
A Semantics for Model Management Operators

Sergey Melnik Philip A. Bernstein
Microsoft Research

Redmond, WA, U.S.A.
{melnik,philbe}@microsoft.com

Alon Halevy
Univ. of Washington,
Seattle, WA, U.S.A.

alon@cs.washington.edu

Erhard Rahm
University of Leipzig

Germany
rahm@informatik.uni-leipzig.de

Abstract
Model management is an approach to simplify the
programming of metadata-intensive applications.
It offers developers powerful operators, such as
Compose, Extract, and Merge, that are applied to
models, such as database schemas or interface
specifications, and to mappings between models.
To be used in practice, these operators need to
be implemented for particular schema definition
languages and mapping languages. To guide that
implementation, we need a language-independent
semantics that tells what the operators should do.

In this paper we develop a state-based semantics
of the operators. That is, we express the effect of
applying the operators to models in terms of what
the operators do to instances of these models.
We show that our semantics captures previously-
proposed desiderata for the operators. We study
formal properties of the operators, such as com-
mutativity, associativity, uniqueness of results,
and how the cardinality of the results corresponds
to that of the inputs. Finally, we specify the state-
based semantics of the operators in Rondo, the
first prototype model-management system.

1 Introduction
Many challenging problems facing information systems
engineering involve the manipulation of complex metadata
artifacts, or models, such as database schemas, ontologies,
interface specifications, or workflow definitions, and map-
pings between models, such as SQL views, XSL transfor-
mations, or ontology articulations. The applications that
solve metadata manipulation problems are complex and
hard to build. One reason is due to low-level programming
interfaces, which provide access to the individual model el-
ements, such as attribute definitions of database schemas.
Programming against such interfaces requires a lot of nav-
igational code. Another reason is that most approaches are
language-specific and application-specific, i.e., are devel-
oped for SQL, UML, or XML and are not easily portable
to other domains.

Model management aims at providing a generic and
powerful environment to enable rapid development of
metadata-intensive applications in different domains [6, 7].

In the core of the model-management approach is a set of
algebraic operators that generalize the operations utilized
across various metadata applications. The operators are
applied to models and mappings as a whole rather than to
their individual elements, and thus simplify the program-
ming of metadata applications. The operators are designed
to be generic, i.e., useful for various problems and different
kinds of metadata. The major model management opera-
tors suggested in the literature include Match, Merge, Ex-
tract, Diff, and Compose. These operators can be used for
solving schema evolution, data integration, and other sce-
narios using short programs, or scripts [6, 8], which are ex-
ecuted by a model management system. The first prototype
of such a system, called Rondo, was presented in [25].

Rondo has a precise semantics for each operator’s ef-
fect on models and mappings. But this is not the whole
story. Most model-management scripts generate mappings
for transforming instances of models, e.g., scripts for data
or message translation or for wrapping a database. How
does a developer know that a script generates mappings
that transform instances as expected? When designing a
model-management system, how do we know that our op-
erator specifications are correct? The answers require an
understanding of the relationship between the models and
mappings returned by each operator and the transforma-
tions expressed by those mappings on the states of those
models. To explain that relationship, this paper develops
a state-based semantics for model management operators.
We first specify a generic semantics. Then, to show its util-
ity, we use it to specify the semantics of Rondo.

Our first contribution is a specification of the semantics
of each model management operator on arbitrary models
and mappings. The semantics is specified by relating the
instances of the operator’s input and output models. An in-
stance of a model is a state that conforms to the model. For
example, an instance of a database schema is a database
state, and an instance of an XML schema is an XML doc-
ument. An instance of a mapping is a tuple of states, one
for each of the models involved in the mapping. For ex-
ample, an instance of a SQL view definition v is a pair
(x, y) where x is a database state and y is a state of the
view schema computed by v. We use the terms instance
and state interchangeably.

Our second contribution is showing that our semantics
satisfy the desiderata of well known, but disparate prob-

1

lems studied in the literature, such as integration of views
[9, 12, 32] and of schemas [3, 10, 19, 21, 28], composi-
tion of queries [30] and of schema mappings [23], view
complement [4, 18], view selection [2, 13, 20, 34], and an-
swering queries using views [11, 15]. These problems have
typically been studied in isolation and trimmed to specific
languages. We distill essential properties of these problems
into our set of language-independent operators.

Our third contribution is to study several formal proper-
ties of model-management operators. Here we face the fol-
lowing technical challenge. The definitions of most of the
operators involve a condition on minimality of the resulting
model. The minimality condition is, in essence, a second-
order condition on models, whose properties are hard to
study. We show that it is possible to provide an equivalent
characterization of the operator that involves only a first-
order condition on models. Given that characterization,
we can verify certain properties of operators on a structure
called instance graph, which provides a canonical repre-
sentation of a set of models (similar in spirit to the use of
canonical databases for checking query containment).

We use the above techniques to prove several results:
We show that the result of some operators (e.g., Com-
pose, Confluence) is unique, while for others (e.g., Extract,
Merge) it is unique up to isomorphism. We show the rela-
tionship between the cardinalities of the inputs and outputs
of the operators. And we examine some basic properties
such as commutativity and associativity of operators.

Our final contribution is to use state-based semantics to
specify the behavior of operators in Rondo [25]. Rondo’s
operators are defined for morphisms, a simple mapping lan-
guage whose expressions are sets of arcs connecting the
elements of two schemas. We define the semantics of a
useful subset of this language, called path-morphisms. We
show that Rondo operators satisfy the state-based seman-
tics of model management operators with respect to path-
morphisms. Thus, every Rondo script produces valid path
morphisms whose semantics can be easily understood.

Nearly all previous work on model management has
considered the behavior of operators only on models and
mappings, not on data instances related by mappings [6, 7,
8, 25, 28]. The one exception we know of is [3], where
the operators are defined axiomatically in terms of other
operators using category-theory. For example, schema in-
tegration, which underlies the operator Merge, is defined
using a categorical construct called pushout. The approach
is developed within an abstract category of schemas and
has only been applied to issues of constraint preservation.

The paper is organized as follows. Section 2 formally
defines models, mappings, and operators. Section 3 defines
the semantics of the operators and studies their properties.
Section 4 uses state-based semantics to characterize the be-
havior of the Rondo prototype. Section 5 is the conclusion.

2 Problem definition

We present the basic concepts of model management, in-
cluding models, mappings, operators, and scripts, and ex-

plain the notation used in the paper. In the examples, we
use relational schemas and assume set semantics for the re-
lations and queries. In our discussion, we use the terms
query and view synonymously. More precisely, a view is a
named query, whose result schema, called view schema, is
specified explicitly.

Models: A model is a set of instances. Sometimes, a
model can be denoted by an expression in a concrete lan-
guage, such as SQL DDL, XML Schema, BPEL4WS [5],
or CORBA IDL [31]. For example, a relational schema
denotes a set of database states; a workflow definition de-
notes a set of workflow instances; a programming interface
denotes a set of implementations that conform to the inter-
face. To refer to models, we use variables m, m1, m2, etc.
When x is an instance of model m, we write x ∈ m. When
we use an expression to denote a model, we put it in French
quotation marks, such as �E� for expression E.

EXAMPLE 1 Each instance of m = �R(A, B), S(C)�
is an entire populated relational database. If |A|, |B|
and |C| are domain sizes of the respective attributes, then
model m has 2|A|·|B|+|C| instances, one of which is the
empty database.

