An Incremental Heap Canonicalization
Algorithm

Madanlal Musuvathi! and David L. Dill2

1 Microsoft Research, Redmond, madanm@microsoft.com
2 Computer Systems Laboratory, Stanford University, dill@cs.stanford.edu

Abstract. The most expensive operation in explicit state model check-
ing is the hash computation required to store the explored states in a hash
table. One way to reduce this computation is to compute the hash incre-
mentally by only processing those portions of the state that are modified
in a transition. This paper presents an incremental heap canonicalization
algorithm that aids in such an incremental hash computation. Like exist-
ing heap canonicalization algorithms, the incremental algorithm reduces
the state space explored by detecting heap symmetries. On the other
hand, the algorithm ensures that for small changes in the heap the re-
sulting canonical representations differ only by relatively small amounts.
This reduces the amount of hash computation a model checker has to
perform after every transition, resulting in significant speedup of state
space exploration. This paper describes the algorithm and its implemen-
tation in two explicit state model checkers, CMC and Zing.

1 Introduction

There is a practical need to apply verification techniques to large software sys-
tems. In this vein, explicit state model checkers that systematically enumerate
the possible states of a given system have been successful in finding complex
errors, and sometimes proving their absence in software systems [1-4].

Apart from the well known state explosion problem, one challenge in scaling
explicit state model checkers to large systems is the sheer size of individual
system states. These model checkers store the explored states in a hash table
to avoid exploring them redundantly. The hash computation required in this
process is the most time consuming operation during model checking [5]. At the
minimum, computing a hash value requires a few arithmetic operations for every
byte of the state. This can be very expensive, especially for states that are tens
or hundreds of kilobytes.

One way to reduce the hash computation overhead is to compute the hash
incrementally. During model checking, a transition is very likely to modify only
small portions of the state. By accounting for these differences between the
initial and final state of a transition, and using a suitable hash function, a model
checker can generate the hash value of the final state by incrementally updating
the hash value of the initial state. (See §2.3 for details.) This amortization of hash

computation over the unmodified portion of the state can significantly improve
the speed of state space exploration.

Implementing such an incremental hashing scheme is complicated by the need
for software model checkers to perform heap canonicalization [6,7]. Almost all
non-trivial programs allocate memory in the heap. Heap canonicalization is a
state space reduction technique that enables model checkers to identify states
that are behaviorally equivalent but differ only in the memory locations of heap
objects. To identify such equivalent states, a model checker executes a heap
canonicalization algorithm to transform a state to a canonical representation
that is unique for all equivalent states. This canonical representation is then
inserted in the hash table.

Unfortunately, the only known heap canonicalization algorithm [7] does not
admit incremental processing. This algorithm performs a depth first traversal of
the heap, and the canonical representation of each object depends on its depth
first ordering. As a result, even small structural changes to the heap, such as
object additions or deletions can modify the canonicalization of a large number
of objects in the heap. Thus, even when a transition modifies small portions
of the state, the canonical representations of the initial and final states can be
significantly different. This forces the model checker to process large portions of
the state during hash computation.

This paper presents an improved, incremental heap canonicalization algo-
rithm. Like [7], this algorithm generates a unique canonical representation for
all equivalent heap states. However, this algorithm ensures that small changes to
the heap only result in relatively small changes in the canonical representation.
This allows the model checker to perform incremental hash computation. The
basic idea of the incremental algorithm is to determine the canonicalization of
a heap object from its shortest path to some global variable. When a transition
makes small changes to the heap structure, the shortest path of most objects
is likely to remain the same [8,9]. A model checker only needs to process those
objects whose shortest paths have changed in a transition.

We have implemented this incremental algorithm in two explicit state model
checkers, CMC [4] and Zing [10]. The algorithm is very easy to implement, and
can handle arbitrary data structures in the heap, including type-unsafe pointers.
We have applied the algorithm for several large models and have achieved an
improved performance in all of them (§5). For the examples we have tried the
model checker processes at most 5% of the objects in the heap during hash
computation using the incremental heap canonicalization algorithm. This results
in a model checking speedup of 2 to 9 times. While providing this speedup,
the incremental algorithm preserves the state space reduction provided by the
previous heap canonicalization algorithm [7].

