
Securing Routing in Open Networks Using Secure Traceroute

Gaurav Mathur

BITS Pilani

Venkata N. Padmanabhan
Daniel R. Simon

Microsoft Research

July 2004

Technical Report
MSR-TR-2004-66

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

1

Securing Routing in Open Networks Using
Secure Traceroute

Gaurav Mathur1 Venkata N. Padmanabhan Daniel R. Simon
BITS Pilani Microsoft Research Microsoft Research

Abstract— We consider the threat imposed on network
routing in “open” networks such as community wireless
networks. The key characteristic of such networks is that
it is relatively easy for users (and attackers) to add routers,
establish (possibly wireless) links, and advertise routes. We
argue that the traditional focus on securing the routing
protocol is insufficient to address the threats arising in this
environment. It is also important to secure packet forwarding.
To this end, we apply asecure tracerouteprotocol to detect
and localize faulty packet forwarding, which can aid problem
resolution either via automatic rerouting or via human action.
We present a security analysis of the protocol, discuss our
implementation of it in a community wireless network testbed,
and show that secure traceroute imposes a negligible overhead
on performance.

I. I NTRODUCTION

Recent years have seen an increasing deployment and
prevalence of what might be termed “open” networks. The
key characteristic of such networks is that it is relatively
easy for users to add routers, establish (possibly wireless)
links, and advertise routes. This situation is quite different
from that in much of today’s Internet, where ISPs and
IT departments tightly control much of the routing infras-
tructure and users only control the endpoints. Examples
of such open networks include wireless ad-hoc networks,
community networks [26], [29] based on wireless (e.g.,
802.11) and/or wireline (e.g., power line [28] or phone line
[27]) link technologies, and peer-to-peer overlay networks
[1].

Since users control the routers in open networks, it is
relatively easy for attackers to disrupt routing by taking
over control of existing routers or by introducing new
(faulty) routers into the network. An attacker could do a
number of things:

1) Disrupt the routing protocol (i.e., thecontrol planeof
the network) by introducing bogus routing messages
or tampering with routing messages originating at
other nodes. For instance, the attacker could adver-
tise routes to destinations that it, or the node it is
masquerading as, does not have a way of reaching,
thereby creating a “blackhole”. Conversely it could
suppress or modify routing messages to make any
routes passing through itself seem less attractive,
thereby lightening the load of traffic it needs to
handle and becoming a “free rider”.

1The author was an intern at Microsoft Research during the course of
this work.

2) Disrupt packet forwarding (i.e., thedata planeof
the network) by dropping packets routed to it by
its neighbors. This dropping can either happen indis-
criminately or selectively based on information such
as the source or destination address.

Much of the existing work on routing security, both in
the wired Internet and in wireless ad-hoc networks, has
focussed on securing the routing protocol (e.g., [15], [9]).
The idea is to ensure the authenticity of routing messages—
say using digital signatures. However, authentication of the
routing protocol messages is not sufficient to prevent the
disruption of routing. Authentication of a routing protocol
message does not guarantee its correctness. An attacker
could steal the credentials of a legitimate user or a legiti-
mate user could himself/herself turn malicious, and thereby
inject authenticated but incorrect routing information into
the network. Furthermore, an attacker could refrain from
corrupting routing messages but still fail to forward data
packets. Thus, beyond ensuring the security of the routing
protocol, it is also important to deal directly with packet
forwarding misbehavior. In particular, we need a way to
securely detect and localize the source of packet forwarding
misbehavior so that the problem can then be corrected by
routing around the trouble spot, invalidating the (presum-
ably compromised) credentials used to advertise the route
through the trouble spot, or taking offline action at the
human level.

Conceptually, a tool such astraceroute [12] could
be used to detect forwarding misbehavior and identify
the offending router. However, an attacker can provide a
misleading impression of the problem by treating traceroute
packets differently from normal packets or by tampering
with the traceroute responses sent by other nodes. To
avoid this problem, we use asecure tracerouteprotocol
(“SecTrace” for short) that securely traces the path ofex-
isting traffic by having intermediate routersprove that they
have received the traffic rather than depending on implicit
responses. The operation of SecTrace is inconspicuous to
all nodes except the one being traced at any point in time.
SecTrace responses are also authenticated, to verify their
origin and prevent spoofing or tampering.

We use SecTrace in the context of a community wireless
“mesh” network. SecTrace is used in two ways. First, it is
used by nodes to routinely monitor end-to-end connectivity
to other mesh nodes that they are actively communicating
with. Second, when a connectivity problem is detected,

2

SecTrace is applied hop-by-hop to identify the offending
router.

We have implemented SecTrace in a wireless mesh
testbed consisting of Windows XP-based laptops equipped
with 802.11 a/b/g radios. Our experimental results show
that in practice SecTrace imposes a negligible ovehead
on the network’s performance. We also describe a simple
extension to the DSR-like [13] source routing algorithm
used in our testbed to route around trouble spots identified
by SecTrace.

We presented the basic idea of SecTrace for a general
network setting in a previous workshop position paper [19]
(6-page short paper). The novel contributions of this paper
are:

1) A discussion of how SecTrace would be used in the
specific context of open networks, and the minimal
set of constraints that need be placed on the openness
of such networks.

2) A description of our implementation of SecTrace in
a wireless mesh network testbed and an evaluation of
its impact on network performance.

3) A security analysis of SecTrace.
The remainder of this paper is organized as follows.

In Section II, we discuss the constraints that need to be
placed on open networks, in particular community wireless
mesh networks, to enable us to secure network routing.
We discuss the design and operation of our SecTrace-
based proposal for securing routing in such networks in
Section III, and present a security analysis of the protocol
in Section IV. We briefly discuss SecTrace authentication
issues in Section V, followed by a description of our
implementation of SecTrace in a wireless mesh network
testbed and an evaluation of its impact on performance
in Section VI. In Section VII, we present a discussion of
attacks on SecTrace and how we might defend against the
attacks. We survey related work on network routing security
in Section VIII, and finally conclude with a summary of the
paper in Section IX.

II. A SSUMPTIONS AND THREAT M ODEL

An “open network” can be open to various degrees. For
example, nodes may be able to join and leave the network at
will, completely anonymously, with no central organization
whatsoever. At the other extreme, a central membership
registry (such as a Kerberos KDC) may reserve the right to
grant and deny nodes the privilege of authenticating to, and
thus participating in, the network, in well-defined roles. The
more open the network, the more vulnerable it is to certain
types of attack. For example, if nodes are free to create new
identities for themselves at will, then any attempt to detect
and “blacklist” a misbehaving node can be countered by a
change of identity (e.g., the Sybil attack [7]).

For this reason, we assume that the nodes in the network
are associated with some kind of revocable, verifiable, per-
sistent, controlled-issuance identity. That is, honest nodes
can authenticate each other’s identities, and dishonest ones,

if identified, can have their identities revoked, and cannot
issue themselves new ones. A natural example of such
an identity system is a public key infrastructure (PKI),
although other frameworks, such as Kerberos, also fit the
assumption.

While having routers certified by a PKI does restrict the
“openness” of the network, such certification may neverthe-
less be prudent given the ease with which attackers could
otherwise disrupt the network. The certification procedure
can be low in management overhead and quite open. For
example, a backbone of (closed) wireless mesh routers (see
Section VI-A) can be certified as authentic by the vendor,
containing a certificate verifying its unique ID (akin to the
unique MAC address on Ethernet and 802.11 hardware).
These routers could then be automatically admitted into
a community wireless network without requiring further
user action. Alternatively, users in the community wireless
network could set up their own prodecure for certification.

We also assume that the network uses a single-path rout-
ing protocol of some kind. Networks where, for example,
all traffic is propagated by flooding can achieve robustness
(albeit at a potentially significant performance cost) in the
complete absence of identities and quite possibly in the
presence of numerous malicious adversaries. But single-
path routing protocols have more difficulty dealing with
individual misbehaving routers, since it is easier for the
adversary to disrupt the forwarding of a stream of unrepli-
cated packets along a common path. A mechanism to detect
such misbehavior is therefore desirable.

