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Abstract. Testing tasks can be viewed (and organized!) as games against nature.
We study reachability games in the context of testing. Such games are ubiqui-
tous. A single industrial test suite may involve many instances of a reachability
game. Hence the importance of optimal or near optimal strategies for reachability
games. One can use linear programming or the value iteration method of Markov
decision process theory to find optimal strategies. Both methods have been im-
plemented in an industrial model-based testing tool, Spec Explorer, developed at
Microsoft Research.

1 Introduction

If you think of playful activities, software testing may be not the first thing that comes to
your mind, but it is useful to see software testing as a game that the tester plays with the
implementation under test (IUT). We are not the first to see software testing as a game
[2] but our experience with building testing tools at Microsoft leads us to a particular
framework.

An industrial tester typically writes an elaborate test harness around the IUT and
provides an application program interface (API) for the interaction with the IUT. You
can think of the API sitting between the tester and the IUT. It is symmetric in the sense
that it specifies the methods that the tester can use to influence IUT and the methods
that the IUT can use to pass information to the tester. From tester’s point of view, the
first methods are controllable actions and the second methods are observable actions.

The full state of the IUT is hidden from the tester. Instead, the tester has a model
of the IUT’s behavior. A model state is given by the values of the model variables
which can be changed by means of actions whether controllable or observable. But
this is not the whole story. In addition, there is an implicit division of the states into
active and passive; in other words there is an implicit Boolean state variable “the state
is active”. The initial state is active but, whenever the model makes a transition to a
target state where an observable action is enabled, the target state is passive; the target
state is active otherwise. At a passive state, the tester waits for an observable action.
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If nothing happens within a state-dependent timeout, the tester interprets the timeout
itself as a default observable action which changes the passive state into an active state
with the same values of the explicit variables. At an active state the tester applies one
of the enabled controllable actions. Some active states are final; this is determined by
a predicate on state variables. The tester has an option of finishing the game whenever
the state is final.

We presume here that the model has already been tested for correctness. We are
testing IUT for the conformance to the model. Here are some examples of how you
detect nonconformance. Suppose that the model is in a passive state s. If only actions
a, b are enabled in s but you observe an action c, different from a and b, then you
witness a violation of the conformance relation. If the model tells you that any non-
timeout action enabled in s returns a positive integer but the IUT throws an exception
or returns −1, then, again, you have discovered a conformance violation. This kind of
conformance relation is close to the one studied by de Alfaro [9].

In a given passive state the next observable action and its result are not determined
uniquely in general. What are the possible sources of the apparent nondeterminism?
One possible source is that the IUT interacts with the outside world in a way that is
hidden from the tester. For example, it is in many cases not desirable for the tester to
control the scheduling of the execution threads of a multithreaded IUT; it may be even
impossible in the case of a distributed IUT. Another possible source of nondeterminism
is that the model state is more abstract than the IUT state. For example, the model might
use a set to represent a collection of elements that in reality is ordered in one way or
another in the IUT.

The group on Foundations of Software Engineering at Microsoft Research devel-
oped a tool, called Spec Explorer, for writing, exploring, and validating software mod-
els and for model-based testing of software. Typically the model is more abstract and
more compact than the IUT; nevertheless its state space can be infinite or very large.
It is desirable to have a finite state space of a size that allows one to explore the state
space. To this end, Spec Explorer enables the tester to generate a finite but represen-
tative set of parameters for the methods. Also, the tester can indicate a collection of
predicates and other functions with finite (and typically small) domains and then follow
only the values of these functions during the exploration of the model [11]. These and
other ways of reducing the state space are part of a cohesive finite state machine (FSM)
generation algorithm implemented in the Spec Explorer tool; the details fall outside the
scope of this paper. The tool is briefly described in [12]; a better description of it is in
preparation. The tool is available from [1].

The game that we are describing is an example of so-called games against nature
which is a classical area in optimization and decision making under uncertainty going
back all the way to von Neumann [22]. Only one of the two players, namely the tester,
has a goal. The other player is disinterested and makes random choices. We make a
common assumption that the random choices are made with respect to a known prob-
ability distribution. How do we know the probability distribution? In fact, we usually
don’t. Of course symmetry considerations are useful, but typically they are insufficient
to determine the probability distribution. One approximates the probability distribution
by experimentation.
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The tester may have various goals. Typically they are cover-and-record goals e.g.
visit every state (or every state-to-state transition) and record everything that happened
in the process. Here we study reachability games where the goal is to reach a final state.
It is easy to imagine scenarios where a reachability game is of interest all by itself. But
we are interested in reachability games primarily because they are important auxiliary
games. In an industrial setting, the tester often runs test suites that consist of great many
test segments. The state where one test segment naturally ends may be inappropriate
for starting the next segment because various shared resources have been acquired or
because the state is littered with ancillary data. The shared resources should be freed
and the state should be cleaned up before the segment is allowed to end. Final states are
such clean states where a new segment can be initiated. And so the problem arises of
arriving at one of the final states.

It is a priori possible that no final state is reachable from the natural end-state of
a test segment. In such a case it would be impossible to continue a test suite. Spec
Explorer avoids such unfortunate situations by pruning the FSM so that that it becomes
transient in the following sense: from every state, at least one final state is reachable
(unless IUT crashes). The pruning problem can be solved efficiently using a variation
of [8, Algorithm 1] (which is currently implemented in Spec Explorer), or the improved
algorithm in [7, Section 4].

The tester cannot run a great many test segments by hand. The testing activity at
Microsoft gets more and more automated. The Spec Explorer tool plays an important
role in the process. Now is the time to expose a simplification that we made above
speaking about the tester making moves. It is a testing tool (TT) that makes moves. The
tester programs a game strategy into the TT.

The reachability games are so ubiquitous that it is important to compute optimal
or nearly optimal strategies for them. You compute a strategy once for a given game
and then you use it over and over a great many times. Since reachability games are so
important for us, we research them from different angles.

In Section 2, reachability games are formulated, analyzed and solved by means of
linear programming. We associate a state dependent cost with each action. The optimal
strategy minimizes the expected total cost which is the sum of the costs incurred during
the execution. The main result of the section is related to [8, Theorem 9]; see Section 4
in this connection. In Section 3 we observe that a reachability game can be viewed as
a negative Markov decision process with infinite horizon [20]; the stopping condition
is the first arrival at a final state. This allows one to solve any reachability problem
using the well known value iteration method. Theorem 7.3.10 in [20] guarantees the
convergence. Finally, Section 4 is devoted to related work.

Often the value iteration method works faster than the simplex method, but linear
programming has its advantages and sheds some more light on the problem. In gen-
eral, the applicability of one method does not imply the applicability of the other. In
particular and somewhat surprisingly, linear programming is not applicable to negative
Markov decision problems in general according to [20, page 324].

Spec Explorer makes use of both, linear programming and value iteration, to gen-
erate strategies. Recall that strategy generation happens upon completion of FSM gen-
eration and a possible elimination of states from which no final state is reachable. The
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step of getting from the model program to a particular test graph is illustrated with the
following example.

Example: Chat Session We illustrate here how to model a simple reactive system. This
example is written in the AsmL specification language [15]. The chat session lets a
client post messages for the other clients. The state of the system is given by the tuple
(clients,queue,recipients), where clients is the set of all clients of the ses-
sion, queue is the queue of pending (sender,text) messages, and recipients is the set
of remaining recipients of the first message in the queue called the current message.

var clients as Set of Integer
var queue as Seq of (Integer,String)
var recipients as Set of Integer

Posting a message is a controllable action. The action is enabled if the Boolean
expression given by the require clause holds. Notice that the second conjunct of the
enabling condition is trivially true if the queue is empty.