2 Preliminaries

This section describes the necessary formalisms required to explain the main
ideas in the paper. Motivated by our efforts in checking C programs, we will

not assume that the heap pointers are type-safe. Specifically, we will allow a
pointer variable to point to objects of different types at different instances in the
program. Also, we will allow these variables to point to arbitrary fields in the
object.

2.1 Heap Objects

At any instant, the program state includes a collection of heap objects occupying
memory addresses from a countably infinite set H. To allow arbitrary pointer
arithmetic, we define the normal arithmetic operations, such as +, <, over H in
the obvious way.

A heap object is identified by its start address € H. For an object p, len(p)
represents the length of the object. The fields of an object p of length [occupy
memory locations in the range [p, p+1). For simplicity, assume that a field of an
object p is named by its integer offset f in p, where 0 < f < len(p). The term
p[f] denotes the value of a field f in p, where the value p[f] is either an integer,
or a pointer value € H, or the special null pointer. An object p points to another
object g exactly when there is a field f of p such that ¢ < p[f] < ¢+ len(q). In
this case, p is said to contain a pointer to q.

2.2 Program State

Apart from the heap, the state of a program at any instant consists of all the
global variables and the stacks of all the threads. We seek to capture the entire
state of the program in the heap as follows.

Conceptually, all the global variables in a program can be considered as fields
of a global root object that represents the statically allocated region in memory.
For ease of exposition, assume that the addresses of all global variables are in
H. Also, the stack of each thread is represented as a linked-list of stack frames,
where each stack frame is a heap object. We assume that for each thread there
is a field in root that points to its stack. 3

The program state S is a set of objects {root = pg,p1,p2,...,pn}. Given a
state S, we assume that all objects in S do not overlap in memory. In other
words, for any p;,p; € S,pi # pj = pi < p; Vi > p; +len(p;). Also, we assume
that all objects in a state are reachable from the root object. That is, for any
object p € S, there is a sequence (root = pg, p1,...,pn = p) such that p; points
to p;41 for 0 < i < n. We assume that any object that is not reachable from the
root object is automatically removed from the state.

3 We also assume that each thread is statically identified by a unique identifier. De-
tecting thread-symmetries by permuting these identifiers is an interesting problem,
but beyond the scope of this paper.

4 Such memory-leak detection (or garbage collection) can be done during the canoni-
calization algorithm described in Section 4.

2.3 Incremental Hashing of State

The performance bottleneck in an explicit model checker is the hash computa-
tion required when storing the state in a hash table. One way to mitigate the
performance overhead is to compute the hash incrementally as follows.

For a given state, the model checker computes a partial hash value for each
object in the state. The hash value of the entire state is obtained from these
partial hash values. The goal is to cache these partial hash values with objects,
and recompute them only when a transition explored by the model checker
modifies the object. However, if an object remains unmodified in a transition, its
cached value can be used when computing the hash value of the final state. This
amortization of hash computation across states improves the model checking
performance.

Formally, we assume the existence of three hash functions h,, hg, and h,,
defined as follows. For an object p of length [, there is a hash function h, that
takes [+ 1 arguments. The partial hash value of p is given by

H(p) = ho(p,p[0],p[1],...,pll — 1])

Note, to minimize hash collisions any good hash function should use values of
all the fields in an object. Also, to avoid collisions between objects whose values
are permutations of each other, the hash function should use the location of the
object in the state. For a state S = pg,p1,...,pn, there is a hash function hg
that generates the hash for the state using the partial hash values of the objects.

