear, which in general slow domn S

Jacobian matrices [28], we assume only a simple polynomial Plexand integer solvers. Additionally, all the inequaitiare solved

derivation for computing Jacobian.

THEOREM2 (Soundness and completenegs3suming a sound
and complete SAT solver, the algorithm is sound and complete

Proof 2. Soundnessit follows straightforwardly form the check
at line 11. Reaching the target ring/ = 2*, points that do
not satisfy f (Zx_1) = 0 mod 2" are discarded. Hence, the
algorithm cannot return a spurious solution.

only after concrete solutions of non-linear congruencesasamil-
able. The approach we take is to represent the bit-vectoatps
as additional non-linear congruence constraints. Thedéiauhl
constraints prune the search space as early as possible.

A system of non-linear congruences with multiple moduli is a
system such that; < m; for i < j. It should be obvious that
generality is not lost. A set of congruences with multipleduio
can be solved as a system of congruences with a single modulo
M = LCM; (m;), whereLCM is the least common multiple:

2005/7/18

Algorithm 2 DFS decision algorithm for solving non-linear congruene@td multiple moduli

1: procedure SOLVE(S, f, feoor, 1)
2 J=[8].0<i<mo<j<n
v

> Compute Jacobian

> Evaluate Jacobian in the initial point
> Add a blocking clause

> Take next initial point

> mod 2] -2F=1 mod 2k,/€—|—1)}

> Discard bad starting point

> Zero/sign extension

3 M — LCM; (m;) € m

4 while (fl — SAT (fBOOL)) # UNSAT do

5: S — {(Z1,2)}

6: J = j(f1)

7 feooL < feoorL A (ZliESUPP(fl) ﬁli)

8: while S # 0 do

9: pick (Zx—_1,k) € S

10: S — S\ {{&@r-1,k)}

11: if f(Zx_1) =0 mod 2" then

12: if Kk = M then

13: return Zp_1

14: end if

15: if 377! then)
16: S—Su {(fk_l + [—J*l : (%
17: else |f(f;f—k_;1) =0 mod 2then
18: S SU{(@r1+T- 28"k +1)},0<t; <1,]z >k
19: else
20: break
21: end if
22: forall z; € Zx—1 : |zs| < kdo
23: EXTEND(x;)
24: end for
25: end if
26: end while
27: end while
28: return UNSAT

29: end procedure

f1 (.1‘1,. . .,xn) = 0 mod ma
fr(z1,...;zn) = 0 modm,
=
£~fl(x1,...,xn) = 0 modM
mi
£~fr(x1,...,xn) = 0 mod M
my

Each congruence can be seen as a single constraint detagrtfiei
k; least significant bits of variables, .. ., z,,.

Given a set of base case solutions, they need to be lift&dto
Congruences with smaller moduli restrict fewer bits. Thusen a
ring Z,,, is reached through the iterative lifting process, all con-
gruences with modulin; < m. can be eliminated from further
consideration. The variables that appear only in congregenwod-
ulo m; can be of size at most and therefore those variables need
not to be lifted further. It is important to realize that besa the
system with multiple modulin; < --- < m, is less constrained
than the system of congruences modulp, it can have a model,
while the second may not.

To support bit-vector operators, we need one more definition
— a definition of variable types. Types will be used only td tel
the lifting algorithm when a variable has been computedstduiti
precision. At that point, the algorithm will consider thengouted

value to be the exact solution and will not lift it further. thpe
of a variableis denoted hyint;, for signed bit-vectors andints
for unsigned. In both cases denotes the ringZ,x. Subscript
represents the size of the variable in its- |a|. If two variables of
different types appear within the same expression, sigp(zero)
extension is performed for signed (resp. unsigned) duhiadjfting
of concrete values.

Logic and bit-vector operators can be encoded as non-linear
congruences with multiple moduli (see Table 1). Extensmbit-
wise operators is straight-forward. A new variable is idtroed
for each bit and the bit vector is assembled by multiplyinghea
variable with corresponding power of 2. Instead of intradgall
variables at once, variables can be introduced in a lazy eraam
needed. If the set of constraints can be proven to be unahtesfi
by inspecting only a few least significant bits, the overhegien-
coding will be largely avoided.