Finally, we assume that the number of misbehaving
nodes is relatively small. For example, we do not claim to
be able to deal with, say, a network made up of one-third
adversarial nodes, as in the literature on Byzantine fault
tolerance. As we will see in Section III-A, we are assuming
that enough nodes are honest that general connectivity in
the network is maintained, so that the messages in our
protocol can get through. If there are malicious nodes
on most or all of the paths to a destination, it may be
impractical or even impossible to eliminate the malicious
nodes and find a working path to the destination. Our goal
is to deal with fairly limited, localized routing problems
in this setting; if the routing disruption is too widespread,
involving too many nodes, then it can interfere with any
attempt to investigate it.

The misbehaving nodes, however, may be arbitrarily
malicious adversaries. They may use their links to other
nodes to send arbitrary data, in arbitrary formats, up to
the links’ capacity. They may, for example, falsely attribute
other nodes’ identities to themselves, or originate traffic and
claim to be forwarding it from another node. (Note, though,
that the assumed identity infrastructure, if used properly,
can enable other nodes to recognize such “spoofing” and
reject it. Also, nodes whose identities are compromised and
used by malicious nodes are considered to be themselves
“dishonest”, insofar as their identities are being used mali-
ciously.)

3

A typical example of our target problem might be a
single faulty router somewhere in the network (although our
approach certainly does not assume that there is only one
faulty router). Note that it is not necessary to distinguish
between a merely faulty (e.g., misconfigured) router and a
malicious one; in practice, after all, sufficiently erroneous
behavior can be indistinguishable from malice. (An adver-
sary may, for instance, attempt to disguise its malicious
behavior as mere error in order to avoid later retribution.)
Hence we assume faulty routers to be capable of arbitrary
Byzantine behavior.

III. P ROPOSED SOLUTION

A. Secure Traceroute

The normal traceroute protocol [12] involves the sender
simply sending packets with increasing TTL (time to live)
values, and waiting for an ICMP time-exceeded response
from the router that receives the packet when the TTL
expires. Normally, this protocol generates a sequence of
addresses of nodes on the path to the destination, or at
least up to the point where packets are being lost on a
faulty link. However, a malicious router could intercept
and alter traceroute traffic to give an arbitrary misleading
impression—say, by letting only traceroute packets through,
or by constructing fake responses to them so as to give the
impression that they are getting through and demonstrating
a fully functioning path (or a path with a problem else-
where). Secure traceroute (SecTrace) is intended to prevent
this type of disruption of the traceroute process by verifying
the origin of responses, and preventing traceroute packets
from being handled differently from ordinary traffic.

�� �� �� �� �� ��

� 	

��
������

��
������

��
������

� ������

� ������

� ���� ��

���

����������
�
� ���!��"

�� �������

�!#
��#��
#�!�

Fig. 1. An illustration of SecTrace in operation.R2 initiates SecTrace
and concludes eventually that the link betweenR4 and R5 is faulty.
Si denotes the “signature” of the packets that routerRi is asked to
treat as traceroute packets.

The operation of SecTrace is illustrated in Figure 1. As
in normal traceroute, SecTrace proceeds hop by hop, with
each node on the path being asked to respond to traceroute
traffic. However, there are several fundamental differences
between them, including traceroute packet contents and the
responses they elicit from routers. We outline the specifics
of SecTrace below:

1) In addition to their own identity (which is included
implicitly in the response packet), nodes responding
to SecTrace packets provide a next-hop router identity
for the packet. Thus the node performing the tracer-
oute always knows the identity of the (expected) next
router on the path. If source routing is used (as it
is in our wireless mesh testbed), then the initiating
node already has the entire route and hence the
identity of the next-hop to be verified, as discussed
in Section VI-C.

2) Prior to sending the traceroute packets, the tracing
node establishes a shared key for encrypted, authen-
ticated communication to and from the expected next
node. (How this is done in our testbed implemen-
tation is described in Section VI.) Using this key,
identifying information, which specifies the “signa-
ture” of the packets to be treated as SecTrace packets,
is securely passed from the tracing node to the
expected next node. This information consists of the
values (or constraints on the values) of certain fields
on the packets. For example, it could be specified
that all packets between certain source and desti-
nation addresses for which a certain field contains
a particular value modulo a specific prime number
should be examined. Alternatively, a random value
(“nonce”) could be inserted into some field in the
packet by the tracing node, and certain such values
would be designated as signifying a SecTrace packet.
Thus, SecTrace packets will look indistinguishable
from ordinary traffic to intermediate nodes, and will
therefore constitute a representative sample of traffic
between the specified source and destination ranges.

3) In replying to a packet identified as a SecTrace
packet, a node sends some agreed-upon identifying
marker for the packet back to the tracing node, to
“prove” that the packet has been received. Alterna-
tively, some accumulated value based on multiple
received packets may be returned. For example, if the
tracing node is able to insert additional information
in the SecTrace packets, then it can use a threshold
secret-sharing scheme [22] to send a secret that can
only be extracted when some minimum number of
shares (and thus packets) has been received. (In a
threshold secret-sharing scheme, a secret is “divided
up” into a number of shares such that any subset
of the shares of a certain “threshold” size suffices
to reconstruct the secret, but any subset smaller than
the threshold reveals no information about the secret.
Threshold secret-sharing is an efficient operation,
comparable in cost to symmetric-key cryptography.)
By inserting one share per traceroute packet, and
measuring how many shares must be sent before a
reply is received, the tracing node can estimate what
fraction of SecTrace packets are getting through.

4) In addition to packet-identifying information, the
SecTrace reply contains a strongly secure Message

4

Authentication Code (MAC) that ensures its authentic
origin. The MAC is based on the original key shared
between the tracing node and expected next node, and
covers the entire response, including the address of
the node to which the expected next node forwarded
the traceroute packet, based on its destination. This
new node becomes the “new” expected next node for
the next step of the traceroute.

This iterative process produces, as does a normal tracer-
oute, one of two possible results: either a complete route is
determined, or a faulty link is found, such that one end of
the link claims to be sending packets through the link, but
the other end claims not to be receiving them (or simply
doesn’t respond to the traceroute); we cannot be sure which
end of the link is faulty. However, the identification of this
link is much more reliable than for ordinary traceroute,
since return packets are established to be coming from
the correct node, and the use of normal packets in place
of identifiable traceroute packets ensures that the route
(whether functioning or faulty) accurately represents the
route taken by normal packets.

IV. SECURITY ANALYSIS

To analyze the SecTrace protocol more formally, we must
first describe a formal model for the network in which it
is deployed. Our model consists of a collection of nodes,
some possibly malicious and even colluding, and each with
a unique name, or “address”. The nodes are vertices in a
directed graph; packets may be sent along the edges of the
graph (in the correct direction) from node to node. The
packets are of a fixed, limited size, and contain the address
of a sender and a receiver. A routing protocol (which we
will leave unspecified here) determines, for each honest
node, the address of the neighboring node to which to pass
on a packet received from another neighboring node, based
only on information contained in the packet.

We consider a single step of the previously described
informal protocol, in which a tracing nodeT attempts to
determine if another node,P , is in fact on the path followed
by a certain set of packets passing first throughT . (We
assume thatP can distinguish between packets that have
passed throughT , assumingT is honest, and those that
have not, and ignore, for the rest of this analysis, those
that have not.)

Obviously, there is no way of proving that the packets are
not reachingP ; P could, for instance, refuse to answer any
queries fromT . However, the protocol we describe allows
P to prove (with a very low probability of error) that it is,
in fact, receiving the packets in question.

We assume thatP andT have authenticated each other,
and share a secret keyk. Also, we make no distinction
betweenP and any other nodes with which it may be
colluding, sharing either key or traffic information (or even
inadvertently leaking such information); collectively, all
such nodes, including all nodes that have (one way or
another) obtainedk, are together considered “P ”. Finally, to

simplify the cryptographic argument, we assume a random
oracle Q, as in [2]. In practice, of course, the oracle is
simulated by a cryptographic hash function, such as SHA-
1.

