
Modular Arithmetic Decision Procedure
Id: madp.tex,v 1.13 2005/07/18 22:38:51 root Exp

Domagoj Babić
Computer Science Department, University of British

Columbia, Vancouver, Canada
babic@cs.ubc.ca

Madanlal Musuvathi
Microsoft Research, Redmond, WA, USA

madanm@microsoft.com

Abstract
All integer data types in programs (such as int, short, byte)have
an underlying finite representation in hardware. This finiteness can
result in subtle integer-overflow errors that are hard to reason about
both for humans and analysis tools alike. As a first step towards
finding such errors automatically, we will describe two modular
arithmetic decision procedures for reasoning aboutboundedinte-
gers.

We show how to deal with modular arithmetic operations and in-
equalities for both linear and non-linear problems. Both procedures
are suitable for integration with Nelson-Oppen framework [1, 2, 3].
The linear solver is composed of Müller-Seidl algorithm [4] and an
arbitrary integer solver for solving preprocessed congruences and
inequalities.

For the non-linear problems we use Newton’s p-adic iteration
algorithm to progressively reason about the satisfiabilityof the in-
put constraints modulo2k, for increasingk. We use a SAT solver
only for the base case whenk = 1. According to our knowledge,
this is the first Nelson-Oppen decision procedure capable ofreason-
ing about multiplication over bounded integers without converting
the entire problem to a SAT instance.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; I.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving

General Terms Algorithms, Verification

Keywords Modular arithmetic, Automated decision procedures,
Software verification

1. Introduction
Integer data types in programs are represented using a finitenum-
ber of bits in the underlying hardware and thus, have a finite range.
Their finite representation can result ininteger-overflowswhen the
result of arithmetic operations on these data types lies outside
their range. While it is convenient to neglect these overflows for
most programming tasks and treat the data types as essentially un-
bounded, unexpected integer-overflows are frequent in manypro-
grams. Given that most programmers easily forget to reason about

Copyright is held by the original authors. Permission to copy or re-
distribute all or part of this work is permitted only in the context of
reviewing this paper for the publication to which it was submitted.

finite nature of basic data types, it is absolutely imperative for pro-
gram analysis toolsnot to neglect such behavior. When undetected,
these overflows can result in serious security vulnerabilities.

As a motivating example of such behavior, Listing 1 shows
a snippet of code for the JPEG image processing routine. The
functionread jpeg takes as argument a pointer to a JPEG image.
The macro INPUT2BYTES decodes the length of the image and
stores it in the variablelength. The function then allocates a buffer
of size length+2 at line 6, and calls a function at line12 that
copieslength-2 bytes from the image to the buffer. Before the
call to this function, there is an (implicit) assert that checks if the
buffer has sufficient space. At first sight, it appears that this assert
can never fail. However, whenlength is 0, a buffer of size 2 is
allocated at line6. The subtraction at line9 causes an underflow,
so 0xFFFE (65534) bytes are copied, overflowing the buffer. This
fails the assertion.

1 BOOL r e a d j p e g (IN p t r c i n f o) {
2 VOID ∗ pBuf fe r ;
3 UINT16 l e n g t h ;
4
5 INPUT 2BYTES (c in fo , l e n g t h) ;
6 pBu f fe r = GpMalloc (l e n g t h + 2) ;
7 / / assume (p B u f f e r . l e n g t h == l e n g t h +2) ;
8 . . .
9 INT s i z e = l e n g t h− 2 ;

10 . . .
11 / / a s s e r t (s i z e< p B u f f e r . l e n g t h) ;
12 GpMemcpy (pBuf fe r , c i n fo−>nxt , s i z e) ;
13 }

Listing 1. JPEG integer overflow bug

When undetected, the overflow in the function in Listing 1
causes a buffer overrun, which is a serious security vulnerability.
This particular vulnerability was recently exploited1 and required
a costly corrective action. A number of other critical bugs has
been related to integer underflows/overflows. Just to mention a
few: OpenSSH buffer overflow2, Microsoft JScript bug3, FreeBSD
system call buffer overflow4, Snort TCP packet reassembly integer
overflow5, Apache chunked-encoding vulnerability6

As exploits based on integer-overflows are becoming more
prevalent, it is very important to build program-analysis tools that

1 http://www.microsoft.com/technet/security/Bulletin/MS04-028.mspx
2 http://www.securityfocus.com/bid/5093
3 http://www.microsoft.com/technet/security/bulletin/MS03-008.mspx
4 http://www.securityfocus.com/bid/5493
5 http://www.securityfocus.com/bid/7178
6 http://www.securityfocus.com/bid/5033

1 2005/7/18

can detect overflow related errors automatically. However,the cur-
rent state-of-the-art analysis tools (such as [5, 6]) fall short of do-
ing so. This is primarily because the theorem provers and symbolic
reasoning engines that underly these tools can only reason about
(unbounded) integers and thus are unable to detect overflow behav-
ior. For instance, when analyzing the function in Listing 1 these
tools incorrectly claim that the assertion is always true,7 resulting
in unsound analysis.

As a first step towards finding integer-overflow based errors
automatically, this paper proposes two decision procedures for
boundedintegers. The first one is for linear and the second for
non-linear modular arithmetic. Using linear decision procedure, we
later show that a simple verification-condition generatingtool [7]
can detect the error in Listing 1.

An obvious way to detect integer-overflow based errors is of
course is to detectall integer-overflows in the program and flag
each as an error. This can be done, for instance, by using a value-
range analysis [8] to obtain conservative upper and lower bounds
for each program variable and then checking if each arithmetic
operation produces a result within the range of the integer data
type. However, such an analysis produces too many false warnings
as not all overflows result in an error. By reasoning about modular
arithmetic explicitly, our decision procedures can be usedto check
only for those overflows that lead to an assertion failure.

Moreover, many low-level systems programsrely on the over-
flow behavior of the integer data types for their correct execution. A
very good example is the Transport Control Protocol (TCP), which
uses 32-bit sequence numbers for reliable data transfer. The pro-
tocol specification [9, 10] allows these sequence numbers towrap
around, primarily to support the transfer of very large files. Accord-
ingly, any protocol implementation has to explicitly reason about
integer-overflows. The decision procedures described in this paper
can be used to build program analysis tools that can detect errors in
such programs.

While there are other decision procedures for reasoning about
bounded integers in the research literature, this paper significantly
improves upon previous work in the following novel ways. First,
our linear decision procedure is the first to support the symbolic
reasoning ofinequalities. This is crucial as many of the program
invariants, including array bounds checking, involve inequalities
between program expressions.

Second, we also propose a decision procedure that supports
multiplication. To reason about the resulting non-linear expres-
sions, the decision procedure uses Newton’s p-adic iteration to pro-
gressively reason about the satisfiability of the input constraints
modulo2k, for increasingk. For the base case (k = 1), all vari-
ables are restricted to a single bit and the decision procedure uses
a SAT solver check satisfiability. Note that reasoning aboutmul-
tiplication over unbounded integers is undecidable [11], so many
verification tools conservatively treat multiplication asan uninter-
preted function.

Finally, we show how our decision procedures can be used in
a Nelson-Oppen combination framework [2, 3]. This allows one to
combine our decision procedures with other procedures for reason-
ing about uninterpreted functions, arrays, and lists. The resulting
combination can support a wide variety of program analysis tasks.

1.1 Related Work

Our work is most related to that of Müller-Olm and Seidl [4],in
which the authors provide a method to infer linear congruences
invariant at a program point. However, their algorithm cannot be
used for solving inequalities and non-linear congruences.