Logic operators (XORp, ORV, AND A, and equivalence=)
are defined on bits. Left (resp. right) shift of bit-vectiolby =
positions is denoted ashl (b, z) (resp.shr (b, z)), wherez is of
an arbitrary unsigned integer type. Concatenation is agipgrone
bit-vector to another and it is written agbb. In general, the types
of @ andb can differ. The resulting bit-vector must be large enough
to accommodate the result, more precisgly = |a| + |b| for
d = a@b. All the operators, excepthr, are defined equally for
signed bounded integers. Signed right shift shr, (b, z) can be
computed through unsigned shifts as shown.

2005/7/18

a, b : uinty a = shl (b, z) a=2%-b mod 2F

a,b: uintg;c: uintg_, a = shr (b, z) c=0b mod 2"
a-2°=b—c¢ mod 2*

a,b,c:intg;d : uinty a =shrs (b,x) | d=shr(b;k—1) mod 2
c=shl(shr(=1,k —z),k—2) mod 2~
a=c-d+shr(b,z) mod 2"

a:uint;—;q1;b, ¢ : uinty a=>b[i:j c=shl(b,k—i—1) mod 2"
a=shr(c,k—i+j—1) mod 2¢7T!

a:uintg, ;b uinty, ;d : uintg, 1k, | d=a@b d = shl(a, ky) + b mod oFaFFky

a,b : uinty a=-b a=b+1 mod 2

a,b : uinty a=bVe a=b-c+b+c mod 2

a,b : uinty a=bAc a=b-c mod 2

a,b : uinty a=bdc a=b+c mod 2

Table 1. Bit-vector operations on unsigned bounded integers

ExXAMPLE 3. Let us consider encoding a simple disjunct of linear
into a conjunct of non-linear constraints. The given coaisits

are: a,b,c : uintzz anda == bV a < c. Modulo is2%? and
will not be explicitly written. The second term of the diguonan
be rewritten asa == ¢ + z,z > 0,z : uints2. The decision

procedure interprets equality as congruence, hence we ggttam
of constraintSa = bVa =c+z)A (0 < a,b,c,x < 232) A (z >
0). Variablez is a slack variable. Now, we introduce two additional
slack variablesy and z, such thaty - z = 0 and y, z : uints2. It
follows that the conjunction of constrains = b + y) A (a =
c+z+2)A(y-2=0 Az >0)A0 <abcuzyz<
232) A (y - 2 < 2%%) is equisatisfiable to the original disjunct. The

producty - z must not overflow, as one slack variable might be a

zero divisor of the other, hence the last constraint.

The proposed algorithm has two performance bottleneckse If
system of congruences is easily satisfiable and has a largbaru
of solutions, but the inequalities make it unsatisfiable alyorithm
would enumerate all the concrete solutions. Running a iegat
cycle detection as a preprocessing step decreases thiadibe!
of this happening. The second bottleneck is the line 18. [For

variables there might b2" bits that need to be considered at each

lifting step in this case. It might be possible to use Homecheme

makes the problem much harder for SAT solvers. Finally,dalyi
constraints are encoded as congruences and can therefosedbe
early during the search.

5. Nelson-Oppen Integration

Automated theorem provers are the engines of many formal ver
ification tools. Decision procedures for theories that nesgtain
requirements can be integrated in a modular way by usingoNels
Oppen framework for combining theories [2, 3]. Nelson-Qppe
method is based on three basic assumptions:

1. the formula to be tested for satisfiability is quantifiexefr
2. the signatures of the theories anatually disjoint
3. the theories must b&tably infinite

Reasoning about quantified theories is out of the scope &f thi

paper, so we will not address this issue. Although the second

assumption can be somewhat relaxed [34], we will assumetthat
signatures are mutually disjoint.