The simplified protocol, then, is as follows:T sendsP
an l-bit string s, and P returns Q(cp), where cp is the
concatenation ofk and p, for each packetp such that the
first l bits of Q(p) are identical tos. T verifies thatP ’s
response is correct.

Theorem 1 If P does not have access to a packetp, then
the probability that P responds correctly in the above
protocol is 2−m each time, wherem is the length of the
output ofQ.

Proof: (sketch) The proof is similar to the proof of
“plaintext-aware” encryption schemes (as in [3]). Intu-
itively, if the “correct” input string (including both the
packetp in question andk) was never used as input intoQ,
then the probability ofP producing the correct output string
is as stated. If some node (possiblyP) did, in fact, queryQ
with the necessary input string, then that node had access
to the packet in questionand k, making it, effectively, a
confederate ofP .

V. AUTHENTICATING SECURE TRACEROUTE

The above protocol assumes that a secure (that is,
encrypted, authenticated) key exchange can be performed
between the tracing host and the expected next host. Ideally,
a public-key infrastructure (PKI) would be available to
allow such key exchange to occur using standard protocols
(e.g., IPSEC [14]). Such a PKI for infrastructure operators
(as opposed to end users) is not unthinkable, as the widely
deployed “SSL” PKI for Web servers demonstrates. As we
briefly described in section II, for example, one approach to
PKI establishment in the mesh network setting is to equip
“mesh routers” with asymmetric key pairs and public-key
certificates at manufacture time, so that they can recognize
each other as supporting various mesh protocols (such as
secure traceroute).

In the absence of a PKI, various ad hoc mechanisms can
be used. For example, PGP-style “Web of trust” techniques
[31], [30] can be used to propagate routers’ public keys
from node to (trusting) node; using Web- or email-based
protocols, nodes can distribute public keys of nodes they
have established confidence in the sources of, and receive
such keys in turn from others whose judgments they trust.
Similarly, certain widely trusted hosts could voluntarily act
as “key servers”, collecting and verifying public keys of
nodes and offering them for authenticated download to
nodes that trust the key server. Finally, the redundancy
of the network can be used to attempt to determine the
valid public keys of other hosts at authentication time.
By requesting the public key of a host multiple times,
via multiple paths—possibly with the help of a set of
widely distributed, trusted routing intermediaries (an over-
lay network of sorts)—a tracing host can increase the

5

likelihood that the public key being returned has not been
tampered with en route by a malicious host. Once the
expected next host’s public key has been obtained, a (one-
way) authenticated key exchange is easy, and the secure
traceroute can proceed.

VI. I MPLEMENTATION

We have implemented the secure traceroute protocol
in a wireless mesh setting. Section VI-A presents some
background information on the mesh setting. The assump-
tions, simplifications, and domain-specific decisions are
described in Section VI-B, while the actual implementation
is described in Section VI-C.

A. The Wireless Mesh Setting

The wireless mesh setting we consider is a prototype of a
community wireless network. It consists of end hosts, mesh
nodes (routers), and Internet gateways. Figure 2 illustrates
the architecture of the mesh network. Note that the mesh
architecture and its routing protocol are not a contribution
of our work. We merely provide sufficient background here
to explain our implementation of SecTrace.

The mesh nodes (i.e., routers) form the backbone of
the wireless mesh network. In addition to routing traffic
through the mesh, each mesh node also acts as an access
point, allowing (off-the-shelf and mesh-agnostic) end hosts
in people’s homes to send and receive traffic through the
mesh. These end hosts do not perform any routing function
for the mesh, so we do not discuss them much here.

The wireless mesh also has a special node called the
Internet Tap, or ITAP, that connects the mesh to the Internet
as well as to other meshes. Due to its critical role in the
operation of the mesh, the ITAP is trusted by all nodes in
its mesh.

Routing within the wireless mesh network is accom-
plished by the Mesh Connectivity Layer (MCL) [8], which
operates between layers 2 and 3 of the network protocol
stack. MCL does routing, traditionally a network layer
(layer 3) function, while operating beneath and transpar-
ently to the network layer. At the same time, MCL operates
above the link layer (layer 2) that is associated with each
physical NIC (network interface card) on the node. MCL
creates a virtual NIC abstraction and assigns a singlevirtual
addressto the mesh node, thereby hiding the details of the
multiple underlying physical NICs from the network layer
(e.g., IP). The MCL also does multi-hop routing through
the wireless mesh transparently to the network layer. A
key advantage of doing routing below the network layer
is that we can run various network layers (IPv4, IPv6,
etc.) without modification. All nodes in the wireless mesh
are part of a single IP subnet and are a single IP hop
from each other, regardless of the number of underlying
wireless hops. So our implementation of SecTrace in this
environment operates at the MCL level rather than the IP
level, as elaborated in Section VI-B.1.

The routing protocol used by the MCL is a variant of
Dynamic Source Routing (DSR) [13]. The key ideas here
are to do source routing and to discover routes dynamically,
i.e., on demand as packets need to be routed to a particular
destination. To discover a route, aroute-requestmessage
is broadcast throughout the network. The route taken by
a route-request message is recorded in the message itself
as it makes its way to the destination. The destination
then returns the recorded route to the source in a route-
reply message. Although nodes suppress duplicate route-
request messages, the destination may receive multiple
route-request messages routed through independent paths,
if any, and hence may return multipleroute-replymessages
to the source. The source is then free to choose the route
to use, say based on a metric such as hop count. When
originating a packet, the source specifies the chosen route
as the source route.

To make it difficult for attackers to insert themselves into
the wireless mesh, each mesh node is assigned a public
key certificate by a trusted root. Neighboring mesh nodes
establish a long-lived session key between themselves to
authenticate individual packets using HMAC-SHA1 [17].
End-to-end communication between mesh nodes is also
encrypted using AES [25], although end hosts could also
use a mechanism such as IPSec for true end-to-end privacy.

While these security mechanisms help, they do not
prevent attacks on the DSR-based routing protocol. We
could use schemes such as Ariadne [10] to secure the
routing protocol against such attacks. However, we do not
discuss this further here, since securing the routing protocol
alone is insufficient and our focus is on securing packet
forwarding.

B. Secure Traceroute in the Wireless Mesh

We discuss the specific decisions we made for imple-
menting SecTrace in our wireless mesh setting.

1) IP path versus MCL path: As explained in Sec-
tion VI-A, the entire mesh network is a single IP subnet.
The path between two end hosts connected to the mesh
network consists of 3 IP-level hops: one hop from the
source end host to the source mesh node (i.e., the mesh
node to which it is directly connected), a second hop from
the source mesh node to the destination mesh node, and
finally a third hop from the destination mesh node to the
destination end host. For example, in Figure 2 the end-to-
end path between end hostsEH1 andEH3 consists of 3 IP
hops:EH1 → MN1, MN1 → MN3, andMN3 → EH3.

The middle IP hop typically consists of multiple wireless
hops traversing intermediate mesh nodes. (In the above
example, the MCL path corresponding to this IP hop is:
MN1 → MN2 → MN3.) A packet traversing the the
middle IP hop is encapsulated in an MCL frame, whose
source and destination addresses are the virtual addresses
(Section VI-A) of the source and destination mesh nodes.
Our implementation of SecTrace operates at the MCL
level and hence operates only on the middle IP hop. One

6

EH3

MN1

EH2

EH4

Mesh Node

End Host

MN2

MN3

MN4

ITAP Internet

EH1

Fig. 2. Wireless Mesh Architecture

consequence is that SecTrace does not run end-to-end.
While we could have implemented a separate, end-to-end
SecTrace at the IP level, we did not do so since the
MCL-level SecTrace gives us almost the same diagnostic
capability in the wireless mesh setting.

2) Initiating SecTrace: SecTrace can be initiated either
by end hosts or by mesh nodes (i.e., routers). We consider
each possibility in turn.

End hosts are in the best position to detect end-to-end
connectivity problems. The detection can happen either at
the application level or at the transport protocol (e.g., TCP)
level. When a problem has been detected, the end host
initiates SecTrace to the destination address to which it
is experiencing connectivity problems. However, end-host-
based detection and initiation faces the practical hurdle of
having to instrument the network stack and/or applications
on the end host.