7 This is becauselength-2 < length+2 holds whenlength ∈ Z.

Many have studied the theory of fixed-width bit-vectors (such
as [12, 13]), which can be used to model arithmetic operations
on integer data types. However, this body of work has focussed
on hardware verification and does not support reasoning about
inequalities. As an extreme, CBMC [14] is a tool that converts an
ANSI-C program into a Boolean circuit and then use a SAT solver
to check for violation of assertions in the program. These methods
lose the structure of the program by splitting each integer variable
in the program to a sequence of bits and as a result, do not scale.
Furthermore, even the problems that can be solved in polynomial
time by Gaussian elimination might take exponential time with the
number of variables when a DPLL SAT solver is used.

2. Basic Definitions
This section defines the basic notions that will be used in further
exposition.Bit-vectorsare defined as arrays of bits. Slightly abus-
ing the terminology, bybounded integerswe will assume the el-
ements of the ring of integers.Unbounded integersare elements
of the set of integersZ. By bit-vector operators we mean logic
operators, subvector extraction, concatenation, left/right shift, and
one’s complement (bitwise complement). All operators are defined
in little-endian arithmetic – higher value bits are stored at a higher
address. We will distinguish signed and unsigned bounded integers.
If the type is not stated explicitly, unsigned bounded integers will
be assumed.

If two integersa, b have the same remainderr upon division by
the natural numberm, where0 ≤ r < m, thena andb are said to
be congruentmodulom, written asa ≡ b mod m. Congruence
naturally extends to polynomials. The following are equivalent

a ≡ b mod m

a = b + mt, ∀t ∈ Z (1)

m|a− b

Equation of the formf (x0, . . . , xn) ≡ 0 mod m is called
a congruence. A system of congruences is a system of such equa-
tions. A system is said to besatisfiableif there exists an assignment
to all variables such that all congruences modm in the system eval-
uate to0, otherwise it is said to beunsatisfiable. Complete system
of equations is a system ofm linearly independent equations over
n variables such thatn = m. If n > m the system is said to be
incomplete. Solutions of a system of equationsA · ~x = ~b are com-
posed ofparticular solutions and solutions of the systemA ·~x = ~0,
calledhomogeneoussolutions. For more details see any introduc-
tory book on linear algebra.

We say that an integera dividesan integerb if there exists an
integerc such thata · c = b, usually denoted asa | b. P-adic
expansionwas introduced by Hensel. Given any primep ∈ Z, each
integera ∈ Z has a unique (up to the first leading zero term) finite
p-adic expansion:

a =

kX
i

aip
i
, 0 ≤ ai < p

A ring is a setR with two binary operations·, + (commonly
interpreted as addition and multiplication) satisfying additive and
multiplicative associativity, additive commutativity, left and right
distributivity, and existence of additive identity and inverse. A
commutative ringalso satisfies multiplicative commutativity. Ring
modulom is denoted asZm. For more details see [15]. Modular
inverse ofa ∈ Zm, if it exists, is b ∈ Zm such thata · b ≡ 1
mod m. A zero-divisor isa ∈ Zm, such that:

• there existsb ∈ Zm

2 2005/7/18

• neither of the elements is zero
• a · b ≡ 0 mod m

Difference Constraintsare constraints of the formx − y ⊲⊳
c and x ⊲⊳ c, wherex, y are variables,c a constant, and⊲⊳∈
{=, 6=, <, >,≤,≥}. UTVPI constraints are slightly more general
a · x + b · y ⊲⊳ c, such thata, b ∈ {0, 1} [16].

A singular matrixis a square matrix that does not have a matrix
inverse over a commutative ring. Letf0, . . . , fm−1 be polynomials
in n variablesx0, . . . , xn−1. TheJacobianJ is a square matrix of
partial derivatives, defined as

J =

2664 ∂f0
∂x0

. . . ∂f0
∂xn−1

...
...

∂fn−1

∂x0
. . .

∂fn−1

∂xn−1

3775
Given an incomplete system of congruences, the Jacobian will not
be a square matrix, but can be extended to one appending rows of
zeros. Such a matrix is singular and has no inverse.

Signed and unsigned integers used in programming are bounded.
32-bit unsigned integers have the range

�
0, .., 232 − 1

	
, while

signed integers have the range
�
−231, .., 0, .., 231 − 1

	
. Contem-

porary software formal verification tools reason about multiplica-
tion by translating each single bit to a boolean variable andencod-
ing multipliers directly. The problem is then given to a SAT solver.
A disadvantage of this approach is the loss of the natural problem
structure. Alternative approach is to represent multiplication as an
uninterpreted function, loosing precision on the way.

Recently, Müller-Olm and Seidl [4] have presented interesting
results on software analysis based on modular arithmetic. Proposed
algorithm deals only with linear congruences. The authors claim
that their approach is efficient as expensive computation ofinverses
is avoided. Although the advantage of their approach has been
somewhat decreased by the discovery of efficient algorithmsfor
the computation of inverses modulo2k [17], we will still consider
the Müller-Seidl algorithm as the basic algorithm for solving linear
congruences.

3. Decision Procedure for Linear Congruences
In this section we present a decision procedure for linear modular
arithmetic with inequalities that makes it possible to reason about
overflows in a mathematically clean way. Linear congruencescan
be solved with Müller-Seidl algorithm [4]. The congruencesolver
alone does not suffice because the ordering of elements (inequality)
is not defined on the rings of integers. Dumping everything onan
integer solver wouldn’t work either because there is no notion of
overflow in Presburger arithmetic.

In our approach we simulate modular arithmetic with arithmetic
over unbounded integers with an additional set of range constraints
that bound the range of each variable. The congruence solveris
used to preprocess the congruences in polynomial time. Results can
be either parametric or concrete solutions over the set of integers.
As the solutions are expressed overZ, an integer solver can be used
to solve the set of constraints consisting of preprocessed congru-
ences and inequalities. Although none of the decision procedures
on its own can reason about both overflows and inequalities, the
two together can.

This approach has several advantages. First, a linear system of
congruences is solved in polynomial time, while integer solvers
might take exponential time in the worst case. Second, this com-
bination yields a mathematically clean way to reason about over-
flows.

Müller-Seidl algorithm is based on a modified Gaussian elim-
ination. The goal is to bring the coefficient matrix to a triangu-

lar form through a series of elementary and invertible transforma-
tions. Carefully choosing the pivot, the algorithm avoids comput-
ing modular inverses. Given ann × n linear system of congru-
encesA · ~x ≡ ~b mod 2k, the algorithm computes all solutions in
O
�
k · n + log (k) · n3

�
. Elements of the ringZ2k can have zero

divisors, thus homogeneous systemA · ~x ≡ 0 mod 2k can have
non-trivial solutions. All homogeneous solutions can be found in
timeO

�
log (k) · n3

�
.