Our definitions will often refer to models that are mini-
mal w.r.t. a set of models M . A model m′ is minimal w.r.t.
M if it has the smallest cardinality of all models in M, i.e.,
m′ ∈ M and ∀m ∈ M : m′ � m, where m′ � m iff there
exists a surjective function from m onto m ′.

Mappings: A mapping is a relation on instances. In
this paper, we focus on binary mappings, i.e., those that
hold between two models. Sometimes, a mapping can be
denoted using an expression in a concrete language such
as relational algebra, SQL DML, XSLT, GLAV, etc. We
put such expressions in French quotation marks. To re-
fer to mappings, we use variables map1, map2, m1 m2,
m2 m3, etc.

EXAMPLE 2 Consider two relational schemas

m1 = �R(ID, Age)�, m2 = �S(ID, Sex)�.

The mapping m1 m2 = �πID(R) = πID(S)� is a bi-
nary relation on the instances of m1 and m2. That
is, for all x ∈ m1, y ∈ m2: (x, y) ∈ m1 m2 iff
πID(x .R) = πID(y.S).

If (x, y) ∈ m1 m2 we say that instances x and y are
consistent under m1 m2, i.e., can exist at the same time in
the application that deploys the mapping m1 m2. If each
instance of m1 is consistent under m1 m2 with at least one
instance in m2 and vice versa, we call models m1 and m2

consistent under m1 m2 (or conflict-free as in [9]).
A mapping can be thought of as a constraint that holds

between two models [9, 21, 22]. If m1 m2 = m1 × m2,
the constraint is empty; if m1 m2 = ∅, it is contradic-
tory. In general, m1 m2 is an arbitrary binary relation on
instances, which may be total, partial, functional, surjec-
tive, etc. Models m1 and m2 are consistent under m1 m2

iff m1 m2 is a total surjective mapping between m1 and
m2. A query is a functional mapping. A query (and hence

2

a mapping in general) may not be expressible in a specific
query language [1].

Operators: A model-management operator takes models
and mappings as input and produces models and mappings
as output. Formally, a model-management operator is an
n-ary predicate on models and mappings. The attributes of
the predicate are partitioned into input attributes and output
attributes. In this paper we consider the operators Match,
Compose (◦), Merge, Extract, Diff, and Confluence (⊕).

Scripts: A model-management script is a conjunctive
formula built from model-management operators. The
variables and constants in a script refer to models and map-
pings. Computing the script means finding a valid substi-
tution, which is one that replaces all variables by constants
(i.e., concrete model and mapping definitions) and makes
the script a true formula. Given values for the input vari-
ables, an exact answer to a script consists of the values of
the output variables in a valid substitution. Two scripts are
equivalent if they return the same exact answers for every
given set of inputs.

EXAMPLE 3 The script shown below integrates the “over-
lapping” portions of models m1 and m2 based on the map-
ping m1 m2 (the individual operators are defined formally
in Section 3 and are used here only to illustrate how they
can be combined into scripts). Intuitively, the script ex-
tracts the portions p of m1 and q of m2 that “participate”
in m1 m2, and merges them into a model m. The outputs
are model m and mappings m m1, m m2 between m and
the input models:

script Intersect(m1, m2, m1 m2)
〈p, m1 p〉 = Extract(m1, m1 m2);
〈q, m2 q〉 = Extract(m2, Invert(m1 m2));
〈m, m p, m q〉 =

Merge(p, q, (Invert(m1 p) ◦ m1 m2) ◦ m2 q);
m m1 = m p ◦ Invert(m1 p);
m m2 = m q ◦ Invert(m2 q);

return 〈m, m m1, m m2〉
The script is a conjunction of expressions delimited by

semicolons. Computing the script for the inputs of Exam-
ple 2 produces a substitution of the output variables, such
as m = �T(ID)�, m m1 = �T = πID(R)�, m m2 =
�T = πID(S)�.

Problem statement: Ultimately, our goal is to build
model-management systems that can be deployed in prac-
tical settings and execute scripts efficiently for complex
model and mapping languages. In support of this goal, we
focus on the following problems in this paper.

First, we develop state-based characterizations of
model-management operators. Ideally, operator specifica-
tions should be language-independent, yet compatible with
the problems examined in the literature for specific lan-
guages. Second, we explore whether the result of an op-
erator is unique (or at least up to isomorphism) to estab-
lish invariants that are guaranteed to hold across different
implementations of operators. Third, since computing the

results of operators can be expensive, optimization is im-
portant. For example, we may want to rewrite a script into
an equivalent script that can be executed more efficiently.
Hence, we study properties of operators that provide the
foundation for optimizations. To illustrate, if Compose (◦)
is associative, then we can replace the third parameter to
Merge in Example 3 by Invert(m1 p) ◦ (m1 m2 ◦ m2 q).

Given the operator definitions and a particular model
and mapping language, we can then define more specific
properties, such as the following:

DEFINITION 1 (OPERATOR CLOSURE) Let L be a lan-
guage for specifying models and mappings, and let θ be
a model-management operator. L is said to be closed un-
der θ, if given any inputs to θ in L, the output can also be
expressed in L.

If L is closed under θ, then we can ask whether the rep-
resentation of the result of θ is unique, and if not, whether
we can find the most computationally efficient representa-
tion. Computational efficiency is affected by various crite-
ria. For example, in view selection (which we relate to our
Extract operator) the criteria include query evaluation cost
or size of schema instances [2, 20, 34]. In view integration
(which we relate to Merge), the criteria involve syntactic
properties, such as size of expressions used for schemas
and queries [9, 32].

Throughout this paper we show how a wide range of
previous work can be viewed as studying these properties
for particular languages. And in Section 4 we study the
language supported by our prototype Rondo.

3 Design and analysis of operators
In this section we suggest a state-based semantics for the
key operators proposed in the literature [6, 7, 8, 25]. We
discuss six major operators: Match, Compose, Merge, Ex-
tract, Diff, and Confluence, and five auxiliary operators:
cross-product, Id, Invert, Domain, and Range. Using these
operators, we have been able to characterize all model-
management tasks that have appeared in the literature.
However, whether the operators are complete or best is an
open question.

Of all the operators, Match plays a special role. Given
two models m1 and m2, the operator returns a map-
ping m1 m2 that holds between the models, denoted as
m1 m2 = Match(m1, m2). The operator Match inherently
does not have formal semantics. It gives us what we know
about the relationship between models in a particular appli-
cation context. Sometimes this relationship can be discov-
ered semi-automatically [29] but ultimately Match depends
on human feedback (and hence may be partial or even in-
accurate).

The auxiliary operators are defined as follows:

• m1 × m2 =df {(x, y) | x ∈ m1 and y ∈ m2}
• Invert(map) =df {(y, x) | (x, y) ∈ map}
• Domain(map) =df {x | (x, y) ∈ map}
• Range(map) =df Domain(Invert(map))

3

• Id(m) =df {(x, x) | x ∈ m}
The above operators have standard algebraic defini-

tions. Thus, many well-known properties hold, such as
Domain(Id(m)) = m or Invert(Invert(map)) = map.

3.1 Compose operator

To motivate the definition of the Compose operator, con-
sider the following example.