To enable unmodified end hosts to benefit from SecTrace,
we could have mesh nodes themselves detect connectivity
problems and initiate SecTrace. However, it is difficult for
mesh nodes to detect connectivity problems since they are
not participants in the end-to-end communication. Even
indirect inferencing, say based on observing the progression
of sequence numbers on TCP data and ack packets, would
be difficult if end hosts were to employ IPSec to encrypt
traffic end-to-end. Our solution is to have mesh nodes use
SecTrace to routinely monitor connectivity to other mesh
nodes that they are sourcing data to. If this almost-end-to-
end SecTrace reports a connectivity problem, then hop-by-
hop SecTrace is used to locate the source of the problem.

Connectivity problems may often arise due to events
such as congestion or link failure not induced by an
attacker. Nevertheless, we believe that it is reasonable to use
SecTrace as a general mechanism for localizing the problem
since it provides greater assurance in its findings than non-

secure techniques while still imposing a low overhead (see
Section VI-D). Localizing the cause of congestion is useful
since wireless mesh networks (and other open networks
such as overlay networks) provide end hosts the opportunity
to route around the congested link(s). This is in contrast to
the Internet where routing control resides with the ISPs,
making it difficult for end hosts to benefit from identifying
the location of congestion, at least in the context of unicast
communication with specific other hosts. We discuss the
issue of routing around suspect links in Section VII-C.

3) Securing SecTrace Communication:Prior to any
SecTrace communication, the public key certificates as-
signed to the mesh nodes are used to establish a bidirec-
tional secure communication channel using the TLS 1.0
protocol [6] with two-way authentication.

While the TLS channel protects the privacy and integrity
of communication between the investigating and investi-
gated mesh nodes, it still provides attackers the opportunity
to guess when SecTrace is in progress and thereby com-
promise its operation. Since much of the communication
in the mesh network is likely to be between the mesh
nodes and the ITAP (since users are likely to be interested
primarily in Internet access), any direct communication
between mesh nodes might be indicative of an impending
SecTrace session, and thus be prone to targeted disruption
by an adversary seeking to frame another node or being
misled by an attacker who adjusts its behavior to avoid
detection.

To make such attacks difficult, we make use of the
trusted ITAP node as an intermediary. All SecTrace-related
control communication between mesh nodes is routed via
the ITAP. (Note that data packets, including the ones traced
by SecTrace, are still routed directly between the mesh
nodes and arenot redirected via the ITAP.) Since all mesh
nodes communicate frequently with the ITAP (to send

7

and receive traffic to/from the Internet), it becomes very
difficult for the attacker to detect the SecTrace packets.
To make even traffic analysis difficult, we could pad the
control packets to match the (predominant) size of the data
packets (e.g., the network MTU), although we do not do
so in our current implementation. This effectively prevents
attackers from being able to frame an innocent router, thus
avoiding the drawback of Perlman’s fault isolation scheme
[20] discussed in Section VIII.

Note that the above procedure will work even when the
ITAP runs SecTrace on pathsfrom itself to other mesh
nodes. However, the procedure breaks down when a mesh
node is unable to reach the ITAP and wishes to trace the
pathto it. We discuss more general solutions in Section VII-
A, including “onion routing”-style encryption to prevent
targeted framing of another node and initiating real and fake
SecTrace attempts continually to make selectively adjusting
behavior difficult.

4) Tracing SecTrace Packets:To enable the initiating
router to designate a specific subset of packets as SecTrace
packets, we need a field in the packet that changes randomly
from one packet to the next but remains unchanged as a
packet traverses multiple hops through the mesh. The MCL
header of every wireless mesh packet contains such a field
— an Initialization Vector (IV) field (Figure 3) used in
the end-to-end AES encryption of the packet. A packet is
designated as being a SecTrace packet if this field is equal
to f modulo N , wheref and N are negotiated between
the investigating and investigated routers.

To enable the investigating node to verify that the inves-
tigated node has indeed received the designated packets,
we considered using Shamir’s threshold secret sharing
scheme [22]. The idea is for the investigating node to insert
shares into the designated SecTrace packets and for the
investigated router to compute and return the secret, which
it can only do if it receives more than a threshold number
of shares. A drawback of this scheme is that it requires an
additional field containing the share to be included inall
packets, whether designated as SecTrace packets or not and
whether SecTrace is even active or not. Including this field
selectively in packets, say to reduce the space overhead,
might enable the detection of SecTrace packets via traffic
analysis.

The alternative we chose to implement was to have the
investigating and the investigated nodes first negotiate a
secret key (16 bytes long). The investigated node then
computes a keyed MAC (also 16 bytes long) on the payload
of each SecTrace packet and returns these to the investi-
gating node for verification. The specific MAC algorithm
we use is HMAC-SHA1 [17], which is already available
to us in the kernel since it is used by the MCL layer for
authenticating packets on a hop-by-hop basis (Section VI-
A). The main advantage of this MAC-based approach is that
the byte-overhead of additional network messaging is only
a function of the actual number of SecTrace packets. (For
instance, with 50 SecTrace packets, the response returned

by the investigated router would be a single,50×16 = 800
byte packet.) No overhead is incurred for non-SecTrace
packets whether SecTrace is currently active or not.

C. Implementation Details

We have implemented SecTrace on the Microsoft Win-
dows XP OS platform. We discuss some specific details of
the implementation here.

As discussed in Section VI-B.2, SecTrace can be initiated
either by an end host or by a mesh node. Our implementa-
tion supports both these modes. An initiator program allows
an end host to initiate SecTrace between the mesh node
that it is attached to and a destination mesh node.1 Each
mesh node runs a SecTrace daemon that can both initiate
SecTrace to a target node and respond to SecTrace requests
from other nodes.

The implementation of SecTrace on a mesh node has
two components — a user-level Windows service (self-
starting daemon) and an in-kernel device driver component
(Figure 4). Communication between the two components
happens via I/O control system calls (IOCTLs). The user-
level service has a client sub-component that initiates
SecTrace sessions with other nodes and a server sub-
component that responds to SecTrace requests either from
end hosts or from other mesh nodes. All SecTrace-related
communication between mesh nodes happens only at the
user level.

When the initiator contacts a mesh node to initiate Sec-
Trace, TLS is used by the parties to authenticate each other.
(We used Microsoft’s implementation of the TLS protocol
on the Windows XP platform.) If this is successful, the
mesh node then becomes theinvestigatingrouter. It queries
the MCL layer for the source route to the destination mesh
node and pins this route to prevent route changes while
SecTrace is in progress. It then establishes a SecTrace
session, in turn, to each router along the path. Each of these
routers is termed theinvestigatedrouter while SecTrace to
it is active. Figure 5 illustrates this process.

When the investigating router contacts an investigated
router, TLS is used to establish a secure, two-way authen-
ticated connection (routed via the ITAP, as explained in
Section VI-B). The investigating router then sends to the
investigated router (a) the source and destination addresses
of the SecTrace packets (the source address being its own
address and the destination address being that specified
by the initiator), (b) the SecTrace filter parameters (the
quantitiesf and N introduced in Section VI-B), and (c)
a randomly generated key for use in the HMAC-SHA1
computation. At this point, the investigated router enables
the SecTrace filter in its kernel to examine allincoming

1In general, the initiator could contact any mesh node, not just the one
to which it is attached. Such a capability would be useful, for instance,
in enabling a network operator to trace various paths through the network
from a central location. However, our discussion here is presented in terms
of the more likely scenario of an end host contacting the mesh box to
which it is attached in order to investigate a problem that it is experiencing
and that no one else may have noticed.