H(S) - hS(H(pO)7 H(pl)’ e 7H(pn))

Finally, we assume that H(S) can be incrementally updated. Let S(p,p’) repre-
sent the state obtained from S by modifying the object p € S by p’ and leaving
all other objects unmodified. One of p or p’ can be null to represent object al-
locations and deletions respectively. Given S’ = S(p,p’) assume there is a hash
update function h, to obtain the hash value of S’.

H(S(p,p")) = hu(H(S), H(p), H(p))

Typically, the update function h, is computationally much more efficient than
h, or hg. After a transition, a model checker applies h, on all object modified
in a transition and then uses h, once for each modified object to determine the
hash value of the final state. In effect, the cost of computing the hash value is
proportional to the total size of the objects modified in a transition.

In practice, it is very straightforward to design hash functions h,, hs, h, from
existing hash functions. See Appendix B for such an example.

The main goal of this paper is to allow this incremental hash computation
when model checkers perform heap canonicalization.

3 Heap Canonicalization

This section describes the need for heap canonicalization when model check-
ing software programs and presents an informal description of the losif’s algo-
rithm [7].

Two Canonical Heap Structures Associated Heap Graph
L] e[e
Lol A L] []]

null
‘_/

null

Fig. 1. Two equivalent representations of a linked list, and their common heap graph.
This first element of the linked list is the global node.

When a program dynamically allocates objects in the heap, the exact memory
location of these objects is arbitrary from the perspective of the program. The
memory location of an object is determined by some internal heap allocation
algorithm and typically depends on the order of all previous object allocations
and deletions.

When a model checker explores different event interleavings during state ex-
ploration, it can generate multiple representations of the heap that differ in the
memory locations of the objects, but are otherwise equivalent. For example, Fig-
ure 1 shows two representations of a linked list with three elements. The two
representations differ in the memory locations of the second and the third el-
ement in the list. As heap objects can be accessed only through pointers from
global variables or other heap objects, no program can differentiate between the
two different representations in Figure 1. ® From the perspective of the model
checker, these two representations describe the same state, and thus should ex-
plore at most one of them.

3.1 The Heap Graph

To formalize the notion of the equivalence of heap states, one can introduce the
notion of a heap graph. Informally, a heap graph abstracts the memory locations
of the heap objects, while maintaining information about the pointers to these
objects.

Given a state S, the heap graph G(S) is defined as follows. For each object
p € S, G(S) contains a vertex given by V(p). There is a directed edge in G(5)
from V(p) to V(g) if and only if p points to ¢ in S. This edge is labeled by the
offset of the field in p that contains the pointer to ¢. For instance, the heap graph
of the linked list is shown in Figure 1. Obviously, no two outgoing edges of an
object have the same label. Each node in the heap graph is labeled by the values
of all the non-pointer fields in the corresponding object as shown in Figure 1.

5 Even in C programs, which are allowed to inspect the value contained in pointers,
any behavior that relies on absolute values of the pointers can be safely marked as
an error.

Propostion 1 A program cannot differentiate between two states S1 and Ss if
their heap graphs G(S1) and G(S2) are isomorphic.

Basically, a heap graph captures the entire state of the heap along with all the
global variables, but abstracts the memory addresses contained in the pointer
variables.

3.2 The Canonical Representation of a Heap

The aim of a heap canonicalization algorithm is to produce the same canoni-
cal representation for all heaps that have the same heap graph. By computing
the hash on this canonical representation, the model checker can ensure that it
explores at most one among the possible equivalent states.

The generation of a canonical representation can be considered as a relo-
cation of the objects in the heap. Conceptually, the canonicalization algorithm
relocates each object to a canonical location determined by the algorithm. After
relocation, the algorithm modifies all pointers to an object to reflect this new
location.

Formally, a canonicalization algorithm defines a relocation function reloc :
H — H such that reloc(p) determines the canonical location of an object p € S.
We restrict the reloc function to have the following desirable properties. First,
it is not necessary to relocate the root object. Thus,

reloc(root) = r, for a constant r (1)

Second, it is desirable to relocate heap objects in their entirety. In other words,
the offset of fields in an object should be invariant during relocation.

reloc(p + f) = reloc(p) + f, Vf:0< f <len(p) (2)

Equations 1 and 2 imply that a particular heap canonicalization algorithm only
defines the relocation function for start addresses of heap objects. The two equa-
tions determine the relocation for other addresses € H.