Given a satisfiable and linearly independent set ofn equations
with n variables fromZm, solutions can be expressed as a linear
combination of particular solutionspi and homogeneous solutions
hi (Eq. 2). Solutions of an incomplete system can be expressed
in parametric form. If the system of congruences is complete,
congruence solver will return a set of concrete solutions out of
which each consists of a particular part (pi) and a homogeneous
part (hi). By introduction of a decision variableδ = {0, 1}, each
concrete solution can be represented as a linear equality:

xi = pi + δi · hi (2)

Solving incomplete systems yields a set of parametric solutions
Es of the form:

y1 =
X

i

c1,i · xi + t1 ·m

.

yn =
X

i

cn,i · xi + tn ·m

Dependant variablesyi are expressed as a linear combination of
independent variablesxi. As explained previously (Eq. 1), con-
gruences modulom can be represented as equalities with an ad-
ditional factorti ·m. The bounds of slack variablesti can be lim-
ited without loss of generality. Essentially, the slack variables rep-
resent the number of wraparounds and can be computed in linear
time with the number of additive terms in the parametric solutions.
For example, giveny, x1, x2 ∈ uint32 and a parametric solution
y = 11 · x1 + 5 · x2 + t · 232, it follows that−15 ≤ t ≤ 0. In
general, the bounds of slack variables can be larger than theranges
of regular variables.

All dependant and independent variables are restricted accord-
ing to their type with a range constraint given as a predicate. We
will represent the set of range predicates withP . For example, for
an unsigned 32-bit integerx : uint32 corresponding range con-
straint would be0 ≤ x < 232.

The Müller-Seidl algorithm takes a set of congruencesE and
returnsUNSAT if the system is unfeasible, a set of parametric so-
lutionsEs if the system is incomplete, or a set of concrete solutions
otherwise. We extend the basic algorithm with a postprocessor that
computes bounds of slack variables for incomplete systems.The
set of range predicates andti bounds is denoted asPr.

The algorithm is given in Listing 1. Unless the Müller-Seidl
algorithm returnsUNSAT, the setEs ∪ P is satisfiable, butEs ∪
Pr ∪ D, where D is a set of inequalities over dependant and
independent variables, might not be. If the number of concrete
solutions is small (ie. if there is a small number of non-trivial
homogeneous solutions), all concrete points are evaluatedagainst
the set of inequalitiesD∪P in linear timeO (|D ∪ P |). The value
of that “small number” is determined heuristically. Although all
solutions of a complete system can be found in the polynomial
time, in the worst case, the number of concrete solutions canbe
exponential. If the number of non-trivial homogeneous solutions is
large or if the result is a set of parametric solutions, a new set of
constraintsEQ = Es ∪ Pr ∪ D is constructed and passed to an
integer solver.

3 2005/7/18

Algorithm 1 Linear modular arithmetic decision procedure
1: procedure SOLVE(E,P ,D)
2: Es = M ÜLLER-SEIDL(E)
3: if Es 6= UNSAT then
4: Pr = P ∪ { bounds ofti}
5: if The number of concrete solutions is smallthen
6: while Es 6= ∅ do
7: pick s ∈ Es

8: Es ← Es\{s}
9: if s satisfiesD ∪ Pr then

10: return s
11: end if
12: end while
13: else
14: EQ = Es ∪ Pr ∪D
15: return INTSOLVE(EQ)
16: end if
17: end if
18: return UNSAT

19: end procedure

EXAMPLE 1. Let us consider the formalization of the JPEG inte-
ger overflow bug in listing 1. Variablesize is denoted ass, and
length as l. Althoughs is a 32-bit signed integer variable, the
right value of the assignment expression can be only a 16-bitun-
signed integer. The range ofs is adjusted accordingly. These adjust-
ments might not be straightforward in all cases. Later we present
a more general way to deal with multiple types – congruences with
multiple moduli.

s ≡ l − 2 mod 216

s ≥ l + 2

0 ≤ l, s < 216

A parametric solution iss = l − 2 + t · 216,∀t ∈ Z. Then
we compute the range oft to restrict the number of cases the
integer solver needs to consider. In this case, the range oft is
0 ≤ t ≤ 1. There are two solutions that satisfy all constraints,s =
0xFFFF (65535), l = 1, t = 1 ands = 0xFFFE(65534), l =
0, t = 1. Finding one of them proves the existence of the counterex-
ample.

It might not be obvious that a set of congruences and a set
of equalities with slack variables, resulting from converting con-
gruences into equalities, are equisatisfiable. The equisatisfiability
property means that both set of constraints have exactly thesame
set of solutions, or no solution at all. This property is crucial for
the soundness of our method and can be easily proven. Although
it suffices to prove equisatisfiability for the set of parametric solu-
tions with dependant and independent variables, we presenta more
general proof that holds for any set of constraints.

THEOREM 1 (Equisatisfiability).Given ~f = [f0, . . . , fn−1], ~x =
[x1, . . . , xn−1], and~t = [t1, . . . , tn−1] the two sets of constraints
~f(~x) ≡ 0 mod m and ~f(~x) = ~t ·m are equisatisfiable.

Proof 1. Assume that~x0 is a solution of~f(~x) ≡ 0 mod 0, then
eachfj(~x0), 1 ≤ j < n evaluates to some multiple ofm, which is
congruent to 0 modm. Hence, there exists a~t0 such that~f(~xo) =
~t0 · m, so for each solution of the set of congruences there is a
solution of the corresponding system of equalities with slack terms.
In the other direction, if~x0 is a solution of~f(~x) = ~t ·m, obviously
it satisfies the set of congruences~f(~x0) ≡ 0 mod m. It follows
that if one set of constraints has a solution, so does the other. By

contrapositive it follows that if one is unsatisfiable, so isthe other.
�

3.1 Optimizations and Extensions of the Basic Algorithm

The decision procedure (Listing 1) can be optimized by usingin-
crementally more expensive decision procedures before calling the
integer solver in order to try to prove unsatisfiability as early as
possible. This approach corresponds to layered decision procedures
[18]. After line 14, a call to a solver for difference constraints could
be added. Difference constraints can be solved in polynomial time
by detection of negative cycles. If the set of difference constraints
is unsatisfiable, the algorithm can returnUNSAT. If the unsatisfi-
ability cannot be proven by solving difference constraints, we still
might want to try replacing all integer variables with rational ones
and call a solver (Simplex) for linear constraints over rationals. This
can still be cheaper in practice than immediately calling aninteger
solver.

Logic operators are often used in software, although not as often
as in hardware design. A decision procedure for modular arithmetic
and inequalities must also support logic operators to be practical.
Logic operators and conditionals can be encoded as linear integer
programming problems (see pg. 232, [19]). Bit vector operators can
be encoded by introduction of a fresh variable for each single bit.
When it is necessary to reason about bits, this seems unavoidable.

4. Decision Procedure for Non-linear
Congruences

In this section we will present a decision procedure for non-linear
congruences which does not depend on the integer solver. A SAT
solver is used only for solving the base case. The procedure returns
concrete solutions that need to be checked against inequalities –
and that can be done in linear time with the number of inequalities.
It is essentially a depth-first search procedure based on Newton’s
p-adic iteration. In its elementary form,Newton’s iterationis given
as

xk = xk−1 − f
′(xk−1)

−1 · f(xk−1)

Newton’s iteration formula on the space of p-adic expansion
has been successfully applied to factorization of polynomials, com-
putation of the greatest common divisor of polynomials, polyno-
mial division, and partial fraction decomposition [20]. When New-
ton’s iteration is applied to factorization of polynomialsit is called
Hensel’s lifting [15]. The foundations of the work presented in this
paper are based on its application to interpolation of univariate and
multivariate polynomials [21].