8

Source Virtual Address Destination Virtual Address

MAC (computed per hop) Source Route to Destination

… other fields of the MCL packet (2.5 layer) …

Layer 3 (IPv4, IPv6, etc.) Payload

IV for AES

NOTE : The fields are not depicted according to actual proportions

Fig. 3. A Wireless Mesh Packet

Service (user level)

Server Client

Device-level (part of MCL layer)

Service (user level)

Server Client

Device-level (part of MCL layer)

Wireless Mesh Router 1 Wireless Mesh Router 2

 Communication between service components (intra-router)
 IOCtl based communication between user and device level code (intra-router)
 Communication between services (inter-router)

Fig. 4. SecTrace code architecture for the wireless mesh router

1. Request ITAP
 to redirect initiate
 request to R2

5. Redirect
request to R3

3. Redirect
result to R1

7. Redirect result
to R1

S R1 D

ITAP

4. Result
 from R2

6. Initiate
 SecTrace
 with R3

R3

8. Result
 from
 R3

2. Initiate
 SecTrace
 with R2

R2

Fig. 5. An illustration of SecTrace in operation : S (the initiator) complains to R1 (the investigating router) about connectivity to D. R1

initiates a SecTrace toR3 (the last node on the MCL path toD), asking the ITAP to redirect all SecTrace-related messaging.R1 first verifies
connectivity to R2 and then to R3 (the investigated routers).

packets and to store the MACs (message authentication
code hashes) of matching packets in an in-kernel buffer.
After receiving a confirmation from the investigated router,
the investigating router also enables the SecTrace filter
to examine alloutgoing packets and store the MACs of
matching packets.

The user-level service on the investigating router peri-
odically polls the kernel buffer that holds the MACs of
the SecTrace packets. When the number of such packets
exceeds a threshold (50 by default), it disables its in-kernel

SecTrace filter. It then reestablishes a secure and two-way
authenticated connection to the investigated router (again
routed via the ITAP). It asks the latter to also disable its
SecTrace filter and then to return the MACs of all SecTrace
packets it has received thus far. The investigating router
checks to see what fraction of the MACs in its own list are
returned by the investigated router. Since the investigating
router enabled its filter after the investigated router and
disabled it before the latter, any discrepancy in the list of
MACs is likely to be due to actual packet loss rather than

9

Fraction of packets traced Throughput Overhead
(standard deviation)

1/1 5.76% (0.95%)
1/2 3.51% (2.01%)
1/5 0.87% (1.93%)
1/10 0.78% (1.83%)

TABLE I

THE OVERHEAD IMPOSED BYSECTRACE, AS MEASURED BY ITS

IMPACT ON THE THROUGHPUT OF A16 MB TCPTRANSFER. WE

CONDUCTED 10 RUNS OF THE EXPERIMENT FOR EACH

CONFIGURATION. WE OBSERVE A NOTICEABLE IMPACT ONLY WHEN

50% OR MORE OF THE PACKETS ARE DEEMED TO BESECTRACE

PACKETS.

synchronization issues.
The investigating router repeats this procedure hop-by-

hop and eventually returns to the initiator statistics on the
fraction of packets that reached each router along the path.

Our implementation also allows a node to participate in
multiple simultaneous SecTrace sessions. The limit on the
number of concurrent sessions is dependent on the amount
of available memory in the kernel pool, and is set to 10 by
default.

D. Performance Evaluation

To quantify the performance overhead of SecTrace, we
measured the impact of the additional processing entailed
by SecTrace on TCP throughput. Note that our interest
is in software-based routers (e.g., PC-based routers), not
backbone-class high-speed routers (e.g., Cisco boxes) with
a hardware-based fast path. For this experiment, we used
two laptops with 2 GHz Pentium-4 processors connected
via a 100 Mbps crossover Ethernet cable. We chose to
run the experiment over Ethernet rather than over wireless
to factor out the variability in throughput induced by the
wireless medium. This variability is often large enough to
make the overhead of SecTrace irrelevant. If the overhead
imposed by SecTrace at Ethernet speeds turns out to be
small, we can safely conclude that the overhead (in terms
of impact on TCP throughput) would only be smaller at the
lower wireless speeds.

We measured the throughput of a 16 MB TCP trans-
fer between the two laptops, with and without SecTrace
enabled the destination laptop. We conducted 10 runs of
the experiment for each configuration. When SecTrace was
enabled, the destination laptop would apply the SecTrace
filter on each incoming packet and compute the HMAC-
SHA1 hash on the matching packets (i.e., the “traced”
packets), as discussed in Section VI-B. We varied the
parameterN (Section VI-B) from 1 through 10, thus
varying the fraction of traced packets from 100% to 10%
on average. Table I shows the reduction in the throughput
due to SecTrace compared to the case where SecTrace is
disabled. We observe a small impact of 3-5% when 50-
100% of the packets are traced. The overhead drops off

quickly and becomes negligible (relative to the variability
between multiple runs of the experiment) as the fraction of
packets traced becomes smaller (as we would expect it to
be in practice). Note that even when a multi-hop path is
being traced, SecTrace is active (and thus incurs overhead)
only on a single node at any point in time, so the overhead
doesnot add up over multiple hops.

Note that the above measurements correspond to Sec-
Trace being enabled throughout the duration of the 16 MB
TCP transfer (i.e., 16000 packets assuming a 1 KB packet
size). In practice, we are likely to turn on SecTrace on a
node for only as long as it takes to trace enough packets
(say 50 or so) to have a high degree of confidence that
the traced node is receiving all packets. When a multi-hop
path is being traced, the duration for which SecTrace is
active anywhere along the path increases proportionally to
the length of the path. Even so, for realistic path lengths,
this duration is likely to be only a fraction of the duration
of the 16 MB TCP transfer considered in our experiment.

In summary, we find that SecTrace only imposes a small
overhead on performance, and that this overhead is likely
to be even smaller in practical settings.

VII. D ISCUSSION

In this section, we discuss several attacks on SecTrace
and point out how SecTrace can defend against many of
these. We also consider action one might take in response
to SecTrace’s finding of a suspect link. In particular, we
consider routing around the suspect link and present a
simple enhancement to the DSR on-demand source rout-
ing protocol [13] to enable rerouting in the presence of
attackers.

A. Vulnerabilities and Attacks

In the context of wireless mesh networks, we envision
SecTrace as contributing one element to the entire task of
security management: detecting an inconsistency between
a node’s data routing behavior and its route determination
behavior in the routing protocol. Although this is a particu-
larly powerful kind of attack on the network, there are other
malicious node behaviors that SecTrace is powerless to
prevent, and that will have to be dealt with by other compo-
nents of the mesh network management infrastructure. For
example, a node can behave dishonestly with respect to the
routing protocol—pretending, for instance, that available,
useful wireless links to neighboring nodes don’t exist, thus
freeing up bandwidth for its own use. Or it could launch
denial-of-service (DoS) attacks against other nodes, either
locally or over the network.

SecTrace is also vulnerable to certain attacks, which we
discuss here. Our implementation addresses some of these
concerns, and solutions to the rest are easy to imagine in
the mesh network context.

Implicating the end host: Because the most fre-
quent cause of failed connections will be unresponsive
end hosts—a problem which cannot be fixed by routing

10

adjustments—a malicious router can avoid detection via
SecTrace by simulating a “dead” end host, simply by
advertising a (non-responsive) direct link to the targeted
end host. However, the application of SecTrace in this case
would flag thelink from the malicious router to the end host
as suspect. If the claimed last-hop router is very far away
from the targeted end host, an attempt to find an alternate
route (Section VII-C) should yield one that avoids the
offending router. On the other hand, if the malicious router
is very close to the targeted end host, then these measures
are likely to be less successful; of course, in the worst case,
where the misbehaving router is really the (sole) last-hop
router, then it will obviously be impossible to distinguish
its “blackholing” activity from a truly dead end host. But
then, the malicious router can always accomplish the same
goal by refusing to acknowledge the link in the first place.

Adjusting behavior to avoid detection: A malicious
router may adjust its disruptive behavior so as to avoid
detection. For example, it may confine its attacks to periods
of time where it does not detect any SecTrace initiation
attempts (i.e., key exchange packets from upstream routers).

Section VI-D shows that SecTrace has low enough
overhead to be used continually. Thus, doing so removes
the danger of a malicious node attempting to disrupt traffic
“under the radar”, by watching for packets on the network
that appear to be SecTrace packets, and misbehaving only
when SecTrace appears to be inactive. The overhead of
continual SecTrace can be lowered even further by inter-
leaving “fake” SecTrace attempts (that go through the usual
SecTrace handshake to fool adversaries without incuring
the overhead of actually tracing packets) with real SecTrace
attempts.