Finally, there is a constraint on the relocation function defined by any heap
canonicalization algorithm. The reloc function should not overlap objects in the
canonical heap. That is, for all p,q € H

reloc(p) = reloc(q) <= p=q (3)

Given a relocation function that satisfies the above constraints, the canonical
representation of a state can be obtained as follows. First, relocate each object
p € S to the location reloc(p). Also, if an object p points to ¢, modify the pointer
value to reflect the new location of q. The values of all non-pointer fields do not
change in this relocation. That is,

el = T e

Abusing notation we will define reloc(S) as the state thus obtained from S.

The goal of a heap canonicalization algorithm is define a relocation function
such that reloc(S) = reloc(S’") whenever the heap graphs G(S) and G(S’) are
isomorphic. Given a state S, a model checker computes reloc(S’) and inserts
the latter in the hash table. Note, it is not necessary to physically relocate the
objects in the heap. The model checker merely applies the reloc function on all
pointer values in the heap when computing the hash.

3.3 Ilosif’s Algorithm

Tosif’s algorithm [7] involves a depth first traversal of the heap graph starting
from the root object. The traversal uses the edge labels in the heap graph to
deterministically order all outgoing edges of a node. ® The algorithm relocates
the heap objects in the heap in the order visited by the traversal. Specifically, if
p; represents the object with depth first order number 4, then

reloc(p;) = X_: len(p;) (4)
3=0

Note that the above relocation function satisfies the constraint in Equation 3.

Figure 2(a) shows an example. The heap consists of three objects in a binary
tree. The head node is the root object and contains pointers to a left node and a
right node. Assuming that the size of these nodes is 3 word lengths, the algorithm
relocates the head, left and right nodes at offsets 0, 3 and 6 respectively in the
canonical heap. Also, after relocating the objects, the algorithm modifies the left
and right pointers in the head node to point to the respective objects in their
new locations.

The correctness of the Iosif’s algorithm follows. If two heap states have the
same heap graph, then the algorithm will visit the heap objects in the same
order and relocate them at the same locations. This produces the same canonical
representation.

3.4 Need for an Incremental Algorithm

Now we can see why losif’s algorithm is not suitable for incremental hash com-
putation — it unnecessarily modifies the relocation of objects in the canonical
heap. To illustrate this, consider the heap in Figure 2(a) and a transition that
deletes the left node in the binary tree. Figure 2(b) shows the resulting heap and
the canonical representation generated by the Iosif’s algorithm. The algorithm
locates the right node at offset 3 in the canonical heap, while the node had an
offset 6 before the transition. This change in the location invalidates the pre-
computed hash value for the right node, even though the node was not modified
in the current transition.

6 Without such an ordering, the heap canonicalization problem is an instance of the
graph isomorphism problem, and so is intractable [11].

@ Heap Canonical Heap

o/\3\ 6

UEREERETE

() Heap After Object Deletion Canonical Heap by losif's Algorithm
0 3 6
T T T T R
[‘Head| I Right!
n n \\A/ A
\Right,
(©) Canonical Heap by Incremental Algorithm
0 3 6

EEN [_rei)

Fig. 2. Demonstration of Heap Canonicalization before and after a transition that
deletes a node. The head node is global.

In general, Tosif’s algorithm determines reloc(p) from the depth first order
number of p in the heap graph (see Equation 4). Any change in the heap graph
can potentially modify the relocation of all objects after the change in the depth
first order. For instance, one can expect an object addition or deletion to modify
on average the relocation of half of all the heap objects. Moreover, whenever
reloc(p) changes, the algorithm needs to modify all the pointers to p. This in-
validates the precomputed hash for any object that contains such a pointer.
In practice, the Iosif’s algorithm requires recomputing the hash value for large
portions of the heap, drastically slowing the model checker performance.