To derive the polynomial iteration formula we need to start with
Taylor’s expansion:

f(x) =
f (n)(r)

n!
· (x− r)n + · · ·+

f ′′(r)

2!
· (x− r)2 +

+f
′(r) · (x− r) + f(r) =

= fn · (x− r)n + · · ·+ f2 · (x− r)2 +

+f1 · (x− r) + f0

If R is an arbitrary (commutative with unity) ring andf ∈ R [x]
is a polynomial of degree at mostn, Taylor’s expansionof f around
r ∈ R is given below. Forf ∈ Z [x] and n ∈ Z all factors
f(i)(n)

i!
are integers. The proof is available in the literature [22].

Polynomials have a unique p-adic representation:

4 2005/7/18

f(x) =
X

i

fix
i =

X
i

 X
j

fjip
j

!
x

i =

=
X

j

 X
i

fjix
i

!
p

j =
X

j

Fjp
j

and can be approximated with lower order terms as follows

f(x) ≡ Fk · p
k + · · ·+ F2 · p

2 + F1 · p + F0 mod p
k+1

Intuitively, Newton’s p-adic iteration constructs more and more
precise approximations from the initial solution inx1 ∈ Zp. In
programming, polynomial coefficients, as well as the variables
themselves, are most often inZ16, Z32, or Z64. Hence, only a small
finite number of iterations is needed to compute the exact solution.

Newton’s iteration formula on the space of p-adic expansioncan
be used for solving non-linear congruences. As we are interested in
congruences modulo2k, we will use 2-adic expansion. Solving a
system of equations over 32-bit integral variables is equivalent to
solving the corresponding system of congruences mod232. First,
the system is solved mod 2, meaning that the least significantbit
is solved first. If there is no solution inZ2, the entire system is
unsatisfiable. Otherwise, the algorithm lifts solutions one by one in
a depth-first search manner.

It is well known that solving multivariate non-linear congru-
ences over the ringZ2 isNP-complete [23]. We will assume that
a SAT solver is used for solving the base case. Each bit will corre-
spond to a boolean variable with the usual interpretationσ(1) =
TRUE and σ(0) = FALSE. Base case solutions are iteratively
lifted. Let us consider solving a univariate non-linear congruence
f(x) ≡ 0 mod pK to illustrate the technique. Assume that a solu-
tion rk−1 ∈ Zpk , k < K is known. Obviously,f(x)

��
x=rk−1

≡ 0

mod pk. Then it also follows thatf(x)
��
x=rk−1

≡ 0 mod pk−1,

so solutions are given asrk−1 + t ·pk−1. Now the p-adic expansion
of the polynomial can be rewritten as

f(rk−1 + t · pk−1) ≡ f(rk−1) + f
′(rk−1) · t · p

k−1 +

+f
′′(rk−1) · (t · p

k−1)2 + . . .

+f
(k−1)(rk−1) · (t · p

k−1)n
mod p

k

f(rk−1 + t · pk−1) ≡ 0

f(rk−1) + f
′(rk−1) · t · p

k−1 ≡ 0 mod p
k

t ≡ −f
′(rk−1)

−1 ·
f(rk−1)

pk−1
mod p (3)

Higher order terms are congruent to0 becausepk | pi·(k−1),∀i :
2 ≤ i ≤ n. Final result (Eq. 3) follows from a well known rule
for solving congruences saying that both sides of the congruence
and the modulo can be divided by the same number. Solutionrk is
therefore given by the recurrence

rk ≡ rk−1+

�
−f

′(rk−1)
−1 ·

�
f(rk−1)

pk−1

�
mod p

�
·pk−1

mod p
k

(4)
The lifting is repeated until the target ringZpK is reached or the
system becomes unsatisfiable. Eq. 4 can be naturally extended to
multiple multivariate polynomials. Define~f , ~x, and~t as transposed
~f = [f0, . . . , fm−1], ~x = [x1, . . . , xn−1], and~t = [t1, . . . , tn−1],
then the recurrence can be written as

~xk ≡ ~xk−1+

"
−J(~xk−1)

−1 ·

~f(~xk−1)

pk−1

!
mod p

#
·pk−1

mod p
k

Every solution inZpk is also a solution inZpk−1 . This obser-
vation can be used to optimize the linear iteration. Insteadof com-
puting the inverse of Jacobian for every point, it is sufficient to
compute it only for the initial points:

xk ≡ x1 mod p

⇒

J (~xk−1) ≡ J (~x1) mod p

~xk ≡ ~xk−1 +

"
−J(~x1)

−1 ·

~f(~xk−1)

pk−1

!
mod p

#
·pk−1

mod p
k

Three cases need to be distinguished.(i) If the inverse of Ja-
cobian is computablemod p, the system has a unique solution
~xk−1+~t·pk−1, 0 ≤ ti < p. (ii) If there is no inverse and the second
factor evaluates to zero, solutions are given as~xk−1+~t ·2k−1,∀ti :
0 ≤ ti < p. All solutions are candidates for the starting points for
the next iteration.(iii) Otherwise, the starting point~xk−1 was a bad
choice and there is no solution. In general,n andm do not need
to be equal. Ifn 6= m, the Jacobian will always be singular and it
suffices to compute~f(~xk−1).

EXAMPLE 2. The following example will illustrate how to solve a
simple non-linear congruence using Newton’s iteration. Solutions
mod 2 are computed by some other means, for example with a
SAT solver. Solution candidates inZ2k+1 , resulting from lifting
solutions from previous iteration, is denoted asXk.

3yx
2 + 7x ≡ 0 mod 16

2xy + 13y
2 + 3 ≡ 0 mod 16

It follows thatx1 = {[0, 1], [1, 1]}. Jacobian is�
6xy + 7 3x2

2y 2x + 26y

�
and has no inverse mod 2 in the starting points. Both points need
to be lifted toZ4, yieldingX1 = {[0, 1], [0, 3], [2, 1], [2, 3], [1, 1],
[1, 3], [3, 1], [3, 3]}. Out of these, only two are solutions inZ4,
namelyx2 = {[0, 1], [0, 3]}. Again, both solutions can be lifted
resulting in X2 = {[0, 1], [0, 5], [4, 1], [4, 5], [0, 3], [0, 7], [4, 3],
[4, 7]}. CheckingX2 for solutions inZ8 givesx3 = {[0, 1], [0, 3],
[0, 5], [0, 7]}. Repeating the iteration for one more step finds the
solutions of the systemx4 = {[0, 1], [0, 7], [0, 9], [0, 15]}.

When lifting an unsigned solutionxk to the ringZ2k+1 it suf-
fices to consider only solutions0 ≤ xk < 2k+1. Lifting of signed
bounded integer solutions differs only in the range that needs to be
considered−2k ≤ xk < 2k. For linear iteration there are only two
possible values for each variable inxk that need to be considered
at each step. If higher order iteration schemes are used, thenumber
of cases grows exponentially.

Now, let us consider solving a base case of a typical non-linear
congruence

3x
2
y + 7x ≡ 0 mod 2

2xy + 13y
2 + 3 ≡ 0 mod 2

According to Fermat’s little theorem

a
p ≡ a mod p

5 2005/7/18

any exponent can be iteratively reduced to 1. All polynomialcoef-
ficients can be reduced too. Hence, we obtain

xy + x ≡ 0 mod 2

y + 1 ≡ 0 mod 2

These congruences can be reduced to a boolean satisfiabilityprob-
lem of the form¬ ((x ∧ y)⊕ x) ∧ (y), where⊕ is logical XOR.
Replacing the literalx ∧ y with z we get¬ (z ⊕ x) ∧ (y) ∧
(z ⇔ (x ∧ y)), which equals to¬ (z ⊕ x) ∧ (y) ∧ (z ∨ x̄ ∨ ȳ) ∧
(z̄ ∨ x)∧ (z̄ ∨ y). XOR clauses can be represented as positive and
negative equivalences, while literal conjunctions ofN literals can
be converted intoN + 1 new CNF clauses. Odd number of literals
in an XOR clause results in positive equivalences and even number
in negative equivalences. In general, a positive equivalence evalu-
ates toTRUE if an even number of literals areFALSE. Negative
equivalence evaluates toTRUE when odd number of literals evalu-
ate toTRUE [24]. Equivalence clauses are solvable in polynomial
time by Gaussian elimination or by applying special preprocess-
ing [25, 24], but Davis-Putnam based SAT algorithms can still take
exponential time on random XOR-SAT formulae [26].