Framing innocent nodes: Alternatively, the malicious
router may attempt to interfere with SecTrace by selectively
blackholing the packets used in the key exchange phase, so
as to give the impression that a router further downstream is
not accepting key exchanges (and hence either malfunction-
ing or malicious). This attack is not really effective in the
hands of a single misbehaving router, since any attempt by
the attacker to also disrupt the flow of normal traffic (which
is what really matters) will be detected by SecTrace when
the (honest) router immediately downstream of the attacker
on the path reports the anomalous traffic pattern. However,
as illustrated in Figure 6, two misbehaving routers could
collude to frame a router between them on a path; the
downstream confederate disrupts traffic, while the upstream
one disrupts key exchanges to the victim router so as to
implicate it.

A simple countermeasure to this attack (if multiple
colluding routers are deemed a threat, and if redundant
routes are not being used to effect the key exchange) is
to use “onion routing”-style encryption of key exchange
messages [33]. Since each step of the traceroute involves
a key exchange, the key exchange traffic can be encrypted
hop by hop, so that each router along the route does not
know the final destination of the message (and therefore

�� �� �� �� �� ��

� 	

��

��
����
�
�����������

�����
��������������
���� ������ ������

�����
����

������	�

Fig. 6. Misbehaving routers R3 and R6 work in conjunction to
deceiveR2 into concluding that the link betweenR4 and R5 is faulty.

cannot consistently frame a single router).
Our implementation offers a simpler solution to this

problem by redirecting all SecTrace control traffic through
a trusted ITAP node, protecting against targeted disruption
of particular SecTrace attempts. Thus this “framing” attack
(also described [20]) will be extremely difficult to mount,
since it will be unclear to the adversary which route is being
traced by which node or if SecTrace is even active at any
point in time. Of course, this procedure would not work if
a node is trying to trace the path to the ITAP itself, so we
would need to revert to the onion routing style solution in
this case.

Creating ficticious nodes: If an attacker can create
numerous fictitious nodes in the network, then both iden-
tifying a bad link and attempting to route around it can
become much more difficult and time-consuming. A single
attacker on a path, for instance, could divert SecTrace by
returning a bogus next-hop router. This may still remain
undiscovered if the bogus router is either a confederate
of the attacker or the attacker itself under the garb of
a different address (i.e., a “dummy” node). In fact, the
attacker could lead SecTrace into a thicket of bogus routers
before it peters out. However, SecTrace will eventually
identify a bad link, at least one end of which is the attacker
or its confederate. Thus, this link deserves to be avoided.
There may still be other misbehaving nodes in the path, but
persistent application of a succession of SecTrace runs can
eliminate them, one by one, from the path until they have
all been purged (Figure 7). Hence, if adding confederates
or dummy nodes to the network is sufficiently costly,
or if owners or administrators of misbehaving nodes are
investigated and penalized sufficiently harshly if found to
be guilty, then the application of SecTrace would still help
identify misbehaving nodes, so that they can be eliminated
and/or punished.

However, for our SecTrace implementation we assume a
regulated identity infrastructure—in particular, a PKI—to
be necessary in any event, to deal with generic DoS threats,
as mentioned in Section II. Such a PKI would presumably
make it difficult for a node to obtain numerous fictitious
node identity credentials. Hence this attack is not feasible
in our setting.

DoS attack on SecTrace:Finally, the need for compu-
tationally expensive key exchanges creates an opportunity
for powerful denial-of-service attacks using bogus key

11

�� �� �� �� �� ��

� 	

�

�

�

��

�→�→ �

�→ �

�

�
�����������
����

���������
����
������
�������������

� ������������
����

Fig. 7. Misbehaving routerR4 leads SecTrace initiated byR2 astray,
down a path of bogus routers. However,R2 can still identify and
eliminate the bogus links through repeated application of SecTrace.

exchange messages that require significant computational
resources to detect and discard. A simple solution is just
to throttle the number of SecTrace key exchanges honored
to keep it below an acceptable threshold. This raises the
possibility of combining malicious routing with denial-
of-service attacks to foil SecTrace attempts. One possible
solution to this problem is to respond to a key exchange
message with a “client puzzle” (as in [32], [34]). Such
puzzles are easy for the responding router to generate and
check, without maintaining state; the requesting router (or
the attacker), in order to have its traceroute request attended
to, would have to solve the puzzle—which would require
at least the same order of magnitude of computation as
the responding router has to perform in order to handle
the SecTrace request—and return the solution along with a
resend of its key exchange message.

A general traceback facility will presumably be neces-
sary in the mesh network, to deal with DoS attacks. The
same facility can also be used to protect against SecTrace-
based DoS, (which would take the shape of one node
bombarding another with phony SecTrace TLS session
requests).

Of course, the attacker could always simply muster
the computational resources to mount the attack (say, by
harnessing thousands of hacked “zombie” computers to the
task). But anyone with that level of resources is likely
able to mount a more conventional denial-of-service attack
against his intended targets in any event—probably without
ever needing to subvert the routing system.

B. Routing Asymmetry

Internet routing is, in general, asymmetric. The path from
node A to node B may be different from that from B to A.
This asymmetry can create two problems. First, an end host
cannot be sure whether its inability to communicate with a
peer host is the result of a network problem in one direction,
the opposite direction, or both. Second, the same ambiguity
can also affect a node that is performing SecTrace. We
discuss both these issues in turn.

1) Impact on the End-host Problem Detection:As
noted in Section VI-B.2, one of the modes of operation

is for end hosts to initiate SecTrace when they detect end-
to-end connectivity problems. Consider an end host A that
is trying to communicate with end-host B. If A does not
receive any response (e.g., TCP ACKs) to the packets it
has sent to B, A cannot be sure whether there is a network
problem in the A→B direction, in the B→A direction, or
in both directions. The question then is whether and when
end host A should initiate SecTrace.

If A receives a steady stream of packets from B but
none that indicates that A’s packets have been received by
B, then A can be quite sure that the problem is in the A→B
direction. Certain applications, such as conferencing, may
generate a steady, bidirectional flow of traffic that enables
such disambiguation. Certain protocols as well, such as
TCP, generate sustained traffic in at least one direction
(e.g., TCP retransmissions). In cases where no such traffic
is normally generated, peer hosts that are in the midst of
communicating with each other could transmit “keep-alive”
packets (at a low frequency) during times when they do not
have regular packets to send. Receipt of traffic (with little or
no loss) from host B would indicate to A that the problem is
in the A→B direction. A can then initiate SecTrace on the
path to B. On the other hand, if the problem is only in the
B→A direction, then B would hear A’s traffic, deduce that
the problem is in the B→A direction, and initiate SecTrace
on the path to A.

There are, however, two problem cases: (a) there may
be a failure in both the A→B and B→A directions, or
(b) the network failure may precede any communication
between A and B, preventing the hosts from exchanging
any traffic at all. In both cases, since neither A nor B may
receive traffic from its peer, neither would be in a position
to determine definitively the direction of failure. In such
cases, the deadlock can be broken by having the host(s)
initiate SecTrace anyway, after having waited for a random
extra duration to give its peer the opportunity to initiate
SecTrace and possibly resolve the problem.

2) Impact on Secure Traceroute:Asymmetry in net-
work routing can make it difficult for an investigating
router, R, to check whether a downstream router, D, is
in fact receiving packets. First, even if D is receiving all
packets forwarded by R (and hence there is no network
problem in the R→D direction), the two routers may not
be able to establish a secure communication channel simply
because of a network problem in the D→R direction.
Second, even if a secure channel has been established, R
may not receive the appropriate response from D due to a
(new) network problem in the D→R direction. Thus if R’s
SecTrace attempt does not elicit the appropriate response
from D, R cannot be sure whether there is a problem in
the R→D direction or in the D→R direction.