Post(sender as Integer, text as String)
require sender in clients and

forall msg in queue holds msg.First <> sender
if queue.IsEmpty then recipients := clients - {sender}
queue := queue + [(sender,text)]

Delivery of a message is an observable action. The current message must be de-
livered to all the clients other than the sender. Upon each delivery, the corresponding
receiver is removed from the set of recipients. If there are no more recipients for the
current message, the queue is popped and the next message (if any) becomes the cur-
rent one. In other words, the specification prescribes that the current message must be
delivered to all the recipients before the remainder of the queue is processed.

Deliver(msg as (Integer, String), recipient as Integer)
require not queue.IsEmpty and then

queue.Head = msg and recipient in recipients
if recipients.Size = 1 then
if queue.Length = 1 then recipients := {}
else recipients := clients - {queue.Tail.Head.First}
queue := queue.Tail

else recipients := recipients - {recipient}

A good example of a natural finality condition in this case is queue.IsEmpty,
specifying any state where there are no pending messages to be delivered.

If we configure the chat session example in Spec Explorer so that the initial state is
({0, 1}, [], {}) with two clients 0 and 1, where client 0 only posts “hi”, and client 1 only
posts “bye”, then we get the test graph illustrated in Figure 1. The initial state is s1, and
that is also the only final state with the above finality condition.

Finally let us note that this paper addresses a relatively easy case when all the states
are known in advance. The more challenging (and important) case is on-the-fly testing
where new states are discovered as you go. In a sense, this paper is a warmup before
tackling on-the-fly testing.
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Fig. 1. Sample test graph generated by Spec Explorer from the chat model; diamonds represent
passive states; ovals represent active states; links to s′2 and s′3 represent transitions to active mode;
observable actions are prefixed by a question mark.

2 Reachability games and linear programming

We use a modification of the definition of a test graph in [19] to describe nondetermin-
istic systems. A test graph G has a set V of vertices or states and a set E of directed
edges or transitions. The set of states splits into three disjoint subsets: the set V a of
active states, the set V p of passive states, and the set V g of goal states. Without loss of
generality, we may assume that V g consists of a single goal state g such that no edge
exits from g; the reduction to this special case is obvious.

There is a probability function p mapping edges exiting from passive nodes to pos-
itive real numbers such that, for every u ∈ V p,∑

(u,v)∈E

p(u, v) = 1. (1)

Notice that this implies that for every passive state there is at least one edge starting
from it, and we assume the same for active states. Finally, there is a cost function c from
edges to positive reals. One can think about the cost of an edge as, for example, the time
for IUT to execute the corresponding function call. Formally, we denote by G the tuple

(V, E, V a, V p, g, p, c).

We assume also that for all u, v ∈ V there is at most one edge from u to v. (This
is not necessarily the case in applications; the appropriate reduction is given in Sec-
tion 2.3.) Thus E ⊂ V × V . It is convenient to extend the cost function to V × V by
setting c(u, v) = 0 for all (u, v) /∈ E.

2.1 Reachability game

Let G = (V, E, V a, V p, g, p, c) be a test graph and u a vertex of it. The reachability
game R(u) over G is played by a testing tool (TT) and an implementation under test
(IUT). The vertices of G are the states of R(u), and u is the initial state. The current
state of the game is indicated by a marker. Initially the marker is at u. If the current state
v is active then TT moves the marker from v along one of graph edges. If the current
state v is passive then IUT picks an edge (v, w) with probability p(v, w) and moves the
marker from v to w. TT wins if the marker reaches g. With every transition e the cost
c(e) is added to the total game cost.
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A strategy for (the player TT in) G is a function S from V a to V such that (v, S(v)) ∈
E for every v ∈ V a. Let R(u, S) be the subgame of R(u) when TT plays according
to S.

We would like to evaluate strategies and compare them. To this end, for every strat-
egy S, let MS[v] be the expected cost of the game R(v, S). Of course, the expected
cost may diverge, in which case we set MS[v] = ∞. We say that MS is defined if
MS [v] < ∞ for all v. If, for example, c reflects the durations of transition executions
then MS reflects the expected game duration. The expected cost function satisfies the
following equations.

MS[g] = 0
MS[u] = c(u, S(u)) + MS [S(u)] for u ∈ V a (2)

MS[u] =
∑

(u,v)∈E

{p(u, v)(c(u, v) + MS [v])} for u ∈ V p

We call a strategy S optimal if MS [v] ≤ MS′ [v] for every strategy S ′ and every
v ∈ V , or, more concisely, if MS ≤ MS′ for every strategy S ′. How can we construct
an optimal strategy? Our plan is to show that the cost vector M of an optimal strategy
is an optimal solution of a certain linear programming problem. This will allow us to
find such an M . Then we will define a strategy S such that, for all active states u,

c(u, S(u)) + M [S(u)] = min
(u,v)∈E

{c(u, v) + M [v]}. (3)

We will define transient test graph and prove that the strategy S is optimal when the test
graph is transient.

Let us suppose from here on that the set V of states is {0, 1, ..., n− 1} and that the
goal state g = 0. Consider a strategy S over G. We denote by PS the following n × n
matrix of non-negative reals:

PS [u, v] =

⎧⎨
⎩

p(u, v), if u ∈ V p and (u, v) ∈ E ;
1, if u ∈ V a and v = S(u) or if u = v = 0;
0, otherwise.

(4)

PS [u, v] is the probability of the move (u, v) when the game R(u, S) is in state u, except
that there is no move from state 0. (We could have added an edge (0, 0) in which case
there would be no exception.) So PS is a probability matrix (also called a stochastic
matrix) [10] since all entries are nonnegative and each row sum equals 1.

A strategy S is called reasonable if for every v ∈ V there exists a number k such the
probability to reach the goal state within at most k steps in the game R(v, S) is positive.
Intuitively, a reasonable strategy may be not optimal but eventually it has some chance
of leading the player to the goal state.

Lemma 1. A strategy S is reasonable for a test graph G if and only if, for some k, there
exists, for each vertex v, a path Pv of length at most k from v to the goal state such that,
whenever an active vertex w occurs in Pv , then the next vertex in Pv is S(w).
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Proof. The “only if” half is obvious, because a play in R(v, S) that reaches the goal
state in at most k steps traces out a path Pv of the required sort. For the “if” half, recall
that all the edges of G have positive probabilities. Thus, Pv has a positive probability
of being traced by a play of R(v, S), and so this game has a positive probability of
reaching g in at most k steps. ��

A nonempty subset U of V is closed if the game never leaves U after starting at
any vertex in U . If S is reasonable, no subset U of V − {g} is closed under the game
R(u, S), for any u ∈ U . This property is used to establish the following facts.

We let P ′
S denote the minor of PS obtained by crossing out from PS row 0 and

column 0.