4 Incremental Heap Canonicalization

This section describes an incremental heap canonicalization algorithm that im-
proves upon the Iosif’s algorithm.

The incremental algorithm has two requirements. First and foremost, the
algorithm should guarantee heap canonicalization, and thus generate the same
canonical heap for all equivalent heaps. Second, the algorithm should seek to

reduce unnecessary changes to the canonical representation for small changes in
the heap. Ideally, after every transition the model checker should only need to
recompute the hash for objects that are modified in the transition.

To illustrate this, consider the example in Figure 2. When the transition
deletes the left node, the incremental algorithm generates a canonical heap as
shown in Figure 2(c). Note, the right node remains at offset 6 in the canoni-
cal heap both before and after the transition. This enables the model checker
to reuse the hash computed for the object before the transition. To guarantee
canonicalization, the incremental algorithm should produce the canonical heap
in Figure 2(c) for any heap equivalent to the state in Figure 2(c). It is important
to note once again that the canonical heap is a conceptual representation used
during hash computation — the heap itself is not physically modified. In partic-
ular, the empty space between the two objects in Figure 2(c) does not represent
unreclaimed space in the heap.

The basic idea behind the incremental algorithm is to determine the relo-
cation of an object from the bfs access chain of the object, which is a shortest
path between the object and the global object. For example, the right node in
Figure 2 always has the same bfs access chain that consists of the right pointer
from the head node. Thus, the incremental algorithm always relocates the right
node at the same offset in the canonical heap, irrespective of other objects in
the heap. On small changes to a graph, the shortest paths between most objects
are likely to remain the same [8,9]. This is specifically so for the heap graph
of programs, which typically use large number of data structures that are only
weakly related.

4.1 Access Chains

Heap objects can only be accessed through pointers from global variables. For
instance, a C program can access the right node in Figure 2(a) with an ex-
pression head->right. In general, a heap object p can be accessed through
a chain of pointers. This access can be represented by the sequence root =
po, fo,P1, f1,---,pn = p, where f; is the offset of a field in p; that contains a
pointer to p;4+1, for 0 < ¢ < n. In the heap graph, this chain forms a path start-
ing from root. This path is uniquely defined by the offset labels on the path
edges.

Formally, an access chain of a heap object p is a path in the heap graph
from the root object to p and is denoted by (fo, f1,..., fn—1), the list of offset
labels on the path edges. For instance, the access chain of the third element in
the linked list of Figure 1 is (1, 1), assuming that the first element is the root
object. Also, the root object has an empty access chain ().

4.2 BFS Access Chain

A breadth first traversal of the heap graph naturally defines an access chain for
objects in the graph. During a breadth first traversal, the edges used to traverse
the graph form a spanning tree of the graph rooted at the global node. For any

object in the graph, this spanning tree provides a shortest path from the global
node to that object. Obviously, the access chain that corresponds to this path is
one of the shortest of all access chains for the object. Additionally, if the breadth
first traversal traverses the edges from an object in the increasing order of their
offset labels, then the access chain constructed above is guaranteed to be the
lexicographically smallest of all shortest access chains of the object.

Formally, a bfs access chain of an object p given by (p), is the access chain
(fos f1,---, fn) such that for any other access chain (go, g1, - - -, gm) of the object
the following holds: either m > n; or m = n and there is an ¢ < n such that
for all 0 < j <4, f; = g; and f; < g;. The bfs access chain of all objects in
the heap graph can be constructed by performing a breadth first traversal of the
graph that traverses all outgoing edges of a node in the edge label order. Given
a heap graph, the bfs access chain of an object is unique. The incremental heap
canonicalization algorithm uses this chain to determine the location of objects
in the canonical heap.