The solution we suggest is as follows: The investigating
router, R, first initiates SecTrace as described earlier. If it
does not receive the appropriate response from a certain
downstream router, D, router R repeats SecTrace with one
difference: it includes the reverse route that D could use

12

to communicate back to R using a mechanism such as IP
source routing. The reverse route consists of the sequence
of intermediate routers along the path from R to D in
reverse order. (Note that due to routing asymmetry, the
reverse route may not be the same as the route from
D to R.) The underlying assumption is that if in fact
there is no network problem in the R→D direction, it is
quite likely (modulo the presence of unidirectional links)
that D will be able to communicate back to R via the
reverse route. Although wireless links are known to be
asymmetric [4], such asymmetry is typically in terms of
performance characteristics such as the frame loss rate
rather than connectivity. We expect there to typically be
connectivity even on the reverse path from D to R, so that
the SecTrace response can still traverse this reverse path.
In Section VIII, we contrast this assumption with the much
stronger assumption of channel symmetry made in previous
work such as the “watchdog” technique [18].

In the worst case, the inability of D to communicate back
to R would just mean that R would incorrectly deduce
that the problem is at or around D and would proceed
with unnecessary rerouting or other corrective action, an
undesirable but hardly disastrous outcome.

3) Impact of Redirection via the ITAP:The foregoing
discussion assummed direct communication between the
investigating router, R, and the investigated router, D.
However, as noted in Section VI-B.3, our implementation
in the wireless mesh network redirects all control messages
between R and D via the ITAP. On the one hand, this
means that asymmetry in the network path in the R→D
and D→R directions will not present hurdles to SecTrace.
On the other hand, redirection via the ITAP introduces
extraneous failure modes due to problems on the path
to/from the ITAP. However, communication via the ITAP
is just an optimization, and we can always fall back on
direct communication between R and D should either of the
nodes be unable to communicate with the ITAP. Separately,
SecTrace can be used to investigate the path to/from the
ITAP, with the asymmetry-related precautions discussed
earlier.

C. Responding to the Findings of SecTrace

Since connectivity problems are often likely to be due
to non-malicious causes (congestion, link failure, etc.), a
reasonable first step would be to route around the suspect
link. If repeated attempts at rerouting are of no avail, or
worse, if SecTrace continues to flag the same link or node
as suspect, then it becomes more likely that an attacker
is responsible for the connectivity problem. It would then
make sense to investigate the problem, possibly with human
intervention, and either rectify the faulty router or eject it
from the network—say, by revoking its credentials.

When a node runs SecTrace and finds a link to be
suspect, it may be the only node in the network that knows
about (or is even affected by) the suspect link. It is possible
for an attacker to interfere with and effectively block the

lone node’s attempt to route around the suspect link. Since
other nodes in the network may not see the need to avoid
the suspect link, an attacker who is strategically placed
along the shortest path may be hard to route around.

Figure 8 illustrates an example in the context of an on-
demand source routing protocol such as DSR [13] used in
an ad hoc wireless network setting. NodeA suspects link
X → Y of being faulty and wishes to find a route toF
that avoids this link. Such a route does exist (throughB →
C → D) but is longer in terms of hop count. WhenA floods
its route-request, the copy of the message that traverses
the path throughX → Y is likely get to E (the point at
which the two paths converge) first and hence be forwarded
ontoF . When the copy of the route-request arrives via the
path throughB → C → D, E will consider it to be a
“duplicate” and hence suppress it. SoA will be unable to
discover the alternate path viaB → C → D.

As noted above, the inability to route around the suspect
link despite repeated attempts could trigger human inter-
vention and eventual resolution of the problem. However,
since this is likely to be time-consuming, it would be
desirable to have the ability to reroute effectively. The key is
for the node that is trying to find a new route (A in Figure 8)
to make other nodes in the network (E in particular in
Figure 8) aware of the identity of the suspect link(s) or
node(s). (Note that we cannot be sure which end of the
suspect link is faulty, as explained in Section III-A, so
routing around the link can either mean avoiding both ends
of the link or avoiding just one end initially.) For a protocol
such as DSR, this can be accomplished by augmenting the
route-request message with anexclusion listidentifying the
link(s) or node(s) that the originator wishes to avoid. (The
originator would have to sign the exclusion list to assure its
authenticity, thereby preventing attackers from tampering
with the list.) Other nodes in the network would then take
the exclusion list into account when deciding whether to
forward or suppress a route request. For instance, in the
scenario depicted in Figure 8,X → Y would be included
in the exclusion list of the route-request broadcast byA.
SoE would suppress the copy that arrives viaX → Y and
forward the one that arrives viaB → C → D even if the
former arrives first.

While it is incumbent on nodes to honor the exclusion list
specified in a route-request message, they should not use
this information to alter their own route discovery attempts.
Otherwise, it would open the door for a node to launch an
attack by framing innocent nodes.

VIII. R ELATED WORK

There have been several pieces of work on making
Internet routing protocols robust against attacks by mali-
cious entities. The earliest comprehensive treatment of the
problem to our knowledge was by Perlman [20], [21], who
presented an approach for “sabotage-proof” routing in the
presence of Byzantine node failures. The key idea is to
use “robust flooding” to distribute link-state packets (LSPs)

13

D

Y ? X

A
E F

B C

Fig. 8. Illustration of how an attacker such asX or Y on the shortest path could frustrateA’s attempt to discover an alternate path toF
in the context of an on-demand source routing protocol such as DSR.

and the public keys of all nodes throughout the network.
Robust data routing is then accomplished by having end
hosts construct digitally signed source routes using the
link-state information they have gathered. If the chosen
source route fails, node-disjoint alternative routes are tried.
In the extreme case, data packets are distributed via robust
flooding. While this scheme is very robust in theory —
a working route will be found if it exists — there are
obvious practical hurdles to its use. For instance, flooding
the network with data packets is likely to be expensive,
perhaps even more so than the disruption caused by the
failed routers.

Perlman also discusses a strategy for fault isolation
that involves having intermediate routers return ACKs for
specially marked packets. However, she deprecates this
scheme in favor of simply finding node-disjoint alternative
paths because of the former’s space and computational
complexity. She also points out that two colluding faulty
routers could fool the fault isolation scheme by framing in-
nocent routers in between. The SecTrace scheme we present
in this paper shares the philosophy of Perlman’s fault
isolation scheme. However, as discussed in Section VI-
D, SecTrace maintains efficiency by doing signalling out
of band rather than requiring in-band ACKs. Also, as
explained in Section VI-B.3 and Section VII-A, SecTrace
is resistant to the “colluding routers” attack.

Other proposals [15], [23] have considered less radical
approaches to securing the routing protocol. In particular,
Secure BGP (S-BGP) [15] proposes using public key
infrastructures (PKIs) and IPSec [14] to enable a BGP
speaker to validate the authenticity and data integrity of
BGP UPDATE messages that it receives and to verify
the identity and authorization of the senders. However,
authentication of routing information does little to help
detect or diagnose faulty routing information emanating
from a router or to protect against a misconfigured or failed
router that is authorized to advertise routes for an address
prefix but fails to deliver packets anyway. Moreover, it
does nothing to protect against routers that obey the routing
protocol perfectly, but misbehave when actually forwarding
data.

A recent piece of work [24] has tried to address the prob-

lem of routing misbehavior in both the control plane and the
data plane in the context of BGP. A “whisper” procedure
is used to identify inconsistencies in route advertisements
received for a particular destination. A “listen” procedure is
used to identify non-working routes by monitoring end-to-
end TCP flows. The Listen and Whisper (L&W) solution
differs from SecTrace in both the assumptions it makes and
its goals. L&W does not depend on a PKI, but it is unable
to identify faulty routers or links and is also susceptible
to attacks on the implicit feedback that “listen” depends
on. While L&W is a useful solution, we believe that it is
inadequate for an open network setting where routers can
be arbitrarily malicious.