EXAMPLE 4 Let m1 m2 be an export mapping that gener-
ates an XML document y ∈ m2 from a relational database
x ∈ m1. Suppose XML schema m2 is modified into
schema m3. Let m2 m3 be the mapping between the orig-
inal and the new XML schema. To derive the updated ex-
port mapping, we compute the composition of m 1 m2 and
m2 m3, denoted as Compose(m1 m2, m2 m3) or simply
as m1 m2 ◦ m2 m3.

The following definition describes formally the proper-
ties of the updated mapping in the above example. It is
consistent with mapping composition scenarios studied in
the literature [8, 23, 30]:

DEFINITION 2 (COMPOSE, ◦)

m1 m2 ◦ m2 m3 =df

{(x, z) | (x, y) ∈ m1 m2 and (y, z) ∈ m2 m3}
Operator Compose generalizes query composition. It is

equivalent to query composition when m1 m2 and m2 m3

are queries, i.e., functional mappings. This case is illus-
trated in the following example.

EXAMPLE 5 Let

m1 = �R(A,B)�, m2 = �S(A,B)�, m3 = �T(B)�
m1 m2 = �S = σA>5(R)�
m2 m3 = �T = πB(S)�

Then, the result of composition can be specified as

m1 m2 ◦ m2 m3 = �T = πB(σA>5(R))�

Many well-known properties hold on Compose, includ-
ing the following ones:

PROPOSITION 1

1. Compose is associative, i.e., map1◦(map2◦map3) =
(map1 ◦ map2) ◦ map3

2. Compose is not commutative. Instead: map1 ◦
map2 = Invert(Invert(map2) ◦ Invert(map1))

3. Mapping map is a surjective function onto m if and
only if Invert(map) ◦ map = Id(m)

Computing the results of composition for concrete lan-
guages can be very hard. For example, [23] shows that the
GLAV mapping language is not closed under composition,
and studies the complexity of computing composition in
certain cases where it is possible. The work [30] presents
algorithms for composing an XML publishing view with an
XQuery and decomposing the result into a SQL query and
a tagging graph. It shows that specialized languages may
have to be developed when the result of composition is not
representable in any existing language.

m

m1 m2

m_m1

merged schema

m_m2

mapping
m1_m2

Figure 1: Illustration of Merge (Example 6)

3.2 Merge operator

We explain the intuition behind the Merge operator using
the following view integration scenario.

EXAMPLE 6 Consider a company with two departments,
each of which manages its own database. Let m1 and m2

be the respective database schemas (see Figure 1). Suppose
m1 and m2 are not disjoint; for instance, both describe em-
ployee data. The mapping m1 m2 describes the mutually
consistent states of m1 and m2.

To simplify the management of data across the depart-
mental databases, the company decides to move all data to
a centralized database, which the departments access us-
ing view schemas m1 and m2. Thus, the goal is to create
a schema m for the centralized database and views m m1

and m m2, such that m captures all the information needed
by the departments and no other information, i.e., is min-
imal. If the autonomy of the departments needs to be re-
stored later on, it should be possible to reconstruct m1, m2,
and m1 m2 from m, m m1, and m m2, i.e., the transition
to the centralized database must not lose information.

The following is the formal definition of Merge, which
captures the properties of the above scenario.

DEFINITION 3 (MERGE) Let m1 m2 be a map-
ping between m1 and m2. 〈m, m m1, m m2〉 =
Merge(m1, m2, m1 m2) holds if and only if

i. m m1 and m m2 are surjective functions onto m1

and m2, respectively

ii. m1 m2 = Invert(m m1) ◦ m m2

iii. m = Domain(m m1) ∪ Domain(m m2)

iv. m is a minimal model satisfying (i)-(iii).

Condition (i) states that m m1 and m m2 are (pos-
sibly partial) views on m. Due to surjectivity, m1 =
Range(m m1) and m2 = Range(m m2), so m con-
tains all the information of m1 and m2. Condition (ii)
guarantees that the input mapping m1 m2 can be recon-
structed from the views. That is, we can obtain the mu-
tually consistent states of m1 and m2 by the composi-
tion Invert(m m1) ◦ m m2. Condition (iii) ensures that
all information in m is useful, for either view m m1 or
view m m2. The minimality condition (iv) prevents m
from containing extra information that is not necessary for
representing all of m1 and m2.

EXAMPLE 7 Let

4

m1 = �R(ID, Age)�
m2 = �S(ID, Sex)�
m1 m2 = �πID(R) = πID(S)�

Then, the result of Merge can be specified as

m = �T(ID, Age, Sex)�
m m1 = �R = πID,Age(T)�
m m2 = �S = πID,Sex(T)�

Conditions (i)-(iii) of Definition 3 are easy to verify. The
minimality of the merged model can be tested with help of
Lemma 1 that we present below.

Our formalization of Merge builds on the extensive work
on schema and view integration. To our knowledge, Defini-
tion 3 is the first to satisfy the following important desider-
ata suggested in that literature. First, the definition is lan-
guage independent [3, 28]. Second, Merge is driven by an
input mapping, and the output includes the mappings be-
tween the merged model and the input models [9, 21, 32].
Third, the merged model represents the complete informa-
tion of each input model [12, 28, 32]. Fourth, inconsistent
models can be merged [21] (see Corollary 1). This case
may happen when one of the models may be in a state that
corresponds to no valid state of another model, i.e., m 1 m2

is not a total surjective mapping. Finally, Theorem 1 shows
that Merge is associative and commutative [10]. It states
the main results of this section.

THEOREM 1 Merge has the following properties:

1A. The output model m and mappings m m1, m m2 of
Merge are determined up to isomorphism.

1B. If 〈m, m m1, m m2〉 = Merge(m1, m2, m1 m2)
then |m| = |m1 m2| + |m1 − Domain(m1 m2)| +
|m2 − Range(m1 m2)|

1C. Merge is commutative. That is:

〈m, m m1, m m2〉 = Merge(m1, m2, m1 m2)

if and only if 〈m, m m2, m m1〉 =
Merge(m2, m1, Invert(m1 m2)).

1D. Merge is associative, i.e., the following scripts 3wayM1
and 3wayM2 are equivalent:

script 3wayM1(m1, m2, m3, m1 m2, m2 m3)
〈m12, m12 m1, m12 m2〉 =

Merge(m1, m2, m1 m2);
〈m, m m12, m m3〉 =

Merge(m12, m3, m12 m2 ◦ m2 m3);
return 〈m, m m12 ◦ m12 m1,

m m12 ◦ m12 m2, m m3〉
script 3wayM2(m1, m2, m3, m1 m2, m2 m3)
〈m23, m23 m2, m23 m3〉 =

Merge(m2, m3, m2 m3);
〈m, m m23, m m1〉 =

Merge(m23, m1, m23 m2 ◦ Invert(m1 m2));
return 〈m, m m1, m m23 ◦ m23 m2,

m m23 ◦ m23 m3〉

Part 1A tells us that although the output model and map-
pings of Merge are not determined uniquely (e.g., in con-
trast to Compose), they are guaranteed to capture the same
amount of information. The cardinality |m|, or information
capacity [17, 26], of the output model m is given explicitly
in 1B. If the cardinalities are infinite, m consists of three
disjoint partitions whose cardinalities are specified by the
summands.

Before discussing the proof of Theorem 1, we point out
the following corollary of Part 1B of the theorem.