In order to get the initial set of points one can either convert
the congruences into CNF and use any incremental SAT solver to
discover all the solutions. Transformation of N-literal equivalence
clause into CNF yields2N−1 clauses, and can cause a significant
memory blow out. One way to remedy this is to use solvers that can
reason about equivalence clauses [27] without converting them to
CNF.

For finding an inverse of Jacobian, our decision procedure re-
lies on Müller-Seidl algorithm for solving linear congruences. The
inverse of Jacobian needs to be computed only for the base case.
Furthermore, systems of equations resulting from softwareverifi-
cation are often incomplete, so in that case it can be immediately
concluded that Jacobian will be singular and have no inverse.

The second term in recurrence in Eq. 4 can be easily computed
by substituting the variables with concrete values. Even ifthe
system of equations is incomplete, all the concrete solutions mod 2
will be discovered in the base step.

4.1 Algorithm

The algorithm for solving non-linear congruences is presented in
Listing 2. It finds one solution if a system of non-linear congru-
ences with multiple moduli is satisfiable, or returnsUNSAT if there
is no solution. According to our experience, many problems in
software verification form incomplete systems of congruences and
therefore are, most often, easily satisfiable. That insightmotivated
us to organize the search as a depth first search (DFS).

Parameters to the algorithm areS – FIFO queue for storage of
temporal solutions,~f – initial set of congruences,~fBOOL – simpli-
fied (according to Fermat’s little theorem and coefficient reduction)
congruences mod 2, and~m – a column vector of moduli. Procedure
EXTEND performs zero/sign extension of concrete assignments to
variables. Only concrete values that participate in expressions with
mixed types need to be extended.

Although there exist efficient algorithms for computing sparse
Jacobian matrices [28], we assume only a simple polynomial
derivation for computing Jacobian.

THEOREM 2 (Soundness and completeness).Assuming a sound
and complete SAT solver, the algorithm is sound and complete.

Proof 2. Soundness.It follows straightforwardly form the check
at line 11. Reaching the target ringM = 2k, points that do
not satisfy ~f (~xk−1) ≡ 0 mod 2k are discarded. Hence, the
algorithm cannot return a spurious solution.

Completeness.The completeness of the lifting process follows from
the mathematical derivation of the Newton’s iteration given before.
The only part that remains to be proven is the completeness of
solving the base case. Any satisfiable system of congruencesmod
2 has a finite number of solutions. From the assumption of a sound
and complete SAT solver it follows that the SAT solver will discover
all and only valid solutions. This concludes the proof.�

THEOREM3 (Termination).Assuming that the SAT solver termi-
nates, the above algorithm terminates too.

Proof 3. There is a finite number of solutions of the base case.
A new blocking clause is added in line 7 for each solution. That
prevents the rediscovery of the same solution. Terminationof the
base case follows. Lifting process itself terminates because at each
iteration only a finite number of solutions can be generated,and
there is a final number of iterations.�

THEOREM4 (Optimality). Given an unsatisfiable system of con-
gruences, the algorithm will prove unsatisfiability examining a min-
imal number of bits.

Proof 4. A solution ~xk mod 2i is also a solution mod2j :
∀i, j | i > j > 0. By contrapositive argument it follows that
if there is no solution mod2j , then there is no solution mod
2i, i > j > 0. As the algorithm starts with a base case and it-
eratively lifts the solutions in a DFS manner, it follows that for
each initial point it will prove unsatisfiability mod2k, wherek is
the smallestk for which the system becomes unsatisfiable.�

It is important to note that because the algorithm enumerates
concrete solutions (if there are any), slack variables are not needed.
The lifting algorithm needs to be aware of the types of variables,
but range constraints need not be expressed explicitly. Evaluating
inequalities is trivial as each concrete point is evaluatedagainst the
set of inequalitiesD.

4.2 Extensions and Optimizations

In this section we propose an extension and suggest several possi-
ble optimizations of the basic approach. So far, we presented the
mathematical tools for solving systems of non-linear congruences
and therefore also how to reason about multiplication of bounded
integers. Handling logic operators with a modular arithmetic deci-
sion procedure is much harder. Strictly speaking, Newton’sitera-
tion is defined only on multiplication and addition, so logicoper-
ators cannot be directly supported. There are several alternatives.
One possibility would be to solve the system of equations, and rea-
son about bit-vector operators later. The bit-vector operators repre-
sent additional constraints that should be used to prune thesearch
space during iteration. Using them only after the final solutions are
found would result in a performance penalty. The second option
is to encode bit-vector operators as additional linear congruences
and inequalities (section 3). A disadvantage of this approach are
large constants that can appear, which in general slow down Sim-
plex and integer solvers. Additionally, all the inequalities are solved
only after concrete solutions of non-linear congruences are avail-
able. The approach we take is to represent the bit-vector operators
as additional non-linear congruence constraints. These additional
constraints prune the search space as early as possible.

A system of non-linear congruences with multiple moduli is a
system such thatmi ≤ mj for i < j. It should be obvious that
generality is not lost. A set of congruences with multiple moduli
can be solved as a system of congruences with a single modulo
M = LCMi (mi), whereLCM is the least common multiple:

6 2005/7/18

Algorithm 2 DFS decision algorithm for solving non-linear congruenceswith multiple moduli

1: procedure SOLVE(S , ~f , ~fBOOL, ~m)

2: J =
h

∂fi

∂xj

i
, 0 ≤ i < m, 0 ≤ j < n ⊲ Compute Jacobian

3: M ← LCMi (mi) ∈ ~m

4: while
�
~x1 ← SAT

�
~fBOOL

��
6= UNSAT do

5: S ← {〈~x1, 2〉}
6: J = J (~x1) ⊲ Evaluate Jacobian in the initial point

7: ~fBOOL ← ~fBOOL ∧
�P

li∈supp(~x1) ¬li

�
⊲ Add a blocking clause

8: while S 6= ∅ do
9: pick 〈~xk−1, k〉 ∈ S ⊲ Take next initial point

10: S ← S\{〈~xk−1, k〉}

11: if ~f (~xk−1) ≡ 0 mod 2k then
12: if k = M then
13: return ~xk−1

14: end if
15: if ∃J−1 then

16: S ← S ∪

�
〈~xk−1 +

�
−J−1 ·

�
~f(~xk−1)

2k−1

�
mod 2

�
· 2k−1 mod 2k, k + 1〉

�
17: else if

�
~f(~xk−1

2k−1

�
≡ 0 mod 2 then

18: S ← S ∪
�
〈~xk−1 + ~t · 2k−1, k + 1〉

	
, 0 ≤ ti ≤ 1, |xi| ≥ k

19: else
20: break ⊲ Discard bad starting point
21: end if
22: for all xi ∈ ~xk−1 : |xi| < k do
23: EXTEND(xi) ⊲ Zero/sign extension
24: end for
25: end if
26: end while
27: end while
28: return UNSAT

29: end procedure

f1 (x1, . . . , xn) ≡ 0 mod m1

.

fr (x1, . . . , xn) ≡ 0 mod mr

=⇒
M

m1
· f1 (x1, . . . , xn) ≡ 0 mod M

.
M

mr

· fr (x1, . . . , xn) ≡ 0 mod M

Each congruence can be seen as a single constraint determining the
ki least significant bits of variablesx1, . . . , xn.