There has been considerable interest recently in securing
routing in mobile ad hoc networks. In [18], a “watchdog”
technique is proposed to enable a node to check that a
neighboring node did in fact forward a packet onward
without tampering with it. This technique makes the strong
assumption that nodes can hear the onward transmissions
of their neighbors, which may not hold even in wireless
ad hoc networks (for instance, due to local intereference,
directional antennae, and the asymmetry of wireless links
[4]). For instance, the onward transmission might use a
aggressive modulation scheme corresponding to a good
quality channel (as in 802.11 multi-rate schemes) and hence
may not be decodable by nodes in the vicinity that have a
poor channel from the transmitter. Note that the assumption
of symmetry made by the watchdog technique is much
stronger than that made by the path-reversal heuristic dis-
cussed in Section VII-B.2. Watchdog depends on symmetry
in channel characteristics, so that a given transmission can
be overheard by other nodes in the vicinity, specifically the
previous node on the communication chain. On the other
hand, our path-reversal heuristic only depends on symmetry
in connectivity, so that if A can send to B, then B can also
send a separate message back to A.

SEAD [9] focusses on a lightweight scheme to enable
nodes to authenticate routing updates from other nodes for
the specific case of a distance-vector routing protocol. As
with S-BGP, authentication does not solve the problem of
a faulty node that fails to forward packets.

Ariadne [10] proposes a similar solution in the context

14

of an on-demand routing protocol, DSR [13]. Ariadne
addresses the problem of forwarding misbehavior by main-
taining multiple (node-disjoint) source routes to the desti-
nation and adapting the fraction of traffic sent on each route
based on end-to-end feedback on packet delivery success
rate. However, a significant drawback of this approach
is that a single attacker could force the sender to avoid
all (good) nodes along the affected route(s), resulting in
unnecessary performance degradation. Rather than “shoot
in the dark”, our approach is to use SecTrace to localize
the fault so that it can be avoided with minimal rerouting.

[11] proposes a self-organized PKI suitable for mobile
ad hoc networks. In the absence of a centralized PKI, we
could use a similar approach to support secure traceroute.

IX. SUMMARY

In this paper, we have argued that securing routing in
open networks calls for more than just steps to secure
the routing protocol — it is also important to secure
packet forwarding. To this end, we have described a secure
traceroute protocol designed to detect and localize the
cause of packet forwarding misbehavior inconspicuously,
thereby denying attackers the opportunity to mislead the
investigation. We have applied SecTrace in the context of
a community wireless network and have discussed domain
specific choices made in our implementation. Our experi-
mental results indicate that SecTrace imposes a negligible
performance overhead in practice, making it suitable for
use in routine monitoring of end-to-end paths in an open
network. We have considered attacks on SecTrace and
presented ways of defending against many of them. We
have also considered the problem of routing around link(s)
flagged as suspect by SecTrace and presented a simple
enhancement to the DSR protocol to enable such rerouting
in the face of attackers.

ACKNOWLEDGEMENTS

Brian Zill and Jitu Padhye helped us understand the intri-
cacies of the Mesh Connectivity Layer (MCL). John Banes
and Ryan Hurst answered our many questions regarding the
Windows SSL APIs. We would like to thank them all.

REFERENCES

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R.
Morris. “Resilient Overlay Networks”,ACM SOSP, October
2001.

[2] M. Bellare and P. Rogaway. “Random oracles are practical:
A paradigm for designing efficient protocols”,ACM CCS,
1993.

[3] M. Bellare and P. Rogaway. “Optimal Asymmetric Encryp-
tion”, Eurocrypt ’94, LNCS 950, Springer-Verlag, pp. 92–
111, 1995.

[4] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. “A High-
Throughput Path Metric for Multi-Hop Wireless Routing”,
ACM Mobicom, September 2003.

[5] D. Dean and A. Stubblefield. “Using Client Puzzles to Protect
TLS”, USENIX Security, August 2001.

[6] T. Dierks and C. Allen. “The TLS Protocol Version 1.0”,
RFC-2246, IETF, January 1999.

[7] J. R. Douceur. “The Sybil Attack”,IPTPS, March 2002.
[8] R. Draves, J. Padhye, and B. Zill. “Comparison of Routing

Metrics for Static Multi-Hop Wireless Networks”,ACM
SIGCOMM, August 2004.

[9] Y. C. Hu, D. B. Johnson, and A. Perrig. “SEAD: Secure
Efficient Distance Vector Routing for Mobile Wireless Ad
Hoc Networks”,IEEE WMCSA, June 2002.

[10] Y. C. Hu, A. Perrig, and D. B. Johnson. “Ariadne: A Secure
On-Demand Routing Protocol for Ad Hoc Networks”,ACM
Mobicom, Septemper 2002.

[11] J. P. Hubaux, L. Buttyan, and S. Capkun. “The Quest for
Security in Mobile Ad Hoc Networks”,ACM MobiHoc,
October 2001.

[12] V. Jacobson, “The Traceroute Manual Page”, Lawrence
Berkeley Laboratory, Berkeley, CA, USA, December 1988.

[13] D. B. Johnson and D. A. Maltz. “Dynamic Source Routing
in Ad hoc Wireless Networks”, InMobile Computing, Chap.
5, pp. 153-181, Kluwer Academic Publishers, 1996.

[14] S. Kent and R. Atkinson. “Security Architecture for the
Internet Protocol”, RFC 2401, November 1998.

[15] S. Kent, C. Lynn, and K. Seo. “Secure Border Gateway
Protocol (Secure-BGP)”,IEEE Journal on Selected Areas
in Communications, Vol. 18, No. 4, April 2000.

[16] J. Kohl and C. Neuman. “The Kerberos Network Authenti-
cation Service (V5)”,RFC-1510, IETF, September 1993.

[17] H. Krawczyk, M. Bellare, and R. Canetti. “HMAC: Keyed-
Hashing for Message Authentication”,RFC-2104, IETF,
February 1997.

[18] S. Marti, T. J. Giuli, K. Lai, and M. Baker. “Mitigating
Routing Misbehavior in Mobile Ad Hoc Networks”,ACM
Mobicom, August 2000.

[19] V. N. Padmanabhan and D. R. Simon. “Secure Traceroute to
Detect Faulty or Malicious Routing”,ACM HotNets, October
2002.

[20] R. Perlman. “Network Layer Protocols with Byzantine Ro-
bustness”, Ph.D. Thesis, Department of Electrical Engineer-
ing and Computer Science, MIT, August 1988.

[21] R. Perlman. “Interconnections: Bridges, Routers, Switches,
and Internetworking Protocols”,Addison-Wesley Profes-
sional Computing Series, Second edition, 1999.

[22] A. Shamir. “How to share a secret.” Communications of the
ACM, 22:612–613, 1979.

[23] B. R. Smith and J. J. Garcia-Luna-Aceves. “Securing the
Border Gateway Routing Protocol”,Global Internet, Novem-
ber 1996.

[24] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H.
Katz. “Listen and Whisper: Security Mechanisms for BGP”,
USENIX/ACM NSDI, March 2004.

[25] “Advanced Encryption Standard (AES)”,U.S. Federal In-
formation Processing Standards Publication 197 (FIPS-197),
November 2001.

[26] Bay Area Wireless Users Group,http://www.bawug.org/
[27] Home Phoneline Networking Alliance (HomePNA),

http://www.homepna.org/
[28] HomePlug Powerline Alliance,http://www.homeplug.com/
[29] Seattle Wireless,http://www.seattlewireless.net/
[30] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas and

T. Ylonen. “SPKI Certificate Theory”, RFC 2693, September
1999.

[31] P. Zimmermann, “The Official PGP User’s Guide”, MIT
Press, 1995.

[32] C. Dwork and M. Naor. “Pricing Via Processing or Com-
batting Junk Mail”, In Ernest F. Brickell, editor,Advances
in Cryptology – CRYPTO ’92, volume 740 ofLecture Notes
in Computer Science, pages 139-147, 16-20 August 1992.
Springer-Verlag, 1993.

15

[33] P.F. Syverson, G. Tsudik, M. G. Reed, and C. E. Landwehr.
“Towards an Analysis of Onion Routing Security”. In H. Fed-
errath, editor,Designing Privacy Enhancing Technologies,
vol. 2009 of LNCS, pp. 96–114. Springer-Verlag, 2001.

[34] A. Juels and J. Brainard. “Client Puzzles: A Cryptographic
Defense Against Connection Depletion Attacks”,NDSS ’99
(Networks and Distributed Security Systems), February 1999.

16