COROLLARY 1 Let 〈m, m m1, m m2〉 =
Merge(m1, m2, m1 m2).

1. If m1 and m2 are consistent under m1 m2, then
|m| = |m1 m2|

2. If m1 m2 = m1 × m2, then |m| = |m1| · |m2|
3. If m1 m2 = ∅, then |m| = |m1| + |m2|
The corollary illustrates that (in contrast to the defini-

tion suggested in [21]) Merge does not lose information
even under contradictory integration constraints, i.e., when
m1 m2 = ∅.
PROOF SKETCH: The proof of Theorem 1 proceeds in two
steps. The first step addresses the technical difficulty of
dealing with condition (iv) in Definition 3. The condition
requires that the result be a minimal model, thereby spec-
ifying a condition on all models. The following lemma
provides an alternative but equivalent characterization of
Merge, where condition (iv) is replaced by a condition that
can be checked on a single candidate model. In the lemma,
map[x] denotes the projection of x over map, defined as
map[x] =df {y | (x, y) ∈ map}.

LEMMA 1 Let m1 m2 be a mapping between m1 and m2.
〈m, m m1, m m2〉 = Merge(m1, m2, m1 m2) holds if
and only if

1. Conditions (i)-(iii) of Definition 3 hold, and

2. For all z1, z2 ∈ m: if m m1[z1] = m m1[z2] and
m m2[z1] = m m2[z2] then z1 = z2

The lemma provides additional insight into the proper-
ties of Merge. Each pair (x, y) ∈ m1 m2 corresponds to
a single valid state z of the merged model m. Upon merg-
ing, two mutually consistent states x and y are “glued” into
z in such a way that we can unambiguously reconstruct x
and y from z using two functional mappings1, m m1 and
m m2. Using condition (2) of Lemma 1, we can verify
immediately that model m in Example 7 is minimal. To
prove that (2) is necessary for minimality of Merge, we
show that assuming the opposite allows us to construct a
smaller model m′ that satisfies (i)-(iii), leading to a contra-
diction. To show that (2) is sufficient we establish a lower
bound k on the number of instances in m using (i)-(iii) and
demonstrate that each model that satisfies the lemma has
exactly k instances, i.e., is minimal.

Now that we can verify locally that a model and a pair of
mappings are actually a merge, we can study the properties

1Since m m1 and m m2 are functions, m m1[x] and m m2[x] are
singleton sets. map[x] is used in its general form in Lemmas 2 and 3.

5

x1
y1

y2

x2 y3

z1

z2

z3

z4

m1 m2m

m_m1

m_m2

m_m1 m_m2

m_m2

m1_m2

m1_m2m_m1

Figure 2: Instance graph illustrating Merge

of Merge on a special structure called an instance graph. In-
stance graphs are an analysis tool similar in spirit to canon-
ical databases or rule-goal trees used for query analysis:
properties of sets of models can be verified on a single rep-
resentative structure.

An instance graph is a directed labeled graph whose
nodes represent instances of models and edges denote pairs
of instances that participate in mappings. A pair (x, y) ∈
map is represented as a directed edge from x to y labeled
with map. The direction of edges is used to distinguish
between the “left” and “right” instances of a mapping and
does not imply that the mapping is functional. In the case
of Merge the instance graph includes nodes for the two in-
put models and the merged model. Figure 2 depicts an
instance graph that shows the result of merging models
m1 = {x1, x2} and m2 = {y1, y2, y3}. The boundaries
of models are marked using dashed boxes. The instance
graph illustrates that m contains exactly one instance for
each edge of m1 m2 and for each instance of m1 and m2

that is not incident on m1 m2.
With the help of instance graphs, the proof of Theo-

rem 1 proceeds as follows. The proof of Part 1A is that
two graphs with input models and mappings that satisfy
Lemma 1 must be isomorphic. Part 1B can be demon-
strated by splitting the instances of m1 and m2 into three
disjoint partitions based on whether or not they participate
in m1 m2. The proof of commutativity follows from the
definition of Merge, while associativity can be sketched us-
ing instance graphs as follows: we traverse the instances of
m2 that are connected to those of m1 and m3 in the instance
graph that represents a 3-way merge, and show that their
“projections” over Invert(m1 m2) and m2 m3 are equiva-
lent in 3wayM1 and 3wayM2. Each unconnected instance of
m1, m2, and m3 has exactly one counterpart in m.

To conclude this section, we note that [9] describes an
algorithm for implementing Merge for relational schemas
under the condition that m1 and m2 are consistent (or
“conflict-free”) under m1 m2. On the flip side, the authors
note that this condition is undecidable for the considered
constraint language, which uses functional, inclusion, and
exclusion dependencies.

3.3 Extract operator

The operator Extract takes a model m and a mapping map
between m and some model m′, and returns a portion mx

of m that participates in the mapping. We begin with a

legacy DB

m′m

query

map
mx

view

m_mx

query against new schema: Invert(m_mx) O map

new schema

Figure 3: Illustration of Extract (Example 8)

motivating example.

EXAMPLE 8 Let m be a legacy database schema and map
be a query over m. Our goal is to upgrade the legacy
database by producing a new schema mx that captures only
the information that can actually be queried using map and
no other information (see Figure 3). That is, mx is a min-
imal schema that still allows us to obtain all query results
obtainable by running map against m. In addition to the
new schema mx, we need a database transformation m mx

that tells us how the data of m can be migrated to mx. Af-
ter migrating all instances of m to mx, we can reformulate
our original query map to run against mx, by composing
the reverse transformation Invert(m mx) and map.

The following definition describes formally the proper-
ties of mx and m mx in the above example.

DEFINITION 4 (EXTRACT) Let map be a mapping from m.
〈mx, m mx〉 = Extract(m, map) holds iff

i. m mx ◦ Invert(m mx) ◦ map = map

ii. mx = Range(m mx)

iii. mx is a minimal model satisfying (i) and (ii).

To tie the definition to Example 8, observe that m mx

is the database transformation from m to the new schema
mx, while Invert(m mx) ◦ map is the updated query over
mx. Hence, condition (i) requires the updated query over
mx to produce the same results as the original query map
over m. Conditions (ii) and (iii) ensure that mx does not
capture irrelevant information.

Our definition of Extract builds on the (materialized)
view selection problem [2, 13, 20, 34], whose objective is
to find a set of views that allows answering a given query
workload. If the workload consists of a single query map,
the correctness criterion of view selection is condition (i).
The works on view selection is an example of where the
focus has been on finding the optimal representation of the
result of Extract, where the language for expressing models
and mappings are various subsets of SQL. Condition (i) can
also be interpreted as a problem of answering queries using
views using an exact rewriting [11, 15]. That is, given a
view m mx, the goal is to rewrite query map on m into
query q = Invert(m mx) ◦ map on mx.

Definition 4 covers a general case in which map is an
arbitrary, possibly non-functional mapping. That is, map
may express arbitrary constraints between m and some
model m′. If map is a query on m, Extract returns a mini-
mal model that can hold the results of the query. This case
is illustrated below.