An excellent introduction to combining theories and redate
notions, like stable-infiniteness, was given in [35]. A thed@
is stably infinite if for everyT'-satisfiable quantifier free formula

to decrease the number of cases. Another approach that could? there exists al-interpretation satisfyings) whose domain is

be effective is to translate a system of multivariate polgred
congruences into an isomorphic system of univariate cargres
[29], do the lifting on the system of univariate congruenees
reconstruct the solutions.

4.3 Comparison with SAT Encodings

The logic of bit-vectors for Nelson-Oppen setting has bdwn-t
oughly analyzed by Barrett et al. and Ganesh at al. [30, 31irT
decision procedure is based on an eager conversion to lnosd¢a
isfiability instance which is given to a SAT solver. UCLID is-a
other tool that is based on eager conversion to SAT [32]. Béch
of each bit-vector is converted into a boolean variable. répes
are encoded explicitly, even multiplication, which is krote be a
hard problem for both SAT solvers and model checkers alikg [3

In the linear case, polynomial preprocessing algorithnuress
that the subset of the set of constraints that can be solvisakiar
time is solved in linear time. No SAT solver can guarante¢, ts
explained on the example of XOR clauses.

According to the proof of optimality, it follows that our dec
sion procedure will examine minimal number of bits for unsat
isfiable sets of congruences. SAT solvers are likely to g&ttilo
the problem choosing wrong variables for splitting and capmo-
vide such guarantees. Our approach is insensitive to thenexps
or the number of multiplications, while each additional tiplier

infinite.

DEFINITION 1. A signatureX consists of a set of constani’,
function symbols=F', and a set of predicate symbafs”. A -
theory is any set ok-sentencesX-formulae are defined in the
usual way. The theory of modular arithmefi¢ with signatureX
is defined as:
o ©F = {4+ %.} | ¢ € Z,, for the linear case
e ¥ = {4 %} | ¢ € Zp, for the non-linear case
e + - x andx. are interpreted as standard addition, subtrac-
tion, multiplication, and multiplication with a constanbver
Lim,
e ¢ —7
o 2P ={=,<,<>,>}
ex=y mod mypiffx =y+t-mg,VteZ
o 27\ {=} defined ovefZ.

In the following discussion it will be demonstrated that the-
ory of linear modular arithmetic can be simulated with theatty
of unbounded integers with a set of bounds over each variable
equality is well defined over the set of integers. The samsorea
ing applies to the non-linear case. The only distinctiom& tange
constraints are implicit and the decision procedure preson-
crete solutions, so an integer solver is not called. To stawthe

2005/7/18

theory M is stably infinite, we will start with a theory of unbounded
integers, which is known to be stably infinite. We introdusetof
equations over fresh variabl&s= {v; =i | 0 < i < maxg mg}.
Integer constants are interpreted only/dy but variables); can be
shared. The theory remains stably infinite.

When Muller-Seidl algorithm returns a set of parametrie so
lutions, we're only interested in a subset of all possibléuso
tions, namely those allowed by variable types. Range cainssr
can be represented as disjunctions of equalities, forfex=
{zx=voVae=uvV--Va=uvu_,}, and can be passed fd
for each variabler : uint,x. As range predicates can be seen as a
part of normal process of exchanging equalities, rather deaain
restrictions, the theory of modular arithmetic is stablffirite. The
notion of range predicates was first mentioned but not etbdr
by Barret et al. [12. Instead of passing huge disjunctions of equal-
ities over the interface, range predicates can be impliciferred
from variable types.

Congruence operator i&/-specific. Thus, the decision proce-

cedure, where is the number of shared variables. This is a trivial
corollary following from the decidability requirement orefdon-
Oppen theories.

EXAMPLE 4. In this example we will illustrate how to generate all
equalities and disjuncts of equalities with a brute-fordgogithm
in2- (;) calls to the decision procedure for (non)-linear modular
arithmetic. LetS = s1,..., s, be a set of shared variables be-
tween theoryM and other theories. Let;; denotes; = s; and
—e;; its negation. There can bég) possible equalities between
shared variables. First, it needs to be checked whefffeimplies
any equalities by finding all pairg, j) such thatM = e;; andi #

j. This can be done by checking the unsatisfiabilit{/;()fformulas
M A —e;;. The set of found equalities is denotediasin the next
step we check the unsatisfiability/af \; ; —ei; | i # jAei; € E.