Lemma 2. Let S be a reasonable strategy. Then

lim
k→∞

P ′
S

k = 0 (5)

and
∞∑

k=0

P ′
S

k = (I − P ′
S)−1. (6)

Proof. This follows from [10, Proposition M.3] but we present the proof here for the
sake of completeness. The top row of PS has 1 as the first element followed by a se-
quence of zeroes. Therefore for each k ≥ 0 the power P ′

S
k equals the minor of PS

k

obtained by removal of row 0 and column 0. The element P S
k[u, v] is the probability

to get from u to v in exactly k moves. Since the strategy S is reasonable, for every u
there exists an integer k such that PS

k[u, 0] > 0 and therefore the sum of the u-th row
of P ′

S
k is < 1. The same is true for P ′

S
n for any n > k; that can be proved by induction

using the fact that the only transition from 0 is to 0. Therefore there exists an integer k

and a positive real number α < 1 such that the sum of every row of P ′
S

k is at most α.
But then P ′

S
l has row sums at most αm for any m > 0 and l ≥ mk which proves the

convergence in (5) and also existence of the sum
∑∞

i=0 P ′
S

i.
Now we can prove (6). For any j > 0 we have the equality

(I − P ′
S)

j∑
i=0

P ′
S

i = (
j∑

i=0

P ′
S

i)(I − P ′
S) = I − P ′

S
j+1

.

Upon taking the limit as j → ∞ we get

(I − P ′
S)

∞∑
i=0

P ′
S

i = (
∞∑

i=0

P ′
S

i)(I − P ′
S) = I,

which proves (6). ��

Reasonable strategies can be characterized in terms of their cost vectors as follows.
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Lemma 3. A strategy S is reasonable if and only if MS is defined. Moreover, if MS

is defined then M ′
S = (I − P ′

S)−1b′S where M ′
S and b′S are the projections to the set

V −{0} of the expected cost vector MS and the “immediate cost” vector bS defined by

bS [u] =
∑
v∈V

PS [u, v]c(u, v) (∀u ∈ V ).

Proof. We first prove the direction (⇒). Assume S is a reasonable strategy and let us
show that MS exists. By using reasonableness of S we can find a natural number k
such that for any vertex v ∈ V the probability to finish the game R(v, S) within k steps
is positive and greater than some positive real number a. Let b be the largest cost of
any edge. Let us consider an arbitrary v ∈ V − {0}. For every natural number m let
us denote by Am the event that the game R(v, S) ends within km steps but not within
k(m − 1) steps, and for every integer l ≥ 0 let Bl be the event that the game does
not end within kl steps. Using P to denote probability of events, we obviously have
P (Am) ≤ P (Bm−1) for m > 0, and P (Bl) ≤ (1 − a)l for l ≥ 0. In particular, the
probability of the intersection of all the B l’s is 0, and so the Am’s constitute a partition
of almost all of the possible plays of the game. Now we can estimate MS[v] from above
as follows;

MS[v] ≤
∞∑

m=1

P (Am)kmb ≤ kb

∞∑
l=0

P (Bl)(l + 1) ≤ kb

∞∑
l=0

(l + 1)(1 − a)l = kb/a2,

which is finite. So we have proved that MS [v] is defined for every v ∈ V − {0} and, of
course, MS[0] = 0 so MS is defined. This is enough for the proof of (⇒) but we need
more information about MS .

We now prove the direction (⇐) by contraposition. Assume that S is not reasonable.
We need to show that, for some v ∈ V , MS [v] = ∞. Indeed, let v be such a vertex that
for every k > 0 the probability to reach the goal vertex in k moves in the game R(v, S)
is zero. Let A ⊂ V be the set of vertices that can be reached in the game R(v, S). Let
β = minu,w∈A,(u,w)∈E c(u, w). Then β > 0 and any run of the game of length l will
have cost at least βl. Now starting from v all runs are infinite, hence have infinite cost.
So MS [v] is undefined which is a contradiction.

Finally, we check the formula M ′
S = (I − P ′

S)−1b′S . Equation (2) tells us that, for
each u ∈ V − {0},

M ′
S [u] =

∑
(u,v)∈E

(
PS [u, v](c(u, v) + MS[v])

)
.

The c(u, v) terms in this sum give b′S[u]. The remaining terms give∑
(u,v)∈E

PS [u, v]MS [v] =
∑

v∈V −{0}
P ′

S [u, v]M ′
S[v],

where the restriction to v �= 0 is justified because MS[0] = 0. Thus, we have in matrix
form

M ′
S = b′S + P ′

SM ′
S .
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Since Lemma 2 assures us that I − P ′
S is invertible, we can algebraically transform the

last equation to the desired M ′
S = (I − P ′

S)−1b′S . ��
A vertex v of a test graph is called transient if the goal state is reachable from v.

We say that a test graph is transient if all its non-goal vertices are transient. There is a
close connection between transient graphs and reasonable strategies.

Lemma 4. A test graph is transient if and only if it has a reasonable strategy.

Proof. Let G be a transient test graph. We construct a reasonable strategy T . Using
transience of G, we fix, for every v ∈ V , a shortest path Pv to 0 (shortest in terms of
number of edges). We can arrange also that if w is a state that occurs in Pv then Pw

is a suffix of Pv . For each state v define T (v) as the immediate successor of v in Pv .
We show that T is a reasonable strategy. Let v be a vertex in V . We need to show that
there exists a number k such that the probability to reach the goal state within at most
k steps in the game R(v, T ) is positive. Let Pv be the sequence (v0, v1, . . . , vk), where
k is the length of Pv , v0 = v, and vk = 0. If vi is active, then vi+1 = T (vi) and the
probability pi of going from vi to vi+1 is 1. If vi is passive then the edge (vi, vi+1) in
E has probability pi > 0. The probability that R(v, T ) follows the sequence Pv is the
product of all the pi, so it is positive. A fortiori, the probability that it gets to the goal
state in k steps is positive.

To prove the other direction assume that G has a reasonable strategy S. Then for
each v ∈ V the game R(v, S) eventually moves the marker to the goal vertex thus
creating a path from v to g. ��

In practice, the probabilities and costs in a test graph may not be known exactly. It
is therefore important to know that, as long as the graph is transient, the optimal cost is
robust, in the sense that it is not wildly sensitive to small changes in the probabilities
and costs. This sort of robustness is, of course, just continuity, which the next lemma
establishes.

Lemma 5. For transient test graphs, the optimal cost vector M is a continuous function
of the costs c(u, v) and the probabilities p(u, v).

Proof. Throughout this proof, “continuous” means as a function of the costs c(u, v)
and the probabilities p(u, v).

Temporarily consider any fixed, reasonable strategy S for the given test graph.
Thanks to Lemma 1, S remains reasonable when we modify the probabilities (and costs)
as long as they remain positive.

The formula for bS in Lemma 3 shows that this vector is continuous. So is the
matrix I−P ′

S . Since the entries in the inverse of a matrix are, by Cramer’s rule, rational
functions of the entries of the matrix itself, we can infer the continuity of (I − P ′

S)−1

and therefore, by Lemma 3, the continuity of M ′
S . Since the only component of MS

that isn’t in M ′
S is 0, we have shown that MS is continuous.

Now un-fix S. The optimal cost vector M is simply the componentwise minimum
of the MS, as S ranges over the finite set of reasonable strategies. Since the minimum
of finitely many continuous, real-valued functions is continuous, the proof of the lemma
is complete. ��
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Of course, we cannot expect the optimal strategy to be a continuous function of
the costs and probabilities. A continuous function from the connected space of cost-
and-probability functions to the finite space of strategies would be constant, and we
certainly cannot expect a single strategy to be optimal independently of the costs and
probabilities. Nevertheless, the optimal strategies are robust in the following sense.