EXAMPLE 9 Let

6

m = �R(ID : int, Age : int)�
map = �SELECT Age FROM R

WHERE Age=18 OR Age=19�

Then, the result of Extract can be specified as

mx = �S(A : bool)�
m mx = �SELECT 19−Age FROM R

WHERE Age=18 OR Age=19�

Observe that condition (i) of Definition 4 is satisfied triv-
ially when m mx is total and injective. In this case, com-
posing m mx with its inverse yields the identity. The intu-
ition is that it is always possible to find a view schema that
supports the given query workload by simply picking the
original schema mx = m and bijection m mx = Id(m).
The minimality condition (iii) guards against such trivial
solutions.

THEOREM 2 Extract has the following properties:

2A. The output model mx and mapping m mx of Extract
are determined up to isomorphism. If

〈mx, m mx〉 = Extract(m, map);
〈nx, m nx〉 = Extract(m, map);

then the bijection from mx onto nx is

mx nx = Invert(m mx) ◦ m nx

2B. If 〈mx, m mx〉 = Extract(m, map) then
|mx| = |P(map)|, where P(map) is a parti-
tioning of Domain(map) by the equivalence relation
ind(x1, x2) =df (map[x1] = map[x2]).

2C. If m mx is a surjective view from m onto mx, then
there is no way to “compress” the view schema mx

any further, i.e.,

〈mx, m mx〉 = Extract(m, m mx)

2D. If all of m participates in map, then the extracted
model is isomorphic to the input model. For-
mally, if Invert(map) is a surjective function and
〈mx, m mx〉 = Extract(m, map), then m mx is a bi-
jection.

PROOF SKETCH: The proof of the theorem follows the
same steps as that of Theorem 1. First, we provide an al-
ternative characterization of Extract (see Lemma 2 below).
Then, we prove the theorem by constructing and analyzing
instance graphs for Extract using the lemma.

LEMMA 2 Let Domain(map) ⊆ m. 〈mx, m mx〉 =
Extract(m, map) holds iff:

1. m mx is a surjective function from m onto mx

2. For all (y1, x1), (y2, x2) ∈ m mx: x1 = x2 iff
map[y1] = map[y2]

3. Domain(m mx) = Domain(map)

The lemma replaces condition (iii) of Definition 4 by
condition (2), which can be tested locally. It shows that
the essence of Extract is to collapse the states of m that are
“indistinguishable” under map into a single state of mx.

z1

z2

y1

y3

y2

m′m

y4

z3

x1

x2

mx

y5

x4

map

x3

y6

z4

z5

z6
m_mx

Figure 4: Instance graph illustrating Extract

The partitions of P(map) in Part 2B hold such indistin-
guishable states, so that mx contains one state per parti-
tion. Condition (3) makes sure that exactly those instances
of m that are connected in map are those that participate in
m mx.

EXAMPLE 10 Figure 4 shows an instance graph that illus-
trates applying the operator Extract to a model m with six
instances. Instances y2 and y3 are indistinguishable under
map since map[y2] = map[y3] = {z2, z3}. Therefore,
they are collapsed into a single instance x2 of mx. All
other instances of m are pairwise distinguishable. Instance
y6 is not connected in map and thus has no counterpart in
mx. Observe that the output mapping m mx differs struc-
turally from the input mapping map, i.e., Extract specifies
a non-trivial mapping transformation.

Part 2D of Theorem 2 yields the following property:

COROLLARY 2 (IDEMPOTENCE) Extraction from an ex-
tracted model yields the same model (up to isomor-
phism). Formally, if 〈mx, m mx〉 = Extract(m, map),
then 〈mx, Id(mx)〉 = Extract(mx, Invert(m mx)).

Algorithms for query reachability (e.g., [16, 33]) can
be used to implement Extract when the mapping language
is recursive datalog (and subsets thereof). The extracted
schema is the result of looking at the leaves of the query
tree after the predicates in the query have been applied
as tightly as possible to all nodes in the tree. An imple-
mentation of Extract for SQL can exploit view selection
algorithms that are deployed in commercial database sys-
tems [2].

3.4 Diff operator

The operator Diff is complementary to Extract. It takes a
model m and a mapping map between m and some model
m′, and returns a portion md of m that does not partici-
pate in the mapping. Intuitively, “difference” is a minimal
model that when merged with an extracted model, produces
the original model. We continue with the scenario of Ex-
ample 8.

EXAMPLE 11 The legacy database with schema m from
Example 8 has been migrated to a new operational database
with schema mx that captures only the information that
can be queried using map (see Figure 5). Assume that
for legal reasons all data in the legacy database has to be

7

legacy DB

m′m

query

map

mx
view

m_mx

new schema

md

archive schema
view

m_md

Figure 5: Illustration of Diff (Example 11)

preserved indefinitely. For efficiency, the legacy data is
split between the new operational database and an archival
database. Our goal is to develop an archival schema md

that captures only the information needed to reconstruct
the legacy data from the new operational database and the
archive, and no other information. In addition, we need a
database transformation m md to populate md with data
from m. Together, m md and m mx describe how the
data in the new operational database relates to the data in
the archive, namely that mx md = Invert(m mx)◦m md.
The legacy database can be reconstructed by merging mx

and md based on mx md.

The following definition specifies formally the proper-
ties of md and m md in the above example:

DEFINITION 5 (DIFF) Let map be a mapping from m.
〈md, m md〉 = Diff(m, map) holds iff the following con-
ditions are satisfied for some mx, m mx:

i. 〈mx, m mx〉 = Extract(m, map)
ii. 〈m, m mx, m md〉 =

Merge(mx, md, Invert(m mx) ◦ m md)
iii. md is a minimal model satisfying (i) and (ii)

The following example illustrates the effect of the oper-
ator for concrete model and mapping definitions:

EXAMPLE 12 Let

m = �R(A, B), S(B, C); πB(R) ⊆ πB(S)�
map = �T = R �� S�

Then, the result of Diff(m, map) can be expressed as

md = �V(B, C)�
m md = �V = S − πB,C(R �� S)�

Our definition of Diff is based on the view complement
problem [4, 18]. Two views are complementary if given
the state of each view, there is a unique corresponding state
of the source database. That is, if the two views are ma-
terialized then the database can be reconstructed from the
views. View complements are exploited to guarantee desir-
able data warehouse properties such as independence and
self-maintainability.

Definition 5 covers a general case when map is an ar-
bitrary, possibly non-functional or partial mapping. If the
input mapping is a total view, the output of Diff corresponds
to a (minimal) view complement:

COROLLARY 3 (VIEW COMPLEMENT) Let m mx be a
total view from m onto mx and let

〈md, m md〉 = Diff(m, m mx).

Then, m can be reconstructed from the views m mx and
m md, i.e., the following holds:

〈m, m mx, m md〉 =
Merge(mx, md, Invert(m mx) ◦ m md)

The corollary can be shown by substituting m mx for
map in Definition 5 and using the result of Theorem 2
(Part 2C). In Example 7, the views m m1 and m m2 are
complementary yet neither is minimal (i.e., does not satisfy
Diff), as demonstrated in [24].

THEOREM 3 Diff has the following properties:

3A. The output model md of Diff is determined up to iso-
morphism, whereas the mapping m md is not.

3B. If 〈md, m md〉 = Diff(m, map) then |md| =
max{|C| : C ∈ P(map) ∪ {∅}, |C| �= 1} + |m −
Domain(map)|, where P(map) is as in Theorem 2.

3C. If all of m participates in map, the “difference” md is
empty. Formally: if Invert(map) is a surjective func-
tion and 〈md, m md〉 = Diff(m, map), then md = ∅
and m md = ∅.