Given a set of base case solutions, they need to be lifted toZM .
Congruences with smaller moduli restrict fewer bits. Thus,when a
ring Zmt is reached through the iterative lifting process, all con-
gruences with modulimi < mt can be eliminated from further
consideration. The variables that appear only in congruences mod-
ulo mi can be of size at mosti, and therefore those variables need
not to be lifted further. It is important to realize that because the
system with multiple modulim1 ≤ · · · ≤ mr is less constrained
than the system of congruences modulomr, it can have a model,
while the second may not.

To support bit-vector operators, we need one more definition
– a definition of variable types. Types will be used only to tell
the lifting algorithm when a variable has been computed to its full
precision. At that point, the algorithm will consider the computed

value to be the exact solution and will not lift it further. Atype
of a variable is denoted byintk for signed bit-vectors anduintk

for unsigned. In both casesk denotes the ringZ2k . Subscript
represents the size of the variable in bitsk = |a|. If two variables of
different types appear within the same expression, sign (resp. zero)
extension is performed for signed (resp. unsigned) during the lifting
of concrete values.

Logic and bit-vector operators can be encoded as non-linear
congruences with multiple moduli (see Table 1). Extension to bit-
wise operators is straight-forward. A new variable is introduced
for each bit and the bit vector is assembled by multiplying each
variable with corresponding power of 2. Instead of introducing all
variables at once, variables can be introduced in a lazy manner as
needed. If the set of constraints can be proven to be unsatisfiable
by inspecting only a few least significant bits, the overheadof en-
coding will be largely avoided.

Logic operators (XOR⊕, OR∨, AND ∧, and equivalence⇔)
are defined on bits. Left (resp. right) shift of bit-vectorb by x
positions is denoted asshl (b, x) (resp.shr (b, x)), wherex is of
an arbitrary unsigned integer type. Concatenation is appending one
bit-vector to another and it is written asa@b. In general, the types
of a andb can differ. The resulting bit-vector must be large enough
to accommodate the result, more precisely|d| = |a| + |b| for
d = a@b. All the operators, exceptshr, are defined equally for
signed bounded integers. Signed right shifta = shrs (b, x) can be
computed through unsigned shifts as shown.

7 2005/7/18

a, b : uintk a = shl (b, x) a ≡ 2x · b mod 2k

a, b : uintk; c : uintk−x a = shr (b, x) c ≡ b mod 2x

a · 2x ≡ b− c mod 2k

a, b, c : intk; d : uint1 a = shrs (b, x) d ≡ shr (b, k − 1) mod 2
c ≡ shl (shr (−1, k − x) , k − x) mod 2k

a ≡ c · d + shr (b, x) mod 2k

a : uinti−j+1; b, c : uintk a = b [i : j] c ≡ shl (b, k − i− 1) mod 2k

a ≡ shr (c, k − i + j − 1) mod 2i−j+1

a : uintka ; b : uintkb
; d : uintka+kb

d = a@b d ≡ shl (a, kb) + b mod 2ka+kb

a, b : uint1 a = ¬b a ≡ b + 1 mod 2
a, b : uint1 a = b ∨ c a ≡ b · c + b + c mod 2
a, b : uint1 a = b ∧ c a ≡ b · c mod 2
a, b : uint1 a = b⊕ c a ≡ b + c mod 2

Table 1. Bit-vector operations on unsigned bounded integers

EXAMPLE 3. Let us consider encoding a simple disjunct of linear
into a conjunct of non-linear constraints. The given constraints
are: a, b, c : uint32 and a == b ∨ a < c. Modulo is232 and
will not be explicitly written. The second term of the disjunct can
be rewritten asa == c + x, x > 0, x : uint32. The decision
procedure interprets equality as congruence, hence we get asystem
of constraints(a ≡ b∨a ≡ c+x)∧ (0 ≤ a, b, c, x < 232)∧ (x >
0). Variablex is a slack variable. Now, we introduce two additional
slack variablesy and z, such thaty · z ≡ 0 and y, z : uint32. It
follows that the conjunction of constraints(a ≡ b + y) ∧ (a ≡
c + x + z) ∧ (y · z ≡ 0) ∧ (x > 0) ∧ (0 ≤ a, b, c, x, y, z <
232) ∧ (y · z < 232) is equisatisfiable to the original disjunct. The
producty · z must not overflow, as one slack variable might be a
zero divisor of the other, hence the last constraint.

The proposed algorithm has two performance bottlenecks. Ifthe
system of congruences is easily satisfiable and has a large number
of solutions, but the inequalities make it unsatisfiable, the algorithm
would enumerate all the concrete solutions. Running a negative
cycle detection as a preprocessing step decreases the likelihood
of this happening. The second bottleneck is the line 18. ForN
variables there might be2N bits that need to be considered at each
lifting step in this case. It might be possible to use Horner’s scheme
to decrease the number of cases. Another approach that could
be effective is to translate a system of multivariate polynomial
congruences into an isomorphic system of univariate congruences
[29], do the lifting on the system of univariate congruencesand
reconstruct the solutions.

4.3 Comparison with SAT Encodings

The logic of bit-vectors for Nelson-Oppen setting has been thor-
oughly analyzed by Barrett et al. and Ganesh at al. [30, 31]. Their
decision procedure is based on an eager conversion to boolean sat-
isfiability instance which is given to a SAT solver. UCLID is an-
other tool that is based on eager conversion to SAT [32]. Eachbit
of each bit-vector is converted into a boolean variable. Operators
are encoded explicitly, even multiplication, which is known to be a
hard problem for both SAT solvers and model checkers alike [33].

In the linear case, polynomial preprocessing algorithm assures
that the subset of the set of constraints that can be solved inlinear
time is solved in linear time. No SAT solver can guarantee that, as
explained on the example of XOR clauses.

According to the proof of optimality, it follows that our deci-
sion procedure will examine minimal number of bits for unsat-
isfiable sets of congruences. SAT solvers are likely to get lost in
the problem choosing wrong variables for splitting and cannot pro-
vide such guarantees. Our approach is insensitive to the exponents
or the number of multiplications, while each additional multiplier

makes the problem much harder for SAT solvers. Finally, logical
constraints are encoded as congruences and can therefore beused
early during the search.

5. Nelson-Oppen Integration
Automated theorem provers are the engines of many formal ver-
ification tools. Decision procedures for theories that meetcertain
requirements can be integrated in a modular way by using Nelson-
Oppen framework for combining theories [2, 3]. Nelson-Oppen
method is based on three basic assumptions:

1. the formula to be tested for satisfiability is quantifier free
2. the signatures of the theories aremutually disjoint
3. the theories must bestably infinite

Reasoning about quantified theories is out of the scope of this
paper, so we will not address this issue. Although the second
assumption can be somewhat relaxed [34], we will assume thatthe
signatures are mutually disjoint.