Suppose S is optimal for a given test graph, and let an arbitrary ε > 0 be given.
Then after any sufficiently small modification of the costs and probabilities, S will still
be within ε of optimal. Indeed, the continuity, established in the proof of Lemma 5,
of the function MS and of its competitors MS′ arising from other strategies, ensures
that, if we modify the costs and probabilities by a sufficiently small amount, then no
component MS will increase by more than ε/2 and no component of any M S′ will
decrease by more than ε/2. Since MS ≤ MS′ before the modification, it follows that
MS ≤ MS′ + ε afterward.

A similar argument shows that, if S is strictly optimal for a test graph G, in the
sense that any other S ′ has all components of MS′ strictly larger than the corresponding
components of MS , then S remains strictly optimal when the costs and probabilities
are modified sufficiently slightly. Just apply the argument above, with ε smaller than
the minimum difference between corresponding components of M S and any MS′ .

2.2 Linear programming

Ultimately, our goal is to compute optimal strategies for a given test graph G. We start
by formulating the properties of the expected cost vector M as the following optimiza-
tion problem. Let d be the constant row vector (1, ..., 1) of length |V | = n.

LP: Maximize dM , i.e.
∑

u∈V M [u], subject to M ≥ 0 and

⎧⎪⎨
⎪⎩

M [0] ≤ 0
M [u] ≤ c(u, v) + M [v] for u ∈ V a and (u, v) ∈ E

M [u] ≤ ∑
(u,v)∈E{p(u, v)(c(u, v) + M [v])} for u ∈ V p

Let us denote the inequalities above by the family {ρ i}i∈{0}∪{(u,v)∈E:u∈V a}∪V p . We
say that a solution M of LP is tight for ρi if the left hand side and the right hand side of
ρi are equal, i.e., there is no slackness in the solution of ρ i. We will use the following
lemma.

Lemma 6. If LP has an optimal solution M then for all active states u there is an edge
(u, v) ∈ E such that M is tight for ρ(u,v), and for all passive states u, M is tight for ρu.

We use the dual problem in the proof of Lemma 6. The inequalities LP can be
written in matrix form as AM ≤ b and we can formulate the dual optimization problem
as follows.

DP: Minimize Xb, subject to XA ≥ d and X ≥ 0.

Let J be the following set of indices.

J
def= {0} ∪ {(u, v) ∈ E : u ∈ V a} ∪ V p.
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It is convenient to order J in a fixed sequence (i0, i1, . . . , ik−1) such that i0 = 0. We
refer to the ordinal of i ∈ J in this sequence by ı̄. The inequalities of LP can be written
in normalized form as follows.

ρi
def=

n−1∑
j=0

A(̄ı, j)M [j] ≤ b(̄ı), i ∈ J,

where A is a k × n matrix and b is a column vector of length k.
It is helpful in understanding the notions to consider a simple example first.

Example 1. Consider the test graph G in Figure 3. The LP associated to G has the
following inequalities:

M [0] ≤ 0
M [1] ≤ c(1, 2) + M [2]
M [1] ≤ c(1, 0) + M [0]
M [2] ≤ 1

3 (c(2, 1) + M [1]) + 2
3 (c(2, 0) + M [0])

The LP in matrix form looks like:

A︷ ︸︸ ︷⎛
⎜⎜⎝

1 0 0
0 1 −1
−1 1 0
− 2

3 − 1
3 1

⎞
⎟⎟⎠

M︷ ︸︸ ︷⎛
⎝M [0]

M [1]
M [2]

⎞
⎠ ≤

b︷ ︸︸ ︷⎛
⎜⎜⎝

0
c(1, 2)
c(1, 0)

2
3c(2, 0) + 1

3c(2, 1)

⎞
⎟⎟⎠

The dual problem is to minimize Xb, subject to X ≥ 0 and

X︷ ︸︸ ︷
(x0 x(1,2) x(1,0) x2)A ≥

d︷ ︸︸ ︷
(1 1 1)

We can write it in the form of inequalities:

x0 ≥ 1 + x(1,0) + 2
3x2

x(1,2) + x(1,0) ≥ 1 + 1
3x2

x2 ≥ 1 + x(1,2)

Intuitively, xe can be understood as a flow where the strategy follows an edge with a
greater flow.

Proof (Lemma 6). Assume LP has an optimal solution M . By the Duality Theorem (see
e.g. [10, Proposition G.8]), DP has an optimal solution X . By expanding XA ≥ d we
get for each active state u an inequality of the form∑

(u,v)∈E

X((u, v)) −
∑
i∈J

au,iX (̄ı) ≥ 1, where all au,i ≥ 0, (7)
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and for each passive state i we get an inequality of the form

X (̄ı) −
∑
j∈J

ai,jX(j̄) ≥ 1, where all ai,j ≥ 0. (8)

Let u be an active state. From (7) follows that some X((u, v)) > 0, which by
Complementary Slackness [10, Proposition G.9] implies that M is tight for the corre-
sponding inequality ρ(u,v).

Let i be a passive state. From (8) follows that X (̄ı) > 0, which by Complementary
Slackness implies that M is tight for the corresponding inequality ρ i. ��

The following characterization of transient test graphs is the main result of this
section.

Theorem 1. The following statements are equivalent for all test graphs G.

(a) G is transient.
(b) G has a reasonable strategy.
(c) LP for G has a unique optimal solution M . Moreover, M = MS for some strategy

S and the strategy S is optimal.

Proof. (a) ⇔ (b) is Lemma 4. We prove (b) ⇒ (c). Assume G has a reasonable strat-
egy S. To see that LP is feasible, note that M = 0 is a feasible solution of LP. By
Lemma 3, we know that MS is defined. We show first that any feasible solution M of
LP is bounded by MS , i.e.,

M ≤ MS . (9)

Let M be any feasible solution of LP. Let M ′ be the projection of M onto the set
V − {0}; let PS and P ′

S be defined as above. LP ensures that

M ′[u] ≤
∑
v∈V

P ′
S [u, v](c(u, v) + M [v]) (∀u ∈ V ′).

The sum of the terms P ′
S [u, v]c(u, v) here is b′S[u] as defined in Lemma 3. In the sum of

the remaining terms P ′
S [u, v]M [v], we can restrict v to range over V ′ because M [0] ≤

0. Thus, we get the matrix inequality M ′ ≤ b′S + P ′
SM ′, which is equivalent to (I −

P ′
S)M ′ ≤ b′S . By Lemma 2 the inverse matrix (I − P ′

S)−1 exists and all its entries are
non-negative. So our inequality will be preserved if we multiply it by (I − P ′

S)−1 on
the left. The result is M ′ ≤ (I − P ′

S)−1b′S . Thus (9) follows by using Lemma 3 since
MS [0] = M [0] = 0.

Since LP is feasible and bounded it has an optimal solution M ∗. Lemma 6 ensures
that there exists a strategy S∗ such that

M∗[u] = c(u, S∗(u)) + M∗[S∗(u)] for u ∈ V a,

M∗[u] =
∑

(u,v)∈E

{p(u, v)(c(u, v) + M∗[v])} for u ∈ V p,

which by (2) implies that M ∗ = MS∗ . By (9) it follows that MS∗ ≤ MS for any
strategy S, and hence S∗ is optimal.
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To see that the optimal solution M ∗ is unique, suppose M + were another optimal
solution to LP. As in the preceding paragraph, it would give us a strategy S + such that
M+ = MS+ and S+ is optimal. As both S∗ and S+ are optimal, each of MS∗ and
MS+ is ≤ the other. So they are equal, and this means that M ∗ = M+.