4.3 Defining the reloc Function

A heap canonicalization algorithm is defined by the reloc function that deter-
mines the location of a heap object p in the canonical representation. The aim
of the incremental algorithm is to define reloc such that reloc(p) depends only
on (p).

Also, in a type unsafe language such as C, a single pointer field can point
to objects of multiple types, and hence multiple lengths. Accordingly, objects of
different lengths can have the same bfs access chain. To differentiate such objects
in the canonical representation, we also require that reloc(p) depends on len(p).
This, as will be explained below, is also crucial to satisfy Equation 3.

In summary, the incremental algorithm seeks for a function canon that takes
(p) in a suitable encoding and len(p) as arguments, and returns reloc(p).

reloc(p) = canon((p), len(p)) (5)

The next task is to obtain an encoding for (p). Let (p) = (fo, f1,---, fn)-
If parent(p) is the parent of the object p in the breadth first traversal of the
heap graph, then (parent(p)) = (fo, f1,-.., fn—1). This hints at an encoding
for (p) from the encoding for (parent(p)) and f,. Using Equation 5 recursively,
the following theorem shows that reloc(parent(p) + f,) provides the necessary
encoding for (p).

Theorem 1. For any arbitrary function canon : H x N — H, the relocation
function defined by

reloc(p) = canon(reloc(parent(p) + fn), len(p)) (6)

relocates two objects with the same bfs access chain and the same length to the
same location in the canonical heap.

Proof: The proof follows from a simple induction on the depth of the bfs access
chain of an object. The global object has an empty bfs access chain and the base
step trivially follows from Equation 1. Assume the theorem holds for all objects
with a bfs access chain of length < n. Consider two objects p1, p2 such that they
have the same length and the same bfs access chain. Let

<p1> = <P2> = <f07f17"'7fn>

Obviously, parent(p1) and parent(ps) have the same bfs access chain of length
n.

(parent(p1)) = (parent(p2)) = (fo, f1,..., fu-1)

By induction
reloc(parent(p1)) = reloc(parent(p2))

Using Equation 2,
reloc(parent(p1) + frn) = reloc(parent(p2) + fr)

This from Equation 6 and the fact that len(p;) = len(ps) implies that

reloc(py) = reloc(p2)

O
Note that f,, is the offset of the field in parent(p) that points to p, and thus
reloc(parent(p) + frn) represents the address of that field in the canonical heap.
Theorem 1 essentially shows that (p) can be captured by this address in the
canonical heap. This greatly simplifies the implementation of the incremental
canonicalization algorithm.
The following theorem follows.

Theorem 2. For an arbitrary function canon : H x N — H, the relocation
function defined by Equation 6 generates the same canonical representation for
two heaps with the same heap graph, provided Equation 3 holds.

Proof: The bfs access chain is an inherent property of an object in the heap
graph. Thus, given two heaps with the same heap graph, equivalent objects in
the two heaps have the same bfs access chain. The proof follows from Theorem 1.
O

4.4 Designing the canon function

By Theorem 2, heap canonicalization is guaranteed for any function canon :
H x N — H that satisfies the constraint in Equation 3. The final task is to
design one such function.

Without apriori knowing the length of the objects with different bfs access
chains, a closed form for the canon function is not possible. The trick then, is to
define the canon function incrementally during model checking. The algorithm
is shown in Figure 3 and implements canon as a hash table. Initially, the hash

table is empty. When the value for canon(addr, len) is required for a new address
length pair, the algorithm allocates a new region in the canonical heap of the
required length. This region is never reused for other address length pairs. Thus
no overlap is possible in the canonical heap, satisfying Equation 3.

The canon hash table is a global table maintained by the model checker.
During state exploration, the model checker can add new entries to the table,
but can never modify an existing entry or delete it. This ensures that the hash
table implements a function which is essential from Theorem 2 for heap canoni-
calization. Also, the size of the canon table grows as the model checker discovers
different bfs access chains in the program. However, the number of such chains
tends to stabilize once the data structures are initialized in the program. In our
experiments (§5), the canon table did not exceed ten thousand entries.