An excellent introduction to combining theories and related
notions, like stable-infiniteness, was given in [35]. A theory T
is stably infinite if for everyT -satisfiable quantifier free formula
φ there exists aT -interpretation satisfyingφ whose domain is
infinite.

DEFINITION 1. A signatureΣ consists of a set of constantsΣC ,
function symbolsΣF , and a set of predicate symbolsΣP . A Σ-
theory is any set ofΣ-sentences.Σ-formulae are defined in the
usual way. The theory of modular arithmeticM with signatureΣ
is defined as:

• ΣF = {+, ∗c} | c ∈ Zm, for the linear case
• ΣF = {+, ∗} | c ∈ Zm, for the non-linear case
• +, -, ∗, and∗c are interpreted as standard addition, subtrac-

tion, multiplication, and multiplication with a constantc over
Zm

• ΣC = Z

• ΣP = {≡, <,≤, >,≥}
• x ≡ y mod mk iff x = y + t ·mk,∀t ∈ Z

• ΣP \ {≡} defined overZ.

In the following discussion it will be demonstrated that thethe-
ory of linear modular arithmetic can be simulated with the theory
of unbounded integers with a set of bounds over each variable. In-
equality is well defined over the set of integers. The same reason-
ing applies to the non-linear case. The only distinction is that range
constraints are implicit and the decision procedure produces con-
crete solutions, so an integer solver is not called. To show that the

8 2005/7/18

theoryM is stably infinite, we will start with a theory of unbounded
integers, which is known to be stably infinite. We introduce aset of
equations over fresh variablesV = {vi = i | 0 ≤ i < maxk mk}.
Integer constants are interpreted only byM , but variablesvi can be
shared. The theory remains stably infinite.

When Müller-Seidl algorithm returns a set of parametric so-
lutions, we’re only interested in a subset of all possible solu-
tions, namely those allowed by variable types. Range constraints
can be represented as disjunctions of equalities, for ex.P =�
x = v0 ∨ x = v1 ∨ · · · ∨ x = v2k−1

	
, and can be passed toM

for each variablex : uint2k . As range predicates can be seen as a
part of normal process of exchanging equalities, rather than domain
restrictions, the theory of modular arithmetic is stably infinite. The
notion of range predicates was first mentioned but not elaborated
by Barret et al. [12]8. Instead of passing huge disjunctions of equal-
ities over the interface, range predicates can be implicitly inferred
from variable types.

Congruence operator isM -specific. Thus, the decision proce-
dure forM cannot propagate congruences. This does not represent
a problem as the theory of linear modular arithmetic is simulated
with a theory of unbounded integers and the decision procedure
infers equalities overZ, which can be shared. The theory of non-
linear modular arithmetic is not directly simulated by the theory of
unbounded integers as such theory would be undecidable. Rather,
the decision procedure returns concrete points fromZ

N
m, whereN

is the number of variables. Without loss of generality, suchpoints
can be seen as points fromZN . Again, both equality and inequality
is well defined on any subset ofZ.

Modulo operation partitions the set of integers into equivalence
classes. For modulom there are exactlym equivalence classes. The
set of minimal elements of all equivalence classes covers exactly
the range{0, . . . , m − 1}, assuming unsigned bounded integers.
It follows that the inequalities used in programming are actually
defined over the set of minimal elements of equivalence classes.

DEFINITION 2 (Bounded inequalities).For a ring Zm, bounded
inequalities⊲⊳m, ⊲⊳∈ {<,≤, >,≥} are defined over the minimal
elements of equivalence classes in which operation modm parti-
tions the set of integersZ.

THEOREM 5 (Relational Equivalence).Given a, b ∈ Zm such
that 0 ≤ a, b < m, a ⊲⊳m b iff a′ ⊲⊳ b′ for a′, b′ ∈ Z and
a′ = a, b′ = b, 0 ≤ a′, b′ < m.

The proof trivially follows from the properties of inequality re-
lations. Thus, we can reason about bounded inequalities using in-
equalities over integers. Due to range constraints, bounded inequal-
ities cannot be used to detect overflows (unless a larger datatype is
used, as shown before). If an overflow happens, the variable will no
longer be a minimal element of its equivalence class. For that rea-
son, our decision procedure interprets inequalities over the set of
unbounded integers, making detection of overflows possible, while
respecting the exact semantics of bounded inequalities.

Equality generation is the last issue that needs to be satisfied.
The theory of integers (and therefore of modular arithmetic) is non-
convex. Simply put, the theory might imply a disjunction of equali-
ties, without implying a single equality. Recently it has been proven
that generation of disjunctions of equalities isNP-complete [16]
for UTVPI constraints (the same result holds for differencecon-
straints). As general ILP constraints are more expressive,it follows
that generating disjunctions of equalities for the theory of modular
arithmetic is at leastNP-complete . All equalities and disjunctions
of equalities over shared variables can be generated using abrute-
force algorithm in2 ·

�
n

2

�
calls to anNP-complete decision pro-

8 Originally called type predicates.

cedure, wheren is the number of shared variables. This is a trivial
corollary following from the decidability requirement on Nelson-
Oppen theories.

EXAMPLE 4. In this example we will illustrate how to generate all
equalities and disjuncts of equalities with a brute-force algorithm
in 2 ·

�
n

2

�
calls to the decision procedure for (non)-linear modular

arithmetic. LetS = s1, . . . , sn be a set of shared variables be-
tween theoryM and other theories. Leteij denotesi = sj and
¬eij its negation. There can be

�
n

2

�
possible equalities between

shared variables. First, it needs to be checked whetherM implies
any equalities by finding all pairs(i, j) such thatM ⇒ eij andi 6=
j. This can be done by checking the unsatisfiability of

�
n

2

�
formulas

M ∧ ¬eij . The set of found equalities is denoted asE. In the next
step we check the unsatisfiability ofM

V
i,j ¬eij | i 6= j∧eij 6∈ E.

If satisfiable,M doesn’t imply a disjunction of equalities and we
are done. Otherwise, we examine the proof of unsatisfiability. The
set of inequalities involved in the proof of unsatisfiability represents
a single disjunct. We eliminate one of the equalities, and repeat the
procedure. As there can be at most

�
n

2

�
equalities, generation of

disjuncts of equalities requires at most
�

n

2

�
calls. Thus, all equal-

ities and a disjunction of remaining equalities can be inferred in
2 ·
�

n

2

�
calls in the worst case.

In practice, it suffices to infer only one equality or one disjunct
at the time to enable the theorem prover to make further progress.
Incremental decision procedure can be used for the first step(infer-
ring equalities). Generation of disjuncts of equalities can be imple-
mented by a resettable decision procedure that avoids redoing all
the work when a single constraint is removed.

An important question is whether generation of equalities can
be circumvented. Nelson-Oppen method is based on the exchange
of equalities. A promising approach for circumventing the genera-
tion of equalities are layered theorem provers [18] that sacrifice the
deduction power and modularity for avoiding the equality genera-
tion. The layered approach tries to solve the problem by a series
of incrementally more expensive decision procedures. The last de-
cision procedure that MathSAT uses at the end is an incomplete
integer solver based on doubly exponential Fourier-Motzkin algo-
rithm. Hence, it seems to be at the disadvantage for integer prob-
lems. Furthermore, it can’t handle multiplication and integer over-
flows/underflows.