Part 3A tells us that there may be multiple ways of com-
pensating the information loss that occurs upon extraction,
a result consistent with [4]. Part 3B states that the output
model of Diff contains as many instances as in the largest
partition of P(map), unless the size of the largest partition
is 1. In this case, Invert(map) is a surjective function, i.e.,
all of m participates in map, so that the size of md is zero
(Part 3C).
PROOF SKETCH: The proof of Theorem 3 is based on the
following lemma, which provides an alternative character-
ization of Diff that removes condition (iii) of Definition 5.
The lemma emphasizes that the essence of Diff is to ensure
that the states of m that are indistinguishable under map
(and, hence, would be collapsed in Extract) can be distin-
guished by way of m md.

LEMMA 3 Let Domain(map) ⊆ m. 〈md, m md〉 =
Diff(m, map) holds iff:

1. m md is a surjective function from m onto md

2. For all y1, y2 ∈ m with map[y1] = map[y2] and
y1 �= y2 there exist (y1, d1), (y2, d2) ∈ m md with
d1 �= d2

3. For all y ∈ m−Domain(map) there is (y, d) ∈ m md

with {y′ | (y′, d) ∈ m md} = {y}
4. For each d ∈ md there exists (y, d) ∈ m md such that

map[y] = ∅ or map[y] = map[y′] for some y′ �= y

5. There exists y′ ∈ m such that for each d ∈ md there
exists (y, d) ∈ m md with map[y] = map[y′] or
map[y] = ∅

Condition (2) makes sure that the instances of m that
are indistinguishable in map become distinguishable in
m md. Condition (3) requires that the instances of m that
do not participate in map have unique images in md. Con-
ditions (4) and (5) ensure that md does not contain any ir-
relevant information. The proof is completed by analyzing
the instance graphs constructed using the lemma.

8

z1

z2

y1

y3

y2

m′m

y4

z3

y5

mapm_md
y6

z4

z5

z6

d1

d2

d3

md

Figure 6: Instance graph illustrating Diff

EXAMPLE 13 Figure 6 shows an instance graph illustrat-
ing Diff applied to the model m and mapping map of Exam-
ple 10 (compare Figure 4). Instances y2 and y3 are indis-
tinguishable under map and are therefore mapped to two
unique instances d1, d2 of md. Instance y6 does not partic-
ipate in map and is “pulled out” into md to avoid informa-
tion loss.

The polynomial algorithm of [18] can be used for com-
puting Diff when the input map is a relational select-join
view. If map contains projections, the output view may be
sensitive to permutation of constants.

3.5 Confluence operator

Confluence is a new operator that we developed by ana-
lyzing the properties of several model-management scenar-
ios, such as change propagation [6, 25]. It “unifies” two
partial or possibly inconsistent mappings map1 and map2

between models m1 and m2. Mappings map1 and map2

may have been designed independently by two engineers,
or obtained as results of other model-management oper-
ators. Confluence can be thought of as an operator that
merges two mappings, as opposed to merging models. It
is defined as follows:

DEFINITION 6 (CONFLUENCE, ⊕)

map1 ⊕ map2 =df (map1 ∩ map2)⋃ {(x, y) ∈ map1 | x �∈ Domain(map2) ∧
y �∈ Range(map2)}⋃ {(x, y) ∈ map2 | x �∈ Domain(map1) ∧
y �∈ Range(map1)}

The operator extracts the “submapping” on which map 1

and map2 agree and adds to it the correspondences be-
tween all those instances of m1 and m2 that participate
either only in map1 or only in map2.

EXAMPLE 14 Let

m1 = �R(A, B), S(B, C)�
m2 = �T(A, B, C)�
map1 = �R �� S = T�

map2 = �πA(R) = πA(σC>5(T))�.

The confluence map1 ⊕ map2 can be expressed as
�R �� σC>5(S) = T�

In the example, Range(map1) ⊂ Range(map2) = m2.
In this case, map1 ⊕ map2 = map1 ∩ map2, i.e., the

result can be expressed as a conjunction of constraints in
map1 and map2. This and other properties of Confluence
are summarized in Theorem 4.

THEOREM 4 Confluence has the following properties:

4A. map1⊕map2 = (map1∩map2)∪
(
(map1∪map2)−

Domain(map1) × Range(map2) − Domain(map2) ×
Range(map1)

)

4B. Confluence is commutative, i.e., map1 ⊕ map2 =
map2 ⊕ map1, but not associative.

4C. If the domain and range of one mapping is contained
in the respective domain and range of another map-
ping, then map1 ⊕ map2 = map1 ∩ map2.

4D. If domains and ranges of mappings are disjoint, then
map1 ⊕ map2 = map1 ∪ map2.

4E. If Invert(map1) is injective or domains of map2 and
map3 are disjoint, then the distributive law holds, i.e.,
map1 ◦(map2⊕map3) = (map1 ◦map2)⊕(map1 ◦
map3).

4F. The bijection between isomorphic models produced
by Merge (Theorem 1, Part 1A) can be expressed using
Confluence. Formally, if

〈m, m m1, m m2〉 = Merge(m1, m2, m1 m2);
〈n, n m1, n m2〉 = Merge(m1, m2, m1 m2);

the bijection between m and n can be specified as

m n =(m m1 ◦ Invert(n m1)) ⊕
(m m2 ◦ Invert(n m2));

4 Specifying the semantics of Rondo
The main value of state-based semantics is to guide the de-
sign and analysis of model-management operators for par-
ticular schema and mapping languages. This helps us build
a model-management system. It also helps us specify its se-
mantics to users, so they can understand the effect of map-
pings they generate via scripts.

To illustrate the utility of state-based semantics for this
kind of design and analysis, we use it to characterize the be-
havior of our prototype model-management system Rondo.
The Rondo paper [25] precisely specifies the metadata ar-
tifacts produced as output by the operators, but it does
not specify a state-based semantics for Rondo’s mapping
language, called morphisms. Here, we define the state-
based semantics for a subset of that language, called path-
morphisms, and argue that Rondo works correctly on them.

Path-morphisms We start with some preliminary defi-
nitions: A morphism is a set of arcs (called inter-schema
correspondences in [27]) connecting the elements of two
schemas, such as XML types or relational attributes. A re-
lational tree schema is a schema in which (i) each relation
has a primary key (PK), (ii) for each relation R, at most one
relation S has a foreign key (FK) for R, and (iii) for each
PK-FK relationship the following constraint also holds: ev-
ery primary key value is referred to by a foreign key. A tree
schema comprises a forest of trees whose nodes are rela-
tions and arcs are PK-FK relationships. Essentially, each

9

EID

Name
Tel

EMPL

AID

City
Zip

ADDR

SID

Name
DOB
City

STAFF

AID

mR mS

map

Figure 7: A morphism between two relational schemas

tree in a tree schema is a nested relation, or a snowflake
schema as used in data warehousing.

Trees r, s of tree schemas mR, mS are connected by
morphism map if map contains an arc between an element
of r and an element of s. Given trees r and s connected by
map, the join key JK(r, s) is defined as the key R.ID of
some relation R in r such that R.ID is connected to a key
in s and all attributes of r that are connected to s belong to
R or its descendants. The join key JK(r, s) is determined
uniquely, if it exists.