If satisfiable,M doesn't imply a disjunction of equalities and we
are done. Otherwise, we examine the proof of unsatisfigbilite
set of inequalities involved in the proof of unsatisfiapitiépresents

dure for M cannot propagate congruences. This does not representa single disjunct. We eliminate one of the equalities, apea the

a problem as the theory of linear modular arithmetic is sated
with a theory of unbounded integers and the decision praeedu
infers equalities oveZ, which can be shared. The theory of non-
linear modular arithmetic is not directly simulated by thedry of
unbounded integers as such theory would be undecidableeRat
the decision procedure returns concrete points f&jfn where N
is the number of variables. Without loss of generality, spohnts
can be seen as points fral’. Again, both equality and inequality
is well defined on any subset @f

Modulo operation partitions the set of integers into edeivee
classes. For modulm there are exactlyh equivalence classes. The
set of minimal elements of all equivalence classes coveastigx
the range{0, ..., m — 1}, assuming unsigned bounded integers.
It follows that the inequalities used in programming areuatly
defined over the set of minimal elements of equivalence etass

DEFINITION 2 (Bounded inequalitiesyor a ring Z.,, bounded
inequalitiesx,, , e {<, <, >, >} are defined over the minimal
elements of equivalence classes in which operation mquhrti-
tions the set of integefr3.

THEOREM5 (Relational EquivalenceGiven a,b € Z,, such
that 0 < a,b < m, a i, biff o’ > b for a’,b" € Z and
a =a,b =b0<d, b <m.

The proof trivially follows from the properties of inequiglire-
lations. Thus, we can reason about bounded inequalities uisi
equalities over integers. Due to range constraints, balimsgual-
ities cannot be used to detect overflows (unless a largetylztds
used, as shown before). If an overflow happens, the variableav
longer be a minimal element of its equivalence class. Fdrrée
son, our decision procedure interprets inequalities dverset of
unbounded integers, making detection of overflows possitiide
respecting the exact semantics of bounded inequalities.

Equality generation is the last issue that needs to be satisfi
The theory of integers (and therefore of modular arithméginon-
convex Simply put, the theory might imply a disjunction of equali-
ties, without implying a single equality. Recently it haghgroven
that generation of disjunctions of equalitiesN&P-complete [16]
for UTVPI constraints (the same result holds for differecoa-
straints). As general ILP constraints are more expresisifi@lows
that generating disjunctions of equalities for the thedrgnodular
arithmetic is at least/P-complete . All equalities and disjunctions
of equalities over shared variables can be generated usingex
force algorithm in2 - () calls to an\"P-complete decision pro-

8 Originally called type predicates.

procedure. As there can be at mc(gt) equalities, generation of
disjuncts of equalities requires at mo@) calls. Thus, all equal-
ities and a disjunction of remaining equalities can be irgdrin
2- (%) calls in the worst case.

In practice, it suffices to infer only one equality or one digjt
at the time to enable the theorem prover to make further pssgr
Incremental decision procedure can be used for the firs{(istfgy-
ring equalities). Generation of disjuncts of equalities ba imple-
mented by a resettable decision procedure that avoidsngdoi
the work when a single constraint is removed.

An important question is whether generation of equaliti@s c
be circumvented. Nelson-Oppen method is based on the exehan
of equalities. A promising approach for circumventing tleaera-
tion of equalities are layered theorem provers [18] thatiee the
deduction power and modularity for avoiding the equalitpeya-
tion. The layered approach tries to solve the problem by i@ser
of incrementally more expensive decision procedures. @iiede-
cision procedure that MathSAT uses at the end is an incomplet
integer solver based on doubly exponential Fourier-Motzitgo-
rithm. Hence, it seems to be at the disadvantage for integdr- p
lems. Furthermore, it can’t handle multiplication and geeover-
flows/underflows.