6. Conclusions and Open Problems
This paper presents a novel way to reason about bounded integers,
where each integer variable has predefined upper and lower bounds.
Bounded integers correspond to finite representations of program
variables in the hardware. Instead of treating these bounded-integer
variables as bit-vectors [36], the modular arithmetic decision pro-
cedures described in this paper, interprets arithmetic operations on
these variables as operations performed modulo2k, for an appro-
priatek. We treat linear and non-linear case separately. For each
case we propose a distinct decision procedure and analyse advan-
tages and disadvantages.

The authors believe that this paper makes an important step
in building efficient linear and non-linear decision procedures for
bounded integers that support all integer operations used in pro-
gramming, including multiplication and logical operations.

This paper also presents some interesting open problems. First,
the lifting scheme described in this paper applies to concrete so-
lutions, forcing the decision procedure to enumerate all solutions
in the worst case. This can be improved by designing a lifting
scheme which works onsymbolicsolutions, or equivalently on sets
of concrete solutions. Another important question is whether equal-
ity generation is a too expensive requirement. Giving away some

9 2005/7/18

deductive power and modularity in exchange for being able toavoid
generation of equalities might be a valuable tradeoff for software
model checking.

Acknowledgments
We would like to thank Shuvendu Lahiri, Peter Montgomery, Ce-
sare Tinelli, and Calogero Zarba for constructive commentsand
interesting discussions.

References
[1] Detlefs, D., Nelson, G., Saxe, J.S.: Simplify: A TheoremProver for

Program Checking. Technical report, HP Laboratories Palo Alto,
Technical Report HPL-2003-148 (2003)

[2] Nelson, G.: Techniques for program verification. PhD thesis, Stanford
University (1979)

[3] Nelson, G., Oppen, D.C.: Simplification by. ACM Transactions on
Programming Languages and Systems1 (1979) 245–257

[4] Müller-Olm, M., Seidl, H.: Analysis of Modular Arithmetic. In: To
appear in ESOP 2005. (2005)

[5] Ball, T., Rajamani, S.K.: The SLAM Project: Debugging System
Software via Static Analysis. In: POPL 2002. (2002) 1–3

[6] Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software
Verification with Blast. In: Proceedings of the 10th SPIN Workshop,
Springer (2003)

[7] Flanagan, C., Leino, K., Lillibridge, M., Nelson, G., Saxe, J., Stata,
R.: (Extended static checking for Java)

[8] Harrison, W.: Compiler analysis for the value ranges of variables.
IEEE Transactions on Software Engineering3 (1977) 243–250

[9] Postel, J.: Transmission Control Protocol. RFC 793, USC/Informa-
tion Sciences Institute (1981)

[10] Braden, R.: Requirements for Internet hosts – Communication layers.
RFC 1122, USC/Information Sciences Institute (1989)

[11] Matiyashevich, Y.: Hilbert’s10th Problem: What can we do with
Diophantine equations? In: A talk given at a seminar of IREM in
Paris. (2001)

[12] Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-
vector arithmetic. In: Proceedings of the 35th Design Automation
Conference. (1998) San Francisco, CA.

[13] Cyrluk, D., Möller, O., Rueß, H.: An efficient decisionprocedure
for the theory of fixed-sized bit-vectors. In Grumberg, O., ed.: 9th
International Conference on Computer-Aided Verification (CAV’97).
Volume 1254 of Lecture Notes in Computer Science., Springer-Verlag
(1997) 60–71

[14] Clarke, E., Kroening, D.: Hardware verification using ANSI-C
programs as a reference. In: Proceedings of ASP-DAC 2003, IEEE
Computer Society Press (2003) 308–311

[15] von zur Gathen, J., Gerhard, J.: Modern Computer Algebra.
Cambridge University Press,2

nd edition (2003)
[16] Lahiri, S.K., Musuvathi, M.: An Efficient Decision Procedure for

UTVPI Constraints. Technical report, Microsoft Research Technical
Report MSR-TR-2005-67 (2005)

[17] Matula, D.W., Fit-Florea, A., Thornton, M.A.: Table Lookup
Structures for Multiplicative Inverses Modulo2k. In: Proceedings of
17

th IEEE Symposium on Computer Arithmetic ARITH-17. (2005)
[18] Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum,

P., Schulz, S., Sebastiani, R.: An Incremental and Layered Procedure
for the Satisfiability of Linear Arithmetic Logic. In Halbwachs, N.,
Zuck, L.D., eds.: Tools and Algorithms for the Constructionand
Analysis of Systems (TACAS 2005). Volume 3440 of Lecture Notes
in Computer Science., Springer (2005) 317–333

[19] Sierksma, G.: Linear and integer programming: theory and practice.
Marcel Dekker (2002)

[20] Yun, D.Y.Y.: Algebraic algorithms using p-adic constructions. In:
Proceedings of the third ACM symposium on symbolic and algebraic
computation. (1976) 248–259

[21] Zippel, R.: Effective Polynomial Computation. KluwerAcademic
Publishers (1993)

[22] Rosen, K.H.: Elementary Number Theory and Its Applications,4th

edition. Addison Wesley (2000)
[23] Patarin, J., Goubin, L.: Trapdoor One-Way Permutations and

Multivariate Polynomials. In: Proceedings of1st International
Information and Communications Security Conference. (1997)

[24] Warners, J.P., van Maaren, H.: Recognition of tractable satisfiability
problems through balanced polynomial representations. In: Proceed-
ings of the 5th Twente workshop on on Graphs and combinatorial
optimization, Elsevier Science Publishers B. V. (2000) 229–244

[25] Warners, J.P., Van-Maaren, H.: A two phase algorithm for solving a
class of hard satisfiability problems. Operations Researchletters23
(1998) 81–88

[26] Jia, H., Moore, C., Selman, B.: From spin glasses to hardsatisfiable
formulas. In: Proceedings of SAT 2004. (2004)

[27] Babić, D., Hu, A.J.: Hypersat. In: To appear in SAT 2005competition
proceedings. (2005)

[28] Hossain, A.K.M.S.: On The Computation of Sparse Jacobian
Matrices and Newton Steps. PhD thesis, Department of Informatics,
University of Bergen, Norway (1998)

[29] Zippel, R.: Newton’s iteration and the sparse Hensel algorithm.
In: Proceedings of the fourth ACM symposium on symbolic and
algebraic computation. (1981) 68–72

[30] Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-
vector arithmetic. In: Proceedings of the 35th Design Automation
Conference. (1998) 522–527

[31] Ganesh, V., Berezin, S., Dill, D.L.: Technical Report:A Decision
Procedure for Fixed-Width Bit-Vectors. Technical report,Stanford
University (9th April 2005)

[32] Lahiri, S.K., Seshia, S.A.: The UCLID Decision Procedure. In:
Proceedings of Computer-Aided Verification conference. (2004)

[33] Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded ModelChecking
Using Satisfiability Solving. Formal Methods in System Design
(2001) 7–34

[34] Zarba, C.G.: Combining non-disjoint theories. In Gor’e, R., Leitsch,
A., Nipkow, T., eds.: International Joint Conference on Automated
Reasoning (Short Papers). Technical Report DII 11/01, Universit‘a of
Siena, Italy (2001) 180–189

[35] Manna, Z., Zarba, C.G.: Combining decision procedures. In: Formal
Methods at the Cross Roads: From Panacea to Foundational Support.
Volume 2757 of Lecture Notes in Computer Science., Springer(2003)
381–422

[36] Barrett, C., Berezin, S.: CVC Lite: A new implementation of the
cooperating validity checker. In Alur, R., Peled, D.A., eds.: CAV.
Lecture Notes in Computer Science, Springer (2004)

10 2005/7/18