Now we define path-morphisms and an interpretation
function I(map) for them. I(map) provides a relational
algebra expression specifying the state-based semantics of
path-morphism map.

DEFINITION 7 (PATH-MORPHISM) Let map be a mor-
phism connecting tree schemas mR and mS . If map
connects each tree of one schema to at most one tree
of the other schema and for each pair of connected
trees r, s there exist join keys JK(r, s) and JK(s, r),
then map is called a path-morphism. If map is a
path-morphism, then for each arc l connecting an at-
tribute R.A in r with S.B in s, expr(l) denotes the con-
straint πJK(r,s),R.A(pathr) = πJK(s,r),S.B(paths), where
pathr (paths) is the join path from R (S) to the table that
contains JK(r, s) (JK(s, r)). I(map) is the conjunction
of constraints expr(l) over all arcs l of map.

The above definition is really more than a definition: It
gives a simple algorithm for testing whether a morphism is
a path-morphism and for generating the relational algebra
expression I(map) whenever map is a path-morphism.

EXAMPLE 15 Consider relational schemas mR and mS

and morphism map in Figure 7. It is easy to verify that both
schemas are tree schemas and map is a path-morphism
such that I(map) is the conjunction of the following in-
dividual constraints:2

1. πEID(EMPL) = πSID(STAFF)
2. πEID,Name(EMPL) = πSID,Name(STAFF)
3. πEID,City(EMPL �� ADDR) = πSID,City(STAFF)

Let LR be the language whose schemas are tree
schemas and mappings are path-morphisms. Although
LR has limited expressiveness, it can represent schemas
and mappings in many practical change propagation and
schema evolution scenarios. Moreover, the definition of

2In this example, constraint (1) is entailed by (2) and is redundant.

tree schemas and path-morphisms can be easily extended
to XML tree schemas in which XML types correspond to
relational tables and type references play the role of PK/FK
dependencies.

Sound answers To show that Rondo works correctly for
schemas and mappings in LR, we would like to show that
the Rondo operators satisfy the definitions of Section 3
forLR. However, this turns out not to hold, because Rondo
operators do not produce minimal output. Therefore, we
define a weaker notion of correctness called sound answers.

DEFINITION 8 (SOUNDNESS) A sound variable substitu-
tion for a model-management script is a substitution that
makes the script a true formula when the operators Extract,
Diff, and Merge are replaced by equivalent operators whose
definitions do not contain minimality conditions. A sound
answer to a model-management script are the values of the
output variables in a sound substitution. An implementa-
tion of model management is sound if it produces a sound
answer to every script.

The essence of sound answers is to allow a model-
management system to produce non-minimal models.
Sound answers are especially useful when the exact an-
swers are too hard to compute, are not representable in the
chosen language, or have a very complex representation.
To justify sound answers, consider the following literature:
[20] selects views that are minimal relatively to a given
set of views, but not w.r.t. all conceivable views (i.e., non-
minimal Extract is acceptable); [18] argues that the reduced
information content of minimal (vs. non-minimal) view
complements may not justify the increase in their complex-
ity (i.e., non-minimal Diff is acceptable); [12] describes an
algorithm for minimizing the merged schema but does not
guarantee a minimal result. Thus, we adopt sound answers
as the correctness criterion for Rondo. Clearly, each (ex-
act) answer to a model-management script is sound. The
reverse is not true.

EXAMPLE 16 Let

m = �R(ID, A, B)�
map = �SELECT ID,A FROM R�

Then the following variable substitution produces a sound
(but not exact) answer for 〈md, m md〉 = Diff(m, map):

md = �S(ID, B)�
m md = �S = πID,B(R)�

This sound answer guarantees that we can reconstruct all
data stored in R(ID, A, B) from the result of the query map
and the data loaded into md by way of m md. However,
as shown in [18], md is not minimal and m md is not a
minimal view complement to map.

Although we only require sound answers, an implemen-
tation should still strive for minimality. Moreover, the
minimality conditions are critical for expressing the in-
tended semantics of the operators and making them non-
redundant. For example, eliminating condition (iii) from
Definition 5 would make Diff a derived operator specified
in terms of Extract, Merge, Invert, and Compose.

10

Rondo is sound The following proposition states the
main result of this section. Since Match has no formal se-
mantics, we assume that Match is applied to obtain all mor-
phisms required as input prior to executing the script:

PROPOSITION 2 If the morphisms that are inputs to a
script are path-morphisms and are closed under Compose,
Confluence, and Invert, then Rondo is a sound implementa-
tion of model management.

The closure criterion is based on Definition 1 and re-
quires that the composition and confluence of the input
path-morphisms (and their inverses) be expressible as path-
morphisms. It can be effectively tested by enumerating all
compositions and confluences of pairs of non-inverted and
inverted input mappings and checking that each result is
a path-morphism using the algorithm implied by Defini-
tion 7. This criterion is needed because LR is not closed
under Compose and Confluence. To illustrate, suppose that
schema mR of Figure 7 is connected by the obvious 1:1
morphism map′ to a schema m′

R which is identical to mR

but lacks the PK/FK constraint on AID. Then, map ′ ◦map
cannot be expressed as a path-morphism.
PROOF SKETCH: The proof of Proposition 2 involves the
following steps. First, we can show that if the result of
composition and confluence are in LR, then the respective
Rondo operators produce a path-morphism that represents
an exact (and, hence, sound) answer. Second, we show that
the output morphisms of all operators are path-morphisms,
and that these output morphisms are closed under compo-
sition and confluence with the previously computed path-
morphisms and those given as input. Finally, if the inputs
to Extract, Diff, Merge, and Invert are in LR, then the result
of each operator is sound and is in LR.

To illustrate the line of argument for the individual op-
erators, consider Extract. Speaking informally, Rondo’s
extraction algorithm pulls out all attributes referenced in
the input morphism together with the relevant constraints.
Thus, the output schema is sound since the constraint ex-
pression I(map) for the input morphism references only
the connected attributes. Since Rondo preserves the con-
straints in the output schema, the output mapping is guar-
anteed to be expressible as a path-morphism. Operator Diff
produces a sound answer because the primary keys of all
connected tables are preserved in the result allowing us to
reconstruct the original instances from the results of Ex-
tract and Diff. Rondo’s conflict-resolution strategy in the
Merge algorithm is driven using the direction flags placed
on morphism arcs and can potentially result in loss of ex-
pressive power upon merging. To eliminate this effect, the
direction flags on the input morphism can be adjusted prior
to running Merge such that the result contains the least-
constrained structures, as suggested in [32]. Invert is exact
since Definition 7 is symmetric in the input schemas.

In many cases, a sound answer produced by Rondo
is an exact answer if we assume that the key values in
the tables do not bear information, i.e., can be replaced
by a permutation of values without affecting the meaning
of the data. This assumption is typically valid for auto-

generated keys. For the example of Figure 7, if ADDR.AID
is an auto-generated key, then Extract(mR, map) and
Extract(mS , Invert(map)) each yield an exact result.

Given that the closure property of the input path-
morphisms can be tested algorithmically, Rondo can guar-
antee that the answers computed by script execution and
delivered to a human engineer are sound. Since the state-
based semantics of the output path-morphisms is well-
defined, they can be deployed in metadata applications to
do data migration (if morphisms are functional) or con-
straint checking.