Finally, note that (c) ⇒ (b) by Lemma 3 since MS is defined. ��

Now we presume that the test graph is transient and show how to construct an op-
timal strategy. By applying Theorem 1 and solving LP, find the cost vector M of some
optimal strategy O. In our notation, M = MO. Construct strategy S so that equation (3)
is satisfied for every active state u.

Proposition 1. The constructed strategy S is optimal.

Proof. First we check that S is reasonable. Let GS be the graph obtained from G by
removing all edges (u, v) such that u is active and v �= S(u). It is easy to see that S
is unreasonable if and only if GS has a closed vertex set that does not contain 0. By
contradiction, assume that U is such a set. By Lemmas 3 and 4 the optimal strategy
O is reasonable. Choose a vertex u ∈ U such that M [u] = minu′∈U M [u′], and let
v = S(u). Since U is a closed subset of GS , v ∈ U . By the construction of S, c(u, v)+
M [v] ≤ c(u, O(u)) + M [O(u)] = M [u]. As c(u, v) > 0, we get M [v] < M [u], which
contradicts our choice of u.

Second we prove that MS = M and so M is optimal. It suffices to prove that
M ′

S ≤ M ′ where ′, as before, signifies the projection to V − {0}. By Lemma 2, P ′
S

is invertible. By Lemma 3, M ′
S = (I − P ′

S)−1b′S . By the construction of S, we have
b′S +P ′

SM ′ ≤ b′O+P ′
OM ′ = M ′, so that b′S ≤ (I−P ′

S)M ′. By equation (6), all entries
of (I−P ′

S)−1 are non-negative, so we have (I−P ′
S)−1b′S ≤ M ′. Thus M ′

S ≤ M ′. ��

Notice that, even though an optimal strategy S yields a unique cost vector M S, S
itself is not necessarily unique. Consider for example a test graph without passive states

and with edges {1 1→ 2, 2 10→ 0, 1 10→ 3, 3 1→ 0} that are annotated with costs; clearly
both of the two possible strategies are optimal.

2.3 Graph transformation

We made the assumption that for each two vertices in the graph there is at most one
edge connecting them. Let us show that we did not lose any generality by assuming
this. For an active state u and for any v ∈ V let us choose an edge leading from u to
v with the smallest cost and discard all the other edges between u and v. For a passive
state u replace the set of multiple edges D between u and v with one edge e such that
p(e) =

∑
e′∈D p(e′) and c(e) = (

∑
e′∈D p(e′)c(e′))/p(e). This merging of multiple

edges into a single edge does not change the expected cost of one step from u. The graph
modifications have the following impact on LP. With removal of the edges exiting from
active states we drop the corresponding redundant inequalities. The introduction of one
edge for a passive state with changed c and p functions does not change the coefficients
before M [v] in LP in the inequality corresponding to passive states and therefore does
not change the solution of LP.
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2.4 Graph compression

Every test graph is equivalent, as far as our optimization problems are concerned, to one
in which no edge joins two passive vertices. The idea is to replace the edges leaving a
passive vertex u in the following manner. Consider all paths emanating from u, passing
through only passive vertices, but then ending at an active vertex or the goal vertex.
Each such path has a probability, obtained by multiplying the probabilities of its edges,
and it has a cost, obtained by adding the costs of its edges. Replace each such path
by a single edge, from u to the final, active vertex in the path; give this new edge
the same probability and cost that the path had. If this replacement process produces
several edges joining the same pair of vertices, transform them to a single edge as in
Subsection 2.3. The details of test graph compression are given in the appendix.

One may wonder if such a compression is worthwhile. The answer depends to a
great extent on the topology of the test graph. It may sometimes pay off to apply the
compression to certain subgraphs of the full test graph, rather than to the whole test
graph. Let us illustrate a fairly common situation that arises in testing highly concurrent
systems where the compression would reduce the number of states and edges. We re-
visit the chat model above and extend it as follows. There is an additional state variable
nClients representing the number of clients entering in the chat session, so the state is
given by the tuple (nClients,clients,queue,recipients). There is a new con-
trollable action Start that starts the entering phase of clients by updating nClients.
There is also a new observable action Enter representing the event of a client entering
the session. A client that has already entered the session cannot enter it again.

var nClients as Integer

Start(n as Integer)
require nClients = 0 and n > 0
nClients := n

Enter(c as Integer)
require nClients > 0 and c in {0..nClients-1} - clients
clients := clients + {c}

Assume also that the enabling condition (require clause) of the Post action is
extended with the condition that the entering phase was started and that all clients have
entered the session, i.e., nClients > 0 and clients.Size = nClients. So the
“posting” phase is not started until all clients have entered the session. Suppose that
the initial state s0 is (0, ∅, [], ∅). By generating the FSM from the model program with
3 clients, the initial part of the test graph up to the posting phase that starts in state
s1 is illustrated in Figure 2.a. The compression of the subgraph between the states s 0

and s1 would yield the subgraph shown in Figure 2.b with a single passive state p and
a transition from p to s1 representing the composed event of all three clients having
entered the session in some order.

The effect of the compression algorithm is in some cases, such as in this example,
similar to partial order reduction. Obviously, reducing the size of the test graph im-
proves feasibility of the linear programming approach. However, for large graphs we
use the value iteration algorithm, described next. Due to the effectiveness of value iter-
ation the immediate payoff of compression is not so clear, unless compression is simple
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a)

s0 p s1
Start(3)

0
1

2

1
2

0

2

0
1

2

1

0

b)

s0 p s1
Start(3) {0,1,2}

Fig. 2. a) Test subgraph obtained by exploring the extended chat model with 3 clients up to the
posting phase; transitions from passive states (diamonds) are labeled by the respective client
entering the session. b) Same subgraph after compression.

and the number of states is reduced by an order of magnitude. We are still investigating
the practicality of compression and it is not yet implemented in the Spec Explorer tool.

3 Value iteration

Value iteration is the most widely used algorithm for solving discounted Markov deci-
sion problems (see e.g. [20]). Reachability games give rise to non-discounted Markov
decision problems. Nevertheless the value iteration algorithm applies; this is a practical
approach for computing strategies for transient test graphs. Test graphs, modified by in-
serting a zero-cost edge (0, 0), correspond to a subclass of negative stationary Markov
decision processes (MDPs) with an infinite horizon, where rewards are negative and
thus regarded as costs, strategies are stationary, i.e. time independent, and there is no
finite upper bound on the number of steps in the process. The optimization criterion
for our strategies corresponds to the expected total reward criterion, rather than the
expected discounted reward criterion used in discounted Markov decision problems.

Let G = (V, E, V a, V p, g, p, c) be a test graph modified by inserting a zero-cost
edge (0, 0). The classical value iteration algorithm works as follows on G.

Value iteration Let n = 0 and let M 0 be the zero vector with coordinates V so that
every M 0[u] = 0. Given n and M n, we compute M n+1 (and then increment n):

Mn+1[u] =

⎧⎨
⎩

min(u,v)∈E{c(u, v) + Mn[v]}, if u ∈ V a;∑
(u,v)∈E p(u, v)(c(u, v) + Mn[v]), if u ∈ V p;

0, if u = 0.
(10)

Value iteration for negative MDPs with the expected total reward criterion, or neg-
ative Markov decision problems for short, does not in general converge to an optimal
solution, even if one exists. However, if there exists a strategy for which the expected
cost is finite for all states [20, Assumption 7.3.1], then value iteration does converge
for negative Markov decision problems [20, Theorem 7.3.10]. In light of lemmas 3 and
4, this implies that value iteration converges for transient test graphs. Let us make this
more precise, as a corollary of Theorem 7.3.10 in [20].