As a demonstration of the algorithm, consider the example in Figure 2. After
processing the state in Figure 2(a), the canon table maintains the following
mapping: (0,3) — 3 and (2,3) — 6. In other words, the canon table remembers
that an object of length 3 pointed from the offset 2 (the right pointer) of the
head node should be relocated at offset 6 in the canonical heap. Now, when
the left node is deleted, the mapping maintained above produces a canonical
representation in Figure 2(c) as desired.

5 Experimental Results

We have evaluated the incremental heap canonicalization algorithm in two ex-
plicit model checkers, CMC [12] and Zing [10]. CMC is specifically designed
for checking network protocol implementations. It executes the implementation
directly without resorting to any intermediate representation. A transition in-
volves the entire processing of a protocol event, such as packet receives or timer
interrupts, and can typically involve more than tens of thousands of instruc-
tions. Zing focuses on detecting concurrency errors in large software programs.
The input language is designed for automatic translation of software programs
into Zing models, and provides support for dynamic object and thread creation.
Zing explores thread interleavings at much finer granularity than CMC, and a
transition in Zing typically involves few instructions.

CMC and Zing represent two fundamentally different model checkers, and
the incremental heap canonicalization algorithm performs well in both of them.
Table 1 shows the improvement achieved by the model checkers on three large
models. As the state sizes grow, the incremental algorithm fares much better than
the non-incremental version. In these examples, the model checker processes only
5% of the heap per transition. As a result, the model checker runs 2 to 9 times
faster.

In the Linux TCP case, the incremental algorithm almost always processes
only the objects that are modified by the system. However, this is not the case
with the Zing models. We believe that this is due to a deficiency of the algorithm
implementation in Zing. Specifically, the algorithm does not process the thread
stack frames incrementally. We hope to rectify this very soon.

Model State | No. of Heap | % Modified |% Accessed|Model Checker
Size (KB)|Objects (avg)|per Transition|for Hashing| Speedup

Tx. Manager (Zing) 1.3 46.0 0.16 4.25 x2.15
File System (Zing) 4.1 364.1 0.4 2.18 x3.59
Linux TCP (CMC)| 255.7 102.7 4.96 5.06 x8.85

Table 1. Performance improvement of the Incremental Canonicalization Algorithm

While running our experiments, we found that both CMC and Zing spend
their time in performing the breadth-first traversal of the heap required for
the incremental algorithm, and not on the hash computation. However, note
that such a full-heap traversal is required even to check for memory leaks (or
to perform garbage collection). One way to avoid this full-heap traversal is to
implement an incremental shortest path algorithm, such as [13], for computing
the bfs access chains and for detecting memory leaks. We hope to pursue this
approach in our future work.

6 Related Work

The work presented in this paper is related to, and in many ways relies on the
observations made in [6,7]. The need for heap canonicalization was first ob-
served by Lerda et.al. [6]. However, they only provide a heuristic algorithm that
does not guarantee uniqueness of the canonical representation for all equivalent
heaps. Tosif’s algorithm [7] is the only previously known heap canonicalization
algorithm to guarantee this uniqueness. This algorithm has been extended to
support thread symmetries [14]. Extending the incremental heap canonicaliza-
tion algorithm to recognize thread symmetries is interesting future work.

Other researchers have observed the expensiveness of state hashing in explicit
model checking [5]. In [15], Dillinger et.al. provide a method to reduce the number
of hash functions required for bitstate hashing. This approach is orthogonal to
the approach presented in the paper and can be used together.

7 Conclusions

This paper presents an incremental heap canonicalization algorithm that is nec-
essary when explicitly model checking large software programs. As demonstrated
by the experiments, the incremental algorithm scales well to large heaps by gen-
erating the canonical representation of a heap incrementally.

References

1. Holzmann, G.J.: From code to models, Newcastle upon Tyne, U.K. (2001) 3-10

2. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Zheng,
H.: Bandera: Extracting finite-state models from java source code. In: ICSE 2000.
(2000)

10.