5 Conclusions and outlook

We presented a state-based approach to studying the
semantics of model-management operators, which lays
a foundation for a formal treatment of many model-
management problems and is instrumental for building fu-
ture model-management systems. We used the approach
to precisely specify the state-based semantics of the Rondo
prototype, which we believe is the first such specification
of any model-management interface.

A major strength of state-based characterization is its
ability to specify the operators in an abstract fashion, with-
out appealing to particular schema, constraint, or transfor-
mation languages, or to particular representations of mod-
els and mappings. One can then apply the abstract char-
acterization to concrete languages, as we did for Rondo’s
language, tree-schemas and path-morphisms. We would
like to develop more powerful model-management systems
than Rondo, based on richer languages, such as SQL views
or GLAV mappings. The abstract state-based characteriza-
tions will help us design model-management operators for
such languages by giving the technical requirements that
those operators must satisfy.

Script optimization requires a deep understanding of the
algebraic properties of operators. We presented an initial
study in Section 3, but we believe that the full potential for
script rewriting is yet to be identified.

Completeness of the suggested set of operators is an in-
teresting open design issue. Analyzing it could help us an-
swer two longstanding questions: (a) what problems can or
cannot be solved using model-management operators and
(b) are the suggested operators “best”? Under state-based
semantics, operators are applied to sets (models) and rela-
tions (mappings). Hence, completeness of operators could
be studied in a way similar to relational completeness, but
on a different meta-level. The notion of completeness has
to take into account that the output of Merge, Extract, and
Diff is not determined uniquely.

An intriguing extension of our formalization is obtained
by considering n-ary mappings, such as map ⊆ m1×m2×
. . . × mn. As noted in [22], the relationship between two
models cannot always be described using a single binary
mapping, in which case a “helper” model needs to be used.
An example of a helper model is an upper-level ontology
that relates two domain-specific ontologies. A mapping es-
tablished by way of helper models can be viewed as an n-

11

ary mapping, and suggests further study of the expressive
power of n-ary vs. binary mappings. The work [23] also in-
dicates that n-ary mappings may have a greater expressive
power. One concrete language for specifying n-ary map-
pings is AIG [14], where a mapping is a multi-source SQL
query yielding an XML document.

References
[1] S. Abiteboul, C. Beeri. The Power of Languages for

the Manipulation of Complex Values. VLDB Journal,
4(4), 1995.

[2] S. Agrawal, S. Chaudhuri, V. Narasayya. Automated
Selection of Materialized Views and Indexes in Mi-
crosoft SQL Server. In Proc. VLDB, 2000.

[3] S. Alagic, P. A. Bernstein. A Model Theory for
Generic Schema Management. In DBPL, 2001.

[4] F. Bancilhon, N. Spyratos. Update Semantics of Re-
lational Views. TODS, 6(4), 1981.

[5] BEA, IBM, Microsoft. Business Process Execution
Language for Web Services Version 1.0, 2002.

[6] P. A. Bernstein. Applying Model Management to
Classical Metadata Problems. In Proc. Conf. on In-
novative Data Systems Research (CIDR), 2003.

[7] P. A. Bernstein, A. Y. Halevy, R. Pottinger. A Vi-
sion of Management of Complex Models. SIGMOD
Record, 29(4), 2000.

[8] P. A. Bernstein, E. Rahm. Data Warehouse Scenarios
for Model Management. In Proc. ER, 2000.

[9] J. Biskup, B. Convent. A Formal View Integration
Method. In Proc. SIGMOD, 1986.

[10] P. Buneman, S. B. Davidson, A. Kosky. Theoretical
Aspects of Schema Merging. In Proc. EDBT, 1992.

[11] D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Y.
Vardi. Lossless Regular Views. In Proc. PODS, 2002.

[12] M. A. Casanova, V. M. P. Vidal. Towards a Sound
View Integration Methodology. In Proc. PODS, pages
36–47, 1983.

[13] R. Chirkova, A. Y. Halevy, D. Suciu. A Formal Per-
spective on the View Selection Problem. In Proc.
VLDB, 2001.

[14] W. Fan, M. Benedikt, C.-Y. Chan, J. Freire, R. Ras-
togi. Capturing both Types and Constraints in Data
Integration. In Proc. SIGMOD, 2003.

[15] A. Y. Halevy. Answering Queries Using Views: A
Survey. VLDB Journal, 10(4), 2001.

[16] A. Y. Halevy, I. S. Mumick, Y. Sagiv, O. Shmueli.
Static Analysis in Datalog Extensions. Journal of the
ACM, 48(5), 2001.

[17] R. Hull. Relative Information Capacity of Simple Re-
lational Database Schemata. SIAM Journal on Com-
puting, 15(3), 1986.

[18] J. Lechtenbörger, G. Vossen. On the Computation of
Relational View Complements. TODS, 28(2), 2003.

[19] M. Lenzerini. Data Integration: A Theoretical Per-
spective. In Proc. PODS, 2002.

[20] C. Li, M. Bawa, J. D. Ullman. Minimizing View Sets
without Loosing Query-Answering Power. In Proc.
ICDT, 2001.

[21] J. Lin, A. O. Mendelzon. Merging Databases Under
Constraints. Intl. Journal of Cooperative Information
Systems, 7(1), 1998.

[22] J. Madhavan, P. A. Bernstein, P. Domingos, A. Y.
Halevy. Representing and Reasoning about Mappings
between Domain Models. In Proc. AAAI/IAAI, 2002.

[23] J. Madhavan, A. Halevy. Composing Mappings
Among Data Sources. In Proc. VLDB, 2003.

[24] S. Melnik. Generic Model Management: Concepts
and Algorithms. Ph.D. thesis, University of Leipzig,
Springer LNCS 2967, 2004.

[25] S. Melnik, E. Rahm, P. A. Bernstein. Rondo: A Pro-
gramming Platform for Generic Model Management.
In Proc. SIGMOD, 2003.

[26] R. J. Miller, Y. E. Ioannidis, R. Ramakrishnan.
Schema Equivalence in Heterogeneous Systems:
Bridging Theory and Practice. Information Systems,
19(1), 1994.

[27] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández,
R. Fagin. Translating Web Data. In Proc. VLDB,
2002.

[28] R. Pottinger, P. A. Bernstein. Merging Models Based
on Given Correspondences. In Proc. VLDB, 2003.

[29] E. Rahm, P. A. Bernstein. A Survey of Approaches to
Automatic Schema Matching. VLDB Journal, 10(4),
2001.

[30] J. Shanmugasundaram, J. Kiernan, E. J. Shekita,
C. Fan, J. Funderburk. Querying XML Views of Re-
lational Data. In Proc. VLDB, 2001.

[31] J. Siegel. CORBA Fundamentals and Programming.
Wiley, 1996.

[32] S. Spaccapietra, C. Parent. View Integration: A Step
Forward in Solving Structural Conflicts. Trans. on
Knowledge and Data Eng. (TKDE), 6(2), 1994.

[33] D. Srivastava, R. Ramakrishnan. Pushing Constraint
Selections. Journal of Logic Programming, 16(3–
4):361–414, 1993.

[34] D. Theodoratos, S. Ligoudistianos, T. K. Sellis. View
Selection for Designing the Global Data Warehouse.
Data and Knowledge Eng. (DKE), 39(3), 2001.

12