Corollary 1. Let G be a transient test graph as above. For any ε > 0, there exists N
such that, for all n ≥ N and all states u ∈ V , M ∗[u] − Mn[u] < ε, where M∗ is the
optimal cost vector.
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1 2 0
1

3

{1, 2
3}{1, 1

3}
Fig. 3. Sample test graph; transitions from active states are labeled by their costs; transitions from
passive states are labeled by their costs and probabilities.

The iterative process, generally speaking, does not reach a fixed point in finitely
many iterations. Consider the test graph in Figure 3. It is not difficult to calculate that
the infinite sequence (M n[1])∞n=1 computed by (10) is

1, 2, 2 1
3 2 2

3 , 2 7
9 , 2 8

9 , 2 25
27 , 2 26

27 , . . . , 2 3i−2
3i , 2 3i−1

3i , . . .

that converges to M ∗[1] = 3.
When should we terminate the iteration? Given a cost vector M let SM denote

any strategy defined so that equation (3) is satisfied for every active state u. Further,
let Sn = SMn . Observe that the total number of possible strategies is finite and that
any non-optimal strategy occurs only finitely many time in the sequence S 0, S1, . . . .
Thus, from some point on, every Sn is optimal. In reality, the desired n is typically not
that large because the convergence of the computed costs towards the optimal costs is
exponentially fast. For practical purposes, the iteration process halts when the additional
gain is absorbed in rounding errors.

Test graphs are negative MDPs

For clarity, we define here formally a mapping from test graphs to negative MDPs. Let
G = (V, E, V a, V p, g, p, c) be a test graph. The set of states of the MDP is V and the
set of transitions is E ∪ {(g, g)}. For every state u ∈ V define Au as the following set
of allowable or enabled actions in u:

Au
def=

{{(u, v) : (u, v) ∈ E ∪ {(g, g)}}, if u ∈ V a ∪ {g};
{u}, otherwise.

The probability pa(u, v) of an action a taking the system from state u to state v is thus:

pa(u, v) def=

⎧⎨
⎩

1, if a = (u, v) ∈ E ∪ {(g, g)} and u ∈ V a ∪ {g};
p(u, v), if a = u ∈ V p and (u, v) ∈ E;
0, otherwise.

We can define the cost c(a), or equivalently the negative reward r(a) = −c(a), of
an action a as follows. If a is an edge, its cost is already given as the cost of that edge.
If a is a passive state then c(a) =

∑
(a,v)∈E p(a, v)c(a, v). Notice that the cost of an

action a that is a passive state can be defined independently of the target states of the
transitions emanating from a, and this does not affect the optimization problem at hand
since ∑

(u,v)∈E

{p(u, v)(c(u, v) + M [v])} = c(u) +
∑

(u,v)∈E

p(u, v)M [v].
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With these definitions, the value iteration step (10) above can be written using the stan-
dard formulation:

Mn+1[u] = min
a∈Au

{
c(a) +

∑
v∈V

pa(u, v)Mn[v]

}
.

4 Related work

Extension of the FSM-based testing theory to nondeterministic and probabilistic FSMs
got some attention a while ago [13, 24]. The use of games for testing is pioneered in
[2]. A recent overview of using games in testing is given in [23].

An implementation that conforms to the given specification can be viewed as a
refinement of the specification. In study [9], based on [3], the game view is proposed
as a general framework for dealing with refining and composing systems. Models with
controllable and observable actions correspond to interface automata in [9].

Model-based testing allows one to test a software system using a specification (a.k.a.
model) of the system under test [5]. There are other model-based testing tools [4, 16–
18, 21]. To the best of our knowledge, Spec Explorer is currently alone in supporting
the game approach to testing. Our models are Abstract State Machines [14]. In Spec
Explorer, the user writes models in AsmL [15] or in Spec# [6].

The technical development in Section 2 is based on classical techniques that were
used to prove that linear programming works for MDPs with the discounted reward
criterion [10, Theorem 2.3.1], even though we consider the total reward criterion here.
For (total reward) negative Markov decision problems linear programming is not ap-
plicable in general according to [20, page 324]. The additional insight we needed is
that transiency is a necessary and sufficient condition on test graphs under which linear
programming works. The main result of Section 2, Theorem 1, was obtained before we
learned about Alfaro’s Theorem 9 [8], which shows that linear programming works for
negative MDP after eliminating non-transient vertices, and that the optimal solution of
the LP is unique.

One may wonder how transient stochastic games [10, Section 4.2] are related to
transient test graphs. A transient stochastic game is a game between two players that
will stop with probability 1 no matter which strategies are used. This condition gives
rise to a proper subclass of transient test graphs where all strategies are reasonable.
Recall that a test graph is transient if and only if there exists a reasonable strategy. An
unreasonable strategy is for example a strategy that takes you back and forth between
two active states.
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Appendix: Elimination of passive states

Each test graph can be viewed as a negative MDP [Section 3]. However here our goal is
to replace any test graph G by an equivalent Markov decision process (MDP) such that
the MDP states are the active states of the graph. This replacement amounts to elimi-
nating passive states from the picture, replacing them with the probability distributions
that are part of an MDP.

For the most part, we follow the notation of [20]. Thus, the MDP we construct will
have

– a set S of states,
– for each s ∈ S a set As of actions available in state s,
– for each s ∈ S and a ∈ As a probability distribution p(−|s, a) on S, and
– for each s ∈ S and a ∈ As a cost c(s, a) (whose negative is the reward, denoted by

r(s, a) in [20]).

In addition, our MDP will have a goal state g ∈ S. A strategy for such an MDP is a
function assigning to each non-goal state s one of the actions in A s. Given a strategy
σ and a starting state s ∈ S, the resulting random run of the MDP is the sequence
(s0, s1, . . . ) of states obtained as follows. s0 = s. If sn �= g, then sn+1 is chosen at
random subject to the probability distribution p(−|sn, σ(sn)). That is, an action a =
σ(sn) is chosen (deterministically) according to σ, and then the next state is obtained
randomly from the associated distribution. If sn = g, then the run ends with sn. The
cost of the run is the sum of the costs c(sn, σ(sn)) of the individual steps of the run. We
shall design our MDP so that the optimization problem “Find a strategy that minimizes
the expected cost of the run” is equivalent to the optimization problem for the game
associated to a test graph G.

In detail, this notion of equivalence means the following for our MDP.

– S consists of the active vertices and the goal vertex of G.
– For each active vertex s of G, the actions in As are the outgoing edges from s in G.

(We need not define Ag , since our runs always end as soon as they reach g.) Notice
that what we have already said ensures that strategies in our MDP are the same as
strategies for TT in G.

– If R is a run of the game on G in which TT uses strategy S, then by omitting the
passive vertices from R we get a run D(R) of the MDP in which we use S.

– The probability of any run R ′ in the MDP equals the sum of the probabilities of all
the runs R, in the game on G, for which D(R) = R ′.

– The expected cost of any strategy is the same in the MDP as in G.