11.

12.

13.

14.

15.

16.

17.

Brat, G., Havelund, K., Park, S., Visser, W.: Model checking programs. In: IEEE
International Conference on Automated Software Engineering (ASE). (2000)
Musuvathi, M., Park, D., Chou, A., Engler, D.R., Dill, D.L.: CMC: A Pragmatic
Approach to Model Checking Real Code. In: Proceedings of the Fifth Symposium
on Operating Systems Design and Implementation. (2002)

Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison
Wesley, Boston, Massachusetts (2003)

Lerda, F., Visser, W.: Addressing dynamic issues of program model checking.
Lecture Notes in Computer Science 2057 (2001) 80-102

Tosif, R.: Exploiting Heap Symmetries in Explicit-State Model Checking of Soft-
ware. In: Proceedings of 16th IEEE Conference on Automated Software Engineer-
ing. (2001)

Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Incremental algorithms for
single-source shortest path trees. In: Proceedings of Foundations of Software Tech-
nology and Theoretical Computer Science. (1994) 112-224

Narvaez, P., Siu, K.Y., Tzeng, H.Y.: New dynamic SPT algorithm based on a
ball-and-string model. In: INFOCOM (2). (1999) 973-981

Andrews, T., Qadeer, S., Rehof, J., Rajamani, S.K., Xie, Y.: Zing: Exploiting
program structure for model checking concurrent software. In: Proceedings of the
15th International Conference on Concurrency Theory. (2004)

Gary, M.R., Johnson, D.S. In: Computers and Intractability. Freeman (1979)
Musuvathi, M., Park, D., Chou, A., Engler, D., Dill, D.: CMC: A pragmatic
approach to model checking real code. In: Proceedings of Operating Systems Design
and Implementation (OSDI). (2002)

Ramalingam, G., Reps, T.W.: An incremental algorithm for a generalization of
the shortest-path problem. J. Algorithms 21 (1996) 267-305

Robby, Dwyer, M.B., Hatcliff, J., Iosif, R.: Space-reduction strategies for model
checking dynamic software. In: SoftMC03 Workshop on Software Model Checking,
Electronic Notes in Theoretical Computer Science. Volume 89. (2003)

Dillinger, P.C., Manolios, P.: Bloom filters in probabilistic verification. In: Formal
Methods in Computer-Aided Design (FMCAD). (2004)

Carter, J.L., Wegman, M.N.: Universal classes of hash functions. (In: Journal of
Computing and System Sciences) 143

Cormen, T.H., Leiserson, C.L., Rivest, R.L. In: Introduction to Algorithms. MIT
Press (1990)

A Implementation of the canon function

See Figure 3

B

Example of an Incremental Hash Function

One example that is shown below is the universal hash function [16] described
in [17]. Given a state x consisting of n bytes x = {x1,...,2,}, a hash table of
size m where m is prime, and a random array r of n elements r = {ry,...,r,}
such that 0 < r; < m — 1, the hash function is given by

h(z) = Zrixi mod m
i=1

canon_table; //implemented as a hash table
unalloc_address = canonical_heap_address_start;

canon(parent_ptr, len){

if (canon_table[parent_ptr, len] is defined){
return canon_table[parent_ptr, len];

}

else{
// incrementally define canon for (parent_ptr, len)
canon_table[parent_ptr, len] = unalloc_address;
unalloc_address += len;
return canon_table[parent_ptr, len];

Fig. 3. The implementation of the canon function

An object p of length [in the state consists of the following bytes {zp, Xp+1, - .-, Tp+i—1}-
Thus, its partial hash value is the following partial sum.

p+i—-1
H(p) = Z rixz; mod m
i=p

The hash value of the entire state is the sum (modulo m) of the partial hash
valuse of all objects in the state. The hash update function is simply

H(S(p,p")) = H(S) — H(p) + H(p") mod m