6. Conclusions and Open Problems

This paper presents a novel way to reason about boundeceiateg
where each integer variable has predefined upper and lowedso
Bounded integers correspond to finite representationsagram
variables in the hardware. Instead of treating these balsivdeger
variables as bit-vectors [36], the modular arithmetic sieci pro-
cedures described in this paper, interprets arithmeticatipas on
these variables as operations performed moatildfor an appro-
priate k. We treat linear and non-linear case separately. For each
case we propose a distinct decision procedure and analyse-ad
tages and disadvantages.

The authors believe that this paper makes an important step
in building efficient linear and non-linear decision progess for
bounded integers that support all integer operations useutad-
gramming, including multiplication and logical operatson

This paper also presents some interesting open problenss, Fi
the lifting scheme described in this paper applies to cdacse-
lutions, forcing the decision procedure to enumerate dlltEms
in the worst case. This can be improved by designing a lifting
scheme which works osymbolicsolutions, or equivalently on sets
of concrete solutions. Another important question is weedgual-
ity generation is a too expensive requirement. Giving awanes

2005/7/18

deductive power and modularity in exchange for being abdsrtid
generation of equalities might be a valuable tradeoff fdtveare
model checking.

Acknowledgments

We would like to thank Shuvendu Labhiri, Peter Montgomery; Ce
sare Tinelli, and Calogero Zarba for constructive commemid
interesting discussions.

References

[1] Detlefs, D., Nelson, G., Saxe, J.S.: Simplify: A Theor@mover for
Program Checking. Technical report, HP Laboratories Palo, A
Technical Report HPL-2003-148 (2003)

[2] Nelson, G.: Techniques for program verification. PhDsteeStanford
University (1979)

[3] Nelson, G., Oppen, D.C.: Simplification by. ACM Transanos on
Programming Languages and Systeh{$979) 245-257

[4] Muller-Olm, M., Seidl, H.: Analysis of Modular Arithrmtée. In: To
appear in ESOP 2005. (2005)

[5] Ball, T., Rajamani, S.K.: The SLAM Project: Debuggingstgym
Software via Static Analysis. In: POPL 2002. (2002) 1-3

[6] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: t®efe
Verification with Blast. In: Proceedings of the 10th SPIN W&irop,
Springer (2003)

[7] Flanagan, C., Leino, K., Lillibridge, M., Nelson, G., &g J., Stata,
R.: (Extended static checking for Java)

[8] Harrison, W.: Compiler analysis for the value ranges arfiables.
IEEE Transactions on Software Engineerifl977) 243—-250

[9] Postel, J.: Transmission Control Protocol. RFC 793, U&Grma-
tion Sciences Institute (1981)

[10] Braden, R.: Requirements for Internet hosts — Comnatiuio layers.
RFC 1122, USC/Information Sciences Institute (1989)

[11] Matiyashevich, Y.: Hilbert'sl0t” Problem: What can we do with
Diophantine equations? In: A talk given at a seminar of IREM i
Paris. (2001)

[12] Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision peedure for bit-
vector arithmetic. In: Proceedings of the 35th Design Awttiam
Conference. (1998) San Francisco, CA.

[13] Cyrluk, D., Méller, O., RueR, H.: An efficient decisiqgrocedure
for the theory of fixed-sized bit-vectors. In Grumberg, Ql,: &th
International Conference on Computer-Aided VerificatiQ#{'97).
Volume 1254 of Lecture Notes in Computer Science., Spriivgeiag
(1997) 60-71

[14] Clarke, E., Kroening, D.: Hardware verification usindN8I-C
programs as a reference. In: Proceedings of ASP-DAC 20 IE
Computer Society Press (2003) 308—-311

[15] von zur Gathen, J., Gerhard, J.: Modern Computer Algebr
Cambridge University Presg?“ edition (2003)