The idea of the construction is roughly as follows. In any run of the game on G,
consider the segments that begin at an active vertex v, go through some number (possi-
bly zero) of passive vertices, and arrive at an active vertex v ′ or at the goal vertex (i.e.,
at a state of the MDP). Such a segment begins with TT’s choice of an outgoing edge
from v. The rest of the segment is out of TT’s control; it consists of random choices
made by the IUT. We want to view TT’s choice of the edge leaving v as an action (as
indicated in the description of the MDP above), and we intend to view the subsequent
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random choices by IUT as implementing a certain probability distribution on the pos-
sible vertices v′ at which the segment could have ended. Our task is to describe this
probability distribution precisely, in a manner amenable to computation, and to assign
costs in such a way that the definition of equivalence is satisfied.

Before undertaking this task, we should note that it is sometimes impossible. It
could happen that runs of the game on G get stuck in passive vertices and never reach
another state of the MDP.

Definition 1 A trap in a test graph is a nonempty set T of passive vertices such that
all outgoing edges from vertices in T lead to vertices in T . That is, it is a closed set
consisting entirely of passive vertices

Since a trap is a special kind of closed set and cannot contain the goal vertex g of
G, it is clear that a transient test graph cannot contain a trap. Since our interest is in
transient graphs (as others have no optimal strategies), we assume from now on that G
has no traps. Under this assumption, we construct the equivalent MDP as follows.

The state are the active vertices of G and the goal vertex. If s is a state of G, then
As is the set of outgoing edges from s in G. Notice that, by these definitions, we have
satisfied the first three clauses in the definition of equivalence; it remains to define the
probability distributions p(−|s, a) and the cost function c so as to satisfy the remaining
two clauses. We begin with the probability distributions.

Fix a state s �= g and an action a ∈ As. So a is an edge leaving s in G, say the
edge (s, w). We let p(s′|s, a) be the probability that, starting from w (the head of a)
and making random moves in G according to the given probabilities at passive vertices,
the first non-passive vertex (i.e., the first state of the MDP) that we encounter is s ′. In
this definition, we regard w itself as being encountered, right at the start of the path;
thus, if w happens to be a state, then p(−|s, a) gives probability 1 to w.

By using this definition of p(−|s, a) for all actions a, we satisfy the fourth clause
in the definition of equivalence. Indeed, the probability of any single step in R ′ is ex-
actly the total probability of all the segments (from an active vertex, through passive
ones, to an active one or the goal) that would, had they occurred in R, have produced
that step in D(R). Since different steps in any R ′ and different segments in any R are
probabilistically independent, the desired result follows.

We must, however, verify two things about the p(−|s, a)’s, one to make the defi-
nition legitimate, and one to make it reasonable. To make it legitimate, we must verify
that, for each non-goal state s, the probabilities assigned to its actions constitute a prob-
ability distribution, i.e, that

∑
s′ p(s′|a, s) = 1. To make it reasonable, we must provide

a way to compute the probability distributions. Notice that both requirements are trivial
if w is not passive, as then our distribution gives probability 1 to w and 0 to all other
vertices. So we need only verify the two requirements when w is passive. We attack the
second requirement first.

With s, a and thus w fixed, and assuming that w is passive, consider the set X of
all vertices reachable in G from w by a path consisting only of passive vertices except
possibly for the last vertex in the path. Let Y be the set of passive vertices in X , and let
Z be the rest of X . Thus, Z is a subset of the set of states of our MDP, and it is clear
from the definition of p(−|s, a) that this distribution is concentrated on Z . Let P be the
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X ×Z matrix whose entries are defined as follows. Px,z is the probability that, starting
at vertex x of G and moving according to the probabilities given by the test graph G,
the first non-passive vertex we encounter is z. As before, the starting point x counts as
encountered. Notice that the probabilities p(z|s, a) are given by one row of the matrix
P , namely the row indexed by w. We shall show how to compute the whole matrix P ;
then we shall have in particular a computation of the desired p(z|s, a) = Pw,z .

If x happens not to be passive, then, since x is the first non-passive vertex encoun-
tered in any run that starts at x, we have Px,x = 1 and Px,z = 0 for all z �= x. In the
non-trivial case, where x is passive, we have

Px,z =
∑

(x,u)∈E

p(x, u)Pu,z ,

where E is the edge set of G and p is the probability distribution given as part of the
test graph G. The right side of this equation amounts to a matrix product, but there is a
discrepancy in that x ranges only over Y (since the equation is for the non-trivial case
that x is a passive vertex), whereas u ranges over all of X . To write the equation in a
convenient form, which also includes the trivial case that x ∈ Z , we adopt the following
conventions. Let us order the set X (which indexes the rows of our matrix P ) so that all
elements of Y precede all elements of Z , and let us divide P (and other matrices where
X is involved in the indexing) into blocks according to the partition of X into Y and
Z . Thus, P is regarded as consisting of two blocks,

P =
(

P ′

I

)
,

where I is the Z×Z identity matrix giving the trivial entries of P , while P ′ is the Y ×Z
matrix consisting of the non-trivial entries. Now we can write the equation above for the
non-trivial entries and the description of the trivial entries as a single matrix equation:(

P ′

I

)
=

(
L M
O O

)(
P ′

I

)
+

(
O
I

)
,

where O denotes a zero matrix (of a size appropriate for the context) and where L and
M contain the probabilities from G, i.e, Lx,u = p(x, u) when both x and u are passive,
and Mx,u = p(x, u) when x is passive but u is an active vertex or the goal. Thus, we
can solve for P ,

P =
(

P ′

I

)
=

[(
I 0
0 I

)
−

(
L M
O O

)]−1 (
O
I

)
,

provided the inverse here exists, i.e., provided that 1 is not an eigenvalue of

(
L M
O O

)
.

To see that this proviso is satisfied, we proceed by contradiction. (The following is
a standard argument, but we include it here for completeness.) Suppose we had a non-

zero column vector which, when multiplied on the left by our matrix

(
L M
O O

)
, produces

again the same column vector. Clearly, the bottom block of components of such an
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eigenvector must be zero, since the bottom part of the matrix is zero. The top block of
our eigenvector, the part indexed by Y , is a column vector Q such that LQ = Q. Since
Q �= O, we can arrange, replacing Q with −Q if necessary, that there is at least one
strictly positive entry in Q. Let m be the largest of these entries, and let Y ′ ⊆ Y be the
(nonempty) set of indices where it occurs, i.e., Y ′ = {y ∈ Y : Qy = m}. For each
y ∈ Y ′, the eigenvalue equation LQ = Q gives us

m = Qy =
∑
u∈Y

p(y, u)Qu ≤
∑
u∈Y

p(y, u)m ≤

≤
∑
u∈X

p(y, u)m =
∑

(y,u)∈E

p(y, u)m = m.

Here the first inequality comes from the definition of m as the largest entry in Q, and
the second follows from Y ⊆ X because all p’s and m are non-negative. The next to
last equality follows from the fact that, as y is a passive vertex in Y ⊆ X , any edge
of G leaving y points to a vertex u in X , by definition of X . The last equality is just
the fact that p(y,−) is a probability distribution on the set of these u’s. The displayed
chain of equations and inequalities, beginning and ending with m, implies that both of
the inequalities in the chain must actually be equalities. This means (since m and all
p’s are positive) that every edge (y, u) leaving y in G must point to a vertex u that is
in Y (for the sake of the second inequality) and has Qu = m (for the sake of the first
inequality). That is, u must be in Y ′. We have shown that every edge leaving any vertex
in Y ′ points to a vertex in Y ′. This means that Y ′ is a trap, contrary to our assumption
that G has no traps.

This contradiction concludes the proof of the formula above for P , thus showing
that P and in particular the probabilities p(z|s, a) needed in our MDP can be computed
from the data in the test graph G by means of elementary matrix arithmetic.

We must still show that p(−|s, a) is a probability distribution, i.e., that

1 =
∑

z

p(z|s, a) =
∑

z

Pw,z.

It is at least as easy to prove more, namely that every row (not just row w) of the matrix
P adds up to 1. That is, we shall prove that PJZ = JX , where JZ denotes the column
vector of 1’s indexed by Z , and analogously for JX . In view of our formula for P , what
must be proved is

JX = PJZ =
[(

I 0
0 I

)
−

(
L M
O O

)]−1 (
O
I

)
JZ =[(

I 0
0 I

)
−

(
L M
O O

)]−1 (
O
JZ

)
, (11)

where we have multiplied out a trivial matrix product. This equation simplifies, by
“cross-multiplying” (i.e., getting rid of the inverse on the right) to[(

I 0
0 I

)
−

(
L M
O O

)]
JX =

(
O
JZ

)
.
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The left side simplifies, since JX =
(

JY

JZ

)
, to

(
JY

JZ

)
−

(
L M
O O

)
JX ,

and so, by transposing some terms, we bring the equation we want into the form(
L M
O O

)
JX =

(
JY

O

)
.

The bottom block here is trivial, and the top block says simply that p(y,−) is a proba-
bility distribution for every y ∈ Y . Thus, the desired equation is true, and p(−|s, a) is
a probability distribution.

This completes the construction of our MDP’s probability distributions and the ver-
ification of their claimed properties. It remains to define a cost function that satisfies the
last clause in the definition of equivalence.

Consider any action a at a state s �= g of our MDP. So a is an edge (s, w) of G.
The cost c(s, a) that we assign to a is to be the expectation of the random variable R a

defined using G as follows. Start with a marker at vertex s, move it along the edge a to w
(incurring a cost c(v, w)), and then continue moving the marker, at random according
to the probability distribution from G, until it encounters a non-passive vertex. (This
“continue moving” would involve no moves at all if w happened not to be passive,
since, as usual, w counts as encountered.) The additional moves of the marker, if any,
will also incur some costs, and we let Ra be the total cost of all the moves, starting from
s with move a, and ending when another non-passive vertex is encountered.

The value of Ra is almost surely finite; that is, with probability 1 the marker will
encounter another non-passive vertex. This follows from our verification above that
p(−|s, a) is a probability distribution; p(z|s, a) is the probability that the marker, mov-
ing as just described, first encounters a non-passive vertex at z, so

∑
z pa(z) is the

probability that the marker encounters some non-passive vertex.
We need more, namely that the expectation of Ra is finite, so that it can be used as

c(s, a). We also need an efficient way to compute this expectation. We attack the latter
issue first — assuming that c(s, a) is finite, how can we compute it? Afterward, we shall
verify the required finiteness.

Assuming finiteness for the time being, and using the notations X, Y, Z as above,
define Cx, for x ∈ X , to be the expectation of the total cost Sx incurred if one starts at
x and moves randomly, according to the probabilities in G, until one encounters a non-
passive vertex. As usual, we consider x to be encountered, so if x ∈ Z then Cx = 0.
The crucial one of these costs is Cw because c(s, a) = c(v, w) + Cw, but we shall
obtain it by computing the entire matrix (of one column) C consisting of all the C x’s.

We have already observed that Cx = 0 for x ∈ Z . For x ∈ Y , we split the expected
cost Cx into the expected cost incurred in the first move, from x to some u, and the costs
incurred subsequently, while moving from u until we encounter a non-passive vertex.
The first of these costs is

Dx =
∑

(x,u)∈E

p(x, u)c(x, u),
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and the second is ∑
(x,u)∈E

p(x, u)Cu.

In both sums, u ranges over both passive and non-passive vertices, but in the second
sum only the non-passive vertices contribute non-zero terms. Thus, we have

Cx =
∑

(x,u)∈E

p(x, u)Cu + Dx,

or in matrix form, keeping only the non-trivial rows, the ones indexed by passive ver-
tices,

C = LC + D.

Having already verified that

(
I O
O I

)
−

(
L M
O O

)
is invertible, we know that I − L is

invertible, so we can solve for C:

C = (I − L)−1D.

This solves the problem of computing C, and in particular c(s, a) = Cw, under the
assumption that all entries of C are finite. It remains to show that this assumption is
correct.

For this purpose, we consider “approximations” C
(n)
x defined exactly like Cx except

that we replace the random variables Sx with S
(n)
x counting only the costs of the first n

moves. Note that Sx = supn S
(n)
x . Note also that each C

(n)
x is obviously finite, being

at most n times the maximum of the cost function c of G. We have C
(0)
x = 0 and

C(n+1)
x =

∑
(x,u)∈E

p(x, u)C(n)
u + Dx.

Since all costs in G were non-negative, S
(n)
x and C

(n)
x are obviously increasing func-

tions of n for each x. We shall show, by induction on n, that C
(n)
x ≤ [

(I − L)−1D
]
x
,

i.e., that the column vectors C (n) are majorized componentwise by the vector C as
computed in the preceding paragraph. (Of course, C (n) is majorized by the actual C,
but we won’t know that this agrees with what was computed in the preceding paragraph
until we complete the present proof that the actual C is finite.) Once this is done, we can
invoke the monotone convergence theorem (probably overkill, but it works) to conclude
that the expectation Cx of Sx = supn S

(n)
x is finite, as required.

It remains to carry out the induction to prove that C
(n)
x ≤ [

(I − L)−1D
]
x
. The

induction step is easy; given this inequality for n, we have, in matrix notation,

C(n+1) = LC(n) + D ≤ L(I − L)−1D + D =

L(I − L)−1D + (I − L)(I − L)−1D = (I − L)−1D.

But we must verify the basis for the induction, namely that (I−L)−1D has non-negative
entries. (It is, of course, obvious, that the actual expected cost vector has non-negative
entries, but we’re still proving that this is the same as (I − L)−1D.)
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For this, it suffices to show that all eigenvalues of L are smaller than 1 in absolute
value, for then (I−L)−1 equals the infinite sum

∑
n Ln, which has non-negative entries

because L does. The verification that all eigenvalues of L are smaller than 1 in absolute
value proceeds by contradiction and is very similar to the proof above that 1 is not an

eigenvalue of

(
L M
O O

)
.

Suppose there were an eigenvalue λ with |λ| ≥ 1, and let Q be a non-zero column
vector with LQ = λQ. Among all the entries of Q, let m be one with |m| as large as
possible, let Y ′ be the set of indices y for which Qy = m, and let Y ′′ be the possibly
larger set of indices y with |Qy| = |m|. For y ∈ Y ′, we have

λm = λQy = (LQ)y =
∑

(y,u)∈E,u∈Y

p(y, u)Qu.

The right side here is a weighted average of some entries Qu of Q and possibly 0 (the
latter if there are (y, u) ∈ E with u ∈ Z), so the maximality of |m| implies that this
right side has absolute value at most |m|, and that the absolute value can equal |m| only
if all the terms occurring with non-zero weight in the average are equal. Thus, we have
|λ| = 1 and all edges (y, u) ∈ E have u ∈ Y ′′. Repeating the argument for any other
entries m′ of Q that have the same absolute value as m, we find that all outgoing edges
from Y ′′ lead to vertices in Y ′′. This means that Y ′′ is a trap, contrary to our standing
assumption.
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