[16] Lahiri, S.K., Musuvathi, M.: An Efficient Decision Predure for
UTVPI Constraints. Technical report, Microsoft Researelhhical
Report MSR-TR-2005-67 (2005)

[17] Matula, D.W., Fit-Florea, A., Thornton, M.A.: Table bkup
Structures for Multiplicative Inverses Modul¥. In: Proceedings of
17t" IEEE Symposium on Computer Arithmetic ARITH-17. (2005)

[18] Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, V/an Rossum,
P., Schulz, S., Sebastiani, R.: An Incremental and Layeredddure
for the Satisfiability of Linear Arithmetic Logic. In Halbwhs, N.,
Zuck, L.D., eds.: Tools and Algorithms for the Constructiamd
Analysis of Systems (TACAS 2005). Volume 3440 of Lecture égot
in Computer Science., Springer (2005) 317-333

[19] Sierksma, G.: Linear and integer programming: thearg practice.
Marcel Dekker (2002)

[20] Yun, D.Y.Y.: Algebraic algorithms using p-adic consttions. In:
Proceedings of the third ACM symposium on symbolic and atgieb
computation. (1976) 248-259

10

[21] Zippel, R.: Effective Polynomial Computation. Kluwg&cademic
Publishers (1993)

[22] Rosen, K.H.: Elementary Number Theory and Its Applaas, 4t
edition. Addison Wesley (2000)

[23] Patarin, J., Goubin, L.: Trapdoor One-Way Permutatiamd
Multivariate Polynomials. In: Proceedings of? International
Information and Communications Security Conference. 7}.99

[24] Warners, J.P., van Maaren, H.: Recognition of traetaaltisfiability
problems through balanced polynomial representationsPrioceed-
ings of the 5th Twente workshop on on Graphs and combinatoria
optimization, Elsevier Science Publishers B. V. (2000)-2281

[25] Warners, J.P., Van-Maaren, H.: A two phase algorithmsfaving a
class of hard satisfiability problems. Operations Reselettérs23
(1998) 81-88

[26] Jia, H., Moore, C., Selman, B.: From spin glasses to Bati$fiable
formulas. In: Proceedings of SAT 2004. (2004)

[27] Babic, D., Hu, A.J.: Hypersat. In: To appear in SAT 2@@Bnpetition
proceedings. (2005)

[28] Hossain, A.K.M.S.: On The Computation of Sparse Jaamobi
Matrices and Newton Steps. PhD thesis, Department of Ird6os)
University of Bergen, Norway (1998)

[29] Zippel, R.: Newton’s iteration and the sparse Hensgbathm.
In: Proceedings of the fourth ACM symposium on symbolic and
algebraic computation. (1981) 68-72

[30] Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision peedure for bit-
vector arithmetic. In: Proceedings of the 35th Design Awttiam
Conference. (1998) 522-527

[31] Ganesh, V., Berezin, S., Dill, D.L.: Technical RepoktDecision
Procedure for Fixed-Width Bit-Vectors. Technical rep&@tanford
University @t April 2005)

[32] Lahiri, S.K., Seshia, S.A.: The UCLID Decision Proceelu In:
Proceedings of Computer-Aided Verification conferenc@04)

[33] Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded Modghecking
Using Satisfiability Solving. Formal Methods in System Desi
(2001) 7-34

[34] Zarba, C.G.: Combining non-disjoint theories. In GoIR., Leitsch,
A., Nipkow, T., eds.: International Joint Conference on @uated
Reasoning (Short Papers). Technical Report DIl 11/01, éisit'a of
Siena, Italy (2001) 180-189

[35] Manna, Z., Zarba, C.G.: Combining decision proceduhasFormal
Methods at the Cross Roads: From Panacea to Foundationab®Sup
Volume 2757 of Lecture Notes in Computer Science., Spri(2@d3)
381-422

[36] Barrett, C., Berezin, S.: CVC Lite: A new implementatiof the
cooperating validity checker. In Alur, R., Peled, D.A., ed3AV.
Lecture Notes in Computer Science, Springer (2004)

2005/7/18